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Abstract  

Tens of thousands of anthropogenic chemicals and wastes enter the marine environment 

each year as a consequence of the ever-increasing anthropogenic activities and 

demographic growth of the human population, which is majorly concentrated along coastal 

areas. Marine ecotoxicology has had a crucial role in helping shed light on the fate of 

chemicals in the environment, and improving our understanding of how they can affect 

natural ecosystems. However, chemical contamination is not occurring in isolation, but 

rather against a rapidly changing environmental horizon. Most environmental studies have 

been focusing on short-term within-generation responses of single life stages of single 

species to single stressors. As a consequence, one-dimensional ecotoxicology cannot enable 

us to appreciate the degree and magnitude of future impacts of chemicals on marine 

ecosystems. Current approaches that lack an evolutionary perspective within the context of 

ongoing and future local and global stressors will likely lead us to under or over estimations 
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of the impacts that chemicals will exert on marine organisms. It is therefore urgent to define 

whether marine organisms can acclimate, i.e. adjust their phenotypes through 

transgenerational plasticity, or rapidly adapt, i.e. realign the population phenotypic 

performances to maximize fitness, to the new chemical environment within a selective 

horizon defined by global changes. To foster a significant advancement in this research 

area, we review briefly the history of ecotoxicology, synthesis our current understanding of 

the fate and impact of contaminants under global changes, and critically discuss the benefits 

and challenges of integrative approaches towards developing an evolutionary perspective in 

marine ecotoxicology: particularly through a multigenerational approach. The inclusion of 

multigenerational studies in Ecological Risk Assessment framework (ERA) would provide 

significant and more accurately information to help predict the risks of pollution in a 

rapidly changing ocean.  

Keywords: Evolutionary biology, multigenerational approach, global change, 

contaminants, plasticity, adaptation. 

1. Introduction 

The marine environment and human civilization have always been in an intimate 

relationship, the latter being the main beneficiaries of the resources and ecosystem services 

provided by the former (Visbek, 2018). However, with the advent of industrialization, this 

marriage has gone sour! Beyond being a provider of resources for subsistence, heat 

production and construction, the environment has also become the major dumping ground 

for our industrial, agricultural, forestry, mining and household waste products (Clayson, 

2001; Ahluwalia, 2015; Gaur et al., 2020; Kedzierski et al., 2020). This results in tens of 

thousands of contaminants entering the marine environment each year (Álvarez-Múñoz et 

al., 2016; Stauber et al., 2016). In this sense, marine ecotoxicology has played a 
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fundamental role in predicting the potential impacts of these substances on marine 

ecosystems (Chapman, 2016). Besides, this discipline has developed a unique perspective 

on the interaction between humans and the environment, as well as essential tools to rapidly 

assess the health status from populations to ecosystems: such as, for example, tools used in 

biomonitoring programs and environmental disasters impact assessment, such as mining 

accidents and oil spills (e.g. Blasco et al.,2002; Riba et al., 2004; Morales-Caselles et al., 

2006). Currently, coastal marine environments undergo chronic low levels of 

contamination, with a marked upward trend due to our explosive demographic growth and 

ever-increasing activity levels, particularly along coastal areas (Stauber et al., 2016). For 

example, since 1950s, the amount of plastic waste accumulated in the coastal environment 

has increased between 4.8 and 12.7 million tons per year (Jambeck et al., 2015). However, 

chemical contamination is not occurring in isolation, but against a changing environmental 

oceanscape due to ongoing global change (GC). This will incur changes to organism and 

ecosystem functions and their responses to pollutants, with important implications for the 

reliability and usefulness of indicators developed to date.  

Indeed, studying interactions among environmental stressors has become a major focus in 

environmental studies (Piggott et al. 2015; Côté et al. 2016). In this sense, several studies 

have recently focused on the combined impact of GC and pollutants, addressing the 

potential impact of industry and household wastes within the changing environmental 

oceanscape (see in Noyes et al., 2009; Kimberly  and Salice, 2015). However, these studies 

are based on short-term (within-generation) single life-stage exposure experiments. 

Limitations of this approach arise with respect to species possessing complex life cycles 

(i.e. the vast majority of marine organisms), and has been discussed (Coutellec and Barata, 

2013; Calosi et al., 2016). This is particularly important in light of recent efforts to shift the 
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focus of GC biology toward the characterization of species transgenerational plasticity and 

rapid evolutionary responses (Sunday et al. 2014; Munday et al., 2013; Reusch, 2014; 

Calosi et al., 2016).  

Ecotoxicological studies conducted to date have largely overlooked the interaction of 

contaminants with future GC drivers, and have not considered the role that plastic and 

adaptive responses will play within this context. This likely under or overestimates the 

impacts that pollutants exert on biological systems within the rapidly changing 

environmental oceanscape. Here, we discuss the limitation of having largely ignored 

fundamental issues in the field of ecotoxicology such as: Will marine organisms be able to 

cope with the combined exposure to contaminants and GC drivers, whilst considering the 

cumulative effects over multiple life-stages and/or over multiple generations?  Do 

organisms have the capacity for beneficial trans-generational plasticity (TGP) and to 

rapidly adapt to combined contaminants and GC scenarios? What are the fitness 

consequences of the combined exposure to contaminants and GC drivers over successive 

life stages and generations in marine organisms? Finally, as the central challenge for 

ecotoxicologists is that to acquire a critical understanding on impacts that are in the making 

(and even better preventively) instead of attempting to unravel its mechanisms a posteriori, 

it is important that we ask the question: Is ecotoxicology responding properly to emerging 

toxicological concerns in the rapidly changing environmental oceanscape?  

