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High-order subharmonically injection-locked oscillators have recently been proposed for low
phase-noise frequency generation, with carrier-selection capabilities. Though excellent
experimental behaviour has been demonstrated, the analysis/simulation of these circuits is
demanding, due to the high ratio between the oscillation frequency and the frequency of the
input source. This work provides an analysis methodology that covers the main aspects of the
circuit behaviour, including the detection of the locking bands and the prediction of the phase-
noise spectral density. Initially, the oscillator in the presence of a multi-harmonic input source
is described with a reduced-order envelope-domain formulation, at the oscillation frequency,
based on an oscillator-admittance function extracted from harmonic-balance simulations. This
allows deriving an expression for the oscillation phase shift with respect to the input source,
and the average of this phase shift is shown to evolve in a continuous manner in the distinct
synchronization bands obtained when varying a tuning voltage. This property can be used to
detect the locking bands in circuit-level envelope-domain simulations, which, as shown here,
can be done through different Fourier decompositions and sampling rates. The phase noise of
the high-order subharmonic injection locked oscillator under an arbitrary periodic input
waveform is investigated in detail. The frequency response to the noise sources is described
with a semi-analytical formulation, relying on the oscillator-admittance function in injection-
locked conditions. The input noise is derived from the timing jitter of the injection source and
the phase-noise response is shown to exhibit a low-pass characteristic, which initially follows
the up converted input noise and then the oscillator own noise sources. A method is proposed
to identify the key parameters of the derived phase-noise spectrum from envelope-domain
simulations. The various analysis methodologies have been applied to a prototype at 2.7 GHz
at the subharmonic order N = 30 which has been manufactured and measured.
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l. INTRODUCTION

The recent works [1]-[7] have demonstrated a novel frequency-synthesis methodology, based
on the high-order subharmonic injection-locking of a high frequency oscillator, at a frequency
fo, by an independent source at a much lower frequency fi». In [1]-[3], the high ratio N between
the two frequencies (in the order of N = 30) is achieved by shaping the input sinusoidal signal
into a square signal that periodically switches on and off a high-frequency oscillator. This is
used to injection lock a second oscillator that selects the harmonic closest to its own free running
frequency. The procedure has two advantages. On the one hand, as demonstrated in [4], the
phase-noise spectral density of the higher-frequency oscillator can be lower than the one
resulting from lower subharmonic ratios (due to the higher phase-noise of the required input
source). On the other hand, the availability of a high number of equally spaced spectral lines
enables a programmable carrier generation. Actually, the second injection-locked oscillator in
[1]-[3] enables the selection of one or another spectral line (with the frequency spacing fo/N)
depending on its tuning voltage. The whole system has the advantage of a low phase noise in
comparison with standard phase-locking methodologies [2], [4].

Successful experimental demonstrations of this promising frequency-synthesis method,
as well as several extensions of the new procedure have been presented in [1]-[7]. However, the
realistic simulation of the high-order sub-harmonic injection-locked oscillator, required for an
accurate prediction of its behaviour, is involved. In general, full time-domain simulations,
which often fail in the presence of distributed elements, are only possible with simplified models
of the circuit components, as done in [1]-[3], where models of the Van der Pol type are used to
describe the transistor devices. In [1]-[3], an approximate analytical formulation in time-domain
is proposed, in which the synchronized states are detected through a comparison of the
oscillation amplitude and phase values at the beginning and end of each period of the switching
signal. On the other hand, though harmonic balance (HB) [8]-[12] can deal at present with a
high number of harmonic terms, in injection-locked oscillators it converges by default to the
non-oscillatory solution that generally coexists with the oscillatory one. In the non-oscillatory
solution the circuit just responds to the input forcing in a non-autonomous manner [13]-[15].
To consider the self-oscillation in commercial HB, one should impose the oscillation condition
using an auxiliary generator (AG) [13]-[15]. The AG amplitude and its phase-shift with respect
to the input source are optimized to obtain a zero value of the AG total admittance function. In
the case of a subharmonic injection locking of a high order N, the convergence of this
optimization procedure is demanding [15] due to the need of a high number NH of harmonic
terms, involving multiples of the high order N. For instance, the consideration of 3 harmonic
components of the oscillation frequency fo, requires NH = 3N = 90.

This work is an extension of [15], presenting an envelope-domain analysis [16]-[19] of
the sub-harmonic injection-locked oscillator is presented, using a Fourier-series description of
the circuit variables, with time-varying harmonic terms X, (¢), where £ is the frequency index.
This will require a proper initialization of the oscillation frequency to avoid the system
convergence to a non-oscillatory steady-state solution [20]. As will be shown, it is possible to
choose different fundamental frequencies, expressed as fo/P where P is an integer. For P > 1,



the spectral lines of the subharmonic regime are distributed among the harmonic components
kfo/P of the Fourier representation of the circuit variables. Then, even in injection-locked
conditions, the harmonic terms X, (r) will exhibit time variations due to the spectral lines

contained in the bandwidth about each harmonic frequency kfo/P, so a criterion is needed for an
efficient detection of the synchronization bands. In order to derive this criterion, a semi-
analytical formulation in the envelope-domain, based on an admittance-type model of the
oscillator circuit, will be initially considered. An analytical expression will be derived,
demonstrating that the injection-locked states can be efficiently detected through the averaging
oscillator phase. In addition, the closed solution curves, characteristic of the injection-locked
operation [10]-[13], will be obtained through an averaging of the envelope amplitude.

