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calculated through the combination of different model output variables. In this paper we consider
whether the skill in dynamical seasonal predictions of one of the most widely applied of such indices
(the Canadian Fire Weather Index, FWI) is sufficient to inform management decisions, and we examine
various methodological aspects regarding the calibration of model outputs prior to its verification and
operational applicability. We find that there is significant skill in predicting above average summer
FWI in parts of SE Europe at 1 month lead time, but poor skill elsewhere. These results are largely linked
to the predictability of relative humidity. Moreover, practical recommendations are given for the use of
empirical quantile mapping in probabilistic seasonal FWI forecasts. Furthermore, we show how research-
ers, fire managers and other stakeholders can take advantage of a new open-source climate service in
order to undertake all the necessary steps for data download, post-processing, analysis and verification

in a straightforward and fully reproducible manner.
© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Practical Implications

Wildfires represent a critical natural hazard in the Euro-Mediterranean (EU-MED) region (San-Miguel-Ayanz et al., 2013), causing
considerable economic and environmental damages and loss of life. Estimating fire risk a few months in advance is therefore an
urgent requirement, allowing fire protection agencies a timely reaction and an adequate provision of human and material resources.

Until the recent development of dynamical climate models, seasonal forecasts of fire activity relied on empirical-statistical tech-
niques exploiting the lagged relationships between slowly-varying components of the climate system used as predictors, such as
sea-surface temperatures (based on atmospheric teleconnections; Chu et al., 2002; Chen et al., 2011; Chen et al., 2016; Harris
et al., 2014) or meteorological droughts (related to water content in the soils; Preisler and Westerling, 2007; Gudmundsson et al.,
2014). There are also some local empirical prediction examples within the EU-MED region (see e.g. Turco et al., 2013; Marcos
et al., 2015). Nevertheless, to date none of these studies, at least for the EU-MED region, has led to conclusive results on the oper-
ational applicability of seasonal forecasts, although all of them suggest a potential for their application. With this regard, recent
advances in the modelling of the atmosphere-ocean coupled circulation have lead to the development of a new generation of
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numerical models (Global Climate Models, GCMs) producing predictions on a seasonal time horizon (Doblas-Reyes et al., 2013). In
order to account for the various sources of uncertainty, a probabilistic approach based on the use of several predictions with slightly
perturbed initial conditions is nowadays routinely applied, a technique known as ensemble prediction (Richardson, 2000; Palmer
et al., 2004). The potential of such prediction systems to inform decision-makers in different economic sectors is huge, due to the
provision of a large number of physically consistent variables at a sub-daily temporal scale from one to several months in advance,
although their applicability is still hampered by the limited skill of such predictions in the extra-tropics (Palmer and Anderson, 1994;
Manzanas et al., 2014) and the limits to accessibility and understanding by end-users (Hartmann et al., 2002; Lemos et al., 2012;
Mason, 2008).

In order to ease the applicability of these products, here we present a climate service that greatly facilitates the different tasks
involved in seasonal forecast application within an operational context. This climate service can be applied to a broad range of
impact applications in the framework of seasonal forecast studies, although its capabilities are illustrated in this paper through a par-
ticular application in the framework of wildfire danger assessment. Its components are next briefly described:

e The User Data Gateway (UDG) is the one-stop shop for climate data access maintained by the Santander Meteorology Group, pro-
viding metadata and data access to a set of georeferenced atmospheric variables using OPeNDAP and other remote data access
protocols. Its main features and its user-tailored extension for the European Climate Observations, Modelling and Services initia-
tive (ECOMS), that coordinates the activities of three ongoing European projects (EUPORIAS, SPECS and NACLIM), are detailed in
a paper (Cofino et al., 2018). Data access and harmonization is achieved through the 10adeR.ECOMS interface to the ECOMS-UDG
(see Cofino et al., 2018, for further details, and specific examples in the companion vignette to this paper: http://meteo.unican.
es/work/fireDanger/Climate_Services_2017.html).

e downscaleR (Bedia et al., 2016) is an R package for empirical-statistical downscaling, with a special focus on daily data. It is fully
integrated with the 1oadeR bundle and therefore it works seamlessly with the datasets loaded from the UDG. The package is avail-
able in this URL: https://github.com/SantanderMetGroup/downscaleR.

e transformeR (Santander Meteorology Group, 2017b) performs data post-processing tasks such as re-gridding/interpolation,
principal component/EOF analysis, detrending, aggregation, sub-setting, plotting ..., being fully integrated with the above-
mentioned packages. An introduction to the package and examples of application are available in the transformeR’s wiki (http
s://github.com/SantanderMetGroup/transformeR/wiki).

e fireDanger (Santander Meteorology Group, 2017a) is an R package for the Implementation of the Canadian Fire Weather Index
System, specially tailored to receive as input climate data structures as provided by the 1oadeR bundle, including the calculation
of FWI from seasonal forecast datasets. The package is available in this URL: https://github.com/SantanderMetGroup/fireDangeR.

e visualizeR (Frias, submitted) is an R package implementing a set of advanced visualization tools for forecast verification. It is
fully integrated (yet independent) from the R climate data structures generated by the loading functions of the 1oadeR, thus pro-
viding seamless integration with all steps of forecast data analysis, from data loading to post-processing, downscaling and bias
correction and visualization. The package is available in this URL: https://github.com/SantanderMetGroup/visualizeR

e Integration with forecast verification software. As part of the ECOMS initiative, two different verification R packages have been
developed: SpecsVerification, (Siegert, 2015) in SPECS and easyVerification (MeteoSwiss, 2016) in EUPORIAS, imple-
menting verification metrics used in this application. Several bridging functions have been developed in transformeR for a com-
plete integration of the above packages with the verification software.

