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Direct and component-wise bias correction of
multi-variate climate indices: The percentile adjustment
function diagnostic tool

A. Casanueva - J. Bedia - S. Herrera -
J. Fernandez - J.M. Gutiérrez

Abstract The use and development of bias correction (BC) methods has
grown fast in recent years, due to the increased demand of unbiased projec-
tions by many sectoral climate change impact applications. Case studies are
frequently based on multi-variate climate indices (CIs) combining two or more
essential climate variables, that are frequently individually corrected prior to
CI calculation. This poses the question of whether the BC method modifies the
inter-variable dependencies and eventually the climate change signal. The di-
rect bias correction of the multi-variate CI stands as a usual alternative, since
it preserves the physical and temporal coherence among the primary variables
as represented in the dynamical model output, at the expense of incorporating
the individual biases on the CI with an effect difficult to foresee, particularly
in the case of complex CIs bearing in their formulation non-linear relation-
ships between components. Such is the case of the Fire Weather Index (FWI),
a meteorological fire danger indicator frequently used in forest fire prevention
and research. In the present work we test the suitability of the direct BC ap-
proach on FWI as a representative multi-variate CI, assessing its performance
in present climate conditions and its effect on the climate change signal when
applied to future projections. Moreover, the results are compared with the
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common approach of correcting the input variables separately. To this aim, we
apply the widely used empirical quantile mapping method (QM), adjusting
the 99 empirical percentiles. The analysis of the Percentile Adjustment Func-
tion (PAF) provides insight into the effect of the QM on the climate change
signal. Although both approaches present similar results in present climate,
the direct correction introduces a greater modification of the original change
signal. These results warn against the blind use of QM, even in the case of
essential climate variables or uni-variate ClIs.

Keywords Bias Correction - Bias adjustment - Fire Weather Index - Climate
Change - Quantile Mapping - Regional Climate Models

1 Introduction

The assessment of climate change impacts on the different human activities
and ecosystems has become a major challenge in the last decades, especially
for those regions that are particularly vulnerable to climate change (IPCC,
2014). Regional Climate Models (RCMs) are the primary tools to provide
regional climate information (particularly climate change projections) needed
for this task. However, in spite of the continuous increase of spatial resolution
and physical processes solved by the successive generations of RCMs —e.g.
PRUDENCE (Christensen et al, 2007), ENSEMBLES (van der Linden and
Mitchell, 2009) and EURO-CORDEX (Kotlarski et al, 2014) in Europe,—
their output cannot be directly used for impact studies due to their systematic
biases (Christensen et al, 2008; Hagemann et al, 2011). Therefore, some sort
of bias correction (BC) or adjustment of the model output is needed. These
two terms are used interchangeably in the literature, with a recent preference
for the latter, due to the misleading expectation of “correct” data after BC. In
the present work we explore the adjustments applied by these techniques in
a multi-variate context and suggest a diagnostic tool to ease the detection of
statistical artifacts.

In the climate change context, bias adjustment is typically done using dis-
tributional model output statistics to bring modeled probability distributions
closer to those of the observations (see e.g. Déqué, 2007; Piani et al, 2010a).
These methods are simple to apply and provide, by construction, strong bias
reductions under current climate. However, despite these advantages, their lim-
itations need to be considered. For instance, the physical causes of model errors
are not taken into account (Teutschbein and Seibert, 2012), i.e. biases are not
related to the (mis)representation of physical processes in the models, such
as synoptic circulation (Addor et al, 2016), and changes in trends or spatio-
temporal structures may appear due to the scale mismatch between RCM and
observations (Maraun, 2013). As for all statistical downscaling methods, BC
techniques are applied under the stationarity (time invariance) assumption in
climate change conditions (Ehret et al, 2012). Furthermore, they constitute an
additional source of uncertainty in climate change projections and can modify
the climate change signal of the raw model output (Teng et al, 2015). Although



these changes may be defensible in the case of stationary, intensity-dependent
biases (Gobiet et al, 2015), they should be carefully analyzed from a physi-
cal perspective case by case — considering also time-invariance,— in order to
avoid statistical artifacts.

