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En primer lugar, me gustaŕıa agradecer el apoyo y la atención del tutor de este trabajo, Pablo
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Abstract

The phenomenon of superconductivity was firstly observed over one century ago, and since then it
has become one of the most important fields of study of Solid State Physics. For decades, the BCS
theory was able to explain the mechanism that leads to this phenomenon in certain compounds,
called conventional superconductors. However, the discovery of high-temperature superconductivity
in 1986 by Bednorz and Müller evidenced that the BCS theory itself, and still no one, is capable to
wholly explain superconductivity.

In this work, we have studied the electronic structure of CuO2 layers like those appearing in
La2CuO4, one of the reference materials for high-temperature superconductivity. These cuprate
superconductors exhibit a characteristic phase diagram with hole doping and temperature as axes.
By means of a simple model, combining both second-principles techniques and a Markov Chain
Monte Carlo, we have focused on the region of the aforementioned phase diagram where the system
is not doped with holes. These elements combined have served us to computationally reproduce a
simultaneous antiferromagnetic-paramagnetic and insulator-metal phase transition.

Keywords: High-temperature superconductivity, La2CuO4, second-principles, Markov Chain Monte
Carlo, spin correlation, phase transition.

Resumen

El fenómeno de la superconductividad fue observado por primera vez hace más de un siglo, y desde
entonces se ha convertido en uno de los campos de estudio más importantes de la F́ısica de Estado
Sólido. Durante décadas, la teoŕıa BCS fue capaz de explicar el mecanismo que causa este fenómeno
en un cierto número de compuestos, llamados superconductores convencionales. Sin embargo, el
descubrimiento de la superconductividad de alta temperatura en 1986 por Bednorz y Müller evi-
denció que la teoŕıa BCS por śı misma, y aún hoy d́ıa ninguna, es capaz de explicar completamente
la superconductividad.

En este trabajo, hemos estudiado la estructura electrónica de láminas de CuO2 como las que apare-
cen en La2CuO4, uno de los superconductores de alta temperatura de referencia. Estos cupratos
superconductores presentan un diagrama de fase caracteŕıstico cuyos ejes son el dopaje con huecos
y la temperatura. Por medio de un modelo sencillo, combinando tanto técnicas de segundos prin-
cipios como un método Monte Carlo de cadena de Markov, nos hemos centrado en la región del
mencionado diagrama de fases en donde el sistema no está dopado con huecos. La combinación
de estos elementos nos ha servido para reproducir, computacionalmente, una transición de fase si-
multánea: antiferromagnético-paramagnético y aislante-metal.

Palabras clave: Superconductividad de alta temperatura, La2CuO4, segundos principios, Monte
Carlo de cadena de Markov, correlación de spin, transición de fase.
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Chapter 1

Introduction

Superconductivity is one of the most important phenomena in Solid State Physics. Despite being
discovered over one century ago and having theoretical foundations set 30 years afterwards, there are
still many aspects that are not fully understood. In particular, the discovery of high-temperature
superconductors and their behaviour is still a source of intense debate. In this work, we will delve
into the phase diagram of La2CuO4, the original high-temperature superconductor, trying to un-
derstand part of its intricate electronic properties by means of a simple computational model.

In this chapter, we shall begin by introducing fundamental concepts in order to provide the reader
with a brief overview of the problems of superconductors and their phenomena that will appear in
subsequent chapters. After this, we will introduce the phenomenon of high-temperature supercon-
ductivity, particularizing the case of La2CuO4. We will continue by discussing the phase diagram
(temperature, doping) of this material and indicating the region which will be the focus of this
work. Finally, we will briefly explain the importance of the first-principles simulations in the frame
of Condensed State Physics, stating our objectives for the present work.

Contents

1.1 Superconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 High temperature superconductors . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 La2CuO4 - Reference material for high-Tc superconductivity . . . . . . . . 5

1.2.2 Phase diagram (T,doping) in La2CuO4 . . . . . . . . . . . . . . . . . . . . 7

1.3 Objectives of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Structure of this work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Superconductors

It is well known from the experiments that applying a static electric field ~E on a metallic sample
produces a current density given by Ohm’s Law [1]:

~J = σ ~E, (1.1)

where σ is the electric conductivity, characteristic of the material (Note that σ is in fact a second
order tensor). We also define the resistivity ρ = 1/σ as its inverse. For a wire of length L and
section A, we may define the resistance as

1
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R =
L

A
ρ (1.2)

so that the Ohm’s Law takes a much simple form in terms of the current I and the voltage V ,

I =
V

R
. (1.3)

The dependence of ρ on temperature is not trivial, and it varies depending on whether we are
analysing the case of a metal (the electrons of the conduction band behave as nearly free electrons)
or a semiconductor (it is necessary to take into account the electrons of both the conduction and
the valence bands). Essentially, the main factors that account for resistivity are lattice vibrations
(phonons), electron-electron interactions and crystallographic defects. At sufficiently low temper-
atures, only the last contribution and the zero point vibration show up, leading to a constant
resistivity value.
At the beginning of the 20th century, Solid State Physics was in its infancy, and physicists were
quite interested in resistivity’s dependence with temperature. One of those physicists, a man called
Heike Kamerlingh Onnes, was the first person to liquefy Helium in 1908, being able to work at
temperatures of about 4 K.

Figure 1.1: Original experiment result from Kamer-
lingh Onnes depicting the resistivity’s dependency of
temperature in Hg. Ref: [3].

In 1911, he undertook such a study at low tem-
peratures, choosing a Mercury sample which he
had obtained in a sufficiently pure form [2].
Kamerlingh Onnes discovered the phenomenon
of superconductivity, noting that the resistance
of his sample abruptly dropped to almost zero at
a temperature of 4.2 K (see figure 1.1). More-
over, he made sure that adding impurities to the
sample did not hinder this to happen. From
Kamerlingh Onnes onwards, the temperature be-
low which the material enters a superconducting
phase is called critical temperature (denoted by
Tc), whose magnitude for conventional supercon-
ductor is of the order of some Kelvin (until the
discovery of high-Tc superconductors [7] no ma-
terial displayed a Tc higher than 23 K). This dis-
covery was one of the most outstanding break-
throughs in Physics, opening the door for a new
and important branch in Solid State Physics.

Superconductors exhibit both exotic electric and magnetic properties. On one hand, no energy is
dissipated as a consequence of the Joule effect, thus resulting in currents that can be indefinitely
maintained and transported without any losses. On the other hand, superconductors exhibit per-
fect diamagnetism, i.e., they are characterized by a total absence of permeability and a magnetic
susceptibility of χ = −1. In order words, magnetic field lines are expelled from the superconduc-
tor’s surface due to the presence of supercurrents upon it. Named after its discoverer, the German
physicist Walter Meissner, this phenomenon is generally known as Meissner effect (cf. Fig. 1.2).
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Figure 1.2: Magnetic field lines are excluded from a superconductor below its critical temperature (right).

The first and best known microscopic theory of superconductors is the BCS theory, named after
John Bardeen, Leon Cooper and John Robert Schrieffer [4]. John Bardeen came to realize that
phonons produce an attractive interaction between electrons close to the Fermi surface. The main
idea behind the BCS theory is that this attraction, even if small, leads to the formation of electron
pairs, called Cooper pairs. Classically, this behaviour may be explained by the following reason-
ing: a moving electron attracts positive charged ionic nuclei, thus creating a slightly more positive
charge density around the electron. Other electron nearby will be partially attracted by this region
with positive charge. The net effect can be seen as if the second electron were attracted by the
first one, thus allowing us to consider a bound pair as a some kind of quasiparticle.

Although each electron is a fermion with spin-1/2, the pair treated as a whole is a spin 1 or 0
particle, and hence it does not longer obey Fermi-Dirac Statistics. Pairs of electrons have integer
spin and can condensate into the same energy level, having at the end of this process a slightly
lower energy than unpaired electrons would have. The condensed electrons leave an energy gap

Eg ≈
7

2
kBTc

above them. This energy gap hinders collisions that cause the ordinary resistivity. For tempera-
tures associated with a thermal excitation smaller than the band gap, the material exhibits zero
resistivity. This behaviour allows this theory to confidently explain the Meissner effect and critical
temperature. This condensation might seem as a Bose-Einstein condensation as mentioned in liter-
ature (cf. for example the original article [4]), although rigorously speaking this is a system made
up of fermions and thus the situation is not completely analogous.

The BCS theory was derived from the physical idea of coupling between the movement of electrons
and nuclei,commonly known as electron-phonon coupling. However, the same idea of weak coupled
pairs may be applied to other pairing mechanisms. For example, the BCS theory has contributed
to the developement of the Higgs mechanism that accounts for the mass generation of fundamental
particles [6].
Generally speaking, the BCS theory is capable to explain the phenomenon of superconductivity in
some materials, although it is still unable to give answers to what happens in many others. That is
the reason why the BCS theory is not considered to be a closed theory of the superconductivity. One
of the main issues arising when discussing this phenomenon is the existence of high-temperature
superconductors.
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1.2 High temperature superconductors

High-temperature superconductors may be defined as those whose critical temperature is above
23 K (the highest temperature reached until the discovery of La2CuO4). With this term we may
refer to those superconductors that do not obey the BCS theory (usually known as conventional
superconductors), which in general turn out to have a higher critical temperature than those than
can be explained by the aforementioned theory. However, there are conventional superconductors
that present a high Tc, such as some hydrides [5].

High temperature superconductivity was first discovered by Bednorz and Müller in 1986 in La2CuO4

doped with Ba. Nowadays, the Sr-doped familiy of compounds La2−xSrxCuO4 is a broadely studied
field because of its remarkable usefulness to understand high-temperature superconductivity. Right
after Bednorz and Müller, it was found that doping with Sr raised the superconducting critical
temperature Tc of La2CuO4 to almost 40 K [9].
The more recent discovery in 2006 of the iron-based superconductors has been, together with the
contribution of Bednorz and Müller in 1986, another milestone for the high Tc superconductivity
(see Figure 1.3).

Figure 1.3: Critical temperatures for representative materials exhibiting superconductivity plotted as a func-
tion of the year of discovery. Conventional superconductors (explained by BCS) are displayed in green. Blue
and orange dots stand for cupper-oxide and iron-based superconductors, respectively. The right-most ver-
tical array of orange dots represents the recently discovered FeSe-based bulk and interface superconductors.
Reference: [7].

As already mentioned, the BCS theory does not suffice to explain high-Tc superconductivity. Ac-
cording to Ref. [7, p.262], this theory is based upon a generic instability of the Fermi liquid,
a theoretical model of interacting fermions with screened Coulomb repulsion that describes con-
ventional metallic states for sufficiently low temperatures. In this situation, any weak attractive
interaction, not limited to lattice vibrations, sparks the formation of Cooper pairs.
Nevertheless, many high Tc materials behave as “strange metals” before becoming superconduct-
ing, meaning that their resistivity depends linearly on temperature when it should be quadratically
[16]. It is hence crucial to understand the properties of strange metals and to what extent they are
susceptible to Cooper pairs formation, not to mention whether Cooper pairing is the only Fermi
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liquid’s instability leading to superconductivity.

1.2.1 La2CuO4 - Reference material for high-Tc superconductivity

Most high-Tc superconductors present a common feature: Two-dimensional CuO2 layers. However,
whereas the structure of La2CuO4 is quite simple, that of higher-Tc superconductors turns out to
be more intricate. Let us see it in detail.

La2CuO4 consists of alternating LaO and CuO2 layers as seen in Fig. 1.4. Copper atoms are
surrounded by six O, forming a distorted octahedral complex. At high temperatures, this material
has the same tetragonal structure as K2NiF4, with a space group I4/mmm. Below a temperature
of 530 K, undoped La2CuO4 adopts a new orthorhombic symmetry, space group Bmab, because of
tilt CuO6 octahedra (See figure 1.4).

Figure 1.4: Graphical depiction of the La2CuO4 structure (upper left), performed with VESTA, and the
CuO2 layers (upper right). This structure corresponds to that of the orthorhombic system, found at room-
temperature and below 530 K. The octahedra present a small tilting angle of about 4o (down).