In the solution of the subharmonic injection-locked oscillator there will be a high number
of spectral lines at multiples of the low injection-locking frequency fi». This can be achieved
through pulse forming plus oscillator switching, as in [1]-[3], or using of a multi-harmonic input
source, as in this work. As proposed in [1]-[3], the selection of a particular spectral line can be
carried out connecting the oscillator output to a second oscillator circuit (in the same frequency
order) with frequency tuning capabilities. The injection-locking (at the fundamental frequency)
of this second oscillator enables the selection of one or another spectral line by varying its tuning
voltage. Here, this frequency selection by means of injection locking will be analytically
investigated considering an oscillator injected with multiple closely-spaced input tones.

The phase-noise analysis of the high-order sub-harmonic injection-locked oscillator will
be addressed here for the first time to our knowledge. This analysis is demanding, since, as
stated, the HB analysis will fail to converge in most cases due to the need to fulfil the oscillation
condition under a high number of harmonic terms. On the other hand, a Monte-Carlo phase-
noise analysis in the envelope domain is virtually impossible, due to the presence of two widely
separated time scales, one associated with the noise perturbation and the other one accounting
for the bandwidth about each harmonic term. Even for P = N, the integration time step required
to obtain convergence to the oscillatory solution will generally be much smaller than the total
simulation time needed to account for the effect of the noise sources. Here the phase noise will
be studied in two different manners. First, the phase-noise spectrum will be analytically derived
from a perturbation analysis at the oscillation frequency, relying on an admittance-type model
[21] of the oscillator circuit in its injection-locked steady state. This formulation will allow an
understanding of the frequency response of the subharmonic injection-locked oscillator with
respect to the input-source noise and its own noise sources. Then, a procedure to identify the
key parameters defining the spectrum shape from circuit-level envelope-transient simulations
will be proposed. The whole methodology will be applied to a subharmonic injection-locked
oscillator at the order N = 30, which has been manufactured and measured.

The paper is organized as follows. In Section II, the response of an oscillator driven by
multiple periodic tones with a small frequency spacing will be presented. In Section III, the
envelope-domain analysis of a subharmonic injection-locked oscillator under a high order N
will be described. Section IV presents the derivation of the phase-noise spectrum in the
frequency domain, as well as a procedure to identify the parameters that define this spectrum
through envelope-transient simulations.



I1. Oscillator injected by multiple input tones

In this section, the case of an oscillator injected with multiple input tones about the oscillation
frequency will be studied [15], which is conceptually simpler than the one of a subharmonic
injection-locked oscillator under a high order N, considered in Section III. This will allow an
understanding of the oscillator behaviour when driven by multiple tones and an evaluation of its
frequency-selection capabilities. A criterion will be derived to determine the locking ranges about
each input tone when a parameter is varied, which will be extended in Section III to the
subharmonic injection-locked oscillator.

A)  Analytical formulation

A set of input tones will be introduced into the oscillator circuit, at the frequencies w1, @»,..., ok,
assumed to be closely spaced about the original free-running oscillation frequency @».. When
varying a suitably chosen tuning parameter 7, the oscillator should be able to lock to each of the
different input frequencies ax. To get analytical insight, the oscillator will be described at its
fundamental frequency, in terms of its current-to-voltage ratio Y(V,, ) at a particular observation
node [22]-[26], where V' and @ are the excitation amplitude and frequency. This admittance
function will be the current-to-voltage ration of an auxiliary generator (AG) connected at the
observation node in the harmonic balance simulation of the oscillator circuit. In the absence of the
input signals, at its free-running solution, the oscillator fulfils the following two-tier equation
system [11]:

Y@, o,,n,)=0

HXV,0,n,)=0

where H represents the harmonic balance system that constitutes the inner tier and ¥, and @, are

(1)

the free-running amplitude and frequency at 7. Note that the phase origin has been arbitrarily
taken at the observation node Ve’ and the vector X' contains all the state variables except Ve/’.
The above system can be solved through optimization of /" and @ in order to fulfil the goal Y = 0.

Now, the effect of the input source will be considered. Injection-locking to the particular input
tone ay, belonging to the set of input tones w1, an,...,wk, will be assumed. The oscillator will be
formulated in the envelope domain at the carrier frequency @y,. Thus, the node voltage will be
expressed as (V, +AV (1))e””e’™", where AV (¢) is the time-varying increment of the voltage
amplitude with respect to the free-running value ¥V, and ¢(¢) is the time-varying phase, in the

presence of the input sources. Applying Kirchoff’s laws at the observation node one obtains the
following system:

Y (V,+AV ()., +An,0,+ Ao, +s1 j)(V,+AV (1) = Y I, exp j(Am, 1), Ao, =0,-o,
k
()
where Aw, =w,~o,and s is a complex frequency increment and Jk is the equivalent complex
current associated with each input signal . Note that Aw, , is the offset frequency of each input
tone k # g with respect to @, . Under a small input power and small frequency spacing between

the input tones, the function Y can be expressed in a first-order Taylor series expansion about V5,
wo and 770 [21]-[22]. Taking into account that s acts as a time differentiator, one obtains:



Y, AV (6)+Y,An+Y, (Aw, +¢(t)- jAV(t)/Vo):ZII/—" exp j(-p)+Am, 1) (3)
k7o

where Yy, ¥;; and Y, are the derivatives of Y with respect to V, 7 and @, calculated at the free-
running steady-state oscillation Vo, ao, 70. These derivatives are obtained by means of the same
AG used for the calculation of the free-running oscillation [10]. In that simulation, the AG operates
at the unknown oscillation frequency ao, with the amplitude Vo, agreeing with the first harmonic
of the node voltage. The AG must fulfill the oscillation condition Y(Vo,a0) = 0, which is solved
through optimization in commercial HB software. Once the free-running solution has been
determined, the derivatives of the admittance function are calculated through finite differences
[13] (Fig. 1). The derivative Y» with respect to the amplitude is calculated by considering the
increments Vo £ AV, while the frequency is kept at ax. The frequency derivative Y, is calculated
by considering the increments o + Aw, while the amplitude is kept at V5. The derivative Y, with
respect to the parameter is calculated by considering the increments 7, £ Az, while the AG
amplitude and frequency are kept at Vo, @wo.

Solving (3) for Aw, +¢(t) one obtains:

—‘Y”‘ sina,, An + ZIII/'Jsin (—¢(t)+Aa)k’qt+¢k —av)
k [

Ao, +9(1)= 4)

where |l and ¢ are the magnitude and phase of the input tones, ovo=ang(Yo)-

ang(Yv), avy = ang(Yy,)- ang(Yv) and o = ang(Yr). Note that (4) describes the circuit response in
both locked and unlocked conditions. When the oscillator is locked to ay, the phase ¢(¢) in (4) can
be represented in a Fourier series at K-1 frequencies A, ,...,Aw, , , SO one can express

d(t) = o+ Dmix(t), where ¢o is a constant value and Dwmi(f) has zero average: <Dmi(t) = 0>.
Taking this into account, to detect the locking bands, one will introduce the expression
Pd(t) = o+ Dmix(?) into (4) and perform an averaging:

‘ ‘<s1n( -4,-®,. (1)« ) ~ ‘Yq‘sin a,,

4 v, |sin e, v, |sin e,

o

(Aw, +®,,, (1))=

)

k#q 0

<Z |Ik| sm( D, ()+Awy t+¢—a )>

|Yw| sina,,,,
Since Aw, is kept at a constant value, the average phase shift ¢ will vary with the tuning

parameter A7. Under small amplitudes |]k ,

hand side of (3). As the amplitudes |1k| decrease, the above equation approaches:

Mol sin-g,-a) [ty

1 v, |sina,, |¥,|sina,,

sina,,,

(6)

One can also solve (3) in terms of the increment of the voltage amplitude AV(¢). Because the
frequency reference is @y, the voltage amplitude at this frequency is Vo+AV(¢). Thus, the
amplitude at the tone @, at which the oscillator is injection locked is enhanced by the self-
oscillation and will be higher than that of the rest of spectral lines. Solving for the increment
AV(¢) and averaging, one obtains:



-

2]

"‘ (sin(a, +¢,+®,,.()) ‘Y ‘ sina < Plsin (@, ¢, - @, (0)+4, —Awk,qt)>

(o=t | " .
|YV| sine,, |YV| sine, |YV| sina,,,
(7)

where a, = ang(Y»), ayo = ang(Yw)-ang(Y,) and AV (t) has been neglected. Taking into account

<

the relationship between the average phase shift ¢ and A7, the average of the amplitude
increment <A V(t)> should approach an ellipsoidal curve versus A7 in the locking band. However,
due to the presence of two turning points in the closed curve, only one section of this curve will
be stable. Note that the turning points are local/global bifurcations [27]-[28] at which a quasi-

periodic solution is generated from a zero frequency shift, in a manner analogous to the
generation of a limit cycle in a saddle-node bifurcation [27]-[28].
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Fig. 1 Calculation of the derivatives of the oscillator nonlinear-admittance function through finite
differences in harmonic balance, using an auxiliary generator.