In a multi-variate context, the dynamical nature of the relationships be-
tween variables simulated by a climate model is subject to an ongoing de-
bate (see Piani et al, 2010b, and references therein). On the one hand,
RCMs present biases in inter-variable correlation fields (Wilcke et al, 2013),
thus requiring specific multi-variate bias adjustment techniques (e.g. Li et al,
2014; Vrac and Friederichs, 2015; Cannon, 2016) able to reconstruct the inter-
variable dependences of the observations. On the other hand, the ability of
RCMs to respond in a physically consistent way to external forcings is one of
their basic foundations (Wilby et al, 2000). Due to the purely statistical nature
of bias adjustment, the potential modification of the inter-variable dependen-
cies caused by univariate techniques is an inherent caveat of the methodology
(Piani et al, 2010b; Ehret et al, 2012; Muerth et al, 2013). Whereas Wilcke et al
(2013) show that univariate bias adjustment is able to retain the quality of
the temporal structure and the inter-variable dependencies of the uncorrected
data, Rocheta et al (2014) show that bias correcting variables independently
results in increased errors in the potential vorticity field, which are improved
when the latter is directly corrected.

Forest management is an important socio-economic sector highly sensitive
to climate change, since forest fire activity is greatly controlled by climate vari-
ability (see e.g. Pechony and Shindell, 2010). Thus, it is important to identify
and understand the relationships between fires and weather, and their impli-
cations in a changing climate (Bedia et al, 2015). Several fire danger indices,
based on the compound effect of key meteorological variables (temperature,
precipitation, relative humidity, wind, etc.) are widely used to quantify fire
danger (see e.g. Stocks et al, 1998; Williams et al, 2001), such as the Canadian
Fire Weather Index (FWI van Wagner, 1987). FWI is here taken as an illus-
trative example of a sector-specific CI requiring a multi-variable bias adjust-
ment. The most common approach is to adjust independently the component
variables prior to the index calculation (i.e. the component-wise approach),
as Yang et al (2015). In this multi-variate context, the BC method should be
carefully chosen to retain the physical consistency between variables, otherwise
inconsistencies in spatio-temporal fields may appear and the inter-variable de-
pendencies may be modified (Ehret et al, 2012; Vrac and Friederichs, 2015).
The alternative of directly adjusting the index (i.e. direct approach) could cir-
cumvent this constraint and has not been widely tested in a BC context (see
Casanueva et al (2014) for an example in statistical downscaling under the
perfect prognosis approach and Rocheta et al (2014) for an example of direct
BC with a scaling method).

The present work aims at exploring the application of the direct BC ap-
proach as an alternative to the component approach for climate projections,
illustrated for the FWI in Spain. In this way, a single parameter (FWI) is ad-
justed at the expense of including the individual biases of the input variables



in the index calculation. In particular, the different nature of the FWI com-
ponent variables (near-surface temperature, relative humidity, wind and 24-h
accumulated precipitation) and their physical interdependence (e.g. relative
humidity depends on 2-meter temperature), make this index a good candidate
to test the direct BC approach.

Among the different BC methods available in the literature, we use the
empirical Quantile Mapping (QM, Panofsky and Brier, 1968) since it can be
successfully applied to either temperature, precipitation, winds or relative hu-
midity (Wilcke et al, 2013) —unlike scaling or parametric methods that depend
on the nature of each specific variable— and is one of the most popular BC
methods.

The objectives of this work are (1) to assess the applicability of the di-
rect BC of a multi-variate index (FWI), and (2) to analyze the effect of the
QM (direct and component) on the climate change signal. For the latter, the
percentile adjustments applied by the QM are explored.