The room-temperature lattice constants for La2CuO4 are a = 5.354 Å, b = 5.401 Å and c = 13.153
Å [9]. The tilt angle of the octahedra is about 4o. Hereinafter, in order to simplify the geometry
and make full use of symmetry, we will neglect this small angle and assume that the structure is
tetragonal.

Let us now focus on how to describe the electronic structure of the CuO2 layers. If we start by
considering an isolated cation Cu2+, it is well known that the atomic configuration is [Ar] 3d9.
Hence, there is an unpaired electron inside of five 3d degenerate orbitals. For the sake of this work,
let us consider a Cu2+ surrounded by six O2− forming a CuO10−

6 complex. We will consider this
compound’s symmetry to be perfectly octahedral just for this analysis, hence presenting Oh sym-
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metry. We may perform a qualitative analysis on this complex analogously to many others, such as
the CrO3−

6 or the CuF−4
6 , just to mention some of them.

The five 3d degenerate orbitals of the isolated ion split into a triplet t2g(xy, xz, yz) and a doublet
eg(x

2 − y2, z2), irreducible representations of the Oh group. The eg orbitals present a stronger
σ−antibonding character and thus higher energy than t2g ones, which have π−antibonding charac-
ter. Therefore, the eg − t2g energy split is caused by the difference in bonding character appearing
between these orbitals in Oh symmetry.

Now, let us go further. There is a quite sensitive issue here when we are faced with the explana-
tion of the actual symmetry of a CuO10−

6 complex in La2CuO4. One may easily find in literature
that this complex, since its doublet eg presents an orbital degeneration, undergoes a spontaneous
symmetry breaking in the form of a tetragonal distortion, known in this case as Jahn-Teller effect.
However, this explanation, though apparently general and reasonable, is not true. The reason is
that this system does not display a cubic structure and thus an usual Jahn-Teller effect cannot be
applied (for more detail, cf. [11]). Instead, the orbital ordering can be explained by means of the
internal electric field over electrons localized in the complex, a fact commonly ignored.

In our case, it is straightforward to see that the LaO layers, positively charged, attract the electrons
in 3dz2 orbitals, whose two lobes are pointing towards the z axis. This stabilizes the orbital, which
becomes doubly occupied. Given that the gap between the mainly x2 − y2 and z2 orbitals is large
enough, we can just consider the former one as it is partially occupied (see Figure 1.5).

Figure 1.5: Representation of the orbital ordering of the Cu-O octahedra in La2CuO4. It turns out that the
ground state presents a dx2−y2 orbital, whose geometry lays on the CuO2 layer.
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On the other hand, it is clear that on the CuO2 layers there are relevant px and py orbitals from the
oxygen, as depicted in Figure 1.6. These orbitals overlap strongly with the dx2−y2 metal orbitals
and hybridize with them. In this work we will consider Wannier functions that effectively take this
hybridization into account.

Figure 1.6: CuO2 layer, both Cu2+ dx2−y2 as well as O−2 px, py orbitals are depicted.

The pz orbital, pointing towards the z axis, might be important as well. However, it does not
overlap with the x2 − y2 orbital, so we will neglect it.

1.2.2 Phase diagram (T,doping) in La2CuO4

A quite thorough way to characterize the behaviour of superconducting cuprates, like La2CuO4, is
through their phase diagram. It turns out that the phases these materials display essentially depend
on both temperature T and doping concentration x. The underlying ideas behind this diagram are
crucial to understand the phenomenon of superconductivity in cuprates.
For the sake of simplicity, let us consider a generic high-Tc superconductor’s phase diagram to be
applied on La2CuO4. Hereinafter, and as presented before, we refer to the doped compound as
La2−xSrxCuO4, though a quantitative analysis on the exact value of both T and x is not our con-
cern. Instead, we shall present a brief and qualitative analysis of how T and x determine the phases
of our system.

Let us start with the undoped case. First, note that since La has oxidation state +3 and O has
−2, chemical composition of our compound brings us to conclude that the Cu presents oxidation
state +2, thus having a 3d9 electronic configuration. From this fact, one might naively expect the
La2CuO4 to be a metal. However, it comes out to be an antiferromagnetic insulator (see Figure
1.7). Therefore, rather than basing our understanding only upon simple chemical arguments, it
is essential to consider electron-electron correlation. At x = 0, and as commonly known for a
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generic antiferromagnetic material, rising the temperature will eventually lead to a phase transition,
becoming a metallic conductor after reaching the Néel temperature TN .

Figure 1.7: High Tc temperature-doping phase dia-
gram AF and SC stand for antiferromagnetic and su-
perconductor, respectively. TN denotes the Néel tem-
perature. Reference: [6].

This temperature is found to be about T = 325
K [9]. We shall remark that this is not just a
Néel transition. In fact, there is a simultaneous
magnetic and electronic transition (from AFM
to paramagnetic and from insulator to metal).

When La2CuO4 is doped, several transitions
take place. This doping considerably reduces
TN , as depicted in Figure 1.7. Above x ∼
0.02, long-range magnetic order is destroyed,
though there are still some short-range interac-
tions. At this point, the system behaves as a
2D disordered metal and it has entered the so
called “pseudogap” region. The term pseudo-
gap refers to a state whose Fermi surface has
a partial or incomplete energy gap. This phe-
nomenon is quite similar to a true energy gap,
but in our case there are some - though very few
- states within this gap region.

Moreover, exotic hole orderings in the form of vertical and diagonal stripes can be found in this
region (for more detail, cf. [12]).

At about x = 0.05 superconductivity appears, reaching a maximum for Tc ∼ 40 K at x ∼ 0.16
(called “optimal doping”) and again decreasing for overdoped states. Above this maximum at
optimal doping we find a wedge-shape strange metal region characterized by a linear dependence
of resistivity with temperature. If we increase even more the doping, the systems enters a region
called Fermi liquid region, where it can be properly explained by the homonymous theory.

1.3 Objectives of this work

This works aims to create a simple model that gives some insight on the Physics of part of the
phase diagram (Figure 1.7). In particular, we will focus on what happens at x = 0 (no doping)
when temperature increases, coming across a simultaneous magnetic and insulator-metal transition.
This is also a tough computational challenge as DFT-based methods are usually not prepared to
deal with temperature. In more detail, we shall

i) Find out a way to relate our system’s total energy and its magnetic ordering, determining their
dependency. This allows us to verify that our ground state is indeed antiferromagnetic while
at the same we may keep track of the system’s magnetic state in a simple way.

ii) Perform a temperature-based simulation by means of a Markov Chain Monte Carlo (MCMC)
method in order to reproduce the sought phase transition.
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This model considers two-dimensional systems, aiming to describe the CuO2 layers of La2CuO4.

The validation of this simple model is important beyond the goals of this work, as it could be easily
expanded to describe other regions of the temperature-doping phase diagram. For example, exper-
imental data from X-ray absorption spectroscopies [13] confirm that holes lay on the CuO2 planes.
Therefore, explaining how this system behaves with doping might be done by just generalizing our
model.

1.4 Structure of this work

After having introduced the problem of superconductivity and the system we shall deal with, goal
of the next chapter is to give a thorough look at the computational methods used in this work. We
shall set up the ideas of a DFT-based second-principles simulation and how these techniques can
be adapted to our particular problem. Complementary to this, the chapter describes the tools that
allow us to take temperature into account for our analysis.

The third chapter contains the main results of our work, presenting one by one the elements that
allow us to fully describe and understand the chosen system within our model’s framework. By the
end of this chapter, the reader will be able to witness how all these elements combined reproduce
the sought magnetic and insulator-metal transition.

Finally, the last chapter consists of a brief summary of our achievements and to what extent this
work might be extended beyond its scope.
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Chapter 2

Computational methods

In Quantum Mechanics, and in particular in Solid State Physics, solving the time-independent
Schrödinger equation is necessary to understand and predict the state of any system and the prop-
erties associated with it. However, handling this problem is in general difficult, due to the fact that
the wave function we are looking for depends on the position of a large number of electrons.
Throughout the last few decades, the fast development of computational techniques has allowed us
to solve the Schrödinger equation from first-principles (ab initio), that is, without the need to use
any kind of experimental input data. Hence, the computational methods have become an essential
tool for us to thoroughly understand the nature of complex quantum systems, turning out to be an
important complementary approach to that of the experiments.

In this chapter, our aim is to introduce and present the foundations of the first-principles
techniques, the approximations they are based on and their limitations. More concretely, we shall
devote our attention to the Density Functional Theory (abbreviated DFT), focusing on the
Kohn-Sham approach. We will conclude this overview of the computational methods with a
description of the DFT-based second-principles techniques (SP-DFT) implemented in the code
SCALE-UP, arguing their suitability for the problem of La2CuO4 we are dealing with in this
work. Afterwards, we will briefly delve ourselves into the foundations of the tight-binding model
and the Hubbard model and how they may be expressed in terms of the SP-DFT formalism,
discussing why those turn out to be suitable for the goal we are pursuing in this project. Finally,
we will introduce a Markov Chain Monte Carlo method and its usefulness in the context of the
study of magnetic systems; providing a tool to predict temperature behaviour and search for
phase transitions.
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2.1 First principles methods

2.1.1 Notation

In the following, we consider a quantum mechanical system which is composed of N electrons and
M nuclei. We denote the nuclei positions by capital letters ~Rα and those of the electrons with
a lower-case ~ri. In order to refer to the nuclei we adopt the convention of using Greek alphabet
letters (α, β, γ, etc.), whereas the electrons are labeled with Latin alphabet symbols (a, b, c, etc.).
Therefore, we might write the complete set of nuclei (resp. electrons) as {~R} = {~Rα, ~Rβ, ~Rγ , ...}
(resp. {~r} = {~ra, ~rb, ~rc, ...}).
For the sake of simplicity and whenever necessary, we assume a periodic three dimensional infinite
crystal, with lattice cells denoted by upper-case letters (Λ,∆, ...) and the atoms in the cell by lower-
case letters (λ, δ, ...). For example, the lattice vector of cell Λ is ~RΛ, whilst the reference position
of the atom might be written as ~Rλ , i.e., with a lower-case bold subindex.

2.1.2 Hamiltonian

In Solid State Physics, we devote ourselves to the study of quantum mechanical systems that add up
to macroscopic crystalline solids. The formulation of the problem is quite generic and might seem
trouble-free: obtaining the global wave function |Ψ〉 that describes the whole system, thus containing
its entire information. In order to obtain this wave function, we shall solve the Schrödinger equation:

Ĥ({~R}, {~r}, t)|Ψ({~R}, {~r}, t)〉 = i~
∂

∂t
|Ψ({~R}, {~r}, t)〉, (2.1)

where ~ is the reduced Planck constant and Ĥ is the hamiltonian. All the information regarding
interactions among particles in the considered system is contained in this term. Hereafter, for our
purpose, we consider a purely electrostatic hamiltonian.
This hamiltonian contains the kinetic contributions of both electrons (T̂e) and nuclei (T̂n), as well
as electrostatic interactions between nuclei (V̂nn), electrons (V̂ee) and nuclei and electrons (V̂en). In
the case that there is some external potential, an additional term (V̂ext) comes into the hamiltonian.
Summarizing, we may write a non-relativistic hamiltonian as follows:

Ĥ = T̂e + T̂n + V̂nn + V̂ee + V̂en + V̂ext. (2.2)

The kinetic energy terms are written in terms of the square of the linear momentum for each of the
constituents, in our case:

T̂e =

N∑
a=1

p̂2
a

2ma
= −~2

N∑
a=1

∇2
a

2ma
; T̂n =

M∑
α=1

p̂2
α

2Mα
= −~2

M∑
α=1

∇2
α

2Mα
. (2.3)

The expression for the electrostatic interactions has a classical resemblance as well. Written in
atomic units:
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V̂ee =

N∑
a=1

N∑
b>a

1

|~ra − ~rb|
; V̂nn =

M∑
α=1

M∑
β>α

ZαZβ

|~Rα − ~Rβ|
; V̂en =

N∑
a=1

M∑
α=1

Zα

|~ra − ~Rα|
. (2.4)

These last equations are the reason behind the enormous complexity of the Schrödinger equation:
the cross terms that arise in the electrostatic interactions hinder finding an exact and analytical
resolution of Eq. (2.1), just as for any equation of relative motion that involves two or more bodies
[14]. We define the electronic hamiltonian as follows:

Ĥel = T̂e + V̂nn + V̂ee + V̂en + V̂ext. (2.5)

Hence, the total hamiltonian defined in Eq. (2.2) is more appropriately studied when considered as
a sum of Ĥel and the kinetic energy of the nuclei.
Moreover, if there is no time dependence in the hamiltonian, for the A-th stationary state of the
system we may rewrite the total wave function |Ψ〉 as a product of a time-dependent part |ΘA(t)〉
and a space-dependent part |ΨA({~R}, {~r})〉 [14]. Whereas the solution for |ΘA(t)〉 is trivial, that of
|ΨA({~R}, {~r})〉 corresponds to the time independent Schrödinger equation:

Ĥ({~R}, {~r})|ΨA({~R}, {~r})〉 = EA|ΨA({~R}, {~r})〉. (2.6)

This equation provides the stationary states ΨA of the system, those with a constant electronic
density and each with a different energy. It is clear that dealing with Eq. (2.6) is in fact quite
complicated due to the presence of cross terms hinder any analytical solution. That is the reason
why we must adopt crucial approximations that make the resolution of the Schrödinger equation
slightly more handleable. Two of the most important are the adiabatic approximation and the
independent electron approximation.

