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Abstract We present an unprecedented ensemble of 196 future climate projec-
tions arising from different global and regional model intercomparison projects
(MIPs): CMIP3, CMIP5, ENSEMBLES, ESCENA, EURO- and Med-CORDEX.
This multi-MIP ensemble includes all regional climate model (RCM) projections
publicly available to date, along with their driving global climate models (GCMs).
We illustrate consistent and conflicting messages using continental Spain and the
Balearic Islands as target region. The study considers near future (2021-2050)
changes and their dependence on several uncertainty sources sampled in the multi-
MIP ensemble: GCM, future scenario, internal variability, RCM, and spatial reso-
lution. This initial work focuses on mean seasonal precipitation and temperature
changes. The results show that the potential GCM-RCM combinations have been
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explored very unevenly, with favoured GCMs and large ensembles of a few RCMs
that do not respond to any ensemble design. Therefore, the grand-ensemble is
weighted towards a few models. The selection of a balanced, credible sub-ensemble
is challenged in this study by illustrating several conflicting responses between the
RCM and its driving GCM and among different RCMs. Sub-ensembles from dif-
ferent initiatives are dominated by different uncertainty sources, being the driving
GCM the main contributor to uncertainty in the grand-ensemble. For this anal-
ysis of the near future changes, the emission scenario does not lead to a strong
uncertainty. Despite the extra computational effort, for mean seasonal changes,
the increase in resolution does not lead to important changes.

Keywords Regional climate change - Near surface temperature - precipitation -
ESCENA - ENSEMBLES - CORDEX

1 Introduction

Regional climate change information is increasingly being demanded by different
vulnerability, impact and adaptation (VIA) research communities (Hewitson et al,
2013). This information is required to feed models which, eventually, will produce
information for specific sectors (health, energy, food availability, risk management,
water resources) and enter decision-making processes at different levels (Huynen
and Martens, 2015; Koutroulis et al, 2015; Giannini et al, 2016). The distillation
of information out of the huge amount of available data is a technical and ethical
challenge (Hewitson et al, 2013). A key approach to produce future climate sce-
narios is the use of numerical models. A recent series of international projects and
initiatives have produced, using both global (GCM) and regional (RCM) climate
models, a huge ensemble of future climate projections, which samples most of the
uncertainties affecting climate change. The model development cycle, along with
the periodic Intergovernmental Panel on Climate Change (IPCC) reporting cycle,
impose a rhythm in climate scenario production which can hardly be followed by
the scientific community feeding from them. Specific technological infrastructures,
such as the Earth System Grid Federation (ESGF; Williams et al, 2015), have
been developed to face the data storage and discovery challenge posed by the 5th
Coupled Model Intercomparison Project (CMIP5) feeding the last IPCC Assess-
ment Report (AR5) (Stocker et al, 2013). Each new initiative increases model
complexity and/or spatial resolution, resolving more and more processes relevant
for the anthropogenic climate change assessment. Data users switch to the latest
available products, without exhausting previously existing databases. In contrast,
this work combines 6 ensembles of future climate projections from different model
types and generations, showing common and conflicting messages that arise from
very simple analyses.

VIA research communities are usually advised to consider an ensemble of model
projections in order to propagate the uncertainty arising from different greenhouse
gases (GHG) scenarios and climate simulation tools. In the past, data availability
usually drove the selection of models, e.g. researchers used models from their own
institution (Easterling et al, 2001; Knowlton et al, 2007), from a project consortium
(Dessai, 2003; Sima et al, 2015), or data from the few models openly available
(Kalkstein and Greene, 1997; Rotter et al, 2013). Since 2004, the advent of the
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ESGF, climate change scenario model output data can be accessed homogeneously,
through a single access infrastructure and in a common data format which eases
the processing of any number of models and ensemble members. The use of the
ESGF is still complex and slow for an average user, and a number of tools have been
developed to bridge the gap with the users; for example, climate4impact (Plieger
et al, 2015) or ESGFToolsUI (Terry, 2014). Despite these technical advances to
access data, fundamental transdisciplinary issues might still hamper a proper usage
of regional climate data (Rossler et al, 2017; Hewitson et al, 2017).

An important gap in the provision of regional climate change information is
the scale mismatch between GCM model output and the spatial scale of most
climate impact applications. Downscaling techniques (Wilby and Wigley, 1997)
have been developed in the last decades to bridge this gap by means of two main
approaches: dynamical (RCMs; Laprise, 2008; Rummukainen, 2010; Giorgi and
Gutowski, 2015) and empirical-statistical (Maraun et al, 2010; Gutiérrez et al,
2012). The empirical-statistical downscaling (ESD) builds empirical relationships
between large-scale and local observations, which are exploited to generate local
climate information out of coarse GCM projections. Unfortunately, the availabil-
ity of comprehensive ensembles of future climate projections derived from ESD is
very scarce to date, although initiatives such as VALUE (Maraun et al, 2015) and
the COordinated Regional climate Downscaling EXperiment (CORDEX; Giorgi
and Gutowski, 2015) are currently devoting a strong effort to this approach. Dy-
namical downscaling through regional climate models, on the other hand, has
been coordinated during the last two decades, particularly over certain regions.
In Europe, a series of chained projects (Regionalization (1993-1994), RACCS
(1995-1996), MERCURE (1997-2000), PRUDENCE (2001-2004) and ENSEM-
BLES (2004-2009)) coordinated a regional climate modelling community, nowa-
days under the umbrella of CORDEX forming the EURO-CORDEX (Jacob et al,
2014) and Med-CORDEX (Ruti et al, 2016) communities.

In parallel to international initiatives, some national efforts are also producing
downscaled regional climate projections. Some examples are the DRIAS project
for France (Lémond et al, 2011), KNMI’15 for the Netherlands (Tank et al, 2015),
UKCP for the United Kingdom (Murphy et al, 2009) or PNACC-2012 for Spain
(Gémez et al, 2016; San-Martin et al, 2017). We included dynamical downscaling
(ESCENA project, see Section 2.2) results from the latter, given that it covers our
target region. Other regional, national climate change projection studies rely on
data from international initiatives and usually focus on a single data source: Soares
et al (2014) for Portugal/ENSEMBLES, Ouzeau et al (2016) for France/EURO-
CORDEX or Kis et al (2017) for Carpathian region/ENSEMBLES. Some studies
combine a couple of initiatives, but this is not common practice. For example, Go-
biet et al (2014) and Tolika et al (2012) consider ENSEMBLES and PRUDENCE,
Jacob et al (2014) compare EURO-CORDEX and ENSEMBLES. Data from the
global models used to drive regional projections are seldom considered (Turco et al,
2013).