In order to achieve our aims, we first (1) provide a brief historical perspective of 

ecotoxicology. (2) We then critically review our current understanding of the general 

biological impacts of contaminants within the context of global ocean changes by using 

selected representative studies. (3) We explore the advantages, challenges and limitations 

of using field and multigenerational approaches to investigate contaminants‘ impacts within 
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the context of a rapidly changing environmental oceanscape. Finally, (4) we discuss the 

much-needed paradigm shift (and usefulness) required in marine ecotoxicology to acquire 

an evolutionary perspective on combined impacts of chemicals, whilst accounting for the 

multidimensionality of global changes, in order to inform future effective protection 

strategies and conservation policies. 

2. A brief history of ecotoxicology 

In the 1940s-1950s, as a response to the environmental implications of expansive human 

activity, emerged the field of Environmental Toxicology (Rattner, 2009) in the 1940s-

1950s. It was concerned with studying the effects of toxicants on biological systems, and it 

focused on the screening of exogenous substances in the environment to identify those that 

may be potentially harmful (Leblanc, 2004). Ecological considerations were not included in 

these studies, and they were carried out with species easily obtained and cultured under 

laboratory conditions, whilst targeting parameters, endpoints and proxies easy to measure 

and reproduce (Chapman, 2002). However, ―a single species for different purposes‖ is not a 

philosophy that allows us to reliably predict the health status of entire ecosystems under an 

exogenous pressure. Each ecosystem has its own set of key species and unique species-

interactions. A relevant example of this approach is the widespread use of freshwater 

species to assess marine ecosystem health and vice versa (Chapman, 2002). Prominent 

examples of this are that of the toxicity tests carried out using (i) the freshwater water flea 

Daphnia magna (O. F. Müller, 1785), employed in many countries for biomonitoring 

programs to assess the impacts of wastewater discharges in marine waters, and (ii) the 

marine bioluminescence bacteria Vibrio fischeri to determine toxicity effects of 

contaminants in freshwater systems. The wide use of the latter has been adapted in some 

legal frameworks beyond marine systems, as a criterion for the characterization and 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

 

classification of solid industrial waste, through the toxicity of their leachates,  with 

implications for its management (Viguri et al., 2001; Coz et al., 2009; Abbas et al., 2018).  

Derived from Environmental toxicology, and intending to expand beyond the effects of 

potentially hazardous substances at the individual level, the research field of Ecotoxicology 

is defined as the assessment and prediction of the ecological and toxicological effects on 

natural populations, communities and ecosystems as a result of realistic exposure 

conditions to chemical contaminants (Forbes and Forbes, 1994; Luoma et al., 1996; 

Chapman, 2002).  Ecotoxicology informs not only on the fate of contaminants in the 

environment but also on the mechanisms, and ins and outs, of their transport and 

transformation before their final destination. This field plays a major role in decision-

making within the framework of Ecological Risk Assessment (ERA) (Chapman, 2002). 

However, as for all disciplines it has its limitations. Ecotoxicology investigates the short-

term biological impacts of contaminants, without taking into account organisms‘ long-term 

responses to the chronic exposure to xenobiotic substances, and ultimately their 

evolutionary consequences on populations. Some studies have highlighted the need to 

incorporate evolutionary processes in ecotoxicology studies in hopes of integrating these 

effects in ERA (Bickham et al., 2000 ; Van Straalen and Timmermans, 2002; Breitholtz et 

al., 2006; Morgan et al., 2007; Coutellec and Barata 2011; Dallinger and Höckner 2013).  

Evolutionary processes can alter the responses recorded during ecotoxicological 

experiments. Adaptive events could appear when populations are chronically exposed to 

pollution, giving rise to different responses if they are compared with unexposed 

populations (Barata et al., 2002; Coutellec and Barata, 2011). Other issues not addressed in 

toxicity tests (such as genetic diversity, selective processes, inbreeding or epigenetic 

effects) may confound the interpretations of observed effects (Barata et al., 2000; Nowak et 
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al., 2007; Coutellec and Barata, 2011). Severe reductions in survival and reproductive 

output, as well as increases in behavioural syndromes of individuals and populations are 

possible consequences of exposure to toxic substances, which can ultimately translate in 

changes in genetic diversity, allelic or genotypic frequencies, modifications in dispersal 

patterns or gene flow and increased mutation rates (Bickham, 2011; Oziolor et al., 2016). In 

the last decade, this has prompted researchers to propose the development of an 

ecotoxicology model considering a more holistic perspective (Chapman et al., 2002; Snape 

et al., 2004; Oziolor et al., 2016), to take into account the challenges that arise from a 

rapidly changing environment. Attaining these objectives is paramount to pursuing current 

and future challenges in the field of Ecotoxicology.  

3. The fate of contaminants under ocean global change 

Global change (i.e. anthropogenic global change) is mainly due to the tremendous and rapid 

demographic expansion of the human population since the Industrial Revolution, and the 

consequent changes in human society and life standards (Cohen, 2012). However, 

improving human well-being involves a continuous increase in the use of resources and 

disposal of contaminants in the natural environment which has accelerated the pace of 

natural changes of our planet (Waters et al., 2016). Ultimately, the great environmental 

changes that our planet experiences now, and in the near future will have long-lasting 

ecosystems effects, and in turn impact human well-being and health (Buttler and 

McFarlane, 2018).  

GC in the ocean includes eutrophication, coastal hypoxia, ocean warming (OW), sea ice 

loss and sea level rise, ultraviolet (UV) radiation increase, coastal and global ocean 

acidification (OA), salinity changes due to freshening (flash floods and ice melting), 

tropicalization of the climate, habitat loss, over exploitation of fish stocks, changes in 
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species distributions and ecosystems structure and functioning, coastal urban sprawl and 

pollution (IPCC, 2014).  