2.1.3 Adiabatic approximation

One of the (many) possible adiabatic approximations is that of Born-Oppenheimer. Briefly speak-
ing, this approach is based on the fact that nuclei are much heavier than electrons and thus their
motion may be treated separately [14]. Let us see in detail the foundations of this approach, which
acts in two consecutive steps.

(I) Dynamic of electrons with fixed nuclei: Compared with electrons, nuclei have large
masses and therefore in general (due to the equipartition theorem), small velocities. The first step
consists in studying the motion of electrons with fixed nuclei. In other words, the nuclei positions
~Rα may be considered to be fixed parameters. The equation in eigenvalues for the corresponding
electronic hamiltonian is

Ĥ|ΨA({~R}, {~r})〉 = EA({~R})|ΨA({~R}, {~r})〉. (2.7)

This equation can be solved for fixed values of {~R}, obtaining the electronic states A corresponding
to wave functions ΦA({~R}, {~r}) and energies EA({~R}). Repeating this process for multiple sets
{~R} of nuclei positions, we end up with an energy equipotential surface EA({~R}) for each electronic
state A, usually known as Potential Energy Surface (or APES)
Note that {|ΦA({~R}, {~r})〉} is an orthonormal complete set of electronic wave functions. Conse-
quently, every function, in particular the exact total wave functions |Ψ({~R}, {~r})〉, may be written
as an exact series of the electronic wave functions:

|Ψ({~R}, {~r})〉 =

∞∑
A=1

|ΩA({~R})〉|ΦA({~R}, {~r})〉, (2.8)
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where the coefficients |ΩA({~R})〉 depend on the values ({~R}) because the nuclei positions are indeed
variables in the total wave function |Ψ({~R}, {~r})〉.
(II) Nuclei motion under the potential created by the electrons: Furthermore, the adia-
batic approximation states that the effect of the nuclear momentum operator T̂n on the electron’s
wave function may be neglected, i.e., T̂nΦA({~R}, {~r}) ≈ 0. Thus, simplifying notation, taking |Ψ〉
as in Eq. (2.8) and multiplying in Eq. (2.7) by the bra 〈ΦB|, we obtain[

T̂n + EA({~R})
]
|ΩA({~R})〉 = E|ΩA({~R})〉. (2.9)

Eq. (2.9) has the form of a Schrödinger equation for the movement of the nuclei under a potential
which is exactly the APES EA({~R}) corresponding to the electronic state A.

2.1.4 Electronic hamiltonian

Once that we have introduced the adiabatic approximation, and consequently decoupled electrons’
dynamics from that of nuclei, we shall solve the Schrödinger equation for the electronic hamiltonian
(equation (2.7)). As anticipated, the dynamics of a many-electron system is quite complex as we still
have to deal with electron-electron repulsion terms of the form 1

|~ra−~rb| . A remarkable simplification
though may be achieved by considering the whole electrons’ interaction as an average, and thus
describing the motion of the N electrons as if they were under a mean potential, or mean field.
For a system composed ofN electrons, the idea of the independent electron approximation consists in
considering the total wave function of a system for a certain state as a combination of N independent
wave functions properly chosen. Let Ψ̃ be the approximate total wave function of our system, Ψ be
the exact one and E its exact energy. From the variational principle (see [14, p.570-571]), we may
show that

Ẽ =
〈

Ψ̃ | Ĥel | Ψ̃
〉
≥
〈

Ψ | Ĥel | Ψ
〉

= E. (2.10)

That is, the energy of every approximate solution is always larger than that of the exact one. The
idea of these methods is to minimize the energy Ẽ until reaching a minimum, which should be
theoretically the exact energy we are pursuing.

2.1.4.1 Hartree-Fock method

In 1927, the English physicist D.R. Hartree introduced what he called a self-consistent field method
to calculate approximate wave functions for systems with multiple particles. His idea, which was
indeed the first example of an independent electron approximation, consisted in writing the total
wave function as a product of one-electron wave functions (orbitals):

Ψ̃(r1, ..., rN ) = ψ1(~r1) . . . ψN (~rN ). (2.11)

The main problem under this approach is that the product in (2.11) does not satisfy the Pauli
exclusion principle, which states that the total wave functions describing fermionic systems must
be antisymmetric with respect to the exchange of two arbitrary particles. This issue was overcome
by the Russian physicist W. Fock, who proposed in 1930 a wave function given as the product of
a spatial orbital and a spin function. In a general case, assuming N electrons and N spin-orbitals,
we may express our wave function as a Slater determinant, defined as:
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Ψ̃(~r1, ..., ~rN ) =
1√
N !

∣∣∣∣∣∣∣∣∣
ψ1(~r1) ψ2(~r1) . . . ψN (~r1)
ψ1(~r2) ψ2(~r2) . . . ψN (~r2)

...
...

. . .
...

ψ1(~rN ) ψ2(~rN ) . . . ψN (~rN )

∣∣∣∣∣∣∣∣∣ ; 〈ψi | ψj〉 = δij . (2.12)

Each of the terms that appear in the determinant is written as a product of a spatial function φi
and a spin function χi, so that ψi = φiχi. The most drastic approximation is to take one single
Slater determinant.

Having chosen a single Slater determinant as a test function, the next step uses the Rayleigh-Ritz
variational principle to find the optimal ψi that minimizes the energy. It shall be remarked that
during this process, the approximate wave function Ψ̃ must be introduced into the Schrödinger
equation with the exact electronic hamiltonian. After some calculation, which can be found in
detail in [14, p. 88-93], this procedure leads to the Hartree-Fock (HF) equations:[

− ~
2m
∇2
a +

∑
α

Zα

|~r − ~Rα|
+ Ĵa − K̂a

]
ψa = εaψa a = 1, ..., N. (2.13)

Let us see in detail the terms appearing in (2.13). The operator Ĵ stands for the classical Coulomb
electron-electron repulsion, whereas the operator K̂ represents the exchange interaction, arisen from
the Pauli exclusion principle and without classical analogous. Acting on wave functions:

Ĵa | ψb〉 =

(∫
|ψb|2

1

|~ra − ~rb|
d~rb

3

)
| ψb〉, (2.14)

K̂a | ψb〉 =

(∫
ψ∗aψb

1

|~ra − ~rb|
d~rb

3

)
| ψa〉. (2.15)

Setting Jab := 〈ψb | Ĵa | ψb〉 and Kab := 〈ψb | K̂a | ψb〉, the set of coupled HF equations in Eq.
(2.13) leads to the following ground state energy [14]:

EHF =
N∑
i=1

ha +
1

2

N∑
a,b=1

(Jab −Kab) + Vnn ; ha =
〈
ψa

∣∣∣ĥa∣∣∣ψb〉 , (2.16)

where ĥi takes into account the motion of the i-th electron under the field created by the nuclei:

ĥa = −1

2
∇2
a −

M∑
A=1

ZA

|~RA − ~ra|
. (2.17)

We may see the following [16]:

i) Kaa = Jaa, and consequently the Coulomb interaction of one electron with itself vanishes with
the exchange interaction term Kaa.

ii) For the exchange interaction it holds Kab ∝ δmsa,msb
, where msa stands for the spin’s third

component of the electronic state a. Therefore, antiparallel spins lead to Kab = 0.

iii) For electrons with the same spin, the integrals Kab are always positive, reducing the Coulomb
repulsions Jab. This fact can be understood as if in a neighbourhood of each electron there
were an absence of charge of the same spin (Fermi hole), preventing that electrons of same spin
get close to each other.
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As already mentioned, in this procedure we are assuming that the repulsion between an electron
and all the others may be described by a set of orbitals. The electron-electron repulsion is only
taken into account as an average, and that is why the HF method might be referred as a mean-field
approximation.
We may write the expression for the HF equations in Eq. (2.13) in a more compact way by defining
the Fock operator for each orbital ψa:

F̂a := ĥa +
N∑
b=1

(Ĵb − K̂b). (2.18)

And hence the HF equations take the form

F̂aψa = εaψa a = 1, ..., N. (2.19)

If a family of orbitals satisfies the former expressions for the Fock operator, we say that they are a
self-consistent field (SCF) set. Analogously, the procedure to find out the orbitals is called iterative
self-consistent method:

i) We start by making a rough estimation of the orbitals ψa.

ii) Solve equation (2.19) for each orbital.

iii) Determine whether the orbitals obtained in the last step differ from the formers. If so, repeat
from ii).

This process ends when the difference between orbitals lies under a previously defined SCF threshold.

Besides this, it is important to remark that the Hartree-Fock energy written in (2.16) corresponds
to that of a concrete configuration, that is, a single Slater determinant. Further improvement of the
energy also based on multielectronic wave functions may be achieved by considering an expansion
of the system’s wave functions whose terms are Slater determinants for configurations different from
that of the ground state (that is, excited configurations):

Ψ =
∑
i

αiΨ̃i (2.20)

Since the obtained energy is not the exact one, the term correlation energy is coined to denote the
difference between EHF and the actual energy.

The main problem of the HF algorithms, and one of the reasons why they are not pretty much used
anymore, is because of their high computational cost. This is due to the O(N5) complexity that the
computation of Kab and Jab presents. Moreover, if we explicitly take correlation into account, this
complexity scales to O(N7), O(N9), etc. One alternative to HF is the so called density functional
theory, better known as DFT, with a much smaller computational complexity of O(N3).

2.1.4.2 DFT

As already mentioned in previous sections, HF and post-HF are complex from a computational point
of view. The Density Function Theory (DFT) offers a cheaper alternative to solve the Schrödinger
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equation. Whereas in HF methods approximations are made on wave functions, DFT only takes
the electronic density into account:

ρ(~r) =

∫
|Ψ(~r1, ..., ~rN )|2 d~r1 . . . d~rN . (2.21)

Hereinafter, the energy of the system may be written as a functional of a the electronic density,
which only depends on three spacial variables, no matter how many particle our system has. This is
a remarkable breakthrough compared to methods that deal with wave functions and approximations
on them, for which the complexity increases exponentially with the number of electrons.
There is though a mathematical abstraction underneath. When we talk about a function, we refer
to a correspondence that produces a number from another number or a set of variables (mainly
coordinates). The term functional owes its origin to the Functional Analysis, and more concretely
to the concept of dual space of an arbitrary vector space V over a field K:

V ∗ := {L : V → K : L is linear and continuous}. (2.22)

That is, the set of all continuous homomorphisms from a vector space to its field. In our case, we
simply denote a correspondence functional if it produces a number from a function. This is precisely
the case when V is a vector space made of functions (for example the Lp(R) spaces). We will denote
a function as usual, f(x), whereas a functional may be properly written with brackets, namely F [f ].