B)  Application to a FET-based oscillator

The above analysis has been applied to the voltage-controlled oscillator in Fig. 2. It is
based on the transistor ATF-34143 and is tuned with the varactor SMV1235. It is able to oscillate
in the frequency band 2.7 GHz to 2.78 GHz. The input tones will be generated with the Agilent
E4438C ESG Vector Signal Generator and are equally spaced by default. In order to generate as
many tones as possible, the spacing Af=16 MHz is chosen, enabling six input tones, between
2.7 GHz and 2.78 GHz (case (i) in Fig. 2). Initially, synchronization at @y, /(2n) = 2.7 GHz is
assumed. First, the results obtained through the integration of (3) and with circuit-level envelope
transient simulations [20] [using @y as the only fundamental frequency, as in (3)] have been
compared. The spectrum obtained under injection-locked conditions for a multitone input signal
in the two cases is shown in Fig. 3. As can be seen there is an excellent agreement that
demonstrates the validity of (3).
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Fig. 2. FET-based (ATF-34143) oscillator at fo = 2.7 GHz. The frequency is tuned with the
varactor diode SMV1235. (a) Schematic, showing the two different kinds of input signal
considered in this work: (i) six input tones equally spaced between 2.7 GHz and 2.78 GHz and
(i1) a rectangular signal with 1 Vpp, 25% duty cycle and frequency 90 MHz. The dc-blcok
capacitance is suppressed in this second case. (b) Photograph.
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Fig. 3. Spectrum obtained through (3) and with envelope transient for the spectral-line power
Pin =-33 dBm and frequency spacing Af= 16 MHz.

Fig. 4(a) presents the phase shift —¢#(¢) (without averaging) for three different values of
the tuning voltage 7= Vp, within the synchronization band. In agreement with (4), after a
transient, the phase exhibits a periodic variation about a constant value —¢, , which changes with
the tuning voltage Vp. Note that the oscillator will get locked to a different input tone when
varying Vp. To obtain the synchronization bandwidth about each input tone @i, an,...,ok, one
should change the reference frequency of the analysis. Otherwise there will be an additional ramp
function (@, - ax)t in @mir(t). The synchronization band is obtained representing the average of
—@(t) versus Vp, as shown in Fig. 4(b). This analysis of the synchronization band requires a
sufficiently large time offset to ensure that the circuit is in steady state at each Vb step. The
apparent discontinuities in the diagram of Fig. 4(b) are because the fundamental frequency of the
envelope-domain analysis, ay, is, as stated, alternatively set to each of the input frequencies. The
synchronization bands are easily distinguished (in solid line), since, in agreement with (6),

<—¢(t)> =—¢ varies continuously in each band, with an excursion of slightly less than 180°,

corresponding to the stable solutions. This excursion is not centered about ¢ = 0° because o is



different from zero. The three bands in Fig. 4(b) correspond to synchronization at fi = 2.7 GHz,
f2=2.716 GHz and f3 = 2.732 GHz.

Fig. 5 presents the variation average amplitude <AV(t)> in the same intervals of tuning

voltage V'p considered in Fig. 4. The same three locking bands are detected, distinguished by the
ellipsoidal variation of <AV(t)> versus Vp. Only the stable upper half of the ellipsoidal

synchronization curves is obtained in the envelope-domain analysis. Note that the circuit becomes
unlocked at the turning points of each curve.

The capability of the oscillator to discriminate a particular tone can be evaluated from the
spectrum of the oscillation signal, without changing the fundamental frequency, kept at @,. The
frequencies the spectral line with larger output power and its neighboring spectral lines are
identified and traced versus Vp [Fig. 6(a)]. The circuit is synchronized where these frequency
components remain constant when varying this parameter. Note that outside the synchronization
band, mixing effects give rise to a significant variation of the dominant spectral component and
its neighbors. In Fig. 6(b) the output power at the frequencies of the input tones is traced versus
Vp, which allows evaluating the frequency-selection capability. The boundaries of the
synchronization bands are easily detected by the fast variation of the spectrum frequencies, after
the occurrence of each local/global bifurcation [10], [27]-[28]. The bandwidths slowly decrease
when moving away from the oscillator free-running frequency (2.7 GHz).

Fig. 7 presents the measurement results. Fig. 7(a) shows the six input tones, with Af'=16
MHz. Fig. 7(b) presents an unlocked spectrum for Vp=0.28 V. Fig. 7(c) and (d) present the
spectrum for Vp=0.8 V (synchronization to f2), and Vp=2.85 V (to f5). We attribute the
differences to inaccuracies and dispersion in the lumped-component models.
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Fig. 7. Measurement results. (a) Input tones. (b) Unlocked spectrum for Vp = 0.28 V. (¢)
Synchronization to f2 for V'p=1.69 V. (d) fa for V'p=2.85 V.

I11. Sub-harmonic injection locked operation

In this section the case of a subharmonically injection-locked oscillator by an input signal of
fundamental frequency fi» will be considered. This analysis is more demanding than the one in
Section II, since the subsynchronization is a nonlinear phenomenon and the relevant spectral lines,
resulting from the input signal, plus frequency multiplication/mixing effects, cover the entire
frequency bandwidth from DC to the oscillation frequency and its harmonic terms. When
expressing the state variables in a Fourier basis at the fundamental frequency fo = Nfin, the system
integration requires a small time step Az, able to capture the large bandwidth going from dc to
approximately fo/2. As a compromise, one can use a basis having fo/P as fundamental frequency,
where the integer P fulfils P <'N. The analysis can be carried out representing the circuit variables

in a Fourier series Z X, (t)exp(jkw, / P), where P is a positive integer.
k

A schematic representation of the Fourier basis is shown in Fig. 8. For P =N, the harmonic
components X, () should take constant values in the locked steady-state. Despite the high

number of harmonic terms, the complexity will be smaller than in a HB simulation. This is because
the oscillation is easily initialized by just connecting an auxiliary generator at the oscillation
frequency at the initial time only [20], [29]. The amplitude of this generator can be the same
obtained in free-running conditions, Vo. For P <N, there will be several spectral lines of the
injection-locked solution about each harmonic term. The integration time step of the envelope-
transient system must be small enough to properly sample the frequency components located in
the bandwidth [-wo/(2P), w./(2P)] associated with X, (r), at the central frequency kwo/P.