2 Data and Methods
2.1 The Fire Weather Index

The Canadian forest Fire Weather Index (FWI, van Wagner, 1987; Wotton,
2009), is one of the most popular fire danger indices worldwide. In particu-
lar, its suitability for different Mediterranean ecosystems has been highlighted
by several authors (see, e.g. Viegas et al, 1999; Dimitrakopoulos et al, 2011)
and is the reference fire danger indicator used by the European Commission
to assess current and future fire danger in Europe, in the framework of the
European Forest Fire Information System (EFFIS, San-Miguel-Ayanz et al,
2013, http://forest. jrc.ec.europa.eu/effis/).The FWI is a dimension-
less daily indicator of potential fire conditions based on four weather variables
i.e. instantaneous values of temperature, relative humidity and wind velocity
at noon local standard time, and accumulated precipitation in the previous 24
hours. It is calculated through a complex system based on three indices track-
ing the moisture content in different fuel layers (depending on precipitation,
temperature and relative humidity) and two additional indices characterizing
fire behavior (rate of spread and fuel consumption), through non-linear com-
binations of the moisture indices and wind speed. The final index (FWI) is
the result of combining all the previous ones, representing fire intensity as en-
ergy output per unit length of fire front. The reader is referred to van Wagner
(1987) for an overview and van Wagner and Pickett (1985) for more details
in the calculation (including FORTRAN code routines). In the present work,
the FWI is computed using the R package fireDanger (Bedia et al, 2017), that
implements the FWI System in the R language, linking it to the climate data
model implemented in the climate4R bundle (Cofino et al, 2017).

The FWI has been previously applied to the estimation of future regional
fire danger scenarios in Europe by several authors, considering different down-



scaling approaches (Moriondo et al, 2006; Bedia et al, 2013, 2014, 2017). In
general, due to the lack of instantaneous public data, daily mean values from
the primary variables are usually considered in the FWI calculation leading to
a clear underestimation of the FWI (Bedia et al, 2014) which yields to great
differences in climate projections (Herrera et al, 2013). Therefore, instanta-
neous data is preferred for the FWI calculation although this requirement is
a limiting factor for the broad use of this index.

Here, we focus on the seasonal mean FWI and its 90th percentile (FWI190),
the latter used as an indicator for extreme fire danger conditions, considering
the standard fire season in the Mediterranean region (June to September,
JJAS). All FWI-derived indices are computed from the daily series.

2.2 Observational data

Impact studies usually focus on local scale information to drive impact mod-
els in order to produce projections at very high spatial resolution (see e.g.
Quintana Segui et al, 2010). To also meet the instantaneous data requirement
of FWI, we used observational data from meteorological stations over Spain
provided by the Spanish Meteorological Agency (AEMET). These historical
data were recorded using standard automatic stations, which provide subdaily
(6-hourly) data. The period covered by these automatic stations is 1979-2003.
These data have passed an automated data quality control and those with
a missing value percentage above 20% in the period of study were discarded
(Bedia et al, 2013). After this process, 45 high-quality stations remained to be
used in the study (see Fig. la-b).

2.3 Regional Climate Models

Standard RCM databases rarely provide instantaneous data outputs, as re-
quired for the FWI calculation. Two RCMs from the ENSEMBLES project
(van der Linden and Mitchell, 2009), driven by the same GCM were used
in this study (RACMO2 and RegCMs3, see Table 1), after contacting all the
institutions producing the simulations to get the data.

In the present work, we used hourly or 3-hourly climate change projections
nested into a single GCM (ECHAMS5 r3), forced by a single emissions scenario
(SRES A1B). Thus, the uncertainty due to the global forcing and scenario
was not considered. A region covering the Iberian Peninsula was chosen from
the European-wide simulation domain. Both models used a similar horizontal
resolution (0.22° regular on a rotated latitude-longitude grid and 25 Km on
a Lambert conic conformal grid). RCM data were paired to point station
observations by selecting the RCM gridcells closest to each station location.