The application of this climate service has allowed the production of the results presented in this study. A worked example cov-
ering the different components of the climate service is provided in the fireDanger documentation as a package vignette (also
available online at http:/meteo.unican.es/work/fireDanger/Climate_Services_2017.html). We show the potential for a successful
application of seasonal forecast predictions for operational fire risk management in Mediterranean Europe, and in particular in
the eastern area, where significantly skilful predictions have been found. Our results indicate that a moderate improvement in the
skill can be achieved through the application of empirical quantile mapping (QM). Given the multi-variable nature of FWI, we advo-
cate the application of QM on FWI directly, as computed from the raw model outputs, rather than performing a correction of its input
components separately. This promising results, together with the development of new climate services facilitating the access and
post-processing of seasonal forecast data to end users, pave the way for the applicability of this climate products within an opera-
tional framework in the near future.

1. Introduction

Wildfires represent the most important natural hazard in the
Euro-Mediterranean (EU-MED) region, where an average of
4500 km? of forested and shrubland areas burn every year (San-
Miguel-Ayanz et al.,, 2013), causing considerable economic and
environmental damages and loss of life. In the context of climate
analysis, the term fire danger refers to the assessment of the cli-
matic factors which determine the ease of ignition, rate of spread,
difficulty of control and impact of a fire. Thus, estimating fire dan-
ger a few months in advance is an urgent requirement, allowing
fire protection agencies a timely reaction and an adequate provi-
sion of human and material resources.

Historically, seasonal forecasting of fire danger has relied on
statistical techniques exploiting the lagged relationships between
different fire statistics (number of fires, total burned area ...) and

slowly-varying components of the climate system used as predic-
tors, such as sea-surface temperatures (Chu et al., 2002; Chen
et al., 2011; Chen et al., 2016; Harris et al., 2014) or meteorological
droughts (Preisler and Westerling, 2007; Gudmundsson et al.,
2014), at global to regional scales. There are also some local empir-
ical prediction examples within the EU-MED region (see e.g. Turco
et al,, 2013; Marcos et al., 2015). However, the empirical approach
poses some limitations due to the sensitivity of the statistical
methods to the often short history of the observational databases
and to non-stationarities in the training data.

Recent advances in the modelling of the atmosphere-ocean
coupled circulation have lead to the development of a new gener-
ation of numerical models (Global Climate Models, GCMs) produc-
ing dynamical predictions on a seasonal time horizon (Doblas-
Reyes et al, 2013), offering an alternative to the empirical
approach. In order to account for the various sources of uncer-
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tainty, a probabilistic technique based on the use of several predic-
tions with slightly perturbed initial conditions is nowadays rou-
tinely applied, known as ensemble prediction (Richardson, 2000;
Palmer et al., 2004). The potential of such prediction systems to
inform decision-makers in different economic sectors is huge,
due to the provision of a large number of physically consistent
variables at a sub-daily temporal scale from one to several months
in advance, although their applicability is still hampered by the
limited skill of such predictions in the extra-tropics (Palmer and
Anderson, 1994; Manzanas et al., 2014) and the limits to accessibil-
ity and understanding by end-users (Hartmann et al., 2002; Lemos
et al., 2012; Mason, 2008). Furthermore, the sector-specific climate
impact indicators of interest for fire danger assessment differ from
what climate forecasts routinely provide (Goddard et al., 2010). As
a result, to date studies addressing the seasonal predictability of
fire danger from GCMs are still relatively scarce in the literature
(Roads et al., 2005; Roads et al., 2010; Spessa et al., 2015).