Although the allocation of the harmonic components of @/N is not unique, all the possible
arrangements of these components will fulfil the envelope-domain system at each time value,
producing the same time domain signal when gathered in the Fourier series.

AU
’
0 fo/P 2f,/P 3fo/P f
’
0 fo/P f

Fig. 8. Envelope-domain analysis of the high-order subharmonic injection-locked oscillator.
(a) and (b) Different choices of the fundamental frequency fo/P in the Fourier-series
representation of the circuit variables.



For better insight, a reduced-order formulation from a single observation node will be
considered. Setting the fundamental frequency to w./P, one can express the outer-tier envelope-

transient system is:
B/2

G Vo)V (0. Vo (0,51 J)V, ()= I, exp j (@),
k=1

Y (V@ 7,0,V (), @, P+s1 )V, (1) =
B+B/2
> Lexpj(Amyt), Am,=0,~o,/P

k=1+B/2

Y, (V0. V(0), V(0. po, | P43 )V, ()= ®)
1+pB+B/2

Z I, expj(Aa)p,kt), Aw,,=0,—pa, P

k=1+(p-1)B+B/2

Yo (VO (0, Vo 1), @, +51 ) V(1) =

M
> Lexpj(Awy,t), Aw,, =0,-,

k=1+(P-1)B+B/2
where Vp (¢) indicates phasors. In (8), the integer B/2 is the number of spectral lines at each
side of the p-th subharmonic component, pfo/P, where p =1,..., P. Thus, the total number of

spectral lines is given by M =B/2+PB . The frequency-domain models of the distributed
components must be valid in the whole bandwidth of each harmonic component. For a higher P,
the integration time step can, in principle, be increased as PA¢. Note that the equation at each
harmonic p is analogous to the one in (2). The phasors I7p (t) , with the phases

Op(t) = Po,p + Dmixp(t), will exhibit a slower time variation for a higher P. In the limit situation P =
N, the phasors ¥/, will be constant in the synchronization band. For P <N, the components X, (0

will be periodic in the locked steady state, with this time variation being due to the neighbouring
equally-spaced spectral lines.

Unlike the envelope-domain equations (3) to (7), based on a linearization of the admittance
function about the free-running solution, (8) will not be numerically resolved. In (3) to (7) the
oscillator behaves linearly with respect to the K input sources, with frequencies located about the
free-running one. In contrast, in (8) the oscillator will (generally) behave nonlinearly with respect
to the input source at a much lower frequency. The input source plus the device nonlinearity must
be able to generate a harmonic signal at the oscillation frequency, able to injection lock the
oscillation. In principle, the admittance at each harmonic frequency p depends on all the harmonic
voltages at the observation node, so the extraction of these admittance functions is virtually
impossibe. The purpose of equation (8) is to illustrate the various possible ways to partition the
spectrum when analyzing the high-order subharmonic injection-locked oscillator with the
envelope-transient method and their impact on the integration time step.

To obtain the sub-harmonic injection locking, a rectangular signal, at a frequency fo/N, is
injected into the high-frequency oscillator, as shown in Fig. 2, case (ii). The rectangular signal
contains a high number of harmonic terms of fo/N, which facilitates the subharmonic injection
locking. Note that this is different from the synthesis method in [1]-[3]. In those works, a large
multiplication factor is achieved by shaping the input sinusoidal signal (at low frequency), into a
square signal. The shaped signal periodically switches on and off a high-frequency oscillator,



suitably tuned to maximize the power at the desired harmonic terms. The resulting signal is used
to injection lock a second oscillator, which enables the selection of one or another spectral line.
Here a rectangular signal is introduced into the oscillator of Fig. 2. The signal has a frequency
90 MHz, amplitude 1 Vpp, and duty-cycle of 25%. One must note that although the oscillation
frequency of this prototype (2.7 GHz) is lower than the one in [1]-[3], the frequency ratio is the
same N = 30, so the analysis complexity must be similar. The circuit has been analysed with
circuit-level envelope transient, following the criteria in (8), and using an auxiliary generator at fo,
connected to the circuit at the initial time only to initialize the oscillation, as shown in [20] . Fig.

9 presents the spectrum at f  =30x90 MHz for P=1,4,6, which predicts a synchronized
behaviour. Only the central spectral lines can agree since for P> 1 part of the spectrum
corresponds to terms P-1 and P+1. For P = 1 the integration time step is 0.05 ns, whereas for P =
6 it is 0.3 ns. The analysis has been validated through an independent HB analysis (superimposed).
This costly HB analysis has been carried out providing the amplitude and phase of the central
spectral line, obtained with envelope transient, to an auxiliary generator at f, . =30x90 MHz.