The objective of this work is twofold:

1. Compare climate change signals arising from different recent ensembles of re-
gional climate projections produced by numerical climate models. The com-
parison will also consider other factors sampled in the grand-ensemble, such as
different GCMs, RCMs, RCM spatial resolutions, GHG scenarios, etc.
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2. Provide basic climate change scenarios for continental Spain and the Balearic
Islands. The body of the paper focuses on specific results illustrating the grand-
ensemble heterogeneity, while the Electronic Supplementary Material provides
results for other seasons, variables or factors.

The paper is structured as follows: Section 2 summarizes the data gathered for
this study. The data processing and analysis methodology is described in Section 3.
The results section (4) introduces spatially-averaged delta changes for precipitation
and near surface temperature (Section 4.1), which are decomposed in different
uncertainty sources in Section 4.2. Cautionary remarks on the use of delta changes
(Section 4.3) and conflicting projections (Section 4.4) are provided next. The paper
closes with a discussion (Section 5) and a brief summary of the main conclusions
(Section 6).

2 Data

This study uses only dynamical (global and regional) model output from transient
climate change simulations. Observations and evaluation simulations (using reanal-
ysis data as boundaries) were not considered, but all models presented have been
evaluated elsewhere (see below). A total of 196 future climate projections (Fig-
ure 1) for Spain have been collected from the global (CMIP3 and CMIP5) and the
regional (ENSEMBLES, ESCENA, EURO-CORDEX and Med-CORDEX) initia-
tives described below. This is, to our knowledge, the largest ensemble of scenarios
ever considered for a region.

2.1 ENSEMBLES

As part of the ENSEMBLES FP6 project (van der Linden and Mitchell, 2009),
a multi-model ensemble of RCMs was produced. An evaluation of this ensemble
forced by boundary conditions from reanalysis data for precipitation and maximum
and minimum temperature over Europe can be found in Kjellstrom et al (2010).
The quality of the climate change simulations for these variables has been reported
in several project technical reports (http://ensembles-eu.metoffice.com/tech_
reports.html) and elsewhere for particular RCMs or variables (Boberg et al, 2009;
Kjellstrom et al, 2011).

13 RCMs from ENSEMBLES were used in this study, mostly at a horizontal
resolution of about 25 Km, but also at about 50 Km. Boundary conditions for these
RCMs were taken from 7 CMIP3 GCMs forced by the A1B emissions scenario.
Publicly available data were obtained from the ENSEMBLES RCM data archive
at the Danish Meteorological Institute (DMI).

2.2 ESCENA

Project ESCENA (2008-2012) was part of the Spanish Strategic action on energy
and climate change (http://meteo.unican.es/projects/escena). Funded by the
Spanish government, this call aimed at providing the scientific basis for the assess-
ment of regional climate change impacts over Spain (including continental Spain,
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Fig. 1 GCM-RCM matrix for the multi-project ensemble considered in this study and pub-
licly available as of April 30", 2017. Each square represents a future climate projection. For
each GCM-RCM entry, a 3x3 matrix represents the availability of different forcing scenarios
and RCM resolutions (see upper left legend). Marginal counts are shown for each GCM and
RCM. The legend also shows, in parenthesis, the count for each project/initiative considered.
Dashed rectangles show full factorial sub-ensembles within ESCENA and EURO-CORDEX
(see Section 5.1).

the Balearic and Canary Islands). This project agglutinated the regional climate
modelling efforts of this action and coordinated 4 different institutions using 4 dif-
ferent RCMs: Universidad de Castilla-La Mancha (PROMES model), Universidad
de Murcia (MM5 model), Universidad de Alcald de Henares (REMO model) and
Universidad de Cantabria (WRF model). Two versions of the WRF-v3.1.1 model
were considered, WRA and WRB, which differ in the planetary boundary layer
physics scheme (using a local vs. non-local closure, respectively). The boundary
forcing came from CMIP3, as in ENSEMBLES, and the horizontal resolution was
also about 25 km. The historical and scenario simulations span the period 1951-
2050. A brief description of the RCMs used in the project and an evaluation of
their performance under present climate conditions in terms of precipitation and
temperature can be found in Jiménez-Guerrero et al (2013) and Dominguez et al
(2013). Gomez et al (2016) evaluated surface wind according to this data set and
investigated future changes.
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2.3 EURO-CORDEX

As part of the global CORDEX initiative, EURO-CORDEX provides climate sce-
narios for Europe mainly at two resolutions, ~12 km (EUR-11) and ~50 km (EUR-
44), complementing previous data sets from ENSEMBLES. The regional simula-
tions are based on CMIP5 global climate projections (Taylor et al, 2011), forced by
different representative concentration pathways (RCPs; van Vuuren et al, 2011).
In this case low (RCP 2.6), midrange (RCP 4.5) and high (RCP 8.5) emissions
scenarios are considered depending on the model. Previous studies have evaluated
the EURO-CORDEX results in present day climate (Vautard et al, 2013; Kotlarski
et al, 2014) or compared the climate change projections to those from ENSEM-
BLES (Jacob et al, 2014) for two key variables for impact assessment studies: tem-
perature and precipitation. Overall, the EURO-CORDEX evaluation highlights
the general ability of the RCMs to represent the basic spatio-temporal patterns
over Europe with some limitations for selected metrics, regions and seasons (Kot-
larski et al, 2014). It was also found an agreement between EURO-CORDEX and
ENSEMBLES results (Jacob et al, 2014).

10 RCMs from EUR-44 resolution and 8 from EUR-11 were considered in this
analysis, (Figure 1). A few more simulations were considered since the beginning of
this study, but during this time they were removed from the server due to different
problems detected (modellers communication to EURO-CORDEX community).
The volatility of these data is discussed later on in this work. This study finally
considers only those RCM simulations available through the ESGF as of April
30", 2017.

2.4 Med-CORDEX

Med-CORDEX is a coordinated contribution to the CORDEX initiative focused
on the Mediterranean basin. The particularity of Med-CORDEX is that it in-
cludes regional atmospheric, land surface, river and oceanic climate models and
coupled RCMs (Ruti et al, 2016). Evaluation simulations from Med-CORDEX
are analysed by Dell’Aquila et al (2016) and compared to the previous genera-
tion simulations from the ENSEMBLES project. Ayar et al (2016) evaluate the
precipitation of 3 RCMs from Med-CORDEX, 2 from EURO-CORDEX and 6
statistical downscaling methods. There are a few other evaluation studies for par-
ticular Med-CORDEX models and/or regions (Tramblay et al, 2013; Flaounas
et al, 2013; Stéfanon et al, 2015; Liguori et al, 2017).