Fire weather indices are envisaged to provide a more realistic
representation of the climatic conditions amenable for fires to
spread (see e.g. Viegas et al., 1999 for a description of some indices
applied in EU-MED). Such is the case of the Canadian Fire Weather
Index (FWI, van Wagner, 1987), used in this study, calculated
through the combination of precipitation and near-surface air tem-
perature, humidity and wind speed (referred to as fire-weather
variables). Beyond the daily scale on which fire-weather indices
are calculated, they can be aggregated on seasonal time scales to
provide a characterization of a particular season. The generation
of probabilistic predictions of such indices, computed from the
GCM simulations, could be highly valuable for decision-makers,
helping risk managers to conduct a rapid assessment of manage-
ment options in advance to the fire season. However, in most cases
raw GCM outputs can not be directly used for quantitative impact
assessment studies due to systematic biases of the models as com-
pared to the observed climate, resulting in significant deviations of
its statistical properties (see e.g.: Deque, 2007; Casanueva et al.,
2016). In addition, their coarse spatial resolution is usually not rep-
resentative of the local conditions that fire agencies are interested
in, thus requiring some form of regionalization (downscaling). As a
result, calibration techniques (often referred to as ‘bias correction’)
are routinely applied by the impacts community as a way of cor-
recting model biases. This already common practice in climate
change applications (e.g. Christensen et al.,, 2008; Hagemann
et al., 2011; Ruiz-Ramos et al., 2015) is for the same reasons
needed in a seasonal forecasting context, although in the latter,
agreed protocols for implementation are still lacking.

In this study, we use probabilistic predictions of the Canadian
Fire Weather Index (FWI) from the state-of-the-art ECMWF's Sys-
tem 4 seasonal re-forecast (Molteni et al.,, 2011 S4 hereafter) in
order to assess their potential for supporting operational risk man-
agement in EU-MED. We analyze the FWI forecast quality as com-
pared to the reference observed FWI using a number of verification
measures. In addition, we address the effect of Empirical Quantile
Mapping (QM) techniques on the resulting forecast, as well as
some methodological issues regarding the application of statistical
correction techniques (and in particular QM) to ensemble forecast
data for the calculation of multi-variable indices such as FWIL. In
particular, we test two approaches to correct the bias of seasonal
FWI forecasts. On the one hand, bias correction can be performed
directly on FWI (QMd hereafter, “d” stands for direct). On the other
hand, bias correction can be performed on the model output vari-
ables before computing FWI (QMc, “c” stands for component-wise).
This issue is analysed in a perfect-prognosis downscaling approach
for climate change in Casanueva et al., 2014, but to date an analysis
in a bias-correction framework for a seasonal forecasting applica-
tion is lacking. We finally identify the regions where FWI forecasts
may be successfully used as a decision-support tool for operational

risk management. As companion material to this paper, we also
provide worked examples of an open-source climate service read-
ily allowing to undertake all these analyses in a straightforward
manner.

2. Material and methods
2.1. The Canadian fire weather index

The FWI system uses as input daily records of four near-surface
variables: last 24-h accumulated precipitation, instantaneous wind
speed, relative humidity and temperature. The FWI system is cali-
brated for “noon local standard time” records of the instantaneous
inputs (Stocks et al., 1989). Thus, we used the model and observa-
tion data verifying at 12 UTC, being the closest model output (see
Bedia et al., 2012; Herrera et al., 2013 for further details on the pro-
cedure for FWI system calculation from model data, and also see
the Supplementary Material for details on the 12 UTC choice).
These inputs are combined through a number of empirical equa-
tions to produce six components rating the effects of fuel moisture
content and wind on a daily basis, based on various factors related
to potential fire behaviour (van Wagner, 1987; Stocks et al., 1989),
including the moisture content of different fuel layers, wind effects
affecting fire spread and a rating of the total amount of fuel avail-
able for combustion (see Wotton, 2009 for a more detailed descrip-
tion). These components are finally combined to produce the Fire
Weather Index (FWI), a dimensionless index rating the potential
fire line intensity given the meteorological conditions for a refer-
ence fuel type (mature pine stands). Despite this apparent speci-
ficity for the boreal forests of Canada, the FWI system has proven
a useful fire-weather indicator in many areas of the world (Bedia
et al., 2015), and in particular in EU-MED (Viegas et al., 1999;
Bedia et al., 2014). As a result, FWI is nowadays the official index
for the operational medium-range fire danger forecasts issued by
the European Forest Fire Information System (EFFIS, San-Miguel-
Ayanz et al., 2013http://forest.jrc.ec.europa.eu/effis/), being there-
fore natural to explore its applicability to the seasonal range in
the same context.

In addition, FWI values are dependent on antecedent condi-
tions. Some of its components tracking fuel moisture are affected
by different drying rates represented as time lags, thus bearing
some sort of “memory”. For example, under “standard” drying con-
ditions, the time lags of the fine fuel moisture code (FFMC), duff
moisture code (DMC) and drought code (DC) components of FWI
are 2/3, 15 and 53 days respectively (see Table 1 in Lawson and
Armitage, 2008). As a result, FWI is initialized with default values
for some of its components and there is a spin-up period until
the index stabilizes. This period is usually much shorter than a
month, particularly during the fire season in the study area in
which snow-melt effects on soil moisture can be neglected. Thus,
the effect of spin-up on lead-month 1 (LM1, used in this study)
to LM3 predictions is assumed to be negligible. On the contrary,
because there is no spin-up period in the reference predictions
(LMO) used for the drift experiment (Supplementary Material), a
certain degree of error is included in this case. However, due to
the relatively fast stabilization of FWI along time (normally a few
days or weeks), and given that FWI is afterwards seasonally aver-
aged, we assume the effect of FWI spin-up to be very limited. In
this case, this source of error must be added to the effect of the
GCM spin-up period. The experimental setup is represented in
Fig. 1. We computed FWI using the code in the R package fire-
Danger (Santander Meteorology Group, 2017a v1.0.0). Our analy-
sis is focused on the Euro-Mediterranean area, which is the EFFIS
area in which fires constitute a more serious environmental haz-
ard. The fire season considered in this study encompasses the per-
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Fig. 1. Diagram of the experimental setup for FWI calculation. The black dots
indicate the initialization time (1st of each month) and the arrow heads the end of
the time slice used for FWI calculation (LM = lead month, see the final paragraph in
Section 2.2 for details). The areas shaded in red correspond to the spin-up period
used for FWI calculation. This period is used for calculation but not retained for data
representation/analysis, as it is out of the fire season. Note that for the initialization
of 1 June (LM = 0) there is no spin-up period. In this study, we only show results for
the LM = 1 choice (but see Fig. A2 in the Supplementary Material).

