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Resumen

Para entender la interaccién radiacion-materia de una nanoesfera metdlica cuando es
iluminada por una onda plana electromagnética, se han utilizado aproximaciones dipolares y
la teoria de Mie. Primero, revisando los modelos de tipo dipolo y su validez en el rango de la

nanoescala, y luego, analizando la respuesta éptica de una esfera de oro de 20 nm de radio
cuando es iluminada por una onda plana de A = 550 nm. El calculo nuérico de los campos
difundidos se realizo con el software matematico MatLab. En particular, este trabajo se
centra en el comportamiento del campo electromagnético en las proximidades de la
nanoesfera, es decir, en la regién de campo cercano. En esta region se observan propiedades
extraordinarias debidas a las ondas evanescentes generadas por resonancias plasménicas.

Palabras clave: Difusién, nanoesfera metéalica, aproximacién dipolar, campo cercano,
plasmones

Abstract

Dipole approximations and Mie theory were used to understand the radiation-matter
interactions of a metallic nanosphere when it is illuminated by a plane electromagnetic wave.
First, dipole models and its validity in the nanoscale range were revised, then , the optical
response of a 20 nm radius gold sphere was analysed when it is illuminated by a plane
electromagnetic wave of A = 550 nm. The scattered fields were calculated using MatLab
software. In particular, this work focuses the attention on the electromagnetic behaviour in
the proximity of the particle, the near field region, which has exceptional properties due to
evanescent waves generated by plasmon resonances.

Keywords: Scattering, metal nanosphere, dipole approximation, near field, plasmons
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Chapter 1

Introduction

One typical way to deal with a problem in physics is going from the simplest case to more
challenging cases. Solving a simpler version of a problem can be extremely helpful to set up
the basis to figure out more complex cases. A good example of this methodology is depicted
in reference [I], which concerns the plasmonic behaviour in the UV wavelength range. This
has inspired the spirit of my research to get the results I am going to show in this manuscript.

This research is focused on the field scattered by a spherical nanoparticle embedded in
electromagnetic radiation, especially its behaviour on the scattering in the vicinity of the
particle surface.

The introduction chapter covers briefly the importance of nanoscience to contextualise
before we get started, the fundamentals of radiation-matter interaction, the essential problem
of this work, and the objectives. Along Chapter [2] the basis of Mie theory and Mie scat-
tering field equations are explained, leading up to the analysis of scattering coefficients and
the evolution of efficiency parameters as a function of the wavelength. In Chapter [3] some
approximations are introduced and analysed to simplify the calculus, for instance, the pure
dipole approximation and its validity range as function of the particle size. The Chapter also
contains a comparative between the complete calculation of the scattered field by the Mie
theory and the result obtained by the approximation of a pure single dipole. Chapter [/] digs
into the study of the near electric field to study the electric field and the flux of energy in the
proximity of the sphere surface.

Chapter [5] closes the work gathering up the conclusions of the analysis, the milestones of
nanotechnology, and the future work in this field. Besides, an appendix contains the comput-
ing code in MatLab, created to calculate and visualize the fields from the theoretical equations.

1.1. Nanoscale, properties, and applications

Nanoscience is not only the study of the world in the nanoscale which involves nanometric
structures, i.e, structures which characteristic size is around few nanometers (1 nm = 10~°
m). The importance of nanoscale resides in the ability to manipulate and characterize the
properties of matter at the level of single atoms, which has lead to the discovery that nanoscale
structures often have unique and different physical properties with respect to the same matter



on the bulk scale [2].

These structures, smaller than approximately 100 nm can be for example single molecules,
so nanoscale also deals with the molecular range. As nanoscale is comparable with molecular
dimensions (see Figure , the study of nanoscience has taken an important role in medicine
and health researches. From an optical point of view, the special features of nanomatter are
not negligible at the subwavelength scale.

Nanoscale Biomolecules
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Figure 1.1: Nanoscale scheme of biomolecules and nanostructures [3)].

1.1.1. Evanescent waves

One outstanding optical property observed when the structures are smaller than the il-
lumination wavelength (), is the evanescent electromagnetic waves phenomenon, which is
intimately related to the near field optics.

When the electromagnetic field interacts with a metal nanoparticle, it excites the conduct-
ing electrons leading to electronic plasma oscillations driven by the incident electric field [4].
At resonance, the phenomenon is called ”plasmon”, a quasi-particle created by those collec-
tive oscillations of electrons. This term has been coined by Pines in 1956 after he studied the
electronic plasma oscillations [5].

The electromagnetic radiation bound to the surface at the interface between a metal and a
dielectric are known as surface plasmons which are sustained by electromagnetic waves decay-
ing evanescently in the direction perpendicular to the interface. Another type of plasmonic
response is that excited around a nanostructure when the wavelength is much bigger than the
size of the particle, these are called localised surface plasmons (LSPs).



Here, it can be seen that plasma physics and optics have existed separately for a long time,
but after the definition of plasmon and surface plasmons, both fields of study have overlapped
creating a prolific link between them. Furthermore, Drude’s model and Mie theory still belong
to the theoretical basis of the actual studies of localised surface plasmons. Surface plasmons
and plasma modes are connected by similar physics, the dispersion relation is the same despite
the difference in electron number density. “Hence, by reaching back as far as primordial earth
(for terrestrial gaseous plasmas) and the 4th century AD (for plasmons in solid plasmas) and
looking forward to the state-of-the-art nanomedical and technological advances, one concludes
that everything old, is ultimate, new once again.” [6].

To understand better the concept of evanescent waves, it is useful to look at the total
internal reflection phenomenon:

When light travels through a medium and is reflected from the interface with a less dense
medium at an angle higher than the critical angle, light suffers total internal reflection, as can
be observed at the left side of Figure However, on the right side of this figure, it can be
shown that when a material of similar refractive index is brought into close proximity to the
reflecting surface, part of the light is transmitted to the material, leaving a partial reflection
in the prism.

n=1.0

Retl. R efl

Figure 1.2: Total internal reflection (left) in a glass prism. Partial internal reflection (right)
in a glass prism near to another material of similar refractive index [7).