Currently, most of the simulations available at the Med-CORDEX database
(http://www.medcordex.eu) are from atmospheric models. We considered 3 RCMs
and one fully-coupled (atmosphere-land-ocean) model for 50 km resolution (MED-
44) and 2 RCMs for 12 km resolution (MED-11).

2.5 Global model data

Finally, we considered also the output from the GCMs used as driving boundary
conditions for the RCM simulations in the previous projects/initiatives. They were
downloaded from different repositories. CMIP3 data (Meehl et al, 2007) was mainly
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Fig. 2 Central 50% (25th to 75th percentile) and 90% (5th to 95th percentile) ranges for the
delta changes spatially averaged over Continental Spain and the Balearic Islands. Changes are
shown for near-surface temperature (left, in K) and precipitation (right, as percent change).
The changes projected by different sub-ensembles are shown in rows. Each project (ENSem-
bles, eSCeNa, EuroCordeX, MedCordeX) is divided into the GCMs used to drive the regional
projections and the RCM results. The last rows (All) show grand-ensemble results, separately
for GCMs and RCMs.

obtained from the Climate and Environmental Retrieval and Archive (CERA)
database (Lautenschlager et al, 2015). This is the driving data for the ENSEM-
BLES and ESCENA projects. CMIP5 data were obtained through the ESGF.
Model data from this experiment drove EURO- and Med-CORDEX regional simu-
lations. Some driving models were not publicly available and, therefore, are missing
in this study (See empty positions in the first column of Figure 1).

3 Methodology

There is a high number of dimensions involved in regional climate change pro-
jections. Giorgi et al (2008) envisaged them as components of a regional climate
change “hyper-matrix”, which is now at the core of the CORDEX framework. One
can (should) consider different: Concentration scenarios, GCMs, RCMs, RCM res-
olutions, GCM (RCM) realizations, GCM (RCM) versions, etc.; each spanning
a different uncertainty, which depends on the projection horizon (Hawkins and
Sutton, 2009; Déqué et al, 2012). Uncertainties can be properly evaluated using
ensembles of simulations (Palmer, 2000), if these are sufficiently large and well
designed (Daron and Stainforth, 2013). However, even when projecting the avail-
able ensemble on just two dimensions, such as GCM and RCM, the phase space
spanned is relatively empty (Figure 1). Moreover, the analysis can focus on dif-
ferent variables, seasons, future time-slices, statistics (mean, variability, extremes,

With this perspective, we focus on a simple approach. We examine only pre-
cipitation and mean surface temperature, usually considered in the applications
and climate change projection summaries, although we discuss (Section 5.2) the
limited view these two variables provide. We consider only the mean climate, in
particular, seasonal climatologies of 30-year periods.

We concentrate on a near future (2021-2050), which maximises the ensemble
members available (limited by ESCENA and some ENSEMBLES RCMs). We will
see that this also has the advantage to consider only weak GHG-concentration
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differences. The response to these weak differences is smaller than the internal
model variability. Pooling these projections is, therefore, closer to a random sample
from the same population (of realizations from the same model climate), than in far
future periods, when the different scenarios clearly represent different populations
and cannot be easily merged (what is the weight of each GHG scenario?).

We selected the reference historical period 1971-2000 and consider the stan-
dard delta-change approach (Ré&isdnen, 2007) to explore future climate change
projections. We highlight some of the caveats behind this approach in Section 4.3.

Even though we pool the ensembles from different sources in a grand-ensemble,
in recognition of potentially different populations being merged, we avoid grand-
ensemble summaries (means, PDFs) and illustrate individual members factorized
by the many dimensions considered (GCM, RCM, project/initiative, resolution,
...). We warn against grand-ensemble summaries by showing the split of bimodal
PDFs under some factorizations. The lack of independence (complex and unknown
dependence among projections) and the incompleteness of the interactions between
dimensions prevents the use of many standard statistical tools. Instead of sum-
mary /factorial statistics, we favour graphical displays of the full grand-ensemble.

For brevity, we show mainly summer, June through August (JJA), results. The
Electronic Supplementary Material provides equivalent results for other seasons,
which are commented where appropriate and, in any case, left as reference for
downscaled scenario users interested in this region. Figure 2 shows that in JJA
occur the largest differences among projects.

All data were interpolated by a nearest neighbour algorithm from their different
projected grids to a regular 0.2° latitude-longitude grid spanning continental Spain
and the Balearic Islands. Spatial averages (e.g. those in Section 4.1) consider only
these land areas.

4 Results
4.1 Projected delta changes for precipitation and temperature

Projected delta changes for precipitation and temperature are summarized for the
different model intercomparison projects (MIP) in Figure 2. To emphasize the in-
herent uncertainty in these projections, no central estimate is provided. The ranges
encompassing 50 and 90% of the projections for each MIP are provided instead,
split into forcing GCMs and dynamically downscaled (RCMs) results. Overall, the
different MIPs agree, showing the most prominent change during summer (JJA)
for both variables. Some differences can also be identified across MIPs, e.g. the
extended upper end of the temperature change range during spring (MAM) for the
CMIP3-based projections (ENSEMBLES and ESCENA), or the less dry summer
projection in ESCENA. However, one of the most striking features of Figure 2
is the systematic reduction of the temperature change by the RCM ensembles
with respect to their driving GCMs. No MIP projected a single range limit higher
than their driving GCM ensemble. For precipitation, this is not systematic, and
RCMs even show opposite effects on the deltas in different seasons: drier summers
and wetter winters than in the driving GCMs. We look into individual ensemble
members to trace the origin of these summary statistics.
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Fig. 3 Precipitation vs mean surface temperature delta changes spatially averaged over Con-
tinental Spain and the Balearic Islands for each ensemble member. In (a), marginal probability
density functions are shown for each variable pooling the whole 196-member ensemble, using
a Gaussian kernel density estimator. Different shading shows the ranges from the 5th to 95th
percentile (90% of the sample) and from the 1st to 3rd quartile (50%). The median is also
shown as an inner tickmark. In (b), the scatter plot and PDFs are factorized by GCM family

(see text). In this case, only the quartiles and median are shown (as tickmarks). Raw GCM
output deltas are shown as empty circles.
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The analysis of the full 196-member ensemble (Figure 3a) shows that 50%
(90%) of the simulated summer near surface temperatures project an increase
of 1.3 to 2.1 K (1.0 to 2.6 K) by 2021-2050, with respect to the average of the
1971-2000 period, on average for continental Spain and the Balearic Islands. The
median increase is about 1.7 K, but this value is misleading, since the sample of
projections is slightly bimodal, and there are relatively few projections close to
this value.