We are hence pursuing the energy as a functional of the electronic density, i.e., E[ρ]. It is straight-
forward to see that the energy functional may be split into three parts [14]: kinetic energy T [ρ],
electrons-nuclei attraction Ven[ρ] and electron-electron repulsion Vee[ρ]. At the same time, and sim-
ilarly to the HF approach, we may divide Vee[ρ] into the Coulomb repulsion J [ρ] an the exchange
interaction K[ρ]. The expression for Ven[ρ] and J [ρ] is the classical one [14],

Ven[ρ] = −
N∑
A=1

∫
ZA

|~RA − ~r|
ρ(~r)d~r ; J [ρ] =

1

2

∫ ∫
ρ(~r)ρ(~r′)

|~r − ~r′|
d~rd~r′. (2.23)

This approach was firstly introduced in the 1920’s. Though attractive, it did not reproduce elec-
tronic energies just as wavefunctions do [17]. It was not until the 1960’s when it experienced a
“Reinassance” thanks to the contributions of Hohenberg and Kohn, who established the founda-
tions of the modern DFT by means of their two known theorems. Roughly speaking, this theory
relies on the fact that the ground state energy is fully determined by the electronic density ρ.

2.1.4.2.1 Hohenberg-Kohn Theorems

DFT is based upon the following two results [18]:

Theorem 2.1. For the ground state of any system, the external potential vext(~r) is uniquely deter-
mined, up to an additive constant, by its electronic density ρ(~r).

There is a reciprocal for the previous theorem:

Corollary 2.2. The electronic density ρ(~r) of the ground state is uniquely determined by the external
potential vext(~r).

Proof. This result is trivial because the external potential vext(~r) determines the Hamiltonian from
which the wave function is extracted and thus the electronic density by means of the definition in
eq. (2.21).
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The main conclusion that we may draw from the previous results is that if we know either the
electronic density or the external potential, the other one is fully determined.
We shall remark that the term “external potential” in this context refers to any interaction involving
the electrons that does not arise from them. Therefore, we must include the electron-electron
repulsion Vee, the electron-nucleus attraction Ven, and the term Vext that appeared in the electronic
hamiltonian defined in (2.5). Hence,

v̂ext = V̂en + V̂ext. (2.24)

From Theorem 2.1, we know that ρ and vext are uniquely connected with each other, though we
do not know how. The second theorem of Hohenberg-Kohn establishes a relationship between the
ground state electronic density and the external potential:

Theorem 2.3. Let ρ̃(~r) be a trial ground state density such that ρ̃(~r) ≥ 0 and∫
ρ̃(~r)d~r = N.

Then, it holds that E ≤ Ev[ρ̃(~r)], where Ev[ρ̃(~r)] is a trial energy functional for E corresponding to
an external potential v and E is the exact ground state energy.

This theorem states that every functional for the energy written in terms of the electronic density
reaches a global minimum which corresponds to the actual value of the energy.

The first problem that arises is that ρ is unknown. However, we do know how the electronic density
interacts with an external potential, so we may write the following functional for the energy:

E[ρ] = FHK [ρ] +

∫
ρ(~r)vext(~r)d~r, (2.25)

where FHK [ρ] represents an universal functional of the density valid for every system [18]. It shall
contain the kinetic energy of the electrons and the interaction among themselves.
Summing up, the second Theorem of Hohenberg-Kohn conceives the DFT as a variational method
to compute the ground state by optimizing the functional of the density for the energy.

2.1.4.2.2 Kohn-Sham approach

Although the previous theorems establish a solid theoretical foundation of the DFT methods, we
still do not know the expression of the FHK [ρ] functional. Kohn and Sham [19] suggested in 1965
a breakthrough idea that allowed the DFT formulation to become one of the most successful ap-
proaches nowadays to investigate the electronic structure of many bodies system.
Their idea consists in substituting the actual system by a fictitious one made of N non-interacting
fermions described by a set of orbitals {φi}Ni=1 under an average potential vext. The system that
we have just made up shall present the same electronic density and energy for the ground state
as the real one. This independent-electron approach reminds us of the HF methods, and in fact
the KS model is closely related to it, sharing similar formulas for the kinetic, electron-nuclear and
electron-electron energies [14].

Let us commence by noting that our system’s kinetic energy may be described exactly, since we are
handling N non-interacting electrons. Thus, we write

TS =

N∑
i=1

〈
φi

∣∣∣∣−1

2
∇2

∣∣∣∣φi〉 , (2.26)
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where the S sub-index denotes that the energy is calculated from a Slater determinant. The proposal
of Kohn and Sham for FHK relies on the following decomposition:

FHK [ρ] ≡ TS [ρ] + J [ρ] + Exc[ρ]. (2.27)

Here, J [ρ] denotes the Coulomb repulsion, defined in eq. (2.23). The term Exc[ρ], defined as [14]:

Exc([ρ]) = (T [ρ]− TS [ρ]) + (Vee[ρ]− J [ρ]). (2.28)

This unknown functional - called exchange-correlation functional - contains within its first parenthe-
sis a correction to the the kinetic energy (i.e., the difference between the real and the non-interacting
kinetic energy), which we expect to be a small number. The last parenthesis contains the difference
between the full electron-electron interaction and the classical Coulomb interaction, which should
be small as well. With reference to Hartree-Fock theory (eq. (2.16)), the term Vee[ρ] may be divided
into a Coulomb and an exchange part, J [ρ] and K[ρ], so the second parenthesis implicitly includes
the exchange and correlation energies [14].
The key idea here is to calculate the kinetic energy under the assumption of non-interacting elec-
trons. As we may expect, the electrons are actually interacting, though baring in mind that HK
theory predicts approximately 99% of the correct answer for the kinetic energy, this approximation
is not that drastic [14].

Substituting Eq. (2.27) in Eq. (2.25), we obtain

E[ρ] = TS [ρ] + J [ρ] + Exc[ρ] +

∫
ρ(~r)vext(~r)d~r. (2.29)

We now must delve into finding out an expression for Exc[ρ], which remains unknown. First, recall
that our made-up system has the same density as the real one, so we can write ρ(~r) in terms of the
set of orbitals {φi}Ni=1 and the respective occupation ni:

ρ(~r) =
N∑
i=1

ni|φi(~r)|2. (2.30)

Similarly to HF, we may apply the variational principle on Eq. (2.29) (second HK theorem), which
leads us to the so called Kohn-Sham equations:

ĥsφi =

[
−1

2
∇2 + veff

]
φi = εφi, i = 1, ..., N. (2.31)

This set of equations is analogous to that of our fictitious system (which would be Hartree-Fock-like)
except for the presence of an effective potential:

veff (~r) = vext(~r) +
δJ [ρ]

δρ(~r)︸ ︷︷ ︸
−vH(~r)

+
δExc[ρ]

δρ(~r)︸ ︷︷ ︸
vxc(~r)

. (2.32)

The second and the third terms are called Hartree potential (behold the minus sign) and exchange
correlation potential, respectively. Consequently, we can write the total DFT energy as follows [20]:

EDFT =
N∑
i=1

ni

〈
φi

∣∣∣∣−1

2
∇2 + vext

∣∣∣∣φi〉+
1

2

∫ ∫
ρ(~r)ρ(~r′)

|~r − ~r′|
d~rd~r′ + Exc[ρ] + Enn. (2.33)
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Note that the first term of the previous expression includes the kinetic energy of a system of non-
interacting electrons under the action of an external potential that contains contributions from
nuclei and, if so, other external fields. The second term refers to the Coulomb electrostatic energy,
the third is the exchange correlation energy (as previously defined) and the fourth stands for the
nucleus-nucleus interaction.

In conclusion, the DFT techniques seek to improve an expression for Eexc[ρ] in order to determine
the energy of the system as accurately as possible. Some of the approximations for this aim are
the Local Density Approximation (LDA), which derives the exchange correlation functional from
that of an homogeneous electron gas using Monte Carlo techniques, and the Generalized Gradient
Approximation (GGA), which also takes into account the density’s gradient [?, ?]. However, first-
rinciples methods, even with this approach, result in high computational costs that do not allow
us to handle a large number of particles (usually beyond 1000 atoms). This is precisely the reason
why we must introduce the so-called Second Principles methods.

Even so, we shall note that using DFT has other limitations. In particular, DFT works at zero
temperature. This fact constrains our work to very ordered systems, justifying the use of a Monte
Carlo method that will be introduced in section 2.4.

2.2 Second-principles methods

As already anticipated, first-principles techniques have a quite solid theoretical foundation that al-
lows us to solve the Schrödinger equation, and thus study electronic properties of physical systems
accurately. Nevertheless, the greatest limitation of this approach is based on its high computational
cost, not to mention how unmanageable it becomes to deal with a large number of particles. In
particular, this work aims to study magnetic properties of bidimensional systems that can only be
properly observed if we consider a sufficiently large lattice. The presence of a global magnetic order-
ing (ferromagnetic or antiferromagnetic), together with all the intermediate states (characterized
by a distribution of magnetic domains that appear gradually as we increase the temperature) may
be neglected if the lattice is not big enough.

In order to overcome these limitations, several techniques have been recently developed. Among
them, we are going to focus on the so called second-principles DFT (SP-DFT) approach, and later
on we will discuss its validity within this work’s object of study.
The main restriction of this theory relies on the assumption that there is an underlying lattice or
bonding topology which is preserved along the simulation. This premise allows us to systematically
improve the accuracy of classical DFT calculations. Hereinafter, and unless otherwise indicated, we
will follow [20].

2.2.1 Overview of SP-DFT

As usually done in most first-principles schemes, we assume the validity of the Born-Oppenheimer
(or adiabatic) approximation, that allows us to consider electrons and nuclei motion separately.
For the forthcoming overview we shall deal with two new concepts: the reference atomic geometry
(RAG) and the textitreference electronic density (RED). First, we shall make a choice of a RAG,
i.e., a particular configuration of the nuclei used as reference for any other configuration. This RAG
is usually taken to be the ground state or, failing that, a high symmetrical configuration.
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The second step is the election of a RED - which we call ρ0(~r) in order to be consistent with the
previous notation - for each possible atomic configuration. The validity of our model is based on
the fact that the actual electronic density, ρ(~r), will be very closed to the RED. Hence, we may
describe changes in physical properties in terms of a (small compared to ρ0(~r)) deformation density
δρ(~r) as follows:

ρ(~r) = ρ0(~r) + δρ(~r). (2.34)

2.2.2 Energy in SP-DFT

We seek to find a functional that yields an accurate expression of the DFT energy (see Eq. (2.33)).
The greatest issue we have to overcome is the exchange correlation energy Exc[ρ] in that expression
which, additionally, is not linear with respect to the electronic density. However, the assumption
that the perturbation density δρ(~r) is small compared to the reference density ρ0(~r) permits us to
consider a Taylor series of Exc[ρ] near ρ0 as follows:

Exc[ρ] = Exc[ρ0] +

∫
δExc
δρ(~r)

∣∣∣∣
ρ0

δρ(~r)d~r +
1

2

∫ ∫
δ2Exc

δρ(~r)δρ(~r′)

∣∣∣∣
ρ0

δρ(~r)δρ(~r′)d~rd~r′ + . . . (2.35)

Recall that the terms inside of the integrals correspond to functional derivatives of Exc. This
approach permits us to write the total energy as a perturbative sum of terms coming from different
contributions of the deformation density (with respect to the reference density)

EDFT ≈ E = E(0) + E(1) + E(2) + ... (2.36)

E(0), also called zeroth term, corresponds to the DFT energy associated with the ground state
energy, provided with a non-perturbed electronic density ρ0(~r). Hence, this energy term obeys the
expression (2.33) but with ρ0(~r) instead of the real density ρ(~r). Cheap computation of E(0) may
be performed by using a model potential that only depends on the atomic positions where electrons
are integrated out, thus being a huge advantage with respect to classical DFT methods that require
an explicit treatment to tackle electronic interactions [20].
The first order term E(1) involves one-electron interactions:

E(1) =

N∑
i=1

[
ni

〈
φi

∣∣∣ĥ0

∣∣∣φi〉− n(0)
i

〈
φ

(0)
i

∣∣∣ĥ0

∣∣∣φ(0)
i

〉]
, (2.37)

where ĥ0 denotes the Kohn-Sham hamiltonian as defined in the equation (2.31) but for the reference
density ρ0(~r), that is:

ĥ0 = −1

2
∇2 + v

(0)
eff = −1

2
∇2 + vext − vH [ρ0;~r] + vexc[ρ0;~r]. (2.38)

Finally, the second term E(2), also called two-electron energy, is given by

E(2) =
1

2

∫
d~r

∫
g(~r, ~r′)δρ(~r)δρ(~r′)d~r′. (2.39)

Here, g(~r, ~r′) denotes the screened electron-electron operator, defined as

g(~r, ~r′) =
1

|~r − ~r′|
+

δ2Eexc
δρ(~r)δρ(~r′)

∣∣∣∣
ρ0

. (2.40)
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2.3 Effective form of the SP Hamiltonian in this work

When expressed in a proper basis of localized orbitals, the E(1) and E(2) terms acquire a form similar
to common and well-known models in Solid State Physics: the tight-binding and the Hubbard model.
Let us see them first.