This phenomenon proves that an evanescent field is traveling through the small gap of air,
reaching the material next to the prism.

Those sort of waves can be created by total internal reflection, a metallic rough surface or
a confined surface, like a sphere; the origin of those waves is different, but the wave itself has
the similar electromagnetic properties. Evanescent waves are non propagating inhomogeneous
waves which propagate along the surface. This is represented in Figure Throughout this
work the surface will be a metallic sphere surface. In addition, evanescent waves are localised
waves that enhance the near field in the proximities of the metal-dielectric interface by the
resonant excitation of surface plasmons, allowing for instance, the enhancement of the Raman



Scattering leading to surface enhance spectroscopy techniques like SERS(Surface Enhanced
Raman Spectroscopy) or assisting photocatalytic processes, very interesting, for instance for
Hydrogen production or elimination of C'Oy. Also, these surface plasmonic phenomena are
very attractive for industrial, medical an other applications (see Section |1.1.3)).
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Figure 1.3: Scheme of the excitation of a surface plasmon wave [§].

1.1.2. State of the art

Nanoscience has appeared as a powerful field of investigation, but some of their concepts
have been used throughout history, for instance nanoscience concepts are present in the Ly-
curgus cup which dates back to the 4th century. This masterpiece has gold or gold-silver
alloy nanoparticles within the glass to induce the amazing dichroism effect that it is shown

in Figure [9].

Figure 1.4: Lycurgus cup viewed in reflected light (left image) and transmitted light (right
image), © The Trustees of the British Museum



Despite the ancient use of nanoparticles in the Lycurgus cup, stained glass windows or
in Damascus saber blades, their properties had not been studied until the mid-nineteenth
century and understood right up to the twentieth century.

This study field begins when Faraday looked into light scattering properties of gold col-
loidal solutions [10]. Nowadays, there are very important investigation fields as nanophotonics
and nanoplasmonics, focused on manipulating and characterizing nanostructures for chemical,
biomedical, environmental, and industrial purposes.

Nanophotonics studies the interaction of photons with nanostructures and its behaviour,
mixing branches as optics and nanotechnology. Nanoplasmonics is a branch of nanophotonics
which deal with optical phenomena in nanoscale metal systems. Standing out the ability to
concentrate energy on the nanoscale due to surface plasmons [11].

Despite the evolution in this field investigations, there are currently published works re-
lated to the behaviour of dipoles, for instance the emission of circularly polarized light by a
linear dipole has been recently reported in reference [12]; that means that the dipole, consid-
ered as an approximation to solve more complex problems, is also an active subject of study.
Furthermore, despite the incredible optical properties obtained with nanoscience, there is a
time gap between the lab experiments and basic research and their implementation in indus-
trial applications. However, the only way to progress is to continue investigating and acquiring
knowledge at the nanoscale level taking basic models based on very well known concepts such
as the electric dipole as we will see all along this research.

1.1.3. Applications

Nanoparticles are highly regarded in many industrial sectors, but metal nanoparticles,
in particular, have unique optical properties due to the localised surface plasmon resonance
(LSPR) being a very valuable resource in many research areas [13].

A very active research area in medicine is the implementation of plasmonic gold nanopar-
ticles for photothermal therapy and cancer diagnosis, where nanoparticles are excited by a
resonant frequency of light, and the localised surface plasmons generated at the surface of the
nanoparticles are expected to kill surrounding cells by thermal dissipation [14].

The best conditions to enhance the sensitivity of a sensor based in nanoplasmonics are
reached when the evanescent field reaches its maximum amplitude and confinement [I5].
Nanostructures such as periodical nanohole arrays or surface-immobilized nanoparticles can
be used to detect changes in their dielectric environment, e.g. refractive index changes. This
enables the determination of kinetic and thermodynamic data for different molecular events,
especially on biomolecular targets. This type of sensing is very useful in cancer cell detection
or macromolecular interactions characterization, among others [16] [17].

The characterization of the optical properties of the nanoparticles is usually based on the
study of their optical absorption, reflection and photoluminescence. Photocatalysis is another
application of metallic nanoparticles, they help to change the velocity of a chemical reaction
when they are illuminated by electromagnetic radiation. As plasmonic nanoparticles have the



ability to absorb and scatter light from a broad part of the spectrum, they are very useful also
in photocatalysis, either introducing more light to reactions with photosensitive materials, e.g.
polymerizations; inducing hot electrons for molecular bindings or heating up to increase the
velocity of the reactions [18].

In Raman spectroscopy, a LASER beam suffers inelastic scattering when it interacts with
a sample. The frequency variation allows to calculate the resonance frequency of the mate-
rial, and plot the spectrum which displays the molecular vibrations and contains information
about the sample which could be useful to identify not only crystals but also amorphous,
liquids, gaseous samples, etc.

An important application in the near field is Surface Enhanced Raman Spectroscopy
(SERS), a surface-sensitive resonance extension of Raman spectroscopy, in which the sample
is placed on metal or semiconductor substrates. SERS also present bioanalytical applications,
allowing to analyse biological materials like blood, body fluids, or even DNA. What is more,
gold and silver nanoparticle solutions are used in combination with SERS to detect finger-
prints [19].

One of the newest applications is related to photovoltaic cells and solar vapor genera-
tion. Plasmonic structures can offer ways of reducing the thickness of the photovoltaic ab-
sorber layers, thus reducing costs while also increasing their efficiency. For example, metallic
nanoparticles can be used as subwavelength scattering elements converting free plane waves
into surface plasmons trapped in thin absorber layers [20]. On the other hand, the plasmon-
enhanced solar vapor generation is a photothermal phenomenon that is being used to induce
the liquid-vapor phase change of water by solar energy [21].