Marginal results for precipitation show that more than 75% of the models
project a decrease in summer rainfall, with a median decrease of 11%. Even though
this decrease could be not statistically significant, what is clear is the inverse rela-
tionship between precipitation and temperature, typical of moisture-limited land-
atmosphere feedback regimes (Seneviratne et al, 2010; Jerez et al, 2013; Stegehuis
et al, 2012), which respond to increasing temperatures by drying out the soils and
limiting moisture availability for summer precipitation. Causality is always diffi-
cult to establish (a decrease in precipitation also leads to increasing temperature
by reducing soil moisture, thus increasing the Bowen ratio), but the relationship in
Figure 3a is clear. The relationship also emerges during spring (MAM) and slightly
in autumn (SON) but, as expected, is absent during winter (DJF) (Figure ESM2).
In winter, an energy-limited regime prevails and frontal precipitation feeds from
moisture advected from the Atlantic ocean and less from local evaporation (Rios-
Entenza et al, 2014).

The bimodality of the projected near surface temperature can be partly ex-
plained by the driving GCM. Moreover, GCM “families” tend to cluster and pro-
vide high or low delta values (Figure 3b). In particular, due to their different
climate sensitivities, models developed by the EC-EARTH international consor-
tium and the Max Plank Institute (MPI) for Meteorology in Germany give rise to
deltas in the lower range (median about 1.5 K), while Hadley Center MetOffice
(UK) models project the largest deltas (median close to 2.3 K). The “Other” family
labelled in Figure 3b includes the rest of the models, which contribute fewer mem-
bers to the grand-ensemble, and consist of driving GCMs developed in research
centres across the world (France, Norway, Canada, USA, Japan, Australia). The
clustering in temperature change induces a clustering in precipitation according
to the relationship previously mentioned. Most Hadley Center-derived projections
show a precipitation decrease, while the EC-EARTH family shows mixed sign pro-
jections. Interestingly, the MPI model family shows lower end temperature deltas,
but mostly precipitation decreases. The leading role of GCM family in partitioning
the delta range is also clear in other seasons (not shown).

Other factors, such as source project (Figure ESM1b) or model resolution
(Figure ESM1c) do not lead to specific clusters. The GHG scenario leads to some
clusters (Figure ESM1d), but not consistent with their radiative forcing. A high-
emission scenario, such as SRES A2, lies at the lower end of the temperature delta
range. Very low concentration scenarios (RCP2.6) do not rank at the lower end and
intermediate- to high-concentration scenarios (A1B, RCP4.5, RCP8&.5) span the
whole temperature delta range. Incidentally, the coldest and the warmest member
of the ensemble is driven by the same scenario (A1B). Therefore, scenario forcing
does not seem to be playing an important role in the near future projections.

Global vs. regional climate model projections show differences in near future
temperature which are likely statistically significant (Figure ESM1f). They arise
from an upper end of the temperature delta range mostly populated by GCM
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Fig. 4 Uncertainty cascade representing spatially averaged JJA near surface temperature
deltas over Spain averaged over all GCMs (upper tip where all lines converge; top) and
RCMs (bottom). From top to bottom, for each line plot, members forced by the same GCM
are averaged (and coloured by GCM). Next, each line splits into the mean for each RCM
nested into that GCM. Next, each line splits into the mean for each scenario. Finally, those
lines corresponding to RCMs nested with two different horizontal resolutions in the same
scenario and GCM are split. Therefore, at the bottom of each plot, all individual member
projections can be found. The right legends show each individual GCM ranked by their
projected JJA temperature delta. Additionally, a kernel density estimation of the PDF for
each ensemble is shown, shading 90 and 50% sample ranges and marking the ensemble me-
dian. Cascades follow the visualization proposed by Ed Hawkins on his Climate Lab Book
http://www.climate-lab-book.ac.uk/2014/cascade-of-uncertainty

projections and a lower end populated by RCMs. In precipitation, the driest future
projections are provided by RCMs. Statistically sound tests could be applied to
assign a likelihood to the occurrence of such differences in two random samples if
their population means were equal. However, we will see in the next section that
the deltas are not a random sample, but the result of very specific choices in the
driving GCMs used in the different projects.

4.2 Uncertainty cascade

The distribution of temperature delta projections is clearly different in the direct
GCM model output (median above 2K) and the dynamically downscaled projec-
tions (median 1.6K; see empirical PDF estimates in Figure 4). Given the non-
systematic GCM-RCM combinations in our ensemble (Figure 1), the behaviour of
individual nestings is of interest.

In order to decompose the uncertainty cascade down to individual projections,
we start decomposing by GCM, given that this is the main source of uncertainty
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identified so far. Figure 4 (top) shows the JJA near future temperature uncertainty
cascade considering only GCM projections. The mean JJA delta derived from the
ensemble of GCM projections (47 members) is 2K. Ensembles of GHG scenario
forcing for each GCM are averaged next and coloured according to their mean JJA
temperature delta. The GCM delta ranking shows the 4 Hadley Centre models in
the top 8, while BCM projects the smallest delta change (0.75K, the only one below
1K). Individual members are split when reaching the scenario step. Although, in
general, higher radiative forcing scenarios from a single GCM lead to warmer
projections, this is not systematic. This reinforces the view, for this time horizon,
of GHG scenario as a smaller source of uncertainty as compared to internal model
variability. For instance, EC-EARTH rl and r12 members forced by RCP4.5 show
larger differences than EC-EARTH-r12 forced by RCP2.6 and RCP4.5.

Dynamically-downscaled projections usually lead to smaller JJA temperature
deltas than their driving GCM projections in this area (Figure 4, bottom). Specific
GCM choices tend to enhance this effect. For instance, the GCM showing less
warming (BCM) was downscaled by 3 different RCMs, increasing its weight in the
ensemble. The GCM delta ranking is only slightly altered by downscaling. RCMs
nested into the same GCM tend to produce similar deltas (small spread at the
RCM step), although the are exceptions. WRF- and MM5-based projections tend
to give rise to smaller delta changes than other models nested in the same GCM.
In the next section, we will see that this is linked to absolute temperature biases.

Scenario and RCM resolution (0.44, 0.22 or 0.11) make little difference (small
spread at those steps) in the country-level-averaged projected delta changes. The
only exceptions, where the scenario step shows some spread, are inherited from
the GCM (e.g. from large differences between EC-EARTH-r12 RCP2.6/4.5 and
RCPS8.5).