GC drivers can indirectly create new usage trends of chemicals products, as well as affect 

directly their transport and fate within the marine environment (Artigas et al., 2012: Balbus 

et al., 2013) and the degree of pollutant exposure to marine organisms (Noyes et al., 2009; 

Hooper et al., 2013; Kimberly and Salice, 2015) (see Fig.1). For example, it has been 

demonstrated that a reduction of pH in seawater, due to the increase of atmospheric pCO2 

levels, changes the solubility, absorption, the rate of redox processes and toxicity of metals 

(Millero et al., 2009). Acute seawater acidification processes impact the factors controlling 

the release of trace metals from sediments, enhancing the solubility of most trace metals 

because of the influence of pH on the dissolved organic matter, dissolution of carbonate, 

speciation of sulphide and iron (oxy)hydroxide minerals, the adsorption/desorption surface 

reactions and ion exchange processes (Martin-Torre et al., 2015). These mechanisms have 

been included into the kinetic modeling of Zn, Pb, Cd, Ni, Cr, Cu and As release from 

sediments under diverse seawater acidification scenarios, predicting important releases of 

these contaminants into the water column (Martin-Torre et al., 2016), thus increasing their 

availability to marine biota (Millero et al., 2009). In this sense, some studies have indicated 

that OA increases the toxicity of contaminated sediments (Roberts et al., 2013; Rodríguez-

Romero et al., 2014a, b) and could exacerbate metal bioaccumulation in certain organisms 

(e.g. Rodríguez-Romero et al., 2014b). Simultaneously, the introduction of chemicals in 

seawater changes the UV radiation dynamics. Organic and inorganic chemical UV filters, 

that are incorporated as ingredients in the formulation of sunscreens, are released, degraded 

and/or transformed under solar UV radiation in the marine environment to chemicals with 

potentially toxic effects on marine organisms (Sánchez-Quiles and Tovar, 2014; Ramos et 
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al., 2015). A recent study demonstrated that UV radiation plays a fundamental role in the 

mobilization of dissolved trace metals (i.e. Al, Cd, Cu, Co, Mn, Mo, Ni, Pb, and Ti) and 

inorganic nutrients (i.e. SiO2, P-PO4 
3−

, and N-NO3
−
) from sunscreen products used by 

beachgoers in seawater (Rodríguez-Romero et al., 2019).  

On the other hand, temperature is the other environmental stressor that most impacts the 

environmental fate of contaminants, particularly regarding persistent organic pollutants 

(POPS). Melting of glacial ice caused by warming leads to sea level rise. With the 

subsequent increase in intensity and frequency of storm events, further erosion of 

contaminated soils ultimately contributes to greater POP concentrations in coastal waters 

(Ma el al., 2016). Climate warming also leads to higher rates of methylation and 

volatilization processes of mercury from sediments accumulated from the past and in turn 

leads to a remobilization of this metal (Bogdal and Scheringer, 2011). As OA, OW not only 

affects the fate of contaminants in the environment, but also their toxicity. In general, the 

toxicity (e.g. higher bioaccumulation rates due to enhanced gill ventilation by organisms) 

increases with temperature. In contrast, an increase of temperature can also lead to higher 

rates of depuration and detoxification mechanisms (Stauber et al., 2016).  Therefore, 

chemical contamination is not occurring in isolation, but occurs against a radically 

changing environmental oceanscape, which is significantly altering fundamental oceanic 

ecological processes and functions (e.g. Nagelkerken and Connell, 2015; Ullah et al., 2018; 

Havenhand et al., 2019). 

4. Assessing the biological impacts of marine contamination under GC environmental 

scenarios: Multiple stressor experiments 

A number of studies have investigated the implications of combined exposure to multiple 

environmental changes (e.g. pCO2/pH, temperature, salinity, ultraviolet radiation) under 
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laboratory conditions (e.g. Egilsdottir et al., 2009; Zhangh et al., 2014; Pires et al., 2015; 

Velez et al., 2016; Ramajo et al., 2016; Freitas et al., 2017a; Araujo et al., 2018). The 

results reported by these studies reflect the lack (with few exceptions) of consistent patterns 

describing the different responses of marine species to combinations of multiple drivers 

(Johson and Carpenter, 2012; Duarte et al., 2014; Kavousi et al., 2015). The interactions of 

these drivers often produce non-linear changes in aquatic organismal fitness and 

community dynamics (Boyd et al.,, 2015; Piggott et al., 2015; Côté et al., 2016; Sabater et 

al., 2019) and their variation patterns depend on the species and choice of response 

(Matozzo et al., 2013).   

In the last decade, the number of studies that have addressed the combined effects of 

contaminants within the context of ocean GC drivers has been on the rise (e.g. Nardi et al., 

2017; Malvaut et al., 2016, 2018a; Munari et al., 2020). As for studies of other 

environmental stressor interactions, a wide variety of results have been obtained, with 

metal(oid)s and OA being the most studied combination in the last years: see for example 

Lacoue-Labarthe et al. (2009, 2011, 2012, 2018), Houlbreque et al. (2012), Fitzer et al., 

2013; Ivanina et al., 2013, 2014, 2015, 2016; Ivanina and Sokolova, 2013, 2015; Campbell 

et al., 2014; Lewis et al., 2013, 2016 Benedetti et al., 2016; Shi et al., 2016; Nardi et al., 

2017, 2018; Dorey et al., 2018a).  