2.3.1 Tight-binding model

The tight-binding model is a method commonly used to calculate the electronic band structure in
solids using an approximate expression of the system’s total wave function, written as superposition
of wave functions corresponding to localized orbitals, being quite similar to the LCAO method.
This approach turns out to be effective when describing highly localized electrons and it is comple-
mentary to the nearly free electron model. Even though the tight-binding model is a one-electron
model, the idea may be extended to more sophisticated approaches and calculations.

We are now faced with solving the time-independent Schrödinger equation for a system made of a
single electron under a periodic (crystalline) potential V (~r):

Ĥ |φ(~r)〉 =

[
− ~

2m
∇2 + V (~r)

]
|φ(~r)〉 = E |φ(~r)〉 ; V (~r + ~R) = V (~r), (2.41)

where ~R represents an arbitrary vector of the Bravais lattice. Since the crystalline potential is
periodic, we already know that any solution of (2.41) must satisfy the Bloch Theorem:∣∣φ

n~k
(~r)
〉

= ei
~k·~ru

n~k
(~r) with u

n~k
(~r + ~R) = u

n~k
(~r). (2.42)

Thus, our wave functions are characterized by two quantum numbers: a band index n and a wave
vector ~k. The main idea behind the tight binding model is to approximate our Bloch eigenstates
φ
n~k

(~r) by a linear combination of highly localized atomic orbitals {χa~R}, called Wannier functions.
These are localized functions, equivalent to atomic orbitals and usually defined via Fourier transform
of Bloch eigenstates:

∣∣χa~R〉 =
Ω

(2π)3

∫
1st BZ

e−i
~k·R ∣∣φ

n~k

〉
d~k. (2.43)

Eq. (2.43) holds for a non-multiband case [20]. Ω denotes the volume of the primitive unit cell,
and the integral is computed over all the first Brillouin zone (1st BZ). Wannier functions form a
complete orthonormal set, and hence we may express any Bloch eigenstate in terms of them so that
Bloch Theorem still holds: ∣∣φ

n~k

〉
=
∑
~R

∑
a orbital

ei
~k·(~r+~R)c

n~k,a
| χa~R〉. (2.44)

Now, we put the value of
∣∣φ
n~k

〉
into the Schrödinger equation in (2.41). Multiplying both sides by

the bra 〈χb ~R′ |, we may transform a set of eigenvalue equations into a set of algebraic equations:〈
χb ~R′

∣∣ Ĥ∑
~R

∑
a

ei
~k·(~r+~R)c

n~k,a

∣∣χa~R〉 =
〈
χb ~R′

∣∣ ε
n~k

∑
~R

∑
a

ei
~k·(~r+~R)c

n~k,a

∣∣χa~R〉 . (2.45)

Former expression may be rewritten as
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∑
~R

∑
a

ei
~k·(~r+~R)c

n~k,a
γb ~R′,a ~R = ε

n,~k

∑
~R

∑
a

ei
~k·(~r+~R)c

n~k,a
δb ~R′,a ~R, (2.46)

where

γb ~R′,a ~R :=
〈
χb ~R′

∣∣∣Ĥ∣∣∣χa~R〉 and δb ~R′a~R :=
〈
χb ~R′

∣∣χa~R〉 (2.47)

are the hopping and the overlap integrals, respectively. Translational symmetry of our system allows
us to write

γb ~R′,a ~R = γb ~R′,a ~R−~R′ = γb0,a ~R ≡ γba, ~R (2.48)

and similarly for δb ~R′,a ~R(~k). Moreover, note that since we have chosen Wannier functions, which

are orthogonal, the cross overlap terms vanish. Hence, we may rewrite (2.46) as follows:

∑
a

∑
~R

ei
~k·(~r+~R)γba, ~R


︸ ︷︷ ︸

Γ
a~k

c
n~k,a

= ε
n~k

∑
a

∑
~R

ei
~k·(~r+~R)δba, ~R


︸ ︷︷ ︸

∆
a~k

=⇒

=⇒
∑

a

[
Γ
a~k
− εn(~k)∆

a~k

]
c
n~k,a

= 0.

(2.49)

Note that the terms Γ
a~k

and ∆
a~k

are, in fact, N×N matrices, whilst c
n~k,a

represents a N×1 column

vector. The procedure we consider is the following: For every ~k in the Brillouin zone, or at least
in a high symmetric region we are interested in, one must compute the hopping Γ

a~k
and overlap

∆
a~k

matrices in ~k-space. Then, Eq. (2.49) must be solved as a generalized eigenvalue problem and

thus diagonalizing the hamiltonian. Eventually, we end up with N eigenvalues ε
n~k

for each ~k, from
which we may draw the sought electronic bands.

2.3.2 Two-electron interactions: Hubbard model

The former approach for the tight-binding (TB) model describes particles moving in a periodic
potential using a hamiltonian written in terms of Wannier orbitals (see (2.44)), that is, highly lo-

calized wave functions {χi} centered on each atom. The hopping matrix element γij =
〈
χi | Ĥ |χj

〉
,

defined for our purpose in (2.47), allows neighbour Wannier states to “hop”, or couple. In other
words, they may interact with each other and hence hybridize. The eigenstates that we obtain
by solving the set of equations depicted in eq. (2.49) are delocalized Bloch wave functions, as
we are claiming that Bloch Theorem holds. One may see, for instance applying this model for a
simple monoatomic H chain, that the band width gets broader as the hopping parameter γ increases.

The TB model cannot describe magnetic systems. In order to achieve this, it is necessary to
explicitly include electron-electron interactions. One of the best examples is the Hubbard model
(named after the British physicist John Hubbard who proposed it in 1963), which we have used
constantly throughout this work.
In this model, the hamiltonian is made up of two different terms. The first one is exactly the same
as in classical tight-binding model; a hopping term γ that describes the strength the electrons may
hop with between lattice sites. The second term accounts for the Coulomb interaction between two
electrons that occupy the same lattice site. In this situation, the energy is assumed to increase by
an amount U . We may write the hamiltonian as follows [25]:
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Ĥ = −γ
N∑

i,j=1

∑
σ

c†i,σcj,σ + U

N∑
i=1

ni,↑ni,↓. (2.50)

Here, ni,σ = c†i,σci,σ counts the number of electrons with spin σ at lattice site i. Therefore, this model
includes the spin as quintessential element, making electrons with opposite spin on the same lattice
site to repel each other via electrostatic interactions, and at the same time neglecting Coulomb in-
teractions between electrons in different lattice sites. As in classical tight-binding model, the larger
the hopping parameter γ is, the broader the band width will be, hence favouring a metalic phase.
On the other side, the Hubbard term U penalizes occupation of a site with electrons that have the
different spin. This means that if a lattice site already contains a certain density of electrons of a
given spin, electrons with different spin will experiment a repulsion to hop there. In conclusion, the
term U inhibits the hopping γ and both are constantly “competing” against each other.

Coming back to the overview of the SP-DFT (cf. [20] as we did), let us see how the TB model,
and in addition the Hubbard model, look like when considering second-principles techniques. It is
sensible first to express the electronic density in terms of Wannier functions:

ρ(~r) =
∑
ab

dabχa~rχb~r, (2.51)

where dab is the reduced density matrix. This matrix may be defined for the RED (i.e. d
(0)
ab , cf.

[20]) to express ρ0(~r). By means of this formalism, we can express the difference between the two
densities defined in (2.34) by introducing a deformation occupation matrix :

δρ(~r) =
∑
ab

Dabχa~rχb~r, (2.52)

where Dab := dab−d
(0)
ab . Using these definitions, we may to rewrite the first and second order terms

for the SP-DFT energy as follows [20]

E(1) =
∑
ab

Dabγab and E(2) =
1

2

∑
ab

∑
a′b′

DabDa′b′Uaba′b′ . (2.53)

We have just introduced the parameters γab and Uaba′b′ of our model whose role clearly resembles
that of γ and U in the Hubbard model. They can be defined in terms of the Kohn-Sham hamiltonian
ĥ0 written in (2.38) and the Coulomb electron-electron interaction of (2.40):

γab =
〈
χa~r | ĥ0 | χb~r

〉
; Uaba′b′ =

〈
χa~rχa′~r′ | ĝ(~r, ~r′) | χb~rχb′~r′

〉
. (2.54)

However, for magnetic systems, we shall account for spin-polarized density, and so the previous
definitions must be adapted. In this way, we may write E(2) in terms of Hubbard (U) and Stoner
(I, cf. [25])-like parameters as follows (see [20] for more details about the terms involved):

E(2) =
1

2

∑
ab

∑
a′b′

[
(D↑ab +D↓ab)(D

↑
a′b′ +D↓a′b′)Uaba′b′ − (D↑ab −D

↓
ab)(D

↑
a′b′ −D

↓
a′b′)Iaba′b′

]
. (2.55)

Recall that the aforementioned parameters are not those appearing in the Hubbard model. To
simulate it, we must impose Uaba′b′ = Iaba′b′ . Furthermore, as in the Hubbard model we only
account for on-site interactions, the former parameters must be diagonal.
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2.4 Monte Carlo method and implementation in this work

In Solid State Physics, we usually handle systems made of a large number of particles. There-
fore, it is not computationally feasible to treat the motion of all of them by means of a rigorous
quantum-mechanical-based model. However, in many cases, we are more interested in macroscopic
properties (i.e., how the system “behaves” as a whole) rather than in microscopic information. An
immediate example comes for the purpose of this work; if we are pursuing a magnetic transition in
a certain system, we are only interested in how the global spin correlation adds up, no matter how
the exact spin of every single particle looks like. In other words, we are not tracking the microstate
in which the system is located at every time, but the macrostate. The existence of a huge num-
ber of coupled degrees of freedom, due to the large number of particles involved in our problem,
leaves no room for a deterministic approach. In this situation, the Monte Carlo methods offer a
powerful way to numerically solve the problem of fluctuation or relaxation in stochastic systems [21].

In principle, Monte Carlo methods may be used to solve problems that have a probabilistic inter-
pretation by performing a random sampling through as many significant microstates as possible.
Then, if the number of visited microstates is sufficiently large, an average will yield a representative
“picture” of our system at a certain time. Let us take a succinct look on the statistical foundations
of the Monte Carlo methods within this work’s scope of study, following the reference [21]. We are
interested in how the global spin correlation function (i.e. magnetization) C evolves with the time t,
so basically our problem may be described, for a certain temperature, by a set of random variables
{Xn} ≡ {Cn}. Recall that a random variable

X : (Ω, σ,P)→ R

is a measurable map defined on a probability space (Ω, σ,P). Here, Ω denotes our sample space
containing all the possible outcomes of an experiment, σ ⊆ P(Ω) the σ−algebra of all the possible
events and P : σ → [0, 1] the probability function. The random variable X determines a unique
distribution function, F : R→ [0, 1] defined as:

FX(t) := P(X ≤ t) ≡ P({ω ∈ Ω: X(ω) ≤ t}) for t ∈ R. (2.56)

The forthcoming discussion requires the following two assumptions:

i) Our random variables Xn are equally distributed, i.e., the distribution functions FXn are all
the same. Moreover, it should hold for the expected value E(|X1|) = · · · = E(|Xn|) = · · · <∞.

ii) Our random variables are stochastically independent. That is, for every indexes n,m the joint
cumulative distribution function satisfies

FXn,Xm(s, t) = FXm(s) · FXm(t). (2.57)

Intuitively, ii) means that the result of one variable does not affect the probability of occurrence of
the others. Now, we are in conditions to enunciate the following theorem:

Theorem 2.4. (Strong Law of Large Numbers) Let X1, X2, X3, ... be a sequence of independent,
equally distributed random variables with E(|X1|) <∞ and expected value µ. Let

Xn =
X1 + · · ·+Xn

n
(2.58)
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be the sample mean. Then it holds

Xn
a.s.−−→ µ⇐⇒ P({ω ∈ Ω: lim

n→∞
Xn(ω) = µ}) = 1. (2.59)

That is, the sequence converges almost sure (i.e. with probability 1, except for a set of measure zero)
to µ.