4.3 Delta method caveats

The so-called delta method (R&isénen, 2007) has been used as a standard method
to present future projections from our ensemble. In the simple terms applied here,
we assume that the difference in future minus reference mean climate will cancel
out likely model errors. This is related to bias correction methods. In particular,
delta changes are insensitive to local shift bias correction methods, the simplest
correction applied to temperatures to match the modelled and observed clima-
tology. Relative delta changes are insensitive to local scaling, usually applied to
precipitation due to its statistical distribution and to preserve its lower bound.
More sophisticated bias correction methods could be applied, such as quantile
mapping. However, for those methods, bias corrected and delta change projec-
tions differ (Ho et al, 2012; Réisédnen and Raty, 2013), leading to a new source of
uncertainty.

The contribution of sophisticated bias correction methods to climate change
signals is still a field of active study (see e.g. Gobiet et al, 2015; Casanueva et al,
2017; Turco et al, 2017, and references therein). However, there are clear indica-
tions that the simple delta method has a limited accuracy. An illustration is shown
in Figure 5, where JJA near surface temperature deltas are plotted as a function
of mean near surface temperature (relative to the coldest estimate) during the ref-
erence period. One striking fact is that the 30-year temperature average, spatially
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Fig. 5 Scatter plot showing projected JJA near-surface temperature delta changes vs. the
temperature anomaly during the reference period (1971-2000) with respect to the coldest
member of the ensemble in that period. Open circles represent GCM direct model output. The
abscissas of the 3 GCMs with multiple realizations in our ensemble are highlighted in colour
(see text).

averaged over a relatively large region, shows a range of 10K across the grand en-
semble. This range is not the result of some outliers, but it is densely filled at least
up to 7K. The range is smaller for GCMs, which start with a minimum anomaly
of 1.5K, probably due to the lower orography. Decadal variability cannot explain
this spread, as illustrated by the GCMs with multiple realizations present in our
ensemble (Figure 5). The spread of these sub-ensembles, started from different ini-
tial conditions in 1850, is well below 0.5K after more than a century of simulation.
Differences among models dominate the spread in simulated present climate.
Another evident feature is the non-random distribution of delta changes. Warm
models during the reference period tend to produce stronger delta changes. This
could be explained by soil moisture-temperature feedbacks. Warm (cool) models
during summer in this area are likely to be due to dry (wet) soils. The extra radia-
tive forcing from future scenarios goes directly into sensible heat (i.e. temperature
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increase) for those models with dry soils, while it can be partly used to evaporate
soil water (latent heat) in the models that preserve wet soils in the future. The rela-
tionship shown in Figure 5 is, therefore, typical of regions/seasons with transitional
soil moisture-temperature feedback regimes between energy- and moisture-limited.
Models have shown problems reproducing this transitional regimes (Stegehuis et al,
2012) and slight changes can have drastic consequences on temperature. For in-
stance, the cold summers produced by WREF are due to excessive rainfall and soil
moisture (Knist et al, 2017).

The delta change dependence on absolute temperature has been known for
some time and there are several proposals to correct (constrain) the projections
based on it (Boberg and Christensen, 2012) or some other physically relevant pro-
cesses (Hall and Qu, 2006; Bellprat et al, 2013; Stegehuis et al, 2013). These cor-
rections are subject to their own uncertainties, since they are based on additional
models for the relationship and involve observations, with their own uncertainties.

4.4 Conflicting messages

What to expect from downscaling? GCMs provide coarse resolution climate change
projections. Individual grid points should not be considered representative of their
exact location due to the so-called skilful scale (Grotch and MacCracken, 1991;
von Storch et al, 1993). Moreover, many important features affecting the climate of
a region could be entirely absent in a GCM. For example, the Pyrenees mountain
chain or the Balearic Islands are simply not there in many of the GCMs considered
in this study. The point of downscaling is combining the climate information at
skilful scales of the GCM with local, non-resolved features (orography, land-sea
contrasts, etc.). As such, downscaling is not expected to change GCM projections
overall for extended regions, but smaller scale changes could appear, as a result
of the interaction of the GCM dynamics with the regional characteristics. The
ability, or even possibility, of RCMs in changing (improving?) the GCM large-
scale circulation is debated (Diaconescu and Laprise, 2013; Xue et al, 2014; Hall,
2014). The principle of downscaling is to estimate local climate subject to the large-
scale climate generated by the GCM. In this sense, strong changes of the overall
climate change pattern should be analysed with care. Also, conflicting messages
could arise between the GCM and RCM or between several RCMs nested into the
same GCM (Turco et al, 2013). These should also be analysed to discern genuine
modelling uncertainty from unrealistic response. The line between these two might
be difficult to draw, though.

In this work, no attempt is made to assess the added value of downscaling.
Added value could be behind some of the RCM projected changes shown next
that differ from those projected by their driving GCM. Some of these differences
could be interpreted as added value, but this would require a more in-depth, case-
by-case analysis and a clear definition of added value (see e.g. Rummukainen, 2016,
for a recent review).

Figure 6 shows some spatial responses to climate change forcing scenarios by
several GCMs and RCMs nested into them. They were selected to illustrate the
plausibility of the downscaled response. Each row shows the forcing GCM JJA
precipitation relative delta change (first column) and the dynamical downscaling
by different RCMs.
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Fig. 6 Summer (JJA) precipitation relative delta changes (in %) for several members of the
EURO-CORDEX ensemble, along with the direct model output (in the corresponding first
column) in which the RCMs were nested. Dotted grid cells indicate significant changes with
90% confidence after a t-test on the absolute mean difference.

For example, the top row shows the climate change response by the CNRM-
CM5 model (realization r1) to the RCP8.5 scenario. There is a slight southwest-to-
northeast dipole, from a summer precipitation decrease to an increase. An overall
similar pattern can be discerned in the CCLM-4.8.17 RCM nested into it. However,
small scale features appear. CCLM projects a stronger precipitation decrease over
southern parts of the domain (especially over the Alboran Sea, just east of the
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Fig. 7 Summer (JJA) near surface temperature delta (K) patterns for the direct global model
output of EC-EARTH (r12) forced by the RCP8.5 scenario and downscaled by CCLM4.8.17-v1
(0.11) and RCA4-v1 (0.11° and 0.44° resolutions).

Gibraltar Strait). In EC-EARTH-r12 (second row), the dipole is northwest-to-
southeast, and this pattern is, again, put into regional context by CCLM, which
projects a precipitation increase west of the Balearic Islands, consistent with a
similar but coarser pattern in the GCM. This Mediterranean precipitation increase
also appears in CCLM when nested into HadGEM2-ES-r1 (third row). However,
this global model does not show a trace of this precipitation increase. This increase
in summer precipitation over the western Mediterranean Sea could be interpreted
as added value of the dynamical downscaling, responding more properly to the
large scale forcing, or as a specific bias of this RCM.