With P = 6, the time variation is more regular, since less spectral lines contribute to this variation
at each harmonic term. Thus, the synchronization bands can be determined with higher accuracy.
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Fig. 9. Injection locking by a pulsed signal at 90 MHz. Output spectrum at f, . =30x90 MHz

when considering P = 1,4,6. HB results are superimposed.

In this particular case (N =30), it was possible to perform a HB simulation. Fig. 10 presents
the solution of the circuit in Fig. 2 when driven with a rectangular waveform of Vpeaxr= 1V,
frequency fi» = 90 MHz and duty cycle 25%. The spectrum in Fig. 10(a) was obtained with default
HB. The power of the spectral lines about the oscillation frequency (2.7 GHz) is well below that
of the original free-running oscillation (7.75 dBm). Fig. 10(b) presents the spectrum obtained with
an AG, operating at Nfi», through the optimization of its amplitude /" and phase ¢, in order to fulfill:
Y(V,¢) =0. As can be seen, there is a spectral line with a much higher output power, which
corresponds to the injection-locked oscillation. If the solution obtained through AG optimization
is storaged in an ASCII file and using it in default HB as an initial condition, the resulting spectrum
is overlapped, which validates the accuracy of the AG-based procedure.By sweeping the phase ¢
and optimizing V and Vb in order to fulfill: Y(V,Vp) = 0, it was possible to trace the synchronization
curve versus Vp through AG optimization in HB [10], which took approximately 3 hours. The
resulting closed synchronization curve (bounded by the two turning points corresponding to
local/global bifurcations) is shown in Fig. 11(a). Experimental points are superimposed. The
envelope-domain analysis is computationally more efficient. Fig. 11(b) and Fig. 11(c) present the
analysis of the synchronization band with the averaging method, when considering P = 6. Fig.
11(b) presents the variation of the average value of P-th harmonic component of the output

voltage, <¢P(t)> =@, p, versus Vp. which enables the detection of the locking band. Fig. 11(c)



presents the result of averaging the amplitude of P-th harmonic component of the output voltage,
denoted as <Vp(t)>=VO’P. The envelope-domain integration only provides the upper (stable)
section of the synchronization curve. There is an excellent agreement with the HB predictions,
though the computation time is four times shorter. Note that the comparison with HB should be
performed in terms of the tuning-voltage interval with locked operation. This is determined by the
two turning points of the ellipsoidal curve, in the case of HB simulations, and the slope

discontinuity, in the case of envelope-transient simulations. As can be seen, the locked-operation
interval is the same with the two simulation methods.

Note that it was not possible to obtain any HB convergence when changing Vp in order to
select a different spectral line, for instance N+1 and N+2. This could be easily achieved with the
envelope-transient method, as shown in Fig. 12(a) to (c), where three different spectral lines,
corresponding to N =30, N+1 and N+2, are selected by varying Vp. Finally, the output of the
subsynchronized oscillator has been connected to an analogous voltage-controlled oscillator to
increase the frequency selectivity. To initialize the two individual oscillations an AG is connected
to each circuit at the initial time only. The simulated spectra are shown in Fig. 13(a) and (b). The
ratio between the selected spectral line and the highest-power neighbouring line is in the order
of 30 dB. Fig. 13(b) presents the experimental results. In a manner similar to Fig. 7, there is a
deviation in the tuning voltages, attributed to the device models.
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frequency 90 MHz and duty cycle 25%. (a) Without AG. The oscillation is not excited. (b)
With an AG, after fulfilment of the optimization condition Y(V,¢) = 0. The injection-locked

oscillation is clearly visible. When storing the solution obtained through AG optimization in an
ASCII file and using it in default HB as an initial condition, the resulting spectrum is
overlapped, which validates the accuracy of the AG-based procedure
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IV. Phase noise

The phase-noise analysis of the subharmonic injection-locked oscillator at a high order N is
challenging. This is because, in most cases, the only way to obtain the steady-state solution is
through an envelope-domain analysis using the criteria discussed in Section III. Then, one faces
the problem of two different time scales, in addition to the harmonic frequencies kfo/P considered
in the Fourier-series representation of the circuit variables. One of the additional time scales is
slow, because it is associated with the noise perturbations. The other one is faster, and depends on
the P value selected in (6), which determines the bandwidth about each spectral line in the Fourier-
series representation of the circuit variables. Two cases will be considered here, P = N, for which
the harmonic components of the Fourier series considered in (6) take constant values, and P <N
for which the harmonic components are time varying. The case P = N will be addressed by means
of a two-tier HB analysis, with the admittance function of the injection-locked oscillator at fo= Nfin
constituting the outer tier. This will allow an understanding of the phase-noise response of the
high-order subharmonic injection-locked oscillator to the noise sources. In the case P < N the key
parameters determining the phase-noise response will be identified from envelope-domain
simulations through a numerical procedure.