On the other hand, there is no established trend describing the responses to a combined 

exposure of contaminants and environmental stressors. A complex pattern of response, 

which depends on the species, pollutant (including the concentration level of exposure) and 

the environmental stressor studied have been observed.  

A synergistic positive pattern has been detected under the exposure to environmental 

stressors (i.e. OW, OA and changes in salinity levels) in combination with some metals. An 
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increase in the toxicological effects of Cu has been found in the pale anemone Exaiptasia 

pallida (Agassiz, 1864), the harpacticoid copepod Harpacticus sp, the staghorn coral 

Acropora cervicornis (Lamarck, 1816) and in the Portuguese and Suminoe oysters 

Crassostrea angulate (Lamarck, 1819) and Crassostrea rivularis (Gould, 1861) (Patel and 

Bielmyer-Fraser, 2015; Sidiqqi and Bielmyer-Fraser, 2015; Bielmyer-Fraser et al., 2018; 

Scanes et al., 2018; Huang et al., 2018; Holan et al., 2019). The same pattern has been 

recorded for Cd or/and As toxicity in the Mediterranean mussel Mytilus galloprovincialis 

(Lamarck, 1819), the smooth scallop Flexopecten glaber (Linnaeus, 1758), C. angulata and 

the Japanese oyster Crassostrea gigas (Thunberg, 1793) (Nardi et al., 2017, 2018; Coppola 

et al., 2018; Moreira et al., 2018a,b,c). Notably, oxidative stress, reduced metabolism, 

increased energy demands and impacts on capacity to detoxify metals have been reported in 

bivalves among other responses (Hawkins and Sokolova et al., 2017; Coppola et al., 2018; 

Moreira et al., 2018a; Scanes et al., 2018).  

Although the majority of studies indicate an increase of metal bioaccumulation in 

combination with OA (e.g. Velez et al., 2016; Duckworth et al., 2017, Cao et al., 2018), it 

has been demonstrated that bioaccumulation responses are specific to each metal (Lacoue-

Labarthe et al., 2018; Dorey et al., 2018b). Synergistic effects of OW and OA, and Cd 

bioaccumulation has been also shown in the Antarctic scallop Adamussium colbecki (Smith, 

1902) with different sensitivity among analysed tissues (Benedetti et al., 2016). In 

combination with OA, an increased accumulation of Co but not Cs in the Manila clam 

Ruditapes philippinarum (Adams & Reeve, 1850) has been recorded by Sezer et al., (2018). 

However, no differences in Hg accumulation or tolerance were found in M. 

galloprovinciallis and the sandworm polychaete Hediste diversicolor (O.F. Müller, 1776) 

when exposed to OW and OA conditions respectively (Freitas et al., 2017b, 2017c). Freitas 
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et al. (2017b, 2017c) concluded that metal bioaccumulation could decrease when organisms 

are exposed to high temperature conditions for long periods via diminishing their 

metabolism. Evidence using M. galloprovincialis demonstrates that the impacts caused to 

the oxidative stress by the combination of Hg contamination and OW were similar to the 

ones induced by OW acting alone (Coppola et al., 2017).  

On the other hand, antagonistic toxicity interactions between metals and OA have been 

reported in different marine organisms such as algae, corals, mollusks and crustaceans (e.g. 

Pascal et al., 2010; Lacoue-Labarthe et al., 2012; Gao et al., 2017; Marangoni et al., 2019). 

For example, Pascal et al., 2010 observed a decrease of Cd and Cu uptake in the coastal 

copepod Amphiascoides atopus (Lotufo & Fleeger, 1995) and later, Lacoue-Labarthe et al., 

(2012) reported similar patterns for Cd in the hatchling tissue of the common cuttlefish 

Sepia officinalis (Linnaeus, 1758). A decrease of metals uptake could be due to an increase 

of H
+
 caused by OA, which can result in a competition for binding sites between metals and 

H
+
, making surface sites less available to absorb metals (Pascal et al., 2010). Additionally, 

Gao et al. (2017) indicated that a moderate increase of pCO2 could mitigate the toxicity of 

Cu in the seaweed Ulva prolifera (Muller, 1778).  

Despite the lack of attention given to other types of chemical contaminants, findings show 

that the interactions between global-related abiotic change and pharmaceuticals (e.g. 

carbamazepine, velanfaxina) may alter organisms sensitivity and may aggravate the toxicity 

of a tested substance (Freitas et al., 2016; Maulvaut et al., 2018c, 2019) affecting its uptake 

and elimination rate (Maulvaut et al., 2018b). For example, although oxidative stress 

responses in adults of R. philippinarum and M. galloprovincialis were more influenced by 

OA than by the combination of reduced pH and diclofenac (Munari et al., 2018), larval 

stage R. philippinarum exposed to diclofenac under OA conditions experienced higher 
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mortality and morphological malformations compared to the exposure to single stressors in 

isolation (Munari et al., 2016). However, the combined effect of low pH and the 

pharmaceutical carbamazepine on the peppery furrow shell clam Scrobicularia plana (Da 

Costa, 1778), was lower than each stressor acting in isolation, and the impacts were more 

pronounced in the population of clams from the contaminated area (Freitas et al., 2015). A 

later study demonstrated that the toxicity of carbamazepine synergistically increased under 

OA conditions, with reduced survival and increased oxidative stress in S. plana (Freitas et 

al., 2016). Similarly, idiosyncratic responses have been reported for the ciliates Euplotes 

crassus (Dujardin, 1841) under OW conditions. On the one hand, a rise in survival rate was 

described after 24 h of exposure in combination with the antibiotic oxytetracycline; on the 

other, a decline of tolerance after 24 h of exposure in combination with copper was noted 

(Gomiero and Viarego, 2014).  