The selection of these particular RCMs was motivated by the availability
of high temporal resolution data from the producing centers. In any case, the
RACMO2 ranks among the best in previous evaluation studies in the Iberian



Table 1 Summary of the ENSEMBLES RCM simulations used in this work.

RCM Temporal Res. Horiz. Res. Institution Reference
RACMO2 Hourly 0.22° KNMI, Netherlands van Meijgaard et al (2008)
RegCM3 3-Hourly 25 Km ICTP, Italy Pal et al (2007)

Peninsula (Herrera et al, 2010), which is consistent with more recent analysis
based on EURO-CORDEX (Casanueva et al, 2016), and both RCMs were free
from coupling artifacts according to Turco et al (2013). We also checked that
the projected delta changes of these models are not outliers for precipitation or
temperature, especially RACMOZ2, which ranks near the ENSEMBLES multi-

model median for both variables (not shown).

2.4 Time consistency of input data

As mentioned, FWI requires instantaneous data at noon local time. In this case
(summer in Spain), local time is Central European Summer Time (CEST),
which is 2 hours ahead of UTC (used by the RCMs). The AEMET data set
(Section 2.2) provides instantaneous values of temperature, relative humidity
and wind speed at 15 CEST, and precipitation accumulated in 24 hours (from
9 CEST of day D to 9 CEST of day D+1), recorded as the daily precipitation
value at 07 UTC of day D.

As Bedia et al (2013) and Casanueva et al (2014), precipitation data were
shifted one day ahead the whole series, since precipitation at noon accumulated
in the last 24 hours is required for FWI. By doing this, the precipitation
accumulated from 9 CEST of day D to 9 CEST of day D + 1 are assigned to
day D+ 1. As a result, it must be noted that there is a 5-hour lag between the
RCM precipitation data, accumulated up to 12 UTC (14 CEST), and AEMET
observations. This lag is just 1 hour for the rest of variables.

2.5 Bias adjustment

In order to adjust the bias of the FWI projections, we considered a single
method based on the empirical Quantile Mapping (hereafter denoted as QM,
Panofsky and Brier, 1968), defined by Eq. 1,

G = F,  (Frn(gm)) (1)

where q,, and ¢;, are the model original and adjusted quantiles, respectively,
and F}, and F, denote the empirical cumulative distribution function of the
modelled and observed variable, as obtained from a calibration historical pe-
riod.



The procedure used here is the same as Déqué (2007), where the 99 empiri-
cal percentiles are adjusted to match those observed and linear interpolation is
used for the values between two percentiles. Constant extrapolation is applied
for values outside the calibration range, i.e. the adjustment applied to the last
(first) percentile is applied to all the values above (below) it. The function
indicating the adjustment factors ¢, — ¢, as a function of the percentile prob-
abilities provides overall information of the variability of the local adjustments
along the range of values of the variable. We will refer to this function as the
Percentile Adjustment Function (PAF). The effective adjustments carried out
by the QM would depend on the distribution of the RCM data in the test
period with respect to the distribution in the calibration. This is denoted as
effective Percentile Adjustment Function (PAFeff) and are obtained following:

an —dm-

For precipitation, QM adjusts the excess of light precipitation frequency
(‘drizzle effect’) when a model overestimates the wet-day frequency. The fre-
quency adaptation proposed by (Themefl et al, 2012; Wilcke et al, 2013) was
applied in this work to overcome the opposite situation, when the model under-
estimates wet-day frequency. The frequency adaptation consists in randomly
sampling the observational distribution into the simulated first bin (0-1 mm)
in order to generate dry days, and has been used to adjust future precipitation
scenarios (Themefl et al, 2012).