The Strong Law of Large Numbers is crucial for our analysis, and its interpretation is clear: the
more events we measure (assuming those events are distributed in the same way and that there is
no bias coming from previous measurements), the closer will be the sample average with respect to
the value we would like to estimate.

Now, using Theorem (2.4), it would be straightforward to implement a Monte Carlo method, pro-
vided a certain probability distribution to generate the sample X1, ..., Xn, for instance a classical
Maxwell-Boltzmann (MB) distribution. However, can we assume that these random variables are
equally distributed in that way? The answer is in general negative, and that is the reason why
Monte Carlo techniques may sometimes face non-tractable situations. Thus, we must find a way to
sample microstates so that the probability distribution does not vary as we keep on simulating.

The Metropolis-Hastings algorithm, named after Metropolis [23] and Hastings [24], proposes a way
to construct a stochastic process that reaches a certain stationary distribution. This algorithm is
based on constructing a Markov chain, which may be defined as a stochastic process X1, ..., Xn

verifying the following for the conditional probability:

P(Xn+1 = xn+1 | Xn = xn, . . . X2 = x2, X1 = x1) = P(Xn+1 = xn+1 | Xn = xn). (2.60)

That is, the probability of moving to the next state depends only on the current state, regardless
of the previous ones. In other words, our system has no “long-term memory”. Without going into
too much detail (further description may be found in the papers of Metropolis [23] and Hastings
[24], as well as in [21]), we may construct a Markov chain satisfying:

i) Stationariness. There exists a distribution π and a natural number k ∈ N such that Xn ∼ π
for each n ≥ k. Thus, from a certain index onwards, the distributions of the random variables
are (almost sure) identical.

ii) Ergodicity. Roughly speaking, this condition means that we can reach any state starting from
any other state with a non-zero probability. This property implies that we may substitute the
ensemble average of a certain physical property by the corresponding time average.

Translated into physical terms, reaching a stationary probability distribution is equivalent to reach-
ing a thermal-equilibrium state. Hence, according to Statistical Mechanics, a system at thermal
equilibrium may be described by means of the canonical ensemble (also called NVT ensemble since
number of particles, volume and temperature are fixed thermodynamical variables) and the corre-
sponding Maxwell-Boltzmann statistics:

P(X = x) ≡ peq(x) =
e
−E(x)
kBT

Z
, (2.61)

where E(x) denotes the whole energy of the system having a dynamical variable x (in our case
the spin distribution), kB is the Boltzmann constant and T is the temperature. The denominator,
named after the German word Zustandssumme, is the partition function of our system:
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Z =

N∑
i=1

e
−E(xi)
kBT . (2.62)

The system needs a certain time to thermalize ,i.e., to reach the thermal-equilibrium state relative
to the given temperature. Therefore, the total number of sweeps Ns is divided into thermalization
sweeps Nt and run sweeps Nr so that Ns = Nt + Nr. We shall just store the correlation after the
thermalization has taken place and in steps that are sufficiently far from each other, thus making
one event being independent from the all the previous ones as we claim in Eq. (2.60) for a Markov
chain. The version of the Metropolis-Hastings algorithm considered in this work adopts this quite
simple form:

INPUT: L× L initial configuration, array T with temperatures and number of sweeps Ns,
thermalization steps Nt

C = empty array to fill with correlations
S = empty array to fill with standard deviations
for t in T do:
Cinst = empty array to fill with instant correlations

for n=1 to Ns do:
for i =1 to L2 do:

Calculate energy difference ∆E of the new state relative to the former one
if ∆E ≤ 0 then:

Update to the new state
else:

Generate a random number r ∈ (0, 1)
if: exp(−∆E/kBT ) > r then:

Update to the new state
else:

Leave the state as it is
end if

end if
end for

if: n > Nt do:
Add current correlation to Cinst

end if
end for
Add to C mean value of Cinst

Add to S standard deviation of Cinst

end for

RETURN: C and S
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Chapter 3

Results

Once we have thoroughly explained the computational methods, we may now start to present the
main results obtained in this work. We shall begin by introducing the model for the CuO2 layers
found in La2CuO4, describing their electronic structure through a set of Wannier functions. We
shall commence our analysis by presenting a simple TB model on our CuO2 layers. Then, we
will proof how SP-DFT techniques reproduce both the FM and the AFM states, depicting their
corresponding energies, density of states (DOS) and band structure. We will also show how the
electronic hamiltonian for this system is written in terms of the γ and U parameters introduced in
Chapter 2 and how the phase transition depends on their ratio.
The next step consists in evaluating the correlation as a function of the energy. As we will see, the
FM (resp. AFM) microstate presents both highest (resp. lowest) energy and correlation. A simple
glance on these results will suffice to figure out whether there is a population of microstates valid
for our Monte Carlo method.
We will finish this chapter by presenting the simultaneous AFM-paramagnetic and insulator-metal
phase transition achieved thanks to the Monte Carlo simulation, arguing changes of spin correlation
and DOS.
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3.1 Model employed

As we mentioned in the first chapter, the relevant orbitals on the CuO2 are Cu2+ dx2−y2 and O2−

px, py. The conduction band may be properly described as arising from a single, hybridized orbital.
If we take a look at the energy scheme (see figure 3.1) , we may see that this hybrid orbital turns
out to have a much larger Cu-like contribution, while the lower energy fully occupied band displays
a predominately O-like character

29
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Figure 3.1: Bonding scheme for the interaction between Cu2+ dx2−y2 and O2− px, py WF orbitals .

Without going into further details, we may state the main ansatz of our approach: the two-
dimensional CuO2 system may be described by a supercell where on each lattice site there is
only one single WF orbital. Moreover, the fact that the WF orbitals are localized on each lattice
site allows us to simplify our problem by just considering a Hubbard-like system whose character
is Cu(3dx2−y2).

3.2 FM vs AFM

Now that we have established the basis of our model, let us proceed with the first results. First
of all, we may start by observing how SCALE-UP is able to reproduce the TB model on a two
dimensional lattice:

Figure 3.2: Tight binding model bands (left) and density of states (right) for values of the hopping parameter
γ = 1 eV (blue) and γ = 0.5 eV (red). The supercell taken has size 2× 2. We may notice that the band width
depends strongly on the value of γ. The energy axis has been set to have its origin at the Fermi energy.

As a result of interaction between Wannier orbitals, the corresponding level has broaden forming a
band with a width W = 8γ.

It turns out clearly that the bigger the hopping parameter γ, the wider the band. This fact resem-
bles the meaning of γ exactly as we defined it: the more overlap between orbitals, the larger the
hopping will be, and thus the electrons may tunnel between the wells of the crystalline potential
much easier. Therefore, wider bands usually (it really depends on occupation as well) correspond
to metallic systems, where there is no energy gap.

Moving on, we are going to handle magnetic systems by means of a SP-DFT Hubbard-like model.
The first thing we must accomplish is to figure out that the AFM configuration is indeed the least
energetic, whilst the FM system has the largest energy. For the sake of simplicity, we may deal with
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a simple 2× 2 lattice in order to explore all the possible configurations. It is straightforward to see
that there are just four different configurations.

Figure 3.3: Antiferromagnetic (AFM) configuration,
total energy E = −8.374305 γ.

Figure 3.4: Intermediate configuration, total energy
E = −7.402935γ.

Figure 3.5: Intermediate configuration, total energy
E = −7.29945 γ.

Figure 3.6: Ferromagnetic (FM) configuration, total
energy E = −6.760775 γ.

In the figures above we have just depicted the bands structure and the DOS for all the different
spin configurations, setting γ = 2 eV and U = 3γ = 6 eV. Other dispositions are equivalent, as we
would end up with an equal system up to a translation. Regarding the units, we simply represent
the energy in terms of the hopping parameter γ, i.e., as a multiple of it.
Indeed, we have just verified that the AFM configuration is our ground state, whereas the FM one
corresponds to an energy maximum, and is thus unstable. Other possible configurations have an in-
termediate energy and build up an energy/spin correlation spectrum that we will present afterwards.

There is also a noticeable fact connected to the former plots. Although there exist only four different
microstates, which do not let any room for a rigorous statistical and physical analysis, we may note
that the ground state (AFM) starts being an insulator as mentioned in the first chapter. For the
sake of clarity, it is recommendable to take a look at the DOS plot to observe the large gap that
characterizes our current state.
As a matter of fact, it is clear that the insulating behaviour vanishes as we increase the spin
correlation (i.e., we move towards a more paramagnetic configuration). Still the intermediate con-
figurations do have an energy gap, though significantly smaller. Finally, the FM configuration is
purely metallic. Bearing in mind that a 2× 2 lattice is not large enough to rigorously reproduce a
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phase transition, this simple example suffices to demonstrate that the objective we are pursuing is
feasible within our framework.

3.3 Importance of U/γ

It should be noted that for a Hubbard-like model the quantity U/γ plays a crucial role. In our
La2CuO4 we are neglecting lattice (and thus phonon) effects and hence the total energy is approx-
imated by the sum of first order E(1) and second order terms E(2) (neglecting the zeroth term that
describes the lattice itself), we may express the aforementioned energy in terms of U/γ by simply
dividing by γ:

EDFT
γ
≈
∑
ab

Dab +
U

γ

∑
ab

∑
a′b′

DabDa′b′ . (3.1)

Within this approach, the hopping parameter simply scales the Hamiltonian.
The first fact we shall find out is to what extent the factor U/γ affects not also the shape of mi-
crostates population sorted by energy, but also the system’s character itself. A way to figure it out
is to observe how distant the FM and the AFM configurations are from each other as we vary both
U and γ.

Naively, our ansatz for this problem would be that the smaller U/γ, the larger metallic character of
our system: large γ means that electrons present a tendency to jump to neighbouring lattice sites,
thus increasing system’s conductivity. At the same time, a small value of U means small inhibition
between electrons occupying the same orbitals which, again, contributes to mobility. Insulating
character should occur in an opposite situation, precisely when U/γ >>. This behaviour may be
easily observed by means of a simple calculation on a 2× 2 lattice (see Fig. 3.7).

Figure 3.7: Left: 3d plot energy difference between FM and AFM as a function of both U and γ. Right:
2d plot of the same value as a function of U/γ. The simulations have been performed on a 2× 2 lattice and
choosing a sample of 30× 30 k-points within the first Brillouin zone.

The purpose of the 3d plot in Fig. 3.7 is to find out whether U and γ themselves influence the
value of the energy difference. It turns out that, regardless of the value of both parameters, the
shape of the function only depends on the quotient U/γ. Essentially, we may observe that our
function reaches a maximum at about U/γ ∼ 3.7 and goes to zero both at U/γ ≈ 0 as well as at
large U/γ values. In our model, there is a continuous concurrence between covalence (represented
by the hopping parameter γ and favouring delocalization) and repulsion (arising from the Hubbard
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parameter U and causing localization). This maximum represents the point where the localization
is the highest possible. Needless to say, both contributions are needed in order to understand
magnetism. Another remarkable fact is that FM and AFM configurations coincide in both limits
U/γ = 0 and U/γ →∞:

i) U << γ: In this case we may argue as if U were zero. Under such circumstances, our hamilto-
nian resembles the one of a tight-binding-like model. Since we do not take spin (or magnetism)
into account, AFM and FM states are equal and coincide with the metallic solution without
spin polarization.

ii) U >> γ: This case is reasonably described by a model with γ = 0. In this situation there is no
hopping, the electrons are completely localized (or isolated) at each lattice site. As if we had
cut off the covalent bonds between neighbouring orbitals, both AFM and FM states present
the same energy for this reason.

Figure 3.8: Running time (half the sum of running
time for FM and that of AFM) for simulations de-
picted in 3.7 (right).

If we take a look at the computation times on
Figure 3.8, we may note that it takes much more
for SCALE-UP to converge below the maximum
of the afore-presented curve, at U ∼ 4γ. These
time-demanding cases are precisely the ones with
a high covalent character and mobility, where in-
teratomic interactions, rather than intraatomic
ones, play a crucial role. Moreover, it turns
out that these values for U/γ require a larger
k-sampling in order to assure convergence. The
states with higher correlation (which perform
as metals) are by far the most time-demanding
ones. This may be a severe issue when trying to
randomly explore microstates during

the MC, as having no convergence for certain configurations might bring a bias into our calculation.