This variety of responses is also found for other contaminants such as nanoparticles and 

herbicides. For example, alleviation of toxicity with a modest increase of temperature was 

observed on the larva of the collector sea urchin Tripneustes gratilla (Linneaus, 1758) 

exposed to nano-Zn-oxide. Nevertheless, an enhanced effect of oxidative stress in H. 

diversicolor exposed to carbon nanoparticles under OA conditions has been recorded (De 

Marchi et al., 2019). In the same line, Shang et al., 2020 observed an enhanced of toxicity 

of TiO2 nanoparticles on the Korean mussel Mytilus coruscus (Gould, 1861) under 

acidification conditions, which could adversely affect its feeding metabolism. A one-year 

exposure experiment found a noticeable temperature/S-metolachlor (herbicide) and Cu 

toxicity relationship with significant synergistic effects on the embryo-larval development 

of C. gigas (Gamain et al., 2017). An increased immune toxicity in the blood of the blood 

cockle Tegillarca granosa (Linnaeus, 1758) was recorded after the exposure to the 
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persistent organic pollutant benzo[a]pyrene under future OA scenarios, which could make 

individuals more susceptible to pathogenic challenges (Su et al., 2017). 

Despite all efforts to date, the indirect and interactive impacts of GC drivers on marine 

organisms‘ responses to environmental contaminants are scarcely explored (Nardi et al., 

2017). Studies on how multiple stressors interact affecting marine and coastal ecosystems 

are essential to accurately identify the level of contaminants that will be detrimental for 

biological systems under future global ocean scenarios (Schiedek et al., 2007; Nikinmaa, 

2013; Lewis et al., 2013; Campbell et al., 2014; Manciocco et al., 2014; Maulvaut et al., 

2018c). However, the majority of multistressor experiments have focused on single stages 

of the life cycle of a marine species, which are characterized in the great majority of cases 

by extremely complex life cycles (c.f.  Chakravarti et al., 2016, Gibbin et al., 2017a, 2017b; 

Thibault et al., 2020). This ultimately hinders our ability to account for organisms‘ capacity 

to cope with a changing environment by adjusting (i.e. acclimating via phenotypic 

plasticity) and adapting (via selection). Although these experiments provide important 

information, they may overestimate or underestimate the ―real‖ impact associated with new 

GC scenarios on marine species. Long-term exposure experiments, across multiple (ideally 

all) life stages charactering the complex life cycles of the vast majority of marine species are 

required. This entails a laborious endeavor in terms of time and resources, an issue that 

researchers need however to face in these challenging times (Byrne  and Przeslawski, 2013). 

5. Approaches for acquiring an evolutionary perspective on ecotoxicology under GC 

stressors 

The combined exposure to GC drivers and chemical pollution represents an unprecedented 

hazard for marine life and marine ecosystem functions and services, threatening to lower 

organismal physiological and ecological performances and ultimately their fitness (Noyes 
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et al., 2009). However, to date, most studies have been focusing on short-term responses of 

single species to single GC stressors (Kroeker et al., 2013; Thomsen et al., 2017), largely 

ignoring the importance of species ability for plastic responses (and in particular the suite 

of responses under the umbrella of transgenerational plasticity) and rapid adaptation. These 

two mechanisms help define species‘ ability to cope under rapid environmental changes. 

Consequently, our understanding of the plastic and evolutionary potential of marine 

organisms in the face of rapid GC is extremely limited (Kelly and Hofmann, 2013; Munday 

et al., 2013; Sunday et al., 2014; Reusch, 2014, Kimberly and Salice, 2015; Thomsen et al., 

2017). More specifically, we have so far acquired a limited understanding of carry over, 

cumulative and delayed effects linked to plastic responses emerging from the exposure to 

contaminants across different life stages and generations, in marine organisms exposed to 

future ocean GC scenarios. Plastic responses can be beneficial (Huey et al. 1999) and non-

beneficial (Relyea, 2002), meaning they can bring an advantage or a disadvantage to the 

organisms expressing such plasticity in a new environment. Beneficial plastic responses can 

buffer the negative impacts (completely or partially) of contaminants and GC drivers (e.g. 

Chakravarti et al., 2016, Chen et al., 2018), effectively enabling an organism to maintain its 

regular functioning and ideally fitness levels, with its underlying costs (Hoffmann 1995; 

Jarrold et al., 2019). This ‗buffering‘ ability is an essential mechanism enabling organisms 

to face periodic fluctuations and chronic changes in their natural environment (Ghalambor 

et al., 2007), and within the context of GC, can help organisms maintaining high 

performance and fitness levels, potentially gaining time for evolutionary processes to occur. 

The acquisition of a more in-depth understanding of the potential impacts of contaminants 

in the rapidly changing environmental oceanscape on marine organisms is essential.  
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5.1 Field experiments as a tool for long term in-situ observations  

Natural analogues of future environmental conditions can be found in marine ecosystem. 

These natural systems can operate as tools for the characterization of the responsiveness or 

adaptive potential of marine organisms to the combined impacts of environmental pollution 

under future GC scenarios. Adaptation occurs as a result of natural selection acting on the 

phenotypic / genotypic combinations existing within populations. There is increasing 

evidence that the ability to adapt to environmental stress may depend on the environmental 

history of previous life stages (Marshall and Morgan, 2011). For example, on a time scale 

different from that at which GC is taking place, adaptation to environments with high CO2 

concentrations or high CO2 variability has been observed in a number of marine organisms 

(Calosi et al., 2013; Pespeni et al., 2013; Conradi et al., 2019; c.f. Lucey et al. 2016). 