iod June-September (JJAS). The fire season chosen is a simplifica-
tion of the more detailed fire season provided by Moriondo et al.
(2006) for six different Euro-Mediterranean countries/subregions,
based on 3-day consecutive exceedances for selected FWI thresh-
olds (these are given in julian days). Thus, the JJAS choice is the
most precise possible time resolution to characterize the fire sea-
son in a homogeneous way for the domain selected, taking into
account that seasonal forecasts are routinely issued once a month.

2.2. Seasonal forecast data

The seasonal forecast data were provided by the ECMWF
System-4 (S4), a state-of-the-art, fully coupled GCM providing
operational multivariable seasonal predictions at 0.758° horizontal
resolution. In this study, we consider the 30-year re-forecast (or
historical hindcast) of the model (1981-2010), composed of a 15-
member ensemble and 7-month lead-time for predictions
(Fig. 1). A more detailed description of the system and its perfor-
mance is provided in Molteni et al., 1996; Molteni et al., 2011.
The validation of the historical hindcast provides an indication of
the quality of the predictions based on their past performance, aid-
ing in the decision-making process at a later operational stage
(Goddard et al., 2010; Doblas-Reyes et al., 2013). We used the S4
instantaneous outputs (12 UTC) for 2-meter temperature, north-
ward and eastward near-surface wind components, 2-m dew-
point as well as daily accumulated precipitation. Relative humidity
was computed from dew-point and surface temperature. Wind
velocity was calculated from its components, while precipitation
was deaccumulated as the original model outputs are accumulated
from the initialization time. This was achieved in a user-
transparent way by downloading the data from the ECOMS User
Data Gateway (Cofifio et al.,, 2018) using the R-based (R Core
Team, 2016) user interface of the loadeR.ECOMS package
(Santander Meteorology Group, 2016), enabling authentication
and transparent access to both original and derived variables for
user-defined dimensional chunks of different seasonal forecast
products (Santander MetGroup 2016, http://meteo.unican.es/
ecoms-udg). The code of the conversion formulas applied to obtain
relative humidity is available in https://github.com/Santander
MetGroup/loadeR/blob/devel/R/conversion.R.

Note that, according to the experimental design of the dataset
used, there are seven possible lead times for each target month
for the hindcast period 1981-2010; therefore, it is only possible
to provide the predictions corresponding to a maximum of lead
month 3 (March), as the target period (fire season, JJAS) encom-
passes four months (Fig. 1). For brevity, in this study we focus on
the predictions corresponding to lead month 1 for the fire danger

season JJAS. In addition, the predictions of the previous month
(May) were also used to calculate the FWI series, in order to have
a spin-up period for FWI stabilization (see Section 2.1), and then
removed for the analysis. The resulting (uncorrected) S4 ensemble
mean FWI climatology is displayed in Fig. 2a. Note that the lead
time refers to the period of time between the issue time of the fore-
cast and the beginning of the forecast validity period, as defined by
the Standardised Verification System for Long Range Forecasts of
the World Meteorological Organisation (WMO, 2000). Thus, a sea-
sonal forecast issued one month before the beginning of the valid-
ity period is said to be of one month lead (or LM1 in this paper).

2.3. Observational data

The Water and Global Change EU-funded project WATCH
(2007-2011, www.eu-watch.org Weedon et al,, 2011; Weedon
et al.,, 2014) provides eight meteorological variables at 3-hourly
time steps and as daily averages, for the global and surface at
0.5°. The latest version (WFDEI hereafter) is based on reordered
reanalysis data from ECMWF ERA-Interim (Dee et al., 2011), using
interpolation, elevation corrections and monthly bias correction
based on the global observational dataset from the Climatic
Research Unit (CRU, New et al., 1999; New et al., 2000), covering
the period 1979-2012. The WEFDEI is a particularly convenient
dataset for FWI validation at regional to global scales, containing
all the variables required for the calculation of noon-time FWI
globally (Bedia et al., 2015). In this case, we considered the 12
UTC values in the whole domain for consistency with the S4 out-
puts (Fig. 2b). The raw model output bias is depicted in Fig. 2c.