The QM was applied to JJAS station and RCM daily series following two
approaches: 1) individually to all component variables (i.e. the component-
wise approach, QMc) and 2) directly to the uncorrected FWI (i.e. the direct
approach, QMd). In order to maximize the length of the training period, we
used the full observational data set extent (1979-2003) to train the QM. There-
fore, in the RCMs, we extended the 20C3M experiment (1979-2000) with a few
initial years (2001-2003) of the A1B experiment. First, for the validation of
the direct and component QM in present climate (Section 3.1) a k-fold cross-
validation approach was considered by splitting the data into k equal-size
sub-samples (k = 5). We applied the same k-fold cross validation approach
used in Bedia et al (2013) and Casanueva et al (2014), considering a stratified
sampling (i.e. first test sample formed by the years 1979, 1984, 1989, 1994,
1999, the second by the years 1980, 1985, 1990, 1995 and 2000, etc). Secondly,
to adjust the biases in the future projections (Section 3.2), we used the whole
period 1979-2003 to train the QM and applied the PAF obtained to three
future periods (2011-2040, 2041-2070 and 2071-2100) from the A1B scenario
and to a reference period (1971-2000) from the 20C3M experiment. Note that
the 30-year reference period shares 22 years with the training period. The (ad-
justed) climate change signal is defined as the difference (delta) between the
future and reference bias-adjusted data.



3 Results
3.1 Cross-validation of direct- and component-wise QM

The modelled and observed JJAS series of the four meteorological drivers
(temperature, precipitation, wind and relative humidity) and the FWTI are used
to cross-validate the QM under a 5-fold stratified cross-validation approach

(Section 2.5) following the two BC approaches (QMc and QMd).
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Fig. 1 (a-b) Observed climatology for the period 1979-2003. The numbers indicate the spa-
tial average over the 45 stations. Scatter plots for the point-based observed versus simulated
mean FWI (c-d) and FWI90 (e-f), for the two RCMs (columns) in the cross-validation ex-
periment. Within each scatter plot, red points represent the respective values for the raw
RCM in the closest grid box, blue markers for the QMd and green markers for the QMec.
The coloured numbers represent the spatial average over the 45 stations. Goodness-of-fit
estimates for the linear regression (R?) are provided in each case, using a robust fit with a
weighting function (Andrews, 1974), the same as used by Brands et al (2014), to avoid the
effect of outliers.

As expected, the application of QM (Fig. 1, c-f) drastically reduces biases
from the raw RCM output for mean FWI and FWI90. In all cases, QMd agrees
better than QMc with the observations, although the latter also presents high
R? values (above 0.95 in both indices and RCMs). These results are consistent
with the maps of mean biases from the raw and adjusted data (Supplementary
material, Fig. S1).



Note that QMc is based on the non-linear combination of variables that are
independently adjusted which seem to retain their physical relationships (e.g.
between temperature and relative humidity) to provide a very reasonable esti-
mate of the indicators (R? > 0.95). Given that QMd and QMc, with their pros
and cons, perform equally well under current climate conditions, any errors
in the FWI introduced by the individual biases through QMd are implicitly
equivalent to potential inter-variable inconsistencies introduced through QMec.
This relative equivalence has also been found for seasonal forecasts (Bedia
et al, 2017) but may not be preserved under future climate projections, when
greater differences are expected between the distributions in the test (future)
and the training periods (Sect. 3.2).

3.2 Future FWI projections

In this Section the QM is trained with the observations in the period 1979-
2003 and the PAFs are then applied to the reference historical simulations
(1971-2000) and to three 30-year future periods from the A1B scenario (near:
2011-2040, mid: 2041-2070 and long-term: 2071-2100).

Relative delta changes (Fig. 2) for mid- and long-term future periods show
an increase of mean FWI in most stations (panels a-d), ranging on (spatial) av-
erage between 7-17% (mid-term) and 20-37% (long-term), with larger spatial
variability in the far future period. Overall, for the near and mid-term future
periods (green and purple markers), the climate change signals after QM are
consistent with their raw counterparts. For the long-term future period (red
circles), QM modifies the climate change signal to a greater extent and dif-
ferently for each RCM. For RACMO, QMd modifies the raw climate change
signal of mean FWI by largely increasing it, whereas QMc preserves better
the raw climate change signal. For RegCM, both QM approaches reduce the
climate change signal in the mean FWI.