However, in some cases, the inability to adapt to high CO2 conditions has been shown (see 

for example Lucey et al. 2016). Some examples of natural analogues of GC are included 

here.  

1) Estuaries and coastal areas possess a strong space-temporal variability in terms of 

abiotic parameters, and display large environmental variability in temperature, 

salinity, pH, oxygen concentration, and nutrient load. In addition, these areas act as 

sinks for contaminant discharges by rivers: for example, showing high levels of 

diverse metal concentrations. In some cases, these metal loads discharged by rivers 

originate from mining activities from ancient civilizations (see Davis et al., 2000; 

LeBlanc et al., 2000). However, the variability showed by coastlines and estuaries, 

in many cases, is already greater than projections expected under future conditions 

(Duarte et al. 2013). 
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2) Underwater CO2 vents located for example in the Mediterranean Sea, Papua New 

Guinea, Atlantic Sea and Bay of Plenty in New Zealand are examples of vent 

systems which have been used as analogues for future OA (see Burrell et al., 2015, 

Hernández et al., 2016; Lamare et al., 2016; González-Delgado and Hernández, 

2018; Rastrick et al. 2018). In some of these systems, pH gradient interacts 

simultaneously with other stressors, such as temperature (e.g. New Caledonia 

Lagoon), salinity, metal and metalloids concentrations (Vizzini et al., 2013). For 

example, hydrothermal seeps with high pCO2 levels offer scenarios mimicking the 

toxicity of metal(oid)s under future GC ocean conditions to study 

acclimatization/local adaptation in organisms that have lived in these conditions for 

extended periods of time (Ricevuto et al., 2016; Pichler et al., 2019).  

3) Upwelling areas. Upwelling events naturally bring low-oxygen, high-CO2 and low-

temperature waters, often undersaturated with respect to calcium carbonate, to 

nearshore environments (Booth et al., 2012). These waters are rich in trace elements 

and nutrients (Valdes et al., 2008) and therefore, these systems play an important 

role in the study of future impacts of multiple stressors. For example, studies 

suggest that natural variability in upwelling areas may promote acclimation and 

adaptation potential in inhabiting scallops to OA (Lardies et al., 2017). 

The use of these natural systems can enable us to study the implications of organismal 

chronic exposure to future ocean GC scenarios in natural populations and communities. 

The information obtained from these studies allows us to investigate the cumulative effects 

of multiple stressors-induced by in situ evolutionary (Calosi et al., 2013) and ecological 

processes (Kroeker et al., 2017). Although the great advantage of this approach includes a 

more realistic conditions than laboratory bioassays (Barry et al., 2010), field studies are 
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also constrained by a number of factors, such as: (i) the lack of true representative 

replicates and control treatments (Alexander et al., 2016); (ii) the confounding impacts of 

secondary environmental factors acting simultaneously in the natural environment, 

indistinguishable from the main factors of interest (Cornwall and Hurd, 2016). Non-

controlled natural processes may lead to variation in response variables studied (Alexander 

et al., 2016). Despite of this, these natural systems are considered an excellent tool to 

validate the responses observed in laboratory experiments. This combination could avoid 

the complex web of confounding drivers observed in natural analogues (Rastrick et al. 

2018).  

5.2. Multigenerational approach as a tool to assess the long-term implications of ocean 

global changes: advantages and limitations 

Multi-generational experiments are an effective tool to assess species‘ capacity for plastic 

responses to environmental stressors from natural and anthropogenic sources. This 

approach addresses the potential for evolutionary changes in species by unravelling traits 

that are genetically correlated with characteristics that are direct objects of selection 

(Gilchrist et al 1997; Munday et al., 2013). Understanding such correlated traits is crucial in 

making predictions of species and populations‘ responses to rapid ocean changes (Pistevos 

et al., 2011). Therefore, multi-generational experiments can provide valuable information 

on the evolutionary changes that may occur under new environmental scenarios (Collins 

and Bell, 2004; Donelson and Munday, 2015; Rodríguez-Romero et al., 2015; Chakravarti 

et al., 2016; Gibbin et al., 2017b; Thibault et al., 2020).  

Trans-generational plasticity is a mechanism which can improve performance across 

generations (Salinas et al. 2013, Calosi et al. 2016), and is defined as a non-genetic process 

whereby the environmental conditions experienced by a parent significantly alters its own 
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phenotype, and through this alters the fitness, the performance and the plasticity of their 

offspring (Badyaev and Uller, 2009). TGP has the potential for adaptive significance, 

facilitating trans-generational acclimation and thus improving offspring survival and 

fitness, but can also have deleterious effects (Marshall and Uller, 2007). For example, some 

studies show that offspring are better able to cope with elevated concentrations of CO2 if 

their parents have experienced similar conditions (Miller et al, 2012; Parker et al, 2012; 

Shama et al., 2016). Nevertheless, it has also been shown that parental and grandparental 

effects may lead to decreased offspring capacities (Dupont et al., 2013; Shama and Wegner, 

2014). On the other hand, Kelly and Hofmann (2013) suggested that some populations will 

display reduced plastic and adaptation capacity to face changes in temperature. Either way, 

TGP can be an important source of variation in performances between individuals, 

ultimately influencing short-term selection and the evolutionary trajectories of populations 

(Mousseau and Fox, 1998; Badyaev and Uller, 2009). Differently, adaptation through 

existing phenotypes requires genetically based variation to stress tolerance within a natural 

population (Sunday et al., 2014). Therefore, standing variation for multiple stressors 

tolerance within populations will ultimately determine their capacity to mount an 

evolutionary response to the ongoing GC in the oceans.  