Other RCM (RCA4, in the third column) nested into the same GCMs shows
overall similar patterns, but regional details differ instead of reinforce. For in-
stance, a GCM-conflicting response appears north of the Alboran Sea when nested
into HadGEM2-ES-r1, with a centre of strong precipitation increase where CCLM
shows a decrease. Other simulations nested into HadGEM2-ES-r1 also show in-
consistent responses so it is likely that a problem exists in the coupling with this
GCM. All KNMI runs nesting the RACMO RCM into this GCM have been with-
drawn from the ESGF and re-run during the development of this study. The new
version (v2 in ESGF, shown in Figure 6) shows a moderate summer rainfall in-
crease over the Mediterranean Sea, unlike the initial run, which showed larger and
more extended increases (not shown).

Several other examples of conflicting messages are shown in Figure 6 and need
to be analysed in detail to find out the causes behind the differences (this is
out of the scope of this work). Some of them could be regional added value of
the downscaling, while others might simply reflect downscaling deficiencies, which
artificially enlarge uncertainties. See, e.g. the increased precipitation developed
over the north African coast by CCLM nested into MPI-ESM-LR-r1, over the
Cantabrian Sea (north of the Iberian Peninsula) by WRFv3.3.1-F nested into the
IPSL-CMb5A or the conflicting pattern between WRFv3.4.1-1 and RCA4, nested
into CanESM2.

An example of physically consistent, but unplausible, delta changes is shown
in Figure 7. RCA4 at 0.11 resolution provides a very local pattern of change
(reaching 4K) over the Pyrenees. This elevation-dependent warming (Pepin et al,
2015) pattern appears in every RCA4 0.11 projection, and it is systematically
absent in the lower resolution runs (0.44) or in any other RCM projection at
0.11 resolution (CCLM-4.8.17 shown as an example). This pattern is typical, in
most models and resolutions, during winter (not shown) and is related to reduced
snow cover due to warming and a positive snow-albedo feedback. We checked the
snow depth (not shown) and confirmed that RCA4 produces significant snow cover
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in the Pyrenees during summer when the resolution resolves high terrain. The
resolution increase makes the modelled surface temperature cross the threshold
to support snow cover, but slightly enough to lie back behind the threshold in
the near future projections. Since extended snow cover in the Pyrenees during
summer is unrealistic under present conditions, so it is the small-scale climate
change pattern depicted by RCA4 0.11 over this area. Of course, during winter,
when similar small-scale features are produced by many RCMs, this is a clear added
value of downscaling. Given that the smooth orography of GCMs cannot resolve
snow accumulating at mountain tops, they miss important local delta temperature
changes arising from changes in the snowline.

This is another example of a threshold-dependent, non-linear process breaking
the delta method basic assumption that model errors remain constant. Processes
depending on absolute thresholds give rise to delta changes which cannot be im-
proved by assuming that model error evolves as some smooth function.

5 Discussion
5.1 Lack of ensemble design

The data shown in Figure 1 are essentially all future projections publicly available
for our target region in the last decade. GCM output is restricted to those models
used as boundary conditions in the downscaled projections. Therefore, the first
column could be greatly enlarged (only from CMIP5, there are more than 200
other projections available through the ESGF), but the interior of the matrix
would remain empty.

The GCM-RCM matrix is not only mostly empty, but heterogeneously filled,
with preferred GCMs and RCMs. A few GCMs were selected by most regional
climate modelling groups. For instance: MPI-ESM-LR was downscaled 23 times,
ECHAMS5 (20), CNRM-CM5 (19), EC-EARTH (18). Few RCMs contribute a large
fraction of the grand-ensemble, notably RCA4 with 36 scenario simulations.

The decision of the GCM to downscale usually falls within 2 categories:

1. GCM from the same institution as the downscaling group. Some examples from
ENSEMBLES: HadRM nested only into HadCM3 projections, MRCC nested
only into CGCM. This practice remains in CORDEX: ALADIN only nested
into CNRM-CMb5 runs, REMO only nested into MPI-ESM runs, etc.

2. GCM was easily available, or available earlier. Even though GCM data is avail-
able from different sources, the amount of model levels and the time frequency
required to drive an RCM, reduces drastically the available options. Thus,
GCMs archiving full model levels at high frequency (usually only a given run
for each scenario) are candidates to feed dynamical downscaling.

These can also be combined: e.g. in category 1, apart from the obvious institu-
tional interest, we can assume motivations regarding the early and ease of access
to full resolution GCM data. RCM simulation consortia including institutions run-
ning global simulations (e.g. ENSEMBLES) have traditionally eased the access to
GCM boundary conditions. GCM selection criteria in ESCENA also followed ease
of GCM data availability by several participating groups. Incidentally (not by de-
sign), the GCMs in ESCENA span a wide range of future projections, including
the ECHAM and Hadley Center families.
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As a result of the above, none of the ensembles considered in this study fully
explores future climate change uncertainties. Thanks to GCM boundary sharing
within consortia, some uncertainties can be partially explored:

In ENSEMBLES, RCM uncertainty can be explored in the ECHAMS5-r3 sub-
ensemble (5 RCMs) or in the HadCM3QO0 sub-ensemble, with a different set of 4
RCMs. These are the most populated sub-ensembles to explore RCM uncertainty
and their intersection is empty: none of the RCMs downscaled both GCMs.

ESCENA was designed to have a GCM (ECHAMS5-r2) downscaled by all RCMs
and 2 RCMs (PROMES and MM5) downscaling all GCMs. Unfortunately, a dif-
ferent ECHAMS5 realization (r2) from that in ENSEMBLES (r3) was selected,

preventing the exploration of domain position (in REMO) or the inclusion of an
RCM (PROMES) in both, the ECHAMb5-r3 and HadCM3QO0 sub-ensembles.

In CORDEX, the situation is not better. Despite the large number of scenario

simulations (105), the largest, complete GCM-RCM matrix is 4x2, formed by
(CNRM-CM5-r1, EC-EARTH-r12, MPI-ESM-LR-r1, HadGEM2-ES-r1) x (CCLMv4.8.1"
RCA4), exploring 2 scenarios (RCP 4.5 and 8.5) with a single resolution (0.11).
A critical example is provided by the HadGEM2-ES-r1>>RegCM4.3v1 coupling,
which offers publicly the 0.44 RCP8.5 run on the EURO-CORDEX domain and
the 0.11 RCP8.5 and 0.44 RCP4.5 on the Med-CORDEX domain, thus preventing
any resolution, domain position or scenario comparison.