2.4. Empirical quantile mapping approach
Quantile mapping (Panofsky and Brier, 1968 QM hereafter) is a

popular calibration method to correct model biases affecting not
only the mean (Fig. 2¢) but also other distributional properties of

(a) Raw S4

Fig. 2. a) FWI climatology (JJAS, 1981-2010) from the raw S4 model outputs (15
member ensemble mean). b) Observed FWI climatology, as depicted by the WFDEI
observational dataset and c) S4 mean bias.
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model outputs. In a multivariate context, QM also allows for a
consistent multivariable correction (Wilcke et al, 2013), as
required for the correction of the different input variables involved
in FWI calculation. Several variants of QM are currently described
in the literature. Here, we use the empirical QM model formulation
proposed in Themessl et al., 2011, operating on the empirical
cumulative distribution function (ecdf). QM is applied on a daily
basis t and for each grid cell i independently, resulting in a cor-
rected time series Y using the correction function CF defined
in Eq. 2:

YET = X3 + CFyj (1)
CFei = ecdf g, (Pei) — ecdf o (Pes) @)
Py = ecdfy (X 3)

CF represents the difference between the observed (obs) and the
modelled (mod) inverse ecdf for the respective day of the year (doy)
in the calibration period at probability P. P is obtained by relating
the raw climate model output X" to the corresponding ecdf in the
calibration period. For model calibration, doy is centred at lag-0
within a moving window, which is used to construct an ecdf for
each day of the year, that helps to better describe the climatic vari-
ability for each particular day of the year. As a result, the window
should be wide enough to ensure that climatic variability for each
particular day is adequately represented and noise adequately fil-
tered to provide robust estimates. The width of this moving win-
dow can vary depending on user requirements (Raisanen and
Raty, 2012), typically ranging from 31 days (Wilcke et al., 2013,
2011, 2014) to 61days (Themessl et al., 2011) and 91 days
(Rajczak et al., 2016) or seasonal scales (Boe et al., 2007; Maraun,
2013). However, these previous studies are focused on climate
change projections. In the particular case of seasonal forecasts,
the use of a moving window can help to minimize the forecast
time-dependent bias (model drift, see Fig. A2 in the Supplementary
Information). To this aim, the window needs to be sufficiently nar-
row to encompass periods for which possible trends introduced by
model drift can be safely neglected. As a result, in this study we
apply a window width of 31 days, as a compromise between the
need for a smooth daily climatology and the problem of model
drift.

Different approaches to deal with out-of-range values in the
calibration period (i.e. new extremes) have been reported in the lit-
erature in the context of QM. In this paper we use constant extrap-
olation of the correction value at the lowest and highest quantiles
of the calibration range, i.e. all values above (below) the highest
(lowest) quantile of the calibration period are corrected with the
correction for the highest (lowest) quantile (as in Themessl et al.,
2011). Furthermore, within the QMc approach, it is worth to note
that for precipitation, QM is able to correct automatically the
excess of light precipitation frequency in the models (drizzle effect),
however a frequency adaptation is used to overcome the opposite
problem (Themessl et al., 2011).

2.5. Forecast verification

Forecast verification is defined as a multifaceted quality assess-
ment of the predictions, that need to consider besides the different
aspects associated with forecast accuracy, how reliable the forecast
is (Doblas-Reyes et al., 2013). As a result, there is no one single
metric able to provide a complete picture of forecast quality, but
a range of complementary metrics that need to be used.

2.5.1. ROC Skill Score

The area under the ROC (Relative Operating Characteristic) curve
describes the quality of a forecast by describing the system’s ability
to discriminate correctly between the binary variable occurrence/
non-occurrence of a certain event (Jolliffe and Stephenson, 2003).
In this study, we used a tercile-based probabilistic approach. For
each particular grid box and member, each of the 30 years of the
interannual series of predicted seasonal (JJAS) FWI were classified
into three categories (i.e. whether FWI for a particular year was
normal, below-normal or above-normal). Because of the nature
of FWI as a fire danger indicator, the interest is particularly focused
on the above-normal predictions, as high FWI values will be
related with an increased severity of the fire season (Amraoui
et al., 2013; Bedia et al., 2014). In particular, the forecast perfor-
mance was assessed in terms of its ROC Skill Score (ROCSS) based
on terciles. For each tercile, the value of ROCSS ranges from 1 (per-
fect forecast system) to —1 (perfectly bad forecast system). A value
zero indicates no skill compared with a random prediction.

2.5.2. Forecast skill visualization

Additional visualization plots have been used for the assess-
ment of the skill over selected sub-areas, in particular tercile plots
(see e.g. Diez et al., 2011) and spread plots. For tercile plot con-
struction, the daily FWI predictions are averaged to obtain a unique
forecast series for a selected domain (it may be computed on single
gridboxes as well). The corresponding terciles for the joint ensem-
ble are then calculated to define three categories (i.e. below-
normal, normal and above-normal seasonal FWI conditions). Thus,
a probabilistic forecast is computed year by year by considering
the number of members falling within each category. The observed
terciles (the events that actually occurred) are also represented on
top, allowing for a quick visual overview of observations and pre-
dictions. Finally, the ROC Skill Score (ROCSS, Section 2.5.1) is indi-
cated in the secondary (right) Y axis.