Climate change signals for FWI90 (Fig. 2, e-h) are more sensitive to the
QM choice, especially in the long-term future period. For both RCMs, QMd
largely increases the climate change signal with respect to the original one,
whereas QMc preserves better the RCM signal. Possible reasons of the large
modifications of the QMd in the climate change signal are investigated in
Sect. 3.3.

3.3 A diagnostic tool to assess the effect of bias adjustment on the climate
change signal

As shown in the previous section and displayed spatially in Fig. 3, QMd mod-
ifies the climate change signal to a larger extent than QMec in both RCMs.
This is particularly noticeable in RACMO for FWI90, in which the difference
between the QMd-adjusted and the raw climate change signal is larger than 10
in most of the stations. Three stations (squared in Fig. 3 and labeled in Fig. 2)
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Fig. 2 Point-based relative delta changes for mean FWI (a-d) and FWI90 (e-h), for the raw
versus QMd (first row) and raw versus QMc (second row). Results for the three future periods
are shown with different markers; goodness-of-fit estimates for the robust linear regression
are provided in each case. Three stations (Almeria -A-, Madrid -M- and Ponferrada -P)
are labeled for further analysis. The coloured numbers represent the geometric mean across
the stations for each period for the respective values represented in the X and Y axis. The
geometric mean over the deltas is equivalent to the delta of the spatial geometric mean.

have been selected as illustrative examples for further analysis: Ponferrada (in
the northwest), Madrid-Retiro (center) and Almeria-Aeropuerto (southeast).

To better understand the larger contribution of the QMd approach to the
signal, we analyze the percentile adjustment function (PAF) calibrated in the
training phase (period 1979-2003) and the way it is applied (PAFeff) in the
reference period and long-term projections (Section 2.5). Consistently with
the stationarity assumption of the QM, the PAF is assumed to be invariant in
time. During the application of the QM, the model data are mapped into the
percentiles of the training data, and each value is adjusted according to the
corresponding PAF value.ldeally, a smooth PAF is preferred, meaning that
the model is systematically over- or underestimating the variable or, at least,
adjustments vary slowly across percentiles (see for example the comparison
against the constant PAF from an additive scaling method, depicted in ma-
genta in Fig. 4a-f). Otherwise, a largely-varying PAF may produce an effect
on the climate change signal difficult to foresee. Discerning which changes in
the climate change signal are accepted and which ones lack physical founda-
tions is not straightforward, requiring deep process-understanding (Maraun
et al, 2017). The analysis of the PAF can facilitate the detection of potential
statistical artifacts, serving as a convenient tool for a first diagnosis.

In the examples shown (Fig. 4a-f, blue lines), the PAFs calibrated through
QMd present some variability across percentiles and are considerably large
for the upper tail of the FWI distribution. For instance, in Almeria the PAFs
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Fig. 3 Differences between the bias-adjusted and the raw climate change signal for the
long-term future period, for the mean FWI (a-d) and the FWI90 (e-h). Results for the
QMd (QMc) are presented in the first (second) row. The stations in Ponferrada (north-
west), Madrid-Retiro (center) and Almeria-Aeropuerto (south-east) have been highlighted
for further analysis.

of both RCMs start being positive (FWI is underestimated and requires an
increase to fit the observations), then turn negative in the central part of
the distribution and turn again into large positive values in the upper tail of
the distribution (up to +50 and +35, respectively). For Madrid with RegCM,
despite of the changing PAFSs, positive and negative adjustments compensate
in the climate change signal of mean FWI (see Figs. 2b and 3b), leading to a
small effect of QMd on mean FWI. However, the effect becomes apparent for
FWI90 (Figs. 2f and 3f). Conversely, RACMO in Madrid mainly presents a
large negative bias in the upper tail (thus positive PAF) that, together with
the application of constant extrapolation (Section 2.5), leads to larger climate
change signals in the mean (Figs. 2a and 3a) and especially, in FWI90 (Figs. 2e
and 3e).