In the last years, the number of multi-generational studies spanning multiple stages of the 

biological cycle is increasing, which is allowing the investigation of the ability to adapt, 

and the extent of adaptation (e.g. Sunday et al., 2011; Fitzer et al., 2013; Foo et al., 2012; 

Parker et al., 2012; Rodriguez-Romero et al., 2015; Chakravarti et al 2016; Shama et al., 

2016 Munday et al., 2016; Gibbin et al., 2017b).  

Concerning the impact of pollutants in aquatic biotic systems, several multigenerational 

studies have been conducted using freshwater species (e.g. Gardestrom et al., 2008; Sowers 
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et al., 2009; Corrales et al., 2014; Seeman et al., 2015; Knecht et al., 2017; Bal et al., 

2017a, 2017b; Reátegui-Zirena et al., 2017; González-Pérez et al., 2018). In this sense, 

Daphnia sp represents the species used par excellence in these type of studies (see for 

example Clubbs and Brooks, 2007; Dietrich et al., 2010; Plaire et al., 2013; Kim et al., 

2014; Jeong et al., 2015; Liu et al., 2017; Giraudo et al., 2017; Reis et al., 2018; De 

Liguoro et al., 2019; Chatterjee et al., 2019; Araujo et al., 2019). Marine models have not 

been extensively used in this sense, and only a few studies have focused on the impact of 

multigenerational exposure to chemical contaminants in marine organisms (Kwok et al., 

2009; Sun et al., 2014, 2018; Li et al., 2015; Xu et al., 2016; Krause et al., 2017; Chen et 

al., 2018; Po and Chiu, 2018; Guyon et al., 2018). In this sense, copepods are the study 

species most used in these investigations. The results obtained from these studies have 

showed, for example, an increased tolerance of copepods to different contaminants such as 

oil, 4-methylbenzylidene camphor (ultraviolet filter), mercury, copper and tributyltin oxide 

(TBTO) (Krause et al., 2017; Chen et al., 2018; Sun et al., 2014; Li et al., 2015; Xu et al., 

2016). Plastic physiological adaptation, transgenerational genetic and/or epigenetic changes 

are some suggested explanations for the tolerance acquired by copepods after a 

multigenerational exposure (Kwok et al., 2009; Li et al., 2015; Xu et al., 2016; Chen et al., 

2018).  

The increasing number of multigenerational studies is improving our understanding of 

marine organisms to buffer and adapt to future GC in marine ecosystems. However, due to 

the novelty of these studies, the majority of them only include one environmental stressor, 

even though the future environmental oceanscape will harbor multiple GC drivers acting in 

combination (Donelson et al., 2018, c.f. Chakravarti et al. 2016, Gibbin et al. 2017a, 2017b; 

Jarrold et al. 2019, Thibault et al., 2020).  
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To our knowledge, only a very limited number of publications have evaluated the 

multigenerational effects of chronic exposure to pollutants in combination with other 

environmental stressors (e.g. OA and OW) in aquatic environments (e.g. Fitzer et al., 2013; 

De Counter and Brander et al., 2017; Li et al., 2017; Wang et al., 2017). In some of these 

studies, authors indicated that the phenotypic plasticity could be responsible for the 

regulation of tolerance limits in response to the combined effects of multiple stressors. The 

endpoints measured in these cited studies are reporting in Table 1.  

Although phenotypic plasticity provides an important mechanism to cope with changes in 

environmental conditions in the short term (Fusco and Minelli, 2010), and may itself evolve 

by natural selection (Scheiner, 1993), there are limits and costs to plasticity responses 

(Auld et al., 2010; DeWitt, 1998). So, it is unlikely to provide a long-term adaptation 

solution for rapid GC in oceans (Gienapp et al., 2008). Nevertheless, plastic or adaptive 

responses cannot be established using multigenerational experiment alone. We require 

employing mutual transplants assays to collect signs of adaptation (see Fig. 2), as well as 

collect genetic evidence for the molecular evolution of laboratory populations kept under 

experimental conditions (DeWitt et al., 2016). Adaptation can also be determined by using 

a quantitative genetic approach, which entails crossing individuals from different 

treatments and pedigree experimental designs (Munday et al., 2013; Sunday et al., 2014).  

Another limitation of the use of multigenerational approach is represented by the difficulty 

in using this approach in long-lived organisms and species that are not easy to culture under 

laboratory conditions. The capacity for adaptation of long-generation long-lived species 

under GC scenarios is garnering interest due to, in many cases, a considerable commercial 

interest for some of these species (such as lobsters, oysters and fish among others). In these 

cases, conducting multigenerational experiments is too great a challenge from a logistic 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 

 

(e.g. investment of a greater set of material, technical and human resources) and funding 

perspective. These experiments can last years, for species of economic and conservation 

importance, if at least two or three generations are to be characterized. Consequently, 

multigenerational experiments are most feasible using species with short generation time. 

In this sense, these experiments are best used as proof of concept rather than relevant tests 

for specific species. To this, it must be stated that a high risk in terms of scientific 

productivity (i.e. number of publications) is associated with this kind of approach, where 

the objectives are achieved (if ever!) only on the very long term.  

Despite these limitations, multigenerational studies provide an exceptional experimental 

tool by developing a more comprehensive understanding of the ensemble of carry over, 

cumulative, parental and selection effects. It is undeniable that this approach is an essential 

tool that merits integration with classic ecotoxicological studies, if we are to improve our 

predictions on how marine biodiversity and ecosystem functions will be affected by 

pollutants in combination with ongoing global changes.  