A) CaseP=N

For P =N the subharmonic injection-locked oscillator will be described with an outer-tier
admittance function Y extracted from HB simulations. This admittance function is similar to the
one considered in Section II. However, the circuit is now in injection-locked conditions with
respect to the subharmonic source, at the high subharmonic order N. Thus, the function Y depends
on the observation node amplitude /" and phase ¢, since the oscillation frequency is determined by
the input source frequency and fulfils fo = Nfi». Thus, the synchronized solution will fulfil the
following two-tier equation system:



Y(¥,.¢,)=0

H(X'V,.4)=0 ©)

@, =Na,
where H represents the harmonic balance system that constitutes the inner tier, Vs and ay are,
respectively, the amplitude and phase of the steady-state solution and the vector X 'contains all
the state variables except the voltage at the observation node Ve’ and its complex conjugate. The
above system can be solved through the optimization of ¥ and ¢ in order to fulfil the goal Y =0

For the noise analysis, two different contributions will be considered: the noise from the

input source and the circuit own noise sources. Regarding the input source, the phase noise will

be much larger than the amplitude noise, so the latter will be neglected. On the other hand, the
circuit noise will be modelled with an equivalent noise-current generator at the observation node

i (t) . The spectral density of this equivalent noise-current source |I N(Q)|2 is fitted with the

oscillator in free-running conditions, in order to obtain the same phase-noise spectral density as
with the entire set of circuit noise sources. The fitting is carried out in circuit-level HB, using the
conversion-matrix approach [30]-[32]. The result is shown in Fig. 14. Note that in injection-locked
conditions, one can expect the oscillator to follow the phase noise of the input source (usually
growing as Q° when approaching this carrier) up to a certain (relatively high) offset frequency,
above which the impact of flicker noise will usually be negligible. Thus, the fitting can be limited
to the effect of the white noise sources.
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Fig. 14. Fitting the spectral density of the original free-running oscillator with a single equivalent
current source of spectral density |[ v (Q)|2. The fitting is carried out in circuit-level HB, using

the conversion-matrix approach.

The phase noise contribution of the input source (with arbitrary waveform) will be obtained
from the jitter 7(¢) of this source [33]-[34]. One must take into account that a time translation 7 of
the input signal gives rise to an identical time translation of the oscillator solution, which does not
affect the value the admittance function Y(V,,4,), depending only on the phase shift with respect

to the input source. However, the time translation will modify the absolute node phase, which is
increased as ¢+Nwin7. Thus, the jitter of the input source will give rise to the phase perturbation



Ny (t)=Na,(t) at the oscillation frequency. Because there are also noise contributions coming
from the oscillator circuit [modelled with the equivalent source i,(¢) ], the total phase perturbation

of the voltage at the observation node will be Ag,(f) = Na, 7(t)+Ad(t) where Ag(¢) is a small

increment with respect to the steady-state phase ¢ due to the noise perturbations. On the other
hand, the node amplitude, under the influence of #(¢) and i,(¢) becomes V, +AV(¢).

In the presence of the noise perturbations the outer-tier system at Nwi» can be obtained by
performing a first-order Taylor series expansion of the total node admittance Y about the particular
steady-state synchronized solution, Vs, ¢ and s, which provides:

(%, AV (1) + ,A¢(0) X, | (7, + AV (0) 090 - (1) (10)
where s acts like a time differentiator and the subindexes stand for derivatives of ¥ with respect
to the corresponding variables V, ¢ and w and I, (¢) is the envelope of the current-noise source
i (t) about Nw,. After the time differentiation, one obtains the following equation:
) AV (t)
V +AV (1)
where the subindexes indicate the quantity with respect to which the admittance function is

differentiated. The derivatives Y,,Y,,Y, are calculated at the steady-state synchronized solution

Vo>Two

m

Y, AV (t)+Y, L(Na) #(t)+Ad(t) ]+Y¢A¢(t)= INT(t) (11)

S

through finite differences in HB, following the procedure described in [13], [21].

Next, the complex equation (8) is split into real and imaginary parts and the Fourier
transform is applied in the slowly-varying time scale of the noise perturbations, with associated
frequency Q. Solving for Ad,.(€2) = A@(Q2) + Ny (Q) and multiplying by the adjoint, the phase-

noise spectral density [21] is given by:

) 2
<7, Ny (@) +2r, [ |I;5| [ sin®a, M|y (Q)f +2|1152|

Ag, Q) = = : (12)
24, (<2) ‘YVx);‘2+|YVwa|2Q2 ‘n‘zsinzam +]Y, | sin’e,,, O

where higher order terms in Q have been neglected and the complex-number products of the form
axbare real and are defined as: axb =Re(a)Im(b)—Re(b)Im(a) = |a| |b| sin(£b—Za) . In turn,
the angles in the third term are defined as o, = Zb—Za. To derive the above expression it has
been taken into account that the real and imaginary parts of the equivalent noise source 7, y are
uncorrelated and the input noise is uncorrelated with the oscillator noise. Dividing the numerator

. 2 .
and denominator by 4| » one obtains:

1 1,[
NZ‘W(Q)‘ ‘ ‘ sin‘a 2|I]/vz|
Ag (@) L (13)
|Y| sin‘a,,
‘ ‘ sin aW

which can be rewritten as:



2 N |w(Q) +4, S7a
AG Q) = S— (14)
Q
1+—
Wsp
where the following parameters have been introduced:
) [rfsinca,)
A, =——, (15)

2,
‘YA smzaw |Ya)| (sine,,,)

As gathered from (14), the injection-locked oscillator exhibits a low-pass response with
respect to the input phase noise and its own noise sources, with a 3dB cut-off frequency @, . As

shown in (15), the corner frequency wsas will be, in principle, smaller for a higher quality factor

of the oscillator (larger |Yw| ) and larger for a higher

source and thus a larger locking range. Note, however, that the angles ¢,,,¢,, can be very
relevant.