There are many more applications of metallic nanoparticles in drugs, mechanical indus-
tries or energy harvesting, but mentioning all of them could fill an entire book [22].

1.2. Radiation-matter interaction

To study how the electromagnetic field is in the vicinity of a nanosphere, it is necessary
to understand how the metallic nanoparticle behaves in response to an incident plane electro-
magnetic wave, that is, the interaction between radiation and matter.

An electromagnetic wave consists in oscillating electric and magnetic fields propagating
through space. As the matter is composed of electric charges, when it is illuminated by an
electromagnetic wave, the charges oscillate, mainly due to their interaction with the electric
field of the wave; those excited charges can absorb part of the energy carried by the wave and
transform it into other forms of energy or redistribute the energy through space by scattering.

The attenuation of the amplitude of an electromagnetic wave by its interaction with mat-
ter is known as extinction. It is due to both the scattering and the absorption produced by
the interaction between the electromagnetic wave and matter. The scattering and absorption
of a plane electromagnetic wave by a sphere is described by Mie theory, which was formulated
in the early 20th century as an analytical solution to the Maxwell equations for an isotropic



and homogeneous spherical particle illuminated by a plane wave.

The study of the behaviour of the electromagnetic radiation interacting with a sphere
which size is shorter than the wavelength radiation is possible thanks to Mie theory. Solving
this problem with the simplest geometry makes it possible to implement it in more complex
scenarios, letting look into a wide variety of nanostructures and their response to the light.

1.3. The problem and its geometry

The electromagnetic waves are solutions of Maxwell equations but they can be expressed
analytically only for few cases. Besides, the solutions greatly depend on the geometrical sym-
metries of each case. In the case of a homogeneous and isotropic metal sphere embedded
in time dependent electromagnetic fields, the waves can be calculated through the sum of
successive corrections to an approximated solution. In this work, the approximated solutions
are compared to the corrected ones.

On account of that, the selected problem of this work consists of a homogeneous and
isotropic gold nanosphere which center is at the origin of the coordinates system, surrounded
by vacuum, and an incident electromagnetic wave (linearly polarized in z—axis) which prop-
agates along the vertical direction, z—axis.

In order to achieve representations of the fields, it is necessary to apply the coordinate
conversion from spherical polar coordinates to cartesian coordinates according the next set of
equations:

& =sinfcosd 7+ cosbcosg O —sing ¢
§=sinfsing 7+ cosfsing 6+ cosd ¢ (1.1)
2 =cosf —sinb 0

The cartesian coordinates x, y and z are described in spherical polar coordinates as a
function of r, 8 and phi. The variable r represents the radial coordinate; the polar angle
0 is the angle between the the zenit direction (the z— axis) and the radial coordinate; and
azimutal angle ¢ is the projection of the radial coordinate in x — y plane, starting in the x—
axis. As it is shown in the Figure [I.5] where a plane electromagnetic wave travels in the
positive direction of the z axis and the electric field oscillates along the x— axis.



Figure 1.5: Scheme of a gold nanoparticle with spherical polar (r,0,¢$) and cartesian coordi-
nates (x,y,z), the direction of the electric and magnetic field, and propagation of light. The
radius of the sphere is named as a.

A plane electromagnetic wave is named linearly polarized when the electric field oscillates
in a given plane within the direction of propagation. In this case, it has been chosen the
x—polarization with the direction of propagation in the z—axis. It means that the wave prop-
agates through the z—direction, the electric field oscillates in xz—axis, and the magnetic field
perpendicular to both of them, that is on y—axis.

The solutions of the Maxwell equations depend on the materials refractive index which
is the main optical property of the materials and describes through the electric permittivity
€ and the magnetic permeability, p. Those values are characteristic of each material, but
they are also wavelength dependant, therefore, it is important to evaluate the problem for an
enough wide wavelength spectral interval to get a better idea of the material optical behaviour.



The complex refractive index is defined in such a way that it includes both the refractive
index of the matter and its extinction coefficient. It is the addition of the refractive index
(real part), n, and the extinction coefficient (imaginary part), s, as stated in Eq (1.2)).

N=n+i-k (1.2)

e=N?=(n+i k) (1.3)

The extinction coefficient, k, indicates the amount of attenuation when the electromagnetic
wave propagates through the material, so the extinction coefficient is related to the absorption
and to the scattering, as well as to the electric permittivity, as it is stated in Eq ((1.3]).

1.4. Motivation and main objectives

This work pretends to dig in the field scattered by a nanosphere when it is illuminated
with a plane electromagnetic wave. In particular, paying attention to the optical response in
the near field, which has exceptional properties for the potential applications mentione above.

The key goals of this work are:

= To compute the electric field based on the Mie theory and to study the contribution of
the scattering coeflicients.

= To compute the electric field through the dipole approximation.
= To compare the electric field in each case, and to determine their validity range.
= To focus on the near field.

The computing system used all over the work was MatLab, which is a computing environ-
ment specialized in matrix manipulations and function plots.

The main objective of this work is to understand the electromagnetism in the vicinity of
a nanoparticle. The study of the field scattering is based on Mie theory, and it is compared
with a calculus for dipole models to confirm its validity and to determine the limit of the
approximations.

It is noteworthy that the calculus all over this work is for a gold nanosphere, but it works
for every metallic nanosphere. Gold is used as a relevant example of metallic nanosphere
because it is commonly used for health applications due to its inert chemical properties and
its biocompatible features.



Chapter 2

Mie theory

Throughout this chapter, Mie theory is presented as the theoretical tool to calculate the
complete scattered field by a small sphere of arbitrary radius and refractive index, embedded
in vacuum. The equations are analyzed thoroughly below, following the guidelines of Bohren
and Huffman [23].