In addition, spread plots provide an overview of observed and
forecast series and the spread of the ensemble (here we use the
interquartile range, IQR, as a measure of ensemble spread). The
level of association between the observations and the ensemble
mean was quantified by the Pearson’s product moment correlation.
The forecast visualization plots were generated using the R pack-
age visualizeR (Frias, submitted see Sec. Practical Implications).

2.6. Reproducibility of results

The results presented in this paper can be fully reproduced
using the open-source code generating them. A worked tutorial
with specific examples is provided as part of the fireDanger
package documentation, also accessible in the following URL:
http://meteo.unican.es/work/fireDanger/ClimateServices2017.
html.

3. Results
3.1. FWI forecast verification

The first and most straightforward assessment of forecast qual-
ity consists in the validation of the raw S4 predictions against the
observations. This preliminary assessment suggests skilful predic-
tions in the eastern part of the study area (Greece, Bulgary and Tur-
key mainly), as well as other scattered significant ROCSS areas in
France and Central Spain (Fig. 3a).

An aspect potentially altering the verification results are the
GCM biases. While a shift in the mean (Fig. 2c) does not affect
the ROCSS (it is calculated upon the inter-annual series variability,
not on absolute values), correction methods operating on the CDF
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Fig. 3. ROC Skill Score of the System4 FWI predictions considering the raw (uncorrected), the QMd and the QMc-corrected predictions (rows 1 to 3 respectively). The grid

boxes with significant ROCSS values are indicated by the circles (95% c.i.).

(like QM) alter not just the mean state, but also higher order
moments of the distribution. Furthermore, some form of bias cor-
rection is required by end-users in order to compute threshold-
dependent indicators (e.g. the frequency of days above a given
threshold), or to rate fire danger potential according to categories
based on absolute values, as typically issued by fire agencies. With
this regard, the overall pattern exhibited by the raw S4 predictions
is consistent with that of the the QM-corrected predictions (Fig. 3¢/
e for QMd/QMoc versions respectively), with some regional differ-
ences apparent, particularly in the case of QMc in Spain.

The verification results may be altered by the trends present
both in the predictions and in the verifying observations, particu-
larly when these are of different sign and/or magnitude. This is
confirmed by inspecting the results of the detrended data
(Fig. 3b,d and f). These results reveal two important aspects: first,
that detrending prior to verification has a remarkable effect on
the verification results. While some spurious skill grid points are
lost in some parts of the domain after detrending (e.g. France),
the signal in the eastern region is reinforced. In addition, other
residual sources of skill were consistently maintained in small
areas in SE Spain and Central Italy. Secondly, both QM correction
approaches were consistent and yielded equal results only after
detrending. Contrarily, the undetrended versions of QMc and
QMd exhibit important regional differences (e.g. in Spain). While
the raw and QMd predictions did not change much after detrend-

ing and maintain the general pattern of the raw predictions, QMc
proved very sensitive to this step. Thus, QMc should not be applied
without detrending as it may negatively affect to the verification
results. This result warns about the potential deleterious effect that
the QMc approach may have on FWI trends, as analysed in
Section 4.1.

3.2. Trend analysis

While the QM correction is envisaged to correct all the quantiles
of the GCM (S4) distribution, trends may be still altered to some
extent (Hempel et al., 2013; Maraun, 2013). Thus, first of all we
look at the observed FWI trends (WFDEI), and how the different
options for correction (QMd and QMc approaches) affect them.

Regarding the observed climate, the negative FWI trends
described by the WFDEI dataset in the southern part of the Adriatic
and the Jonian Seas are consistent with the trends previously
described by ERA-Interim in this region (Vendldinen et al., 2014).
The rest of the area exhibited no significant trends except for a pos-
itive trend in S and central Spain, NE Spain and S of France (consis-
tent with those found in Bedia et al., 2012), Central Italy, Turkey
and the NE corner of the study region (small fractions belonging
to Moldova and Ukraine, Fig. 4).