In addition to the PAFs, it is essential to know how the target values are
distributed with respect to the model percentiles in the training phase, which
will be determine the shape of the PAFeff. The relative frequency of values
of the reference period mapped into the training data (Fig. 4a-f, gray lines)
are very close to the frequencies in the training period (i.e. 0.01 by definition),
since the reference and the training period largely overlap. This means that, as
long as the distribution of values in the test period does not differ much from
that in the training phase, the frequency of the adjustments applied will be
similar along the distribution (PAFeff resembles PAF, see red dashed lines in
Figure 4g-1). This is also the case for the near and mid-term future periods (not
shown), where QMd does not modify the raw climate change signal to a great
extent. Conversely, the values from the long-term future period mapped into
the percentiles in the training phase are not regularly distributed, being more
frequent those corresponding to the highest FWI percentiles (Fig. 4a-f, black
lines). This effect, together with the usually higher values of the PAF in the
upper tail (blue lines) leads to a PAFeff with high frequency of large positive
adjustment values (Figure 4g-1, red solid lines) and, thus, to larger climate
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change signals under QMd (as discussed by Themefl et al, 2012; Hagemann
et al, 2011, for uni-variate BC).

As mentioned before, the effect of QM on the mean FWI could be com-
pensated depending on the PAF (Fig. 3b), but it becomes more evident in
FWI90. The vertical dashed lines in Figure 4a-f depict the percentile proba-
bilities (in the training data) associated to the FWI90 in the reference (gray)
and long-term future period (black). Whereas the gray lines correspond to the
90th or 91st percentiles, the FWI90 in the long-term future varies between
96-99th. Thus, their intersections with the blue lines (PAFs) give the adjust-
ments applied in the reference and future periods, whose difference is the direct
contribution of the QMd to the raw climate change signal (as in Fig. 3, right
panel for FWI90).

Although the change in the frequency distribution may also be found in the
component variables (higher temperature and lower relative humidity episodes
become more frequent in a warmer climate), the adjustments applied to the
individual variables have converse effects on the adjusted FWI projections, as
shown by the PAFeff of the QMc (green lines in Figure 4g-1). The QMc approach
also allows to track down biases in the multi-variate index by analyzing the
individual corrections (Fig.S2). Even in the cases of the largest increase of
the signal due to QMd (e.g. Almeria with the two RCMs), the PAFeff for
the individual variables for the end of the century (green lines in Fig.S2) are
relatively small and stable in the part of the distribution which contributes
to higher fire risk (i.e. upper part for temperature and lower part for relative
humidity). Thus, the amplification of the signal by the direct QM cannot be
attributed to the biases of the individual variables.

4 Discussion and Conclusions

This study assesses climate projections of an impact-relevant, multi-variable
CI that characterizes fire danger (the Fire Weather Index, FWI) over Spain,
using empirical Quantile Mapping (QM) as bias-adjustment method. QM is
a popular method which is used often to this aim, as it can be applied to
variables with different statistical properties. Due to the biases of the simu-
lated component variables forming the FWI, it is common practice to adjust
the biases in the individual variables prior to the index calculation (see e.g.
Yang et al, 2015). Here, this approach (component-wise) is compared to the
direct adjustment of FWI. By doing this, the physical and temporal coherence
among the primary variables given by the RCM is preserved, at the expense
of including the individual biases in the FWI calculation.