A 3-way analysis of variance using full factorial GCM-RCM-Scenario sub-
ensembles within ESCENA (4 x 2 x 2) and EURO-CORDEX (4 x 2 x 2) shows
conflicting results due to the very partial representativity of the full matrix. No
significant interaction is found for either two- or three-factor interaction terms.
However, in ESCENA, the only significant (confidence above 99.99%) main fac-
tor is the RCM, while in EURO-CORDEX the GCM shows the main significant
effect on summer temperature deltas (above 99.99% confidence), along with the
emissions scenario (above 95% confidence).

The problem to fill a GCM-RCM matrix is not the computational cost. A
single EURO-CORDEX 0.11-resolution simulation requires, at least, 8 times as
much computer resources as a 0.22 ENSEMBLES simulation. The full GCM-RCM
matrix from ENSEMBLES (or an updated version using CMIP5 input and the
latest generation RCMs) consists of 143 (11x13) simulations, accounting for an
effort of less than 18 EURO-CORDEX 0.11 simulations (of which, at least, 42 have
been produced with little chance for systematic comparison). At a much lower cost,
a full 0.44-resolution matrix could have been filled.

There are some examples of ensemble design out of Europe: for instance, the
NARCIM project in Australia (Evans et al, 2014) or the NARCCAP program
in North America (Mearns et al, 2013). These two examples use different design
criteria to maximize the resulting information according to practical limitations
defined in each case. The selection of models in NARCIIM is based on different
evaluation metrics and model independence, although some subjective choices were
also required. In case of NARCCAP, the selection of 24 nesting combinations was
based on a balanced RCM-GCM design.

Up to now, there is no multi-RCM /multi-GCM experiment where all cross-
combinations have been simulated (full matrix). In this situation, the effect of
having relatively empty GCM-RCM matrices to explore uncertainties cannot be
quantified. There are several attempts in the literature to use non-designed en-
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sembles to explore uncertainties (Déqué et al, 2012). Strong assumptions on the
independence of the contribution of different uncertainty sources need to be taken.

5.2 Observational constraints

Observational constraints are increasingly used to reduce the uncertainty in future
projections. In essence, the idea is to use a plot such as Figure 5, along with
the observed anomaly (it would be a vertical line in this Figure, showing the
observed temperature anomaly with respect to the coldest simulation) to produce
a distribution of future delta changes conditional on the observations. This is a
sort of model weighting, favouring the models which better reproduce the reference
climate for the particular variable used as abscissa.

Of course, this introduces plenty of new uncertainties. The abscissa (predictor)
should be able to provide a relationship as clear as possible with the delta change
being corrected. Figure 5 is probably not enough and introduces more errors than
improvements in the delta. The predictor should also be a densely observed vari-
able (to be able to produce an observational product comparable to the grid-cell
output of a model), and ideally with a low observational uncertainty (otherwise,
the vertical line becomes a wide distribution, and the conditional delta distribu-
tion tends back to that of the unweighted ensemble). Up to now, observational
constraints have relied on predictors such as: temperature trends (Boberg and
Christensen, 2012), the seasonal cycle of snow albedo (Hall and Qu, 2006), precip-
itation from previous seasons (Quesada et al, 2012), sensible heat flux (Stegehuis
et al, 2012), or soil moisture (Bellprat et al, 2013). There is no overall solution,
and these procedures work only where and when the relationship found is strong
enough.

In any case, these works illustrate that the assumption that delta change can-
cels out model error is ill posed. Moreover, observational constraints are likely to
favour models which reproduce the right predictor for the wrong reason (Ré&isénen,
2007). For instance, radiation biases can easily be compensated by soil moisture
to produce reasonable surface temperatures (Garcia-Diez et al, 2015). Therefore,
model evaluation and future projection analyses should extend beyond tempera-
ture and precipitation to include variables controlling key surface, radiative and
dynamical processes that drive the changes. Data availability, both from models
and observations, is a challenge for this kind of analyses, which are a natural
continuation of this basic study.

5.3 Earth System Grid Federation

The ESGF infrastructure (Williams et al, 2015) is a breakthrough in climate data
availability and it makes possible unprecedented analyses of multi-model ensembles
of climate projections, like the one presented in this work. Based on the experience
retrieving these data, we found that the ESGF data discovery services are powerful,
but the access and retrieval is still cumbersome because of the file granularity of the
data. Accessing and retrieving datasets effectively requires some advanced skills
in data analysis and management, including metadata standards and file formats
like NetCDF, and handling a huge batch of datasets.
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Despite the strong quality controls on metadata prior to data publishing, there
is a lack of quality control regarding the match of data and metadata (e.g. units
not matching the data order of magnitude) or the completeness of the dataset,
either in time (missing years) or variables (despite mandatory variable lists). Many
of such mismatches have been reported back to the modelling teams during the
development of this study.

These metadata mismatches take time to realize and correct for every user, and
mine the core of the ESGF concept of providing homogeneous access to data. Times
or variables missing prevent models to enter studies, thus artificially weighting the
ensemble. As an example, the direct output for EC-EARTH-r1 RCP4.5 was missing
for years 2027 and 2029 and seasonal means used in this work did not consider
these years. Currently, one of the priorities for CMIP6 data distribution is the
deployment of a new errata service in ESGF to provide a central repository for
reporting and accessing documentation related to problems with the data.

ESGF data un-publishing also poses some challenges on reproducibility. During
the development of this study, data from several RCMs were un-published. These
simulations were excluded from this study, but it is likely that similar problems
arise in the future and, then, the work will no longer be reproducible. Also, a mean
to link ESGF entries with scientific literature analysing them would ease quality
assessment by data users and scientific development. Related to this, Hewitson
et al (2017) have recently shown some key issues in climate information websites,
including ESGF, highlighting the need to include user guidance to overcome the
confusion arising from the varied messages of different data products. This relevant
issue is part of the current priorities for future developments of ESGF metadata
services. They include persistent identifiers to each dataset to trace its version his-
tory, an early citation service or some provenance capture to ease the traceability
and reproducibility of results. See Williams et al (2017) for more details on the
current status and developments of ESGF.

5.4 Sub-ensemble selection

Users of future climate change projections are commonly advised to use as many
projections as possible, in order to sample the strong uncertainties present. This
advise is hardly followed, and recent analyses show that the sub-ensembles selected
by users of climate information can be near-random and not fit for their purpose
(Hewitson et al, 2017).