The scattered field can be calculated as a superposition of normal modes, and each one
of them weighted by their corresponding scattering coefficient. Therefore, the scattered field
can be understood by studying the values and the contributions of the scattering coefficients
and their associated normal modes as will be shown in Section In this way some physical
quantities can be obtained, like the scattering cross section, as it is done in Section [2.2

To determine the electromagnetic fields, Mie theory [23] starts from the definition of two
vectors, M and N. They are the electromagnetic normal modes of a spherical particle, which
meet the next requirements: their divergence is zero as follows from FEgq , the curl of M
should be proportional to N, the curl of N should be proportional to M, as the Eq
states, and both must satisfy the vector wave equation . N is associated to the electric
type normal modes, and M is associated to the magnetic ones.

M =V x (ri) (2.1)
N = VXk(M) (2.2)
VM + k*M =0 (2.3)

where r is the radius vector, 9 a scalar function, and k is the wave vector defined as a

function of the wavelength A:
2.7

A
A vector function satisfies the vector wave equation if the scalar function v is a solution
to the scalar wave equation

k (2.4)

V2% + k%) =0 (2.5)

A particular form of the solution to the wave equation in spherical polar coordinates (V)
is composed by a radial R, azimuthal © and an angular ® function which depend on the
coordinates r, 8 and ¢ respectively:

U(r,0,¢) = R(r) - ©(0) - () (2.6)

10



The Mie theory provides 1 solutions for spherical symmetry that can be expanded as
infinite series functions, known as generating functions

Yemn = cosme - P (cosb) - z, (kr) o
¢omn =sin mCZ) : P;L”(cosG) . Zn(k"l”) ( : )

which work to describe the vector spherical harmonics:

Memn =V X (I‘ ' 7#emn)
Momn =V X (I‘ . womn)

Nemn =~ emn) (2.8)
V x (Momn)
Nomn = T

The subscripts e and o denote even and odd, which comes from the solutions of the wave
equation. The subscripts n and m indicate the degree and the order, respectively of the
Legendre Polynomials (P}") and the spherical Bessel functions z,(p), which are defined in

Eq (2.29) and Eq (2.20). In Eq (2.7), r, 6 and ¢ are the spherical polar coordinates, being
the scalar function v the solution of the scalar wave equation for spherical symmetry.

Eq (2.7) allow to express the plane x—polarized wave in terms of spherical polar coordi-
nates and expand it in vector harmonics.

E; = Ey - efreosfix (2.9)

Eq represents a plane x—polarized wave, with E; as the incident plane wave and Ej as
the amplitude of the vector. While Fq represents the same kind of wave but in terms
of vector spherical harmonics, with B and A as coefficients associated to the magnetic and
the electric modes, respectively.

o [o.¢]
Ei=> Y (BemnMemn + BomnMomn + AemnNemn + AomnNomn) (2.10)

m=0n=m

Thus any linearly polarized plane electromagnetic wave may be expressed as a linear com-
bination of the vector spherical harmonics.

In a similar way, the fields inside and outside the sphere are described by the Mie theory
as analysed thoroughly in Section |2.1

2.1. Mie Scattering

The fields scattered by a sphere, electrical and magnetic, are given by

B, = i By (i an- NG, = bu- M) (2.11)
n=1

H, = i By« (i b NG, — an- M) (2.12)
n=1

11



where F, =" - Ejy - 2(”+1) being n = 1,2,3..., a, and b, are the scattering coefficients, and
the superscript (3) means that the spherical Bessel function z,(p), is the spherical Hankel

function of first order A% (see Eq )

To understand equations Eq (2.11)) and Eq (2.12) every term is discussed below:

Scattering coefficients

For each value of n, there are two types of modes, the transverse magnetic modes and the
transverse electrical modes. Magnetic and electric normal modes are weighted by the scatter-
ing coeflicients a,, and b,, respectively. That means, the coefficients a, are the amplitudes of
the oscillations of magnetic type, and b, are the amplitudes of electric oscillations.

_men(m-x) - (2) — Pn(2) - P (m - x)

O o (- 2) € (2) — En() -0 (m - 7) (2.13)
palm ) @) —m- ale) - (m - @)
= (i 2) €y (x) — mEnlx) - (m2) (2.14)

The size parameter (x) relates the radius of the sphere (a) with the wavelength (A) of the
incident electromagnetic wave as follows.

2.1.N .
x:k~a:¥ (2.15)

In Eq (2.13) and Eq (2.14) the m represents the relative refractive index which is obtained
from the refractive indexes of the sphere (¢1) and of the surrounding media (ey,), as it is

written in Eq (2.16)).

N1 €1
=—=,/— 2.1
m=— - (2.16)
Besides, the scattering coefficients also involve Riccati-Bessel functions
Un(p) = p - jn(p) (2.17)
&nlp) = p-hi)(p) (2.18)
p=k-r (2.19)

composed by Spherical Bessel functions of the third kind or spherical Hankel functions of the
first order

W (p) = jn(p) + i ya(p) (2.20)

being j, and ¥y, Spherical Bessel functions

n(p) = 7, Jni1(P) (2.21)
Yn(p) = %p Y 1(p) (2.22)

where J, y1isa Bessel function of the first kind and Y, y1isa Bessel function of the second
2 2
kind.

12



Analysis of scattering coefficients

Data for the relative refractive index m has been obtained from [24] in order to calculate
the respective scattering coefficients for a gold nanosphere of 20 nm radius, in a wavelength
range between 300 nm to 800 nm. It is interesting to analyse this problem for a nanosphere
of around 20 nm because for this particle size, several approximations can be made to solve
the problem by different ways.

By replacing this data in Eq and Fq , and taking n from 1 to 10, it is noted
that each scattering coefficient is smaller than the previous one, being the most relevant the
coefficient with lowest n values as it can be shown in Figure where coefficients a and b
are represented for the first two values of n.