The raw S4 predictions exhibited a markedly different trend
pattern as compared to the observations, with no negative trends

S4_uncorrected

06 -0.4 0.2

Fig. 4. Trend Maps (Mann-Kendall’s Tau coefficient) of mean seasonal (JJAS) FWI, considering the 30-year period 1981-2010, according to: (a) Observed reference (WFDEI),
(b) Uncorrected S4, (¢) QMc S4 and (d) QMd S4. The black circles indicate significant trends (95% ci). The red crosses mark the gridboxes where there is agreement in the signs

of the trends between WFDEI and S4 (and these are significant).
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within the domain. The only agreement in trend sign between
WEFDEI and uncorrected S4 occurred in western Turkey (Fig. 4b,
highlighted with red crosses). Unlike the observations, in the case
of S4 most of the NW region (France), exhibited a positive FWI
trend. The QMd correction largely preserved the trends described
by the uncorrected forecast, although the QMc approach yielded
positive trends over sizeable areas (Iberian Peninsula, France and
the Alps Fig. 4c), inconsistent with the raw model output trends.
These results show that the QMd approach is able to preserve
model trends, while the component-wise QMc produces spurious
trends that can not be directly attributed neither to the model,
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Fig. 5. Detail of forecast skill for a small area where System 4 QMd FWI predictions
exhibit some degree of skill (its boundaries are indicated by the green frame in
Fig. 3d). (a) Tercile validation plot. Terciles are arranged by rows. Further details for
graph interpretation are given in Section 2.5.2. (b) Spread plot of forecast
predictions (ensemble mean, black) against observations (red) for the same area.
The ensemble spread is represented as the interquartile range (IQR) by the grey
shaded area. Observed terciles are indicated by the blue horizontal lines. The
correlation between the (detrended) ensemble mean (black) and the observations
(red) is r = 0.42 (Pearson’s product moment correlation, p = 0.022).

RAW

nor to the observations. In addition, QMd is more straightforward
and computationally cheaper than QMc, as long as correction is
performed just once on the FWI series, instead than on all four
input variables separately. Thus, the QMd approach is advocated,
and it will be used in the presentation of the results hereafter. Nev-
ertheless, it must be noted that QMc may still provide some bene-
fits in the sense that the inherent biases of the GCM may affect the
original uncorrected FWI to some extent, although it can be
expected this error to be of minor importance provided the physi-
cal consistency of the GCM outputs. If in spite of that, QMc is even-
tually used for any reason, caution must be taken to perform a
detrending of the data prior to verification, as already shown in
Section 3.1.

3.3. FWI forecast skill visualization

As previously indicated, S4 forecasts exhibit certain skill in the
SE and NE extremes of the study region. In order to gain a better
insight into this area, in this section we present some additional
visualizations of forecast quality for a small window, encompass-
ing grid boxes over Greece, Bulgaria and Turkey (this is represented
by the green box in Fig. 3d). Here, the (spatially averaged) forecast
predictions attained a ROCSS of 0.64 for above-normal (upper ter-
cile) FWI years (Fig. 5a), suggesting a potential usefulness of S4
predictions for supporting operational decision-making in this
area.

In spite of the skill in predicting above normal FWI, in generall
the ensemble mean tends to underestimates the magnitude in the
observations in these cases (Fig. 5b). The positive FWI trends
described by S4 in this subregion (Fig. 4b and d) can be seen in
the time series (Fig. 5b).

3.4. Verification of input variables

Relative humidity, temperature and -to a lesser extent- also
precipitation exhibited skilful predictions over the subregion of
interest shown in Section 3.3 (Fig. 6). However, the extent of signif-

tas-T1

hurs - T3

wss -T1

tp-T3

Fig. 6. ROC Skill Score of the raw (uncorrected) and the QMd -corrected S4 predictions (left/right columns respectively) of the input FWI variables (tas: surface air
temperature, hurs: relative humidity, wss: wind speed and tp: total precipitation). T1 refers to the first (upper) and T3 to the third (lower) terciles of the variable. These
terciles correspond to high FWI values (i.e. low relative humidity, high wind speed, high temperatures and low precipitation). The grid boxes with significant ROCSS values are

indicated by the circles (95% c.i.).
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icant ROCSS for temperature extends further to the north, beyond
the skilful area for FWI. On the other hand, the skill of precipitation
is restricted to a smaller domain between Greece, Bulgary and Tur-
key, and also other regions (e.g. in France) where FWI has no skill.
Thus, most of the skill related to FWI predictions can be attributed
to the skill in near-surface humidity predictions yielded by S4. The
potential sources of predictability are discussed in Section 4.3. Like
in the case of FWI (Fig. 3), the QMd and raw predictions exhibited a
consistent ROCSS pattern for all the input variables (Fig. 6).

4. Discussion and conclusions

The objective of this study was to analyse the potential applica-
bility of GCM-based seasonal FWI forecasts one month in advance
in an operational context, as already consolidated and routinely
issued for medium-range forecasts by the EFFIS. This requires (i),
assessing the skill of such predictions for the identification of
potentially dangerous years and (ii), an analysis of a suitable
methodology in order to remove the inherent biases of these pre-
dictions. To this aim, we assessed different options based on a pop-
ular technique (empirical quantile mapping) for correcting FWI,
and then used a number of standard probabilistic verification mea-
sures for skill assessment (ROC skill score, correlation ...), with an
emphasis in the predictability of above-normal (upper tercile) FWI
years, usually triggering the most dangerous wildfires (see e.g.:
Camia and Amatulli, 2009).