The results in Figure 3.8 point out that at some point below U ∼ 4γ the system’s behaviour changes.
As we have depicted half the sum of the computation times for AFM and FM configurations, let us
take a look at these for various values of U/γ.

As we can see in the plots in Fig. 3.9, the AFM configuration is clearly an insulator for almost every
value of U/γ, though at U/γ ∼ 0.5 and below this state resembles the metallic TB solution, being
quite similar to the FM solution as already explained. Unlike in a one dimensional case, this metal-
insulator transition of the AFM solution takes place gradually. However, the most relevant fact we
can conclude from Figure 3.9 is that the FM configuration is no longer a metal above U/γ ∼ 4. As
we may note, spin up and spin down channels distance themselves from each other and the system
becomes an insulator. The reason for a low convergence relies on the “entanglement” among bands
of both channels below this threshold. Consequently, as it turns out that not only FM but also
many other intermediate states present this character, there is no reason to seek an insulator-metal
transition above this limit. There would not be any metallic state, not even the FM. Nevertheless,
a magnetic transition would take place regardless the value of U/γ.
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Figure 3.9: FM state (up) and AFM state (down) por U/γ = 0.5, 4 and 8.

3.4 Correlation as function of energy. Microstates

In order to account for magnetic ordering in a large supercell where magnetic disordered states can
be simulated, we shall proceed quantitatively. That is, we must introduce a quantity that helps us
to identify magnetic structures. Given a N ×N supercell with one atom per lattice site, the easiest
way to approach this problem it is by defining x- and y- spin correlation functions:

Cx =
1

N2

N∑
i,j=1
i 6=j

S(i, j) · S(i+ 1, j) resp. Cy =
1

N2

N∑
i,j=1
i 6=j

S(i, j) · S(i, j + 1), (3.2)

where S(i, j) represents the spin at the position (i, j) and the former expressions are normalized
so that they can be 1 at most (or −1 at least). Furthermore, we shall choose adequate periodic
boundary conditions (PBCs) by “folding around” our system as if it were a torus. Quantitatively,
this means that we impose that both indexes i and j are integers module N . In particular,

S(N + 1, j) = S(1, j) and S(i,N + 1) = S(i, 1) for every i, j.

The total spin correlation is defined as half the sum of the formers, i.e., C = 1
2(Cx+Cy). Taking this

function as mean to characterize the ferromagnetic (or antiferromagnetic) behaviour of any system,
it is straightforward to see that a pure FM (resp. AFM) configuration has a maximum (resp. mini-
mum) value for C. If all the spins were either +1 or −1, those values would be +1 resp. −1 as well.
Although we provide such +1/-1 configuration as input for the SCALE-UP code, we might not end
up with a similar lattice, but rather a system whose electrons are not localized at each lattice site
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and thus handling a spin density distribution. As we will see, that is a meaningless quantitative
issue, since FM and AFM are still the configurations with highest and lowest correlation and we
may express the rest in terms of them by simply normalizing.

We have already observed how the factor U/γ determines how far away the FM and AFM config-
urations are from each other, including the time cost of our simulations and where we expect an
insulator-metal transition phase to occur. Now, we shall go deeper by taking the correlation into
account. As a matter of fact, we expect the correlation to rise as the energy does, being FM and
AFM the extreme cases. At the same time, we are also interested in sketching out the microstates’
energy population. Since we set all the spins to be +1 or -1 on the input lattice, the population for
the input configuration presents a discrete distribution. It is essential to highlight that, although
it might seem true at first glance, that distribution is not binomial. The reason is that we do
not have a sum of independent Bernouilli distribution (neighbour spins aligned or not with same
probability), but they are in fact dependent due to the PBCs and the fact that x-correlation and
y-correlation are stochastically dependent. However, and since electrons delocalize, we must deal
with a spin density (i.e. arbitrary numbers in (−1, 1)) rather than with +1 or -1. Thus, it is
definitely not true that the magnetic order may be properly described by means of a discrete proba-
bility distribution. We now aim to figure out whether the normal distribution is an adequate option.

Figure 3.10: Left: Non-normalized spin corrrelation vs energy in γ units and linear fit, which yields
R = 0.97612689. Right: Normalized correlation histogram. These data correspond to U/γ = 2.72.

Figure 3.11: Left: Non-normalized spin correlation vs energy in γ units and linear fit, which yields R =
0.99999929. Right: Normalized correlation histogram. These data correspond to U/γ = 27.2.

These data have been achieved by running 1000 SCALE-UP simulations using a fixed γ = 2eV and
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U = 0.2 and 2 u.a. For each simulation, a completely random lattice was generated. Note that the
FM and AFM initial configurations have been intentionally introduced.
In the former plots we have just shown, on the one hand, a linear fit of the correlation (not nor-
malized in terms of AFM and FM correlations) against the energy. We may verify what we were
intending to show, namely that the correlation is directly proportional to the system’s energy. These
plots point out in the same direction as the Figures 3.3, 3.4, 3.5 and 3.6 did, but for much larger
dimensions, that the AFM configuration turns out to be an energy minimum, whereas the FM state
is a maximum. Large correlation coefficients, shown on the caption, give a quantitative idea of how
good spin correlation and energy correlate. It is also worth mentioning that the smaller the U/γ
factor, the more spread the points are. As we mentioned earlier, U/γ < 4 implies spin up and down
bands close to each other in energy, and there is higher covalence and delocalization. Conversely,
if we increase the quotient above this threshold, there is no metallic state the code must handle.
Hence, huge localization at each lattice site and weak interactions among neighbouring Wannier
orbitals lead to an almost perfect correlation where every point lies roughly on the fit line.

This reasoning holds for the correlation histograms too. As expected, systems with localized elec-
trons present little changes on spin density before and after running a simulation. Let us try to
account how these changes may be quantified. First, we insist that the initial correlation may not
be described by a binomial function. In fact, coming up with the right distribution function is not
a trivial issue. Instead, we can focus on the final correlation distribution, which is actually the one
that matters. The most immediate question it may arise is whether taking a normal distribution is
sensible. For a first glance, let us consider the following Q-Q plots in the Figure 3.12 below.

Figure 3.12: Q-Q plots for U/γ = 2.72 and U/γ = 27.2 (values of Figures 3.10 and 3.11). Sample quantiles
are plotted against those of a N (0, 1). A red straight line passing through the 0.25 and 0.75 quantiles has been
drawn.

Q-Q plots intend to plot the sample quantiles against those of a normal distribution N (0, 1). They
are used in order to estimate whether the sample distribution looks normal, although other distri-
butions may be considered as well. In our case, the spin correlation distribution for U/γ = 2.72
turns out to be normal in appearance, though we must insist that Q-Q plots are not sufficient to
prove normality, but rather to dismiss it. On the other hand, as the sample for U/γ = 27.2 presents
little changes on the correlation with respect to the initial one, it does not appear to be normally
distributed at all. This remaining “discreteness” of our sample may be observed on the Q-Q plot:
the quantile function, or equivalently, the inverse of the cumulative function distribution, is not
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continuous. Going even further, we may also seek for evidence of normality of our sample C1, ..., Cn
by means of the Shapiro–Wilk test (cf. the original paper from Shapiro and Wilk [27]) . Null- and
alternative hypotheses for this test are:

H0 : C1, ..., Cn are normally distributed.

Ha : C1, ..., Cn are not normally distributed.

The function shapiro.test() of RStudio (see RDocumentation) yields a p-value of 0.2134 and 5.934 ·
10−5 for the cases U/γ = 2.72 and U/γ = 27.2, respectively. As anticipated, it is very unlikely
that the null hypothesis holds when U/γ = 27.2, so we can confidently reject it. For U/γ = 2.72,
there is a high 21.34 % chance of failure if H0 is rejected, so we shall not. Recall that keeping the
null hypothesis H0 does not mean that it holds, but that there is not enough statistical evidence
to assert that Ha does. In other words, a test hypothesis is only valid to prove the falseness of an
assertion, but not its veracity.

Summing up, there is a priori no way to sketch the correlation distribution function. And, if we
could, it is not fully clear whether we might take advantage of it for the purpose of this research. For
instance, randomly sampling from a given normal distribution would not give us actual microstates
of our system, but a continuum of energies (or correlation). This approach would hence hinder
our aim to resemble temperature fluctuations and assessing accessible microstates in terms of the
thermal excitation. For this reason, we may ignore how the actual correlation distribution might
look like and focus instead on a Monte Carlo approach that will allow us to reproduce the effect of
the temperature on our system.

3.5 AFM insulator - paramagnetic metal phase transition during
MC

So far in the previous sections, a systematic characterization of our system has been our goal. First,
we aimed to prove, by means of calculations on a 2 × 2 lattice, that the energy minimum (resp.
maximum) corresponds to the antiferromagnetic (resp. ferromagnetic configuration). This point
is crucial in case we would like to achieve an insulator-metal transition. As second step, we have
figured out the influence of the parameter U/γ on our system’s behaviour, arguing its relevance in
order to fully understand the magnetism, and how the electronic properties of both AFM and FM
vary while U/γ does. In particular, we have established a threshold at about U/γ ∼ 4 below which
we should expect an insulator-metal phase transition to take place.
The third element to take into account is the spin correlation, which allows us to classify the mag-
netic ordering of any microstate. Moreover, we have successfully evidenced the excellent correlation
between this variable and the system’s energy, concluding that the higher the correlation, the higher
the energy. The sharp, nearly zero-centred correlation histograms in Figures 3.10 and 3.11 pave the
way for a MC simulation, since the correlation distribution seems to be concentrated at paramag-
netic states, whilst those close to the AFM and FM configurations appear to be more seldom.

All these aforementioned elements are crucial in order to understand why and how we carry out a MC
procedure. As mentioned in the previous chapter, we have utilized a simple version of the Metropolis-
Hastings algorithm, taking Maxwell-Boltzmann (see Eq. (2.61)) as stationary distribution. For the
sake of significance, we have intended to perform a MC on a 10× 10 lattice, choosing U = 5.44 eV
(i.e. 0.2 u.a.) and γ = 2 eV as parameters. Therefore, U/γ = 2.72 remains within the range where
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we expect a phase transition to happen. Nevertheless, these simulations require a huge amount of
time to be successfully carried out. Having no access to the computational tools from mid-March
onwards has led to a somehow limited MC. However, it does suffice for what we are pursuing,
namely for observing an insulator-metal phase transition:

Figure 3.13: Normalized correlation as a function of the thermal excitation, scaled by the hopping parameter
γ. Normalization is carried out by dividing positive values by the FM correlation, whereas negative ones are
divided by that of the AFM state. The values plotted are the average of those sampled during the Monte Carlo
after the thermalization and sufficiently far away from each other in order to accomplish the Markov chain
condition (see M-H algorithm). The error bars correspond to the statistical standard deviation. 15 sweeps
have been performed, from which 6 are thermalization steps.

Figure 3.13 depicts the spin correlation (normalized in terms of FM and AFM states) as a function
of the temperature. All thermal excitations are expressed in γ factors.

For the sake of simplicity, we have just started from an antiferromagnetic configuration, i.e., the
ground state. As expected, at low temperatures the correlation remains at a minimum, pointing
out that the AFM is the only accessible state. When the temperature increases, more states become
accessible and eventually get sampled along our MC. While the average energy increases, so does the
average correlation at each temperature, and thus the initial AFM ordering disappears gradually
until, for a sufficiently large temperature, all microstates (or an overwhelming majority of them)
are accessible. This means that all configurations are equally probable, and therefore the mean
correlation tends to adopt a steady value close to zero which corresponds to that of the correlation
distribution (cf. Figure 3.10) and a paramagnetic behaviour.
This behaviour represents a magnetic phase transition, and we could have assumed it to be true even
before running a MC, just by briefly observing how the correlation distribution looks like in Figures
3.10 and 3.11. However, in order to assess the insulator-metal phase transition, which shall occur
simultaneously, we must take a look at the electronic properties (reflected on the band structure
and the DOS), and their evolution along the simulation. Let us take a deeper look at the DOS and
the spin density for various states:
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Figure 3.14: Density of states (left) from seven points taken from 3.13 is depicted. For each DOS, the
corresponding spin distrbution (right) is depicted with a grayscale.
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Figure 3.14 yields an illustrative depiction of both processes: The AFM-paramagnetic phase tran-
sition is reflected on the lattice grayscale representation, which indicates the magnetic ordering and
is complementary to Fig 3.13. The insulator-metal transition may be observed in the evolution of
the DOS.