To understand correctly Figure it must be taken into account that the ordinate axis
is in logarithmic scale, having orders of magnitude of difference between coefficients. It is
also remarkable the behaviour around A = 525 nm, which can correspond to a resonance
phenomenon.

As the scattered fields are directly proportional to the scattering coefficients (see Eq
and Fq ), the greater the value of the coefficients, the greater their contribution to the
calculated field. To sum up, the calculus of the fields is almost complete only considering the
first terms in Fq and Fq , where a1 is the most relevant coefficient, and the next
terms are smaller and smaller[25].

Absolute value of coeffs, =20 nm

Ln coeffs

L 1 1 L L 1 L L 1
300 350 400 450 500 550 600 650 YOO 750 800
A{nmy}

Figure 2.1: Comparison of the coefficients in a logarithmic scale in the wavelength range
between 300 to 800 nm.
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Electromagnetic normal modes

As the sphere is a body bounded by a close surface, there can be set up a system of
standing waves, allowing to represent the electric field patterns (in Figure [2.2)) on the surface
of a sphere concentric with the particle. The magnetic field pattern can be obtained by the

rotation of the electric field pattern by rotating 90° the azimuthal angle.

The electromagnetic normal modes of a spherical particle may be written as infinite series
of the vector spherical harmonics as Eq (2.23)) to Eq (2.26) show.

~

Mo1n = C§S¢ - mn(cos0) - zn(p) - & (2.23)
56 T(c050) - 2n(p) - 8
Moty = =sing - (cos0) - 2,(5) - & 2o
—cos ¢ - Tp(cosb) - z,(p) - €
Notn =sing-n- (n+1)-siné - m(cosd) - Z”ﬁm &,
+sin¢ - 7,(cosf) - [p,z;(p)]’ - &g (2.25)
+cos ¢ - mp(cos ) - Wé¢
Neiy =cos¢-n-(n+1)-sinf - m,(cosb) - zn/()p) -
+cos¢ - T (cosb) - [pz;(p)]’ - & (2.26)
T sing - ma(cosh) - Wp(p” 8

14
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Figure 2.2: Representation of first four electric normal modes [26]

Normal modes are related to Angle-dependent functions, and those, in turn, with Legendre

Polynomials.
Lifn

= 2.2

m sin # (2:27)
OP!
n = —2 2.28
™= 5y (2.28)
P (u) are the associated Legendre polynomials with degree n and order m,
omP,

Py = (1 — 2y ) (2.20)

ou™

u=cosf, P, are the Legendre polynomials, and for this work, m is considered as 1.

15



2.2. Cross sections comparison and influence of coefficients

Cross section is an effective area that is defined by the amount of energy that interacts
with the sphere. Whenever the incident energy contained in an area is equal to the total
energy scattered, this area is considered the scattering cross section.

Extinction, absorption, and scattering cross sections can be calculated by using the scat-
tering coefficients in the following equations:

[ee]
7T
= 72 (2n + 1) (lan)? + |ba]?) (2.30)
’]T o0
Ceat = —22 (2n + 1)Re(ay, + by) (2.31)
Cext = Cabs + Csca (232)

Therefore, their corresponding efficiency is defined as the cross section per unit of area
Q _ Cest
ext — .42

Qsca = Cacg (233)

a2

Qabs = Qext - Qabs

where a is the sphere radius as it is shown in Figure
After determining the cross sections for some sphere radius values, they can be compared
as in the figure below, where it has been used only the first three terms of the sum in Eq (2.30))

and Eq (2.31)).
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Figure 2.3: Efficiency against wavelength for a sphere radius of 10, 20, 50, and 100 nm.
There are shown three efficiencies, scattering in blue, extinction in greem, and absorption in
red.

This comparison allows the reader to understand that absorption due to tiny spheres is
very much larger than the scattering they produce , and how the scattering becomes more
and more relevant as the sphere size increases.

It is also interesting to analyse how the cross section behaves as the radius of the sphere
increases.
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Figure 2.4: Wavelength at which the scattering cross section has a maximum for radius values
from 20 to 300 nm.

For small radius values compared to the incident wavelength, the coefficient a; is the most
relevant one, which is associated with the electrical dipole mode. As long as the radius of
the sphere increases, it is seen that other terms begin to increase until they become relevant,
which makes a shift in the maximum cross section. Thus, Figure proves that the peak of
the spectrum suffers a redshift when the particle size increases, due to the evanescent waves
that appear in the near field regime [27].

The Figure shows a kind of backward behaviour because the data of the first curve are
only due to the first coefficient a1, but the data of the second and the third curves correspond

to the higher coefficients as and as respectively.

Hence, for particles larger than 100 or 150 nm, the cross section is dominated by higher
order electron oscillations.
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Chapter 3

Near field and dipole approximation

This chapter deals with the connection between electrostatics and scattering by small
spherical particles compared with the wavelength. This is done by studying a pure dipole ap-
proximation, i.e. the nanoparticle is seen as a punctual dipole. This is a useful approximation
either for very small particles (near to be punctual, so the nanoscale) and far field, being its
range of validity studied in Section [3.5.1

3.1. Far field vs near field

There are two regimes for which there are different kinds of scattering. Rayleigh scattering
occurs when the particle size is less than 1/10 times the wavelength of the incident light. If
the particle is bigger, with a size between A/10 to A, the scattering is known as Mie scattering,
because it is well described by the Mie theory. As it can be seen in Figure the scattered
light direction is different for each kind of scattering, the scattering of light in the forward
direction becomes more pronounced as the particle size increases.