For small offset frequency, the phase noise follows N* )2 , as derived from the jitter

. . . . . . . 2
7(?) of the input signal. The effect of the circuit noise sources is determined by 4, |I N| /VEIE

AL V>N lw (Q)|2 from a certain Q < Qsp, before decaying -20 dB/dec.

The predictions of the semi-analytical expression (14) have been compared with a phase-
noise analysis of the subharmonic injection-locked oscillator at N = 30, performed in HB, with the
conversion-matrix approach [30]-[32]. The results of this comparison, in the presence of the

equivalent white-noise source i (¢), are shown in Fig. 15. The curves providing the phase-noise
spectral density obtained with the two methods are overlapped. Remember that the spectral density

of the white-noise source | | was fitted in the standalone free-running oscillator. The corner

frequency is f3as= 1.5 MHz

For the prediction of the whole spectrum, the phase noise of the rectangular input source
at the fundamental frequency (90 MHz) has been experimentally characterized, using the R&S
FSWPS8 - Phase Noise Analyzer, and introduced in (14). Fig. 16 presents a comparison of the
predictions from (14) with the experimental measurement of the oscillator phase at Nfi». Note that
there is an excellent agreement, since the two curves are nearly superimposed. At the lower offset
frequencies, the phase noise is 20log(30) higher than the one at the lower harmonic frequency of
the input source, included in the figure. The phase-noise spectrum in free-running conditions is
also shown for comparison. The spectrum of the injection-locked oscillator follows the input-noise
source up to its corner frequency f3as= 1.5 MHz. Up to this frequency there is a negligible effect
of the circuit own noise sources. At low frequency offset there is an improvement of more than 30
dB. To obtain a lower spectral density at higher offset frequencies an input source with lower
phase noise should be used.

B) Case PN

For P <N the quantities 4,/ V? and Qsqs, will be identified from envelope-domain simulations

through a numerical procedure. To obtain the frequency response of the oscillator phase with



respect to the equivalent noise source |1 v ? | this noise source will be replaced with a deterministic

tone at the frequency Q. Then, a two-tone envelope-domain analysis will be carried out, using the
frequency basis (@, =@,/ P,w, =Q) . Then, for each Q, the phase shift the phase shift will be
calculated from the voltage spectrum at the observation node [21], doing:
V'(No, -Q)e’ ~V(Nw, +Q)e ™
2V (Na,)

To obtain the voltage components in the above expression, the time-varying harmonic

components resulting from the envelope-domain analysis can be processed to provide:
V(Nw, +Q) = <XP,1(t)> , V(Nw, -Q)= <XP,—1(t)>9 V(Nw,) = <XP,0 (t)> (17)

AG(No, +Q) = (16)

where the operator < > applies an averaging in the period 7, =1/f, and X, (¢) is the

harmonic component corresponding to the frequency ka, +I@, . Note that the time-varying nature

of the harmonics X, ,(¢) is due to the presence of frequency components at multiples of the
injection frequency f, , which are removed by the operator < > . Sweeping Q and tracing
|A¢(N o, + Q)|2 versus €2 one obtains a frequency response from which one can identify the two

quantities A4,/ V? and Qaqs. Once these quantities are available, one can obtain the phase-noise

spectrum through (17).
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IV. CONCLUSION

A methodology for the analysis of subharmonically injection-locked oscillators under a high
order N has been presented. This analysis is involved since harmonic-balance will not be
applicable in most cases due to the need to fulfil the injection-locked oscillation condition under
a high number of harmonic terms. Instead, an envelope-domain analysis has been proposed here.
The procedure has been initially derived and tested in the case of an oscillator injected by a
number of closely spaced input tones. In these conditions, the oscillator is described with the aid
of a semi-analytical formulation, based on the modelling of this oscillator with an outer-tier
admittance function extracted from harmonic-balance simulations. The locking bands about each
of the input tones, obtained when sweeping a tuning voltage, can be efficiently predicted by
averaging the phase of the integrated solution. This procedure has been extended to the more
demanding case of a subharmonic injection-locked oscillator, simulated through a circuit-level
envelope transient. The phase noise of the subharmonic injection-locked oscillator has been
analysed with a semi-analytical formulation, based on an admittance model of the oscillator
circuit in injection-locked conditions. The effect of the phase noise of an arbitrary periodic input
waveform has been derived from its associated timing jitter. The analytical expression for the
phase-noise spectral density shows that the injection-locked oscillator exhibits a low-pass
response with respect to the noise sources. It initially follows N times the phase noise of the
fundamental frequency of the input-source and then follows its own input noise sources. The
procedure has been illustrated with a practical FET-based subharmonic-injection locked
oscillator at the order N = 30.
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