6. Environmental risk assessment (ERA) in a GC framework: Conclusions and 

perspectives 

In this paper we discuss the need to acquire a new perspective for the investigation of the 

effects of chemicals in a rapidly changing environmental oceanscape. This requires the 

development of a new comprehensive framework for the field of ecotoxicology, that fully 

integrates plasticity, TGP and rapid adaptation. Such a framework will be much better 

suited to appropriately guide and support environmental managers in their decisions 

making processes, promote adaptive solutions, and foster the preservation of biodiversity 

levels and natural resources.   
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It is important to recall that marine ecotoxicology plays a fundamental role in all 

components of ERA, even in the applied one (i.e. risk management), providing essential 

information about the potential impacts of stressors through toxicity tests (acute and 

chronic responses) as a main tool (Chapman, 2016). Controversially, within the framework 

of ERA, the role of these GC stressors in affecting the toxicity of chemical pollution is not 

considered yet. A fundamental shift in the focus and approach used in marine 

ecotoxicology is required in order to firmly advance our current understanding of the 

potential impacts caused by the interaction between pollution and other GC drivers, as well 

as the integration of GC evolutionary biology concepts and principles within the context of 

marine ecotoxicology. Furthermore, we are living in a new geological era of unprecedented 

environmental changes, which is driven by the exponential growth of the human population 

and human activities: the so called Anthropocene (Waters et al., 2016). This extends to the 

World‘s oceans, and we need to face these ongoing and emerging concerns. Thus, ERA 

must not be merely constrained to chemicals (Filser, 2008; Landis et al., 2013).  

Marine ecotoxicology has a new challenge within the ERA framework and will need to 

evolve to provide useful information to empower stakeholders for making solid science-

informed adaptive decisions (Chapman et al., 2017). As we know, toxicity tests used 

currently in ERA have several gaps, which limit our ability to accurately predict the future 

of marine ecosystems. Integrating a multigenerational perspective within the current ERA 

framework will ensure a coherent evolution of ERA in these challenging times. The 

inclusion of multigenerational studies in ERA should provide environmental modelers, 

conservationists and policy makers with new, significant and more balanced (i.e. less 

biased by over and under-estimations) information to help predict the risks of pollution in a 

rapidly changing ocean, and implement appropriate conservation guidelines and legislation 
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to preserve natural resources and ecosystems. The complexity and diversity of the response 

across taxa, generations and stressors makes certainly difficult to operationalize these 

studies for all species, and make them applicable to all scenarios. Despite these limitations, 

for the implementation of multigenerational studies in ERA, two main standards should be 

considered: 1) the use of a number of fast generation (days to few weeks) species that can 

be easily cultured under global changes conditions in the laboratory, and thus used as 

model organisms (Krogh 1929); and 2) focus majorly on fitness measures (rather than only 

survival response) as endpoints. Both these aspects can be relatively easily implemented in 

the future ERA framework, making it more solid and reliable in providing longer-term 

implication of pollutant impacts within the context of global changes. Finally, in order to 

establish guidelines for the implementation of this new perspective within the national and 

international legal and management frameworks for environmental regulation of 

contaminants, we will require to create a discussion forum: designed specifically to rapidly 

identify forward solutions, and establish a sequence of stepping stones to enable the 

implementation of transgenerational plastic and rapid adaptation effects within ERA. This 

is paramount given the time-sensitive nature of the issues at stakes. 
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Table 1. Main endpoints measured in multigenerational studies on chronic exposure to 

pollutants in combination with other environmental stressors in aquatic environment.  

Specie Contaminant Other 

stressor 

Generations Endpoint Reference 

Copepod      

Tisbe 

battagliai 

Copper pH 2 Naupliar production 

Naupliar growth 

Cuticle composition 

Copper uptake 

 

Fitzer et al., 2013 

Tigriopus 

japonicus 

Mercury pH 4 Survival rate,  

Sex ratio, Developmental 

time from nauplius to 

copepodite 

Developmental time from 

nauplius to adult 

Number of clutches, 

Number of nauplii/clutch  

Egg production 

Mercury accumulation 

Li et al., 2017 

Tigriopus 

japonicus 

Mercury pH 4 Proteome of F3 adult 

copepods 

Enzymatic activities: 

superoxide dismutase 

[Cu-Zn], glutathione 

peroxidase, glutathione S-

transferase, and xanthine 

oxidase 

Wang et al., 2017 

Fish      

Menidia 

beryllina 

 

Bifenthrin 

Ethinylestradiol  

Temperature 3 Egg production  

Offspring production 

Sex ratio 

Larval development  

 

Decourten and 

Brander, 2017 

 

 

Fig. 1 Conceptual illustration showing the fate, interaction and pathways of pollutants and 

other global change stressors (i.e. ocean acidification, ocean warming, hypoxia and increase 

of UV light) in marine ecosystems. Created with Biorender.com 

Fig. 2. Schematic representation of a simplified experimental design used to test the effect 

of multi-generational exposure to multiple global change drivers and reciprocal transplants 

(adapted from Gibbin et al., 2017a, 2017b). Individuals are exposed chronically to control 

(current temperature and without the selected chemical contaminant, white), ocean 

warming (red) and selected contaminant (blue) and ocean warming and selected chemical 
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contaminant in combination (orange) for n generations (F1-Fn). Reciprocal transplants are 

also conducted between experimental and control conditions, and experimental conditions 

and control only. Solid arrows show when parental and offspring conditions match. Dashed 

arrows indicate reciprocal transplant assays.  
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Graphical abstract 

 

Highlights  

 Chemical contamination is occurring against global changes 

 The interaction of pollutants with global change drivers has been overlooked  

 A  new perspective to assess chemicals effects in the future oceanscape is need 

 The integration of global change evolutionary biology and ecotoxicology is required 
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