Rayleigh Scattering Mie Scattering Mie Scattering,

larger particles
2t
i

—— Direction of incicdent light
Figure 3.1: Scattering schemes according to the particle size [28].
As visible light goes from around 400 nm to 700 nm, Rayleigh scattering occurs for par-
ticle sizes lower than 50 nm in diameter; instead for Mie scattering, the particle sizes are

between 50 nm and 500 nm, reaching optical scattering for larger particles.

Mie theory is able to describe the amplitude and phase of the fields scattered by a
nanosphere, for either far or near fields since it uses summations of infinite terms. How-
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ever, for small particles compared to the wavelength, some approximations can make the
calculus easier.

Mie theory described in Section [2.1]is the exact solution for any case, but for small parti-
cles compared with the wavelength, it can be simplified by using only dipolar contributions.
Thus passing from Mie scattering to Rayleigh approximation by taking only the first scattering
coefficient, obtaining the same result than the one obtaied by considering only an ideal dipole.

3.2. Dipole approximation

Light scattering and absorption by a nanoparticle can be considered as produced by elec-
tromagnetic radiation source [29]. The simplest radiator is an oscillating electric dipole with
dipole moment p described in texts like reference [30] or [31].

A pure dipole is an ideal dipole, which means that there is no distance between positive
and negative charges, rather, the source has no structure, is a point. Thus, approaching dipole
as pure dipole can only be valid when the fields are calculated in a far field region and when
the particle is really small.

Taking into account the display of the field of a linear electric dipole polarized in z direc-
tion, it is considered the general equations where p is the ideal dipole moment to obtain the
equivalent field for a dipole polarized along the = direction (see Section |3.3)):

E:<3£§]+i£2]+32[f:j;’)(n~r)~r—(E@—i—ﬂ-ﬁ-g)n (3.1)
o (B ) e o

In Eq and Eq the vector n represents the direction of polarization and r the di-
rection of propagation, c is the velocity of light in the medium (vacuum for this problem),
and r is the radial vector, in spherical polar coordinates, which define the distance between
the center of the particle and the point where the field is calculated. If n is a unitary vector

along the x axis then Fq (3.3), Eq (3.4) and Eq (3.5) hold.

n=2=sinfcos¢ 7+ coshcosg 6 —sing ¢ (3.3)
r=rr (3.4)
3.5)

Replacing those vectors in Eq (3.1]), it is obtained the field expression for each spherical
polar coordinates.

(n-r)-r=r?sinfcos¢ 7 (

cr?

E, =2 (%—k m)sin&cosgﬁ

Egz—(%%-[ﬂg%— m)cos@cosqS (3.6)

cr c2r

By = (8 + 8+ B sing

cr? c2r

20



Hy = — <C[TL]2 + %) sin ¢ (3.7)

Hy=— <C[‘:%]2+ %) cos 6 cos ¢

Those equations describe the field in every point of the space, they completely describe
the near field, but for the far field they can be approximated by

Ey = —ﬂcosﬂcosqﬁ

ctr (3.8)
Ey = % sin ¢
Hy = —% sin ¢ (3.9)

Hy = %cos@cosgé

where radial components are neglected at great distances because they decrease faster as the
distances increase.

Looking at the x — z plane, that means ¢ = 0, and through equations Eq for near
field and Eq for a far field, it is evident that the maximum value of the electric field
in the near field case, will be in the x direction, and in the far field case the maximum will
appear perpendicular to the x direction.

In Figure|3.2]can be seen that for a dipole polarized in x direction, in the near field regime
(top left) the maximum field intensity will be found in the z direction, but in the far field
regime (top right) it will radiate in the perpendicular direction.

The plots in Figure were generated with the MatLab software using Eq and
FEq to calculate them

As the ideal dipole is a point in the origin of coordinates, it cannot be represented, nev-
ertheless, in order to facilitate the visualization of the direction of the electric field, this was
only calculated starting at a distance r form the dipole, represented by the dark blue circle
of the figures. The figure at the top right and the figure bottom represent the same case: far
field. But in the bottom figure, the near field representation is suppressed by calculating the
field only for large values of r, making the dark blue circle bigger.
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Figure 3.2: Dipole scattering electric field calculated for a distance from the surface of the
sphere between 50 nm and 100 nm (top left), from 50 nm to 500 nm (top right), and from
500 nm to 1000 nm (bottom), to compare the predominant direction of the field in near(top
left) and far field (top right and bottom). The color code corresponds to the intensity of the
scattered electric field, where red corresponds to the greatest values while dark blue is close to
the null intensity.

3.3. Electrostatic approximation

The electrostatic approximation takes place when the field variations are negligible, so
this approximation describes the response of an sphere to an applied uniform static field. If
the region of the space considered is delimited by a sphere which size is much smaller than
the wavelength of the field, then the situation is equivalent to the case of a sphere immersed
in a uniform field.

As permittivities of the sphere and the medium are different, a charge will be induced on
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the surface of the sphere, so the field outside the sphere is derivable from the potential ®.
E=-V® (3.10)

As a dipole is defined as two opposite charges, the ideal dipole is obtained getting the
charges closer to one another. The ideal dipole potential is define by:

p-r

where &, is the permitivitty of the medium and a is the radius of the sphere.

The field outside the sphere is the superposition of applied field and the field of an ideal
dipole with moment:
p = dnenad LS R, (3.12)
€1+ 2em
where 7 is the permitivitty of the sphere, Ey is the amplitude of the wave and « is the
polarizability of the nanosphere, defined as:

3€1 —Em

o = 4ma
€1+ 2e,

(3.13)

The polarizability is a measure of how strong a particle scatters and absorbs light, and
how the incident field is enhanced in the vicinity of the particle. As it can be seen in Fq (3.13)),
the polarizability depends on the particle size a and its permitivitty 1.