4.1. Effect of trends

We showed that the trends present in the data are a cause of
distortion of the verification metrics in certain areas. For this rea-
son, we advocate the systematic use of detrending prior to verifica-
tion in order to obtain more reliable skill estimates. Regarding the
calibration of raw GCM predictions, the quantile mapping
approaches tested had a significant effect on the GCM trends.
While QMd preserved the original model trends, QMc significantly
altered them. After detrending, no significant differences were
found between both QM approaches in terms of skill assessment,
but QMc vyielded spurious trends and misleading verification
results as compared to the original raw predictions when no
detrending was performed, being QMd robust to this step. As a
result, we advocate the use of QMd as a more direct and computa-
tionally less demanding approach. In addition, QMd preserves the
trends present in the model outputs —irrespective of whether those
trends are consistent or not with the observations-, and thus does
not introduce additional uncertainty to the verification process.

As for the nature of the observed FWI trends, a strong positive
trend in heat wave intensity, length and frequency has been
described in the last decades in the eastern Mediterranean region
(Kuglitsch et al., 2010), potentially linked to the increased fire dan-
ger conditions, as FWI extremes are highly influenced by tempera-
ture (positive relationship) and relative humidity (negative, see e.g.
Fig. 2 in Bedia et al., 2012, see also Dowdy et al., 2010). The close
relationship between soil-moisture deficit and hot extremes found
in SE Europe (Hirschi et al., 2011) has been shown to be a major
driver of the positive trends of heat waves. Furthermore, droughts
are directly connected with the dynamics of summer fires in
Mediterranean Europe (Gudmundsson et al., 2014; Urbieta et al.,
2015; Turco et al., 2017).

4.2. Forecast quality assessment

In general, the forecast skill was poor in the domain of analysis.
However, the eastern and south-eastern areas of analysis exhibited
a significant degree of skill, suggesting the potential usefulness of
S4 forecasts of FWI in this region for early warning of above-

normal fire danger seasons. It is worth highlighting the good fore-
cast discrimination of the relatively recent events of 2003 and 2007
in Greece (Fig. 5a; the observed FWI for each particular year is indi-
cated by the white circles, and the colorbar indicates the propor-
tion of ensemble members falling in the observed tercile). These
events triggered important mega-fires in Greece in 2007 (mainly
in the Attica and Peloponnisos regions, where there is skill;
Koutsias et al., 2012) and other EU-MED countries (e.g., the fires
in 2003 in Portugal; Trigo et al., 2006 with no skill though) causing
several casualties and huge economic costs (San-Miguel-Ayanz
et al., 2013). This particular example in Greece emphasizes the
potential of seasonal predictions to improve the reaction of the
European fire agencies in order to minimize the negative effects
of wildfires. Notably, the relationship between FWI and burned
area in eastern EU-MED has been shown to be statistically signifi-
cant even at a large spatial scale of analysis (1.5° resolution, Bedia
et al., 2015), further supporting the potential of seasonal FWI fore-
casts in this region, even at the rough scale of the GCMs, to aid in
the decision-making process.

4.3. Sources of predictability

The simulations of current GCMs seem to adequately represent
the soil-moisture-heat wave mechanism previously described
(Section 4.1) in SE Europe (Hirschi et al., 2011). Given the memory
associated with soil moisture storage, this is an important factor
that could explain the predictability of above-normal FWI seasons
in this region (ROCSS > 0.6, Fig. 5). This is reflected by the rela-
tively good skill attained by the seasonal predictions of near-
surface relative humidity and surface air temperature (Fig. 6) that
are responsible for the overall good performance of FWI
predictions.

The forecast skill for above-average FWI years across the region
as a whole was not improved in comparison to the forecast skill of
underlying variables, but seemed to be closely controlled by the
skill of humidity predictions. Further research is in progress in
order to comment on the skill related to relative humidity. With
this regard, the prediction of other components of the FWI system
tracking changes in fuel moisture, and therefore more directly
dependent on humidity (e.g. drought, duff moisture and/or fine
fuel moisture codes) may prove more skilful than FWI, suggesting
a potential improvement in the skill of seasonal fire danger predic-
tions. Furthermore, some of these components of the FWI system
have been shown to be closely related to monthly burned areas
in different countries of the the EU-Med region (Amatulli et al.,
2013).

It also remains as an open question for further research whether
the skill of S4 FWI predictions could be locally improved through
the use of more sophisticated downscaling techniques (e.g.
perfect-prog methods) where long local historical records are avail-
able (see e.g. Bedia et al., 2013 for FWI downscaling of local climate
change projections), or the existence of windows of opportunity
related to particular atmospheric circulation patterns (e.g. ENSO
events, Frias et al., 2010). The application of multi-model ensem-
bles for FWI forecasting also offers a possibility for the improve-
ment of the current forecast skill, although probably of limited
extent in extra-tropical regions (e.g.: Doblas-Reyes et al., 2005).

Our results confirm the potential usefulness of seasonal FWI
predictions, leaving the door open to the systematic incorporation
of seasonal forecasts in the decision-making chain for an improved
fire protection in the Euro-Mediterranean region.
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