Even though ESGF homogenizes the access to data, data availability can still
be an issue. There are now dozens of RCM projections over Europe and more are
still to come. Studies usually rely on the first models publicly available, leading to
a race to publish data, ultimately driven by IPCC assessment report cycles, which
drive CMIPs, which drive CORDEX and regional climate change studies.

Despite the diversity of publicly available projections, there are plenty of recent
works still relying on a few models (Bavay et al, 2013; Ruelland et al, 2015) or
even just one (Tramblay et al, 2013; Lemesios et al, 2016). Burke et al (2015)
show the underestimation of the range of projected climate impacts in 7 well-cited
articles that failed to account for multi-model uncertainty. Commonly, there is
no mention of the motivation behind the selection of a particular sub-ensemble
(e.g. Réisdnen and Raty, 2013; Filahi et al, 2017). The motivation for particular
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sub-ensembles usually includes (1) good performance in current climate against
observations (e.g. Herrera et al, 2010) or (2) span a large range of possible future
scenarios (e.g. Bavay et al, 2013). Both criteria can hardly be met simultaneously,
given that the largest spread usually comes from outliers (Figure 5), and opposite
outliers cannot simultaneously fit the observations.

The assumption that good performing models under current climate will project
better climate changes can easily be challenged due to differing relevance of pa-
rameterized processes in the present and in the future (Jerez et al, 2013) and a
potential good performance due to the wrong reason (Ré&isdnen, 2007; Garcia-Diez
et al, 2015). In a recent work, Monerie et al (2016) show that present-day biases
in precipitation and temperature are not good metrics for the credibility of future
projections and propose other methods based on clustering.

Sub-ensemble selection is an open and complicated problem. Unfortunately,
the alternative —use all projections available (see e.g. Burke et al, 2015)— is no
better: as we show in this study, the full ensemble is dominated by somewhat
arbitrary decisions on which GCMs were downscaled or which RCMs produced
more projections, thus weighting the full ensemble towards particular GCM/RCM
deficiencies. Our recommendation would be to cherry-pick GCM/RCMs based on
their ability to represent the process of interest in current climate. Not just the
variable of interest (e.g. precipitation or temperature) but the mechanisms be-
hind their variability (circulation, water/energy budgets, ...). The credibility of
the dynamical downscaling response (Section 4.4) can also be used as guidance.

6 Summary and conclusions

We presented an ensemble of future climate change projections of unprecedented
size (196 members) combining several dynamical downscaling projects and initia-
tives. All data used are publicly available and include not only the high resolution
RCM projections, but also their driving GCMs. For simplicity, this initial study
has been limited to precipitation and temperature changes in the near future pe-
riod 2021-2050. The target region selected is continental Spain.

The GCM-RCM combination matrix is sparse and all initiatives, except ES-
CENA, lacked a systematic design to explore the uncertainty sources (GCM, RCM,
scenario, resolution, ...) and their relative contribution to the total uncertainty
range. In this scenario, we avoided summary statistics and favoured graphical dis-
plays of the full ensemble.

Near-future projections of precipitation and temperature essentially agree across
the different initiatives, based on different model generations. The summer sea-
son shows the largest differences across initiatives and we focused on it. There
is a common tendency in the different initiatives to project smaller temperature
changes by the RCMs than their driving GCMs. This is partly explained by an un-
even downscaling, favouring low climate sensitivity GCMs, and some particularly
cold-biased RCMs (WRF, MM5).

The main contributor to the uncertainty range in this area is the GCM, which
dominates the resulting delta changes. This agrees with previous studies (Déqué
et al, 2012; Rajczak et al, 2013), although they establish that this result depends
on the region (southwestern Europe), and also on the season (Christensen and
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Christensen, 2007; Mearns et al, 2013). We also found particular full factorial sub-
ensembles (e.g. in ESCENA [CNRM-CM,ECHAMS5| x [PROMES,MM5| x[A1B,B1])
where the RCM dominates the uncertainty range. Emissions scenario and RCM
resolution have a much lower contribution to uncertainty; the former should take
prevalence on longer-term projections (Hawkins and Sutton, 2009).

This large ensemble shows a clear relation between projected temperature
changes and present-day temperature biases, indicating an overestimation of the
uncertainty range by the standard delta method. Several methods have been pro-
posed in the literature to alleviate this problem (Hall and Qu, 2006; Quesada et al,
2012; Boberg and Christensen, 2012; Stegehuis et al, 2012; Bellprat et al, 2013)
and this ensemble is an ideal testbed for their comparison. However, this is out of
the scope of the current study.

Focusing on specific projections, we found several conflicting results between
RCM projections and their driving GCM, and between RCMs nested to the same
GCM. These conflicts need to be further analysed to identify the causes behind
them, and discern if they consist of added value of downscaling and a genuine con-
tribution to uncertainty. We checked one of these conflicts, linking it to unrealistic
summer snow cover on the Pyrenees, but a full identification of the causes behind
conflicting messages is beyond this study.

Finally, we discuss on the process to obtain and homogenize the large ensemble
of projections used in the study, which took a large amount of time, unveiling the
potential of the ESGF, but also drawbacks which might affect the reproducibility
of results. This initial study just covers an overview of the potential of this multi-
initiative ensemble, which can feed many future studies, e.g. on the impact of sub-
ensemble selection strategies, observational constrain of the projected uncertainty,
explanation of conflicting messages, etc., which are currently planned and ongoing.
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Fig. ESM1 Precipitation vs mean surface temperature JJA delta changes spatially averaged
over Continental Spain and the Balearic Islands for each ensemble member. (a) Deltas for the
196-member ensemble. (b) Deltas by Project. (c) Deltas by Resolution. (d) Deltas by Scenario.
(e) Deltas by GCM Family. (f) Deltas by Method. Marginal probability density functions are
shown for each variable pooling the whole 196-member ensemble for the different classification,
using a Gaussian kernel density estimator. Tickmarks show the ranges from the 5th to 95th
percentile (90% of the sample) and from the 1st to 3rd quartile (50%). The median is also
shown as an inner tickmark (thicker). Raw GCM output deltas are shown as empty circles.
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Fig. ESM2 Precipitation vs mean surface temperature delta changes spatially averaged over
Continental Spain and the Balearic Islands for each ensemble member. Values classified by
project. (a) DJF. (b) MAM. (c¢) JJA. (d) SON. Marginal probability density functions are
shown for each variable and project pooling the whole 196-member ensemble, using a Gaussian
kernel density estimator. Tickmarks show the ranges from the 5th to 95th percentile (90% of
the sample) and from the 1st to 3rd quartile (50%). The median is also shown as a thicker
inner tickmark.