Regarding small spheres, there is a resonance when the denominator of Fq becomes
zero, which is e = —2 - ¢,,. The frequency at which resonance takes place is named Frohlich
mode, and if the object is metallic this resonance is known as plasmon resonance, which ampli-
tude reaches the maximum for a specific frequency. Hence, plasmon resonance is determined
by the polarizability (a) and plasma frequency (wp) [32].

The plasma frequency is defined by

2
e“-n
wy = (3.14)
Me * €0
and the resonance frequency in spheres is
w
Wres = 7% (3.15)
Consequently, considering a free electron density around n = 10% electrons/m?, the

charge of the electron is e = 1.6 - 1072 C, the mass of the electron is m. = 9.1-1073! kg, and
the permittivity of vacuum g9 = 8.85-107'2 F/m, the resonance frequency of gold is contained
in the range ultraviolet-visible. In this problem, the surrounding medium is vacuum, but for
other mediums it is important to remind that the permittivity is a wavelength dependant
value.

Conduction electrons of the sphere react to the external field by producing a net positive

charge on one side of the particle, and a net negative charge on the other, see Figure |3.3
The displacement of negative and positive charges induces the dipole which strength depends

23



on the polarization. The resonance is on account of Coulomb force, which determines the
frequency of resonance by the restoring force of the displaced charges.

Electric field

Magnetic field + Electron clouds

Visible
light

AU
- | dipole oscillator

Figure 3.3: The scheme of the electromagnetic field of visible light and its interaction with
gold nanoparticles. Oscillating dipoles induced by electromagnetic radiation [33).

The real part of the dielectric constant of the metal determines the surface plasmon reso-
nance position and the imaginary part determines the bandwidth.

Figure can be compared with the equivalent one for this approximation, Figure
confirming that the shape of the electric field is the same in both cases. However, in Fig-
ure the dark blue circle represents the gold nanosphere of 50 nm of radius, that is why
here it is not shown the third plot, because the blue circle of 500 nm would represent a gold
sphere with a radius of 500 nm.
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Z{nm}
Z{nm)
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40 =200
-0 =300
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Hinrm) Ay
Figure 3.4: Scattering electric field calculated with the electrostatic approximation for a dis-
tance from 50 nm to 100 nm (left) representing the near field, and from 50 nm to 500 nm
(right) representing the far field. The color code corresponds to the intensity of the scattered
electric field, where red corresponds to the greatest values while dark blue is close to the null
intensity.
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3.3.1.

Looking at the polarizability expression Fq (3.13), it can be seen that when the size of
the particle increases, the polarizability increases as well.

Range of validity

Considering what has been exposed in Figure and knowing that the term a; is the
one related with the electric dipole mode, the dipole approximation will be valid until the

second term is comparable to the first one.
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Figure 3.5: Efficiency in a wavelength range from 300 to 800 nm, for a gold sphere of 20,
100 and 175 nm of radius. Below each one, a, coefficients are represented to appreciate their
nfluence.

In Figure |3.5], it can be seen that for a radius of 20 nm only the first term influences the
scattering efficiency. While the radius grows, other terms appear, even being larger than the
first one as in the 175 nm case. Hence, the range in which the dipole approximation is valid
could be expressed as nanoscale, or radius below 100 nm.

Electric field analysis

Once the range of validity of dipole approximation is known, it is time to depict and
compare the Mie theory electric field with a pure dipole electric field.

To visualize this comparison, in Figure and Figure the modules of the scattering
electric field cartesian components are represented, as well as the module of the total scat-
tering electric field by a gold nanosphere of radius 20 nm when it is illuminated by a plane
electromagnetic wave of 550 nm of wavelength.
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Figure and Figure concur with the range of validity, showing that for a gold
nanosphere with radius a = 20 nm surrounded by vacuum and illuminated by an electromag-
netic wave polarized in x direction with A = 550 nm, the Mie scattering field is the same than
the pure dipole field for each component and for the total field too.

Gold complete field a=20nm,1=550nm
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=
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-40 -20 0 20 40
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20 r ‘
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-20
-40
-40 -20 0 20 40
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Figure 3.6: Scattered electric field by a gold nanosphere with a radius of 20 nm, calculated
by Mie Theory (in this case it has been used the first 5 terms of Eq ) Each figure
represents the module of the cartesian coordinate x, y or z, being above on the left, above on
the right and below on the left respectively; and below on the right is the module of the total
scattered field. The color code corresponds to the intensity of the scattered electric field, where
red corresponds to the greatest values while dark blue is close to the null intensity.
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Figure 8.7: Scattered electric field by a gold nanosphere with a radius of 20 nm, calculated with

the dipole approzimation (using Eq (3.6]) ). The plot distribution is the same as in Figure .
The color code corresponds to the intensity of the scattered electric field, where red corresponds
to the greatest values while dark blue is close to the null intensity.
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Chapter 4

Near electric field and Poynting
vector

This chapter goes over the change of polarization definition for different fields ranges. Be-
sides, the relationship between the electric field and the flux of energy is discussed.

Focusing the analysis on the near field regime, the electric field and the Poynting vector
are used to get insight into the evanescent waves on the sphere surface, which are non prop-
agating and inhomogeneous waves.

4.1. Gold nanosphere near electric field

When the sphere is smaller than the wavelength, only the first electric mode needs to be
taken into account to describe the scattered field, as it has been explained in Section
In the case of gold, the maximum intensity of the field is found at wavelength between 500
and 600 nm depending on the particle size; this maximum is related to a resonance in the
electrons displacement.

The plot in Figure represents the electric field scattered by a gold nanoparticle of 20
nm surrounded by vacuum and illuminated by a plane wave of A\ = 550 nm, obtained with
Eq . The intensity of the electric field is represented in a grayscale is represented the
intensity of the electric field, and the blue arrows represent the electric field vector in the x —z
plane.

The obtained result corresponds to the scattered electric field in the near field regime,

which is the same for the full field Mie theory, dipole approximation and electrostatic approx-
imation calculus, as it has been seen in Chapter
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Figure 4.1: Scattering electric field into near field approximation for a gold nanosphere of
radius 20 nm.

4.2. Gold nanosphere near field Poynting vector

Poynting vector is a magnitude of that describes how much energy per second flows per
square meter. In this case, we are interested in the time average Poynting vector which can
be written as:

S = % . Re{E x H*} (4.1)

where S represents the Poynting vector, E the electric field vector, and H the magnetic
field vector. The asterisk (x) over the magnetic field vector means the conjugate vector, and
Re is for the real part of its content.

Figure display the real part of the electric field (in blue), the real part of the magnetic
field (in red), and the Poynting vector (in green) in three dimensions. Above is the electro-
static approximation with the yellow sphere representing the gold nanosphere; and below is
the dipole approximation case.
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Figure 4.2: Electric and magnetic field, and Poynting vector calculated with electrostatics
approzimation (above) and dipole approzimation (below).

As can be seen, Poynting vector is determined by the electric and magnetic fields. Electric
and magnetic fields are in phase and perpendicular between them, and both are perpendicular
to the direction of propagation, so Poynting vector will be in the direction of propagation as

well because of the cross product in Eq (4.1]).

Despite this, in the near field case, the electric field does not have to be completely
perpendicular to the Poynting vector (see Figure |4.3]), this is due to the polarization definition
explained in Section
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Figure 4.3: Scattered electric field and Poynting vector at a distance of 20 nm (top) and 200
nm (botttom). The yellow circle represents a gold nanosphere with a radius equal to 20 nm
in both cases.
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In general, electric and magnetic fields are perpendicular to the Poynting vector, however,
in the near field region they are not perpendicular to S. This is because, in the vicinity of a
metallic surface, the near field region, there is a non-propagating field associated to evanescent
waves.

When FEq (4.2) is satisfied, S and ReE are perpendicular, and when it is equal to zero
means that they are parallel. This allows the distinction between common electric field and
evanescent waves.

S- Re{E}

SxRe{E}-m_

1 (4.2)

4.3. Gold nanosphere near field degree of polarization

The polarization is the property that describes the geometrical orientation of electric field
oscillations. All over this work, it has been used as a source of light linearly polarized; that
means it is a transverse wave where electric and magnetic fields are coupled and they are
perpendicular to each other, oscillating in a single direction, and they are also perpendicular
to the direction of propagation.

There is also important to point out that there are waves where oscillations are not limited
by perpendicular directions to the propagation way.

Polarization in far field can be explained by a two-dimensional plane where are contained
the electric and magnetic field, as it has been seen before and in Figure In this case, the
scattered electric field is purely transverse to the radial component as can be deduced from

Eq (3.8) and seen in Figure

Figure 4.4: Components of electric scattered field in spherical polar coordinates in the far field
regime.
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Nevertheless, the near field is not contained in the perpendicular plane to the radial di-
rection, because near field is three-dimensional, see FEq or Figure The physical
interpretation is that non-propagating waves appeared in the near field, making different the
explanation of the polarization at this range [34].

Figure 4.5: Components of electric scattered field in spherical polar coordinates in the near
field regime.

By analysing the relation between the electric field and the Poynting vector, the amplitude
of the electric field associated to the evanescent waves on the surface of a gold nanosphere can
be represented taking the real part of the electric field and removing the field values that are
perpendicular to the Poynting vector, the remaining field is not perpendicular to S, it means
that the remaining field id the field associated to the evanescent waves, which is represented
in Figure Where the calculus of left plot is given by Egq and the right one by the

subtraction of Eq (3.6 minus Eq (4.2).
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Figure 4.6: Enhanced scattered electric field of a gold nanosphere of a radius of 20 nm
(left). Amplitude of the electric field associated to evanescent waves on the surface of a gold
nanosphere of a radius of 20 nm (right). The color code corresponds to the intensity of the
scattered electric field, where red corresponds to the greatest values while dark blue is close to
the null intensity.

In Figure can be appreciated two regions where there is a field enhancement, known as
"hot spots”, which are relevant in many applications mentioned in Chapter |1|such as cancer
cell detection.

Hot spots can be found where the amplitude and confinement of the evanescent field
reaches its maximum, becoming an interesting branch of study due to its possible applica-
tions [15].

As mentioned in the introduction (Chapter , the oscillations of the electrons confined to
the surface of the metallic nanostructures are known as localised surface plasmon resonances
(LSPRs). They decay radiatively via photon emission, or non radiatively through the gener-
ation of excited carriers in the regions known as hot spots [35]. In addition, surface plasmons
can couple to electromagnetic fields emitted by other molecules or quantum dots placed in
the nanoparticle proximity [4].

Thus, the energy is compressed into subwavelength scale via keeping part of it as ki-
netic energy of conduction electrons. Using localised surface plasmon resonances lead to an
extreme location of the electric field on the nanoscale, making it into efficient optical nanoan-
tennas [36]. Furthermore, the enhancement of the electric field is stronger between two metal
nanoparticles, near to each other, rather than a single one [37].

Actually there is currently a great interest in the use of hot spots due to LSPRs for the
detection of enantiomers in a very sensitive way. Enantiomers are chiral molecules that are
mirror images of each other and they are not superposable, which may not have identical
physicochemical properties even if they have exactly the same atomic composition. They are
often identified by optical methods because they usually exhibit optical activity, it means that
they tend to change the state of polarization of polarized light.
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Chapter 5

Conclusions and future work

In this research, it has been studied the field scattered by a metallic nanosphere illumi-
nated by a plane electromagnetic wave to understand the behaviour of electromagnetism in
the vicinity of the particle and their unique optical properties.

After justifying the characteristics of the chosen problem, the objectives have been reached
with the aid of the code shown in Appendix [4] The code enables to calculate the scattered
electric and