We illustrated the effect of bias adjustment methods in two different setups
(direct and component-wise) on a single climate impact index and using two
RCMs nested into a single GCM. Any conclusion about future fire risk in Spain
should rely on an ensemble of simulations encompassing all known uncertainty
sources (i.e. including several GCMs, RCMs and emission scenarios), which are
out of the scope of this work.
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From our results, both the direct and component-wise bias adjustment
approaches exhibit a similar performance in current climate under a cross-
validation framework, with a slightly better performance for the direct ap-
proach. This is expected from the experimental design, since under the direct
approach the FWT is cross-validated as a single variable, regardless of the biases
in the input variables and in their interdependences. The relative agreement
of the two approaches in current climate suggests that QM performs equally
well despite the presence of biases in the input variables (direct approach) or
the potential inconsistencies among the corrected variables (component-wise
approach). The main advantage of the direct approach consists on adjusting
a single variable instead of several variables with different statistical proper-
ties. With this promising results, we examine the suitability of the direct bias
adjustment in climate projections.

Our results for the FWI projections suggest that the component-wise ap-
proach is preferable for extreme percentiles, such as the FWI90. This is due
to the smoother effective adjustments (PAFeff) at the upper part of the FWI
distribution, as a result of compensating non-linear effects of more stable indi-
vidual corrections. Therefore the inter-variable dependencies and the climate
change signal from the uncorrected data are retained. The component ap-
proach can be considered more tractable, since examining the individual biases
can provide some hints for the multi-variate index. Conversely, the direct ap-
proach may be artificially inflating the FWI values due to the larger magnitude
of the local adjustments in the upper percentiles, which become more frequent
under the warmer climate conditions projected for the long-term future.

QM allows for the correction of intensity-dependent biases, thus to some ex-
tent changes in the climate change signal are acknowledged. However, it is de-
batable if QM improves or deteriorates the climate change signal (Gobiet et al,
2015; Maraun et al, 2017) and, moreover, either the direct or component-wise
adjustment of a multi-variate index produce a more feasible signal. It is well
known that climate models may simulate implausible changes on large-scale
phenomena due to unrealistically represented processes (see several examples
in Maraun et al, 2017). Such fundamental climate model errors cannot be
improved by QM, which is a mere statistical post-processing method. Trend-
preserving corrections are a sensible choice when a climate model simulates
a credible climate change signal (Maraun, 2016), otherwise neither the raw
nor the bias-corrected signal may be physically justified, since QM will inherit
the implausible projected changes anyway. The modification of the climate
change signal by QM comes from the rescaling of modelled day-to-day vari-
ability. Therefore, non-trend preserving methods may sensibly be used if the
transfer function calibrated on short timescales can be reasonably applied to
correct biases on long timescales, and the modifications in the signal are phys-
ically justified (Maraun et al, 2017). Analyzing relevant climatic processes and
their model representation is essential to assess if the modifications of the sig-
nal are plausible. Other modifications of the climate change signal than those
based on physical arguments would probably be statistical artifacts. The use of
the percentile adjustment function (PAF) for any uni- or multi-variate future
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experiment constitutes an effective tool for the analysis of the modification of
the signal due to bias adjustment.

This work is focused on a multi-variate index, however the main conclu-
sions are equally valid for any uni-variate QM transformation. We show that
a proper cross-validation experiment is not useful to detect problems that
may arise in a climate change context due to the changes in the frequency
distribution in a future climate. Also, the effect of the QM on the climate
change signal depends on the parameter of the distribution under considera-
tion, since some effects with opposite sign may compensate (e.g. in the mean).
The modifications of the climate change signal go hand in hand with the per-
centile adjustment function. Although QM is a powerful technique, it should
not be indistinctly applied before analyzing the PAF, which depends on the
variable, model, location, etc. Therefore, the appropriateness of the direct or
component-wise bias adjustment for other climate indices, RCMs and locations
should be tested on case-specific analyses.
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Fig. S1 Spatial distribution of the mean JJAS biases for mean FWI (left panel) and FWI90
(right panel), in the raw RCMs (first row), the QMd (second row) and the QMec (third row)
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Fig. S2 Percentile adjustment functions (PAF, blue lines) calibrated by the QM for the
individual variables in three exemplary locations and the two RCMs. Effective percentile
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