As we can see, at low temperatures the system’s preferred configuration is that of an antiferromag-
netic insulator, as no thermal excitations arise. Slightly increasing the temperature leads to a tiny
deformation of the DOS, getting broader while the energy gap becomes narrower, until it finally
vanishes. The fact that the gap disappears does not mean that the system has lost its magnetic
order completely. In fact, no gap is observed for kBT/γ = 0.3, even though we still observe par-
tial AFM ordering and a correlation (see Figure 3.13) larger than −0.4. With regards to the spin
density function, we may observe a transitional region between the AFM and the paramagnetic
configurations. The aforementioned region is made up magnetic domains that preserve an AFM
ordering only locally, and thus contribute to a smaller global correlation.

However, and as already mentioned, a finer MC would require a larger amount of sweeps in order to
deal with statistical fluctuations that might arise in the one presented in this report. For instance,
at large temperatures the correlation appears to be at around −0.1, even though we should expect
it to lie close to zero. The Strong Law of Large Numbers assure that the sample mean converges to
zero, though it does not assert when. Therefore, the exact number of steps necessary to avoid this
and other statistical inconsistencies is unknown, mainly because the MC itself is random. Another
input value which is reasonable to change is the array of temperatures. For the MC depicted in 3.13,
it would have been much more reasonable to consider a finer grid within the interval 0.1 ≤ kBT

γ ≤ 0.4
in order to account for sudden changes in the correlation during the phase transition. This would
have allowed us to examine the gradual lost of AFM ordering and the magnetic domains of the
“pre-metallic” states. This is much more preferable than performing simulations above kBT

γ = 0.4,
precisely when the system has already become metallic.

For the purpose of future simulations, it may be useful to determine a temperature for which the
AFM ordering begins to vanish, and so avoiding making some trials to find out the best region
to perform the MC. Recall that, starting from a microstate i with energy Ei at temperature T ,
the probability to jump to another microstate j with energy Ej is given by the quotient between
Boltzmann factors:

pij = e
Ej−Ei
kBT = e

∆E
kBT (3.3)

Let us consider that i is the AFM state and j is the same one except for a spin that has been flipped.
Obviously, j is the closest microstate to i and their energy difference ∆E is the one that has to be
overcome by our MC so that the phase transition may begin. Let us estimate the probability α of
reaching the microstate j at least once within n thermalization steps X1, ..., Xn:

α = P(∃k : Xk ≤ pij) = 1− P(X1, ..., Xn > pij) = 1− P(X1 > pij)
n = 1− (1− pij)n. (3.4)

Recall that each random variable is uniformly distributed in (0, 1) (Xi ∼ U(0, 1)) as we are using
the Metropolis-Hastings algorithm to decide whether the change is accepted or not. Therefore, they
are stochastically independent.

Isolating the temperature and expressing both energy and thermal excitation in terms of γ we
obtain:
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kBT

γ
= −∆E

γ

1

log
(
1− (1− α)1/n

) . (3.5)

Whereas the value of ∆E must be determined by just running two simulations, the parameter α is
arbitrary. Reasonable choices are α = 0.95 or α = 0.99. Recall that the value of ∆E is not the same
for any pair of parameters U and γ, so it must be calculated any time we change the model we are
using. In our case, for U/γ = 2.72, this difference is around ∆E ∼ γ. Moreover, recall that the 6
thermalization sweeps correspond, due to the lattice size, to 6 · 100 = 600 thermalization steps.

kBT/γ α

0.05 < 10−5

0.10 0.02687
0.15 0.53423
0.20 0.98269
0.25 0.99998

Table 3.1: α in terms of the thermal excitation.

A quantitative example of the former expressions
for U/γ = 2.72 is given in Table 3.1. We may see
that from kBT/γ ∼ 0.20 onwards it is almost
certain that the AFM is not the only accessible
microstate. However, as done in Figure 3.13, it
is recommendable to start at some value close to
kBT/γ ∼ 0.1 so that there is at least one AFM
point on our plot. This procedure may help us
to estimate a region where the phase transition
should take place, while assessing a temperatures
range to make our MC as fine and optimal as
possible.
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Chapter 4

Conclusions and future work

Let us take a brief but general look at this work and its outcomes, setting up ideas for future
contributions to the topic we have dealt with.

The underlying reasons behind the phenomenon of superconductivity are not totally clear for non
conventional superconductors, and the BCS theory does not suffice to explain their behaviour. Ex-
ploring such a broad and still unknown topic is out of the scope of this work. Instead, we have just
focused on describing the electronic structure of the undoped La2CuO4 - one of the most relevant
high-Tc superconductors - and the importance of the magnetic ordering using a minimalistic model.

Our work has begun by considering a framework suitable for our aim. On the one hand, we realised
that our problem may be simplified to a two-dimensional magnetic system, representing the CuO2

layers of the La2CuO4. We discussed the main orbitals that form the most important bands of our
system. Moreover, since these orbitals hybridize, we have been able to computationally describe a
CuO2 layer as a n×n lattice with periodic boundary conditions and one Wannier orbital per lattice
site.
On the other hand, the development of a DFT-based second-principles model has been crucial.
Within this model, the DFT Hamiltonian resembles a Hubbard-like model, and hence it is possible
to take magnetism into account by means of two parameters: γ and U .

Once the model had been exposed, we started by reproducing the bands using a simple tight-binding
model which does not take spin into account. We noted the relevance of the first-order parameter,
γ, to account for bonding. After “turning on” the spin, it was necessary to introduce a second
parameter U to describe electron-electron interaction.
Before even dealing with magnetic ordering, we aimed to examine how these two parameters deter-
mine essential properties our system. Since we may express the DFT Hamiltonian in terms of U/γ,
we came to realize that electronic and magnetic interactions are linked with each other by means
of the factor U/γ, and that this factor determines whether metallic states can be found or not. As
a matter of fact, we estimated a region for U/γ where the desired insulator-metal transition phase
can occur.

Subsequently, we introduced the correlation as a way to quantify magnetic ordering. This has al-
lowed us to describe a complex magnetic state with a single number instead of a n × n matrix.
Moreover, this helped us to confirm that AFM configuration is our system’s ground state, whereas
the FM one is an energy maximum.
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The former steps were necessary to set up the observation of the desired phase transition, requiring
a temperature calculation which is not directly possible with DFT. A Monte Carlo method, based
on the Metropolis-Hastings algorithm, served this purpose. A computationally limited, though
representative simulation has provided enough evidence to assert that the DFT second-principles
approach, implemented on SCALE-UP, is able to reproduce such phenomenon.

All these elements, combined and properly used, have served us to reproduce a phase transition
which is simultaneous: AFM-paramagnetic and insulator-metal. Needless to say, this have been
accomplished by means of a simple model and regardless of phonons and lattice contributions.
The fact that this is a simultaneous transition evidences that metallic and magnetic properties are
strongly correlated.

As we have already mentioned, this work is restricted to the undoped case, and thus we have
not explored appealing states that appear if holes concentration increases, not to mention the
superconductor state. In order to fully understand high-Tc superconductivity in La2CuO4, we must
be able to explain the whole temperature-doping phase diagram. Achieving this goal would be a
natural extension of the approach presented here. Future work should consider adding holes in
our system in order to seek characteristic phenomena of intermediate phases, such as exotic holes
dispositions (stripes) and the pseudogap region.
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Appendix A

Code implementation

The results of this work have been obtained by means of a combination of Python and SCALE-UP
scripts needed to generate both the second-principles model and the lattice, together with the anal-
ysis in form of output scripts and plots. This work’s own scripts approximately contain 1700 lines
of code. Reasons for choosing Python 3.7 are its intuitiveness and easiness, as this programming
language is flexible enough to adapt itself to the purposes and methodology of this work. More-
over, Python presents a large list of libraries that allow us to perform mathematical operations
and handle data in form of matrices (numpy and math), as well as proper graphical representation
(matplotlib.pyplot) and interpolation (scipy). The libraries os and sys have been used too. A brief
summary of the scripts needed to run SCALE-UP is given in the following table:

2d hubbard.orbocc
Script for the two-dimensional lattice. Each lattice point is assigned two
spin channels set at (0.5,0.5) by default. Spin up and down is achieved
by inserting (0.5,-0.5) and (-0.5,0.5), respectively.

2d hubbard.xml
SCALE-UP second-principles model. It contains information about the
system’s geometry and the hamiltonian’s parameters (γ and U).

2d hubbard.fdf

SCALE-UP input file. It reads both the model from the .xml script and
the lattice configuration from the .orbocc file. Other parameters shall
be specified as well, such as k-sampling, grid of reciprocal space, SCF
threshold, numerical tolerance, etc.

Table A.1: Summary of the three scripts needed to run a SCALE-UP second-principles simulation.

Table A.1 summarizes the three scripts used by SCALE-UP to run a second-principles simulation.
A tight-binding model may be also achieved by setting the second-principles parameters U and I to
zero in the .xml script. As already mentioned in Chapter 2, resembling the Hubbard model requires
I = U .
After running a SCALE-UP simulations, several files appear in the working directory. In our case,
and for the sake of clarity, all of them excepting the .txt output (name specified in the .fdf) are
preceded by a string 2d hubbard FINAL. Some of these files are:

• 2d hubbard FINAL.orbocc: Lattice magnetic ordering after simulation.

• 2d hubbard FINAL.bands: Output file prepared as input to plot the bands.

• 2d hubbard FINAL.ener: Output file prepared as input to plot the DOS.
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• output: .txt file which contains all the information regarding the SCF convergence process.
As a matter of fact, we have been mainly interested in the system’s total energy.

DOS and bands can be automatically plotted by means of the script scaleup utils.py, already pro-
vided with the SCALE-UP code. However, since electronic properties along the Monte Carlo simu-
lation are computed as the average of several MC steps, we have created our own functions to plot
bands and DOS in terms of this output. Python scripts are summarized in Table A.2.

Orden.py

This Pyhton script generates a 2d lattice and saves it with a name.orbocc
syntax. The spin configuration can be passed via command line (library
sys) or generated randomly. The latter has been always the case except
for the intentionally considered AFM and FM configurations.

Plot3d.py

Given a set of values of U and γ, this script calculates the difference
between the AFM and the FM configurations and plots it on a U − γ
grid to produce the 3d plot of the Figure 3.7. The corresponding 2d
plot of the same figure and the computing times (Figure 3.8) are also
produced.

Calculos.py

This script creates .xml and .fdf files for different values of U/γ. A
previously indicated number of simulations is performed. After each
one, the script saves all the aforementioned output files, as well as the
initial configuration (.orbocc) in a reference folder.

Correlacion.py
This file reads both spin correlation and energy from the files generated
by Calculos.py to produce the fits and histograms in Figures 3.10 and
3.11. It also adds the AFM and FM configurations.

MC.py

This script, provided with a large number of functions, performs the
Monte Carlo simulation. MC.py creates a random lattice at each step by
means of Orden.py and goes through the algorithm described in Chapter
2. The rest of the Python functions contained in this script are used to:

• Perform lattice perturbations (spin flipping) for the MC.

• Calculate correlation of current state.

• Plot DOS.

• Plot spin correlation as a function of kBT/γ (Figure 3.13).

• Plot a spin map in greyscale (Figure 3.14).

While the MC simulation is running, this script writes in a .txt file all
the data regarding every single step. In particular, this file contains in-
formation about whether the state is updated, the current temperature,
energy and correlation (normalized) as well as general information about
the whole simulation itself.

Table A.2: Summary of the main Python scripts used to produce the results of our works. Note that minor
scripts used for the purpose of testing our model and making fast trials are not included in this table. Some
scripts that were thought to begin working with doped systems have been also created, though not implemented
as the beginning of the COVID-19 pandemic lockdown hindered continuing with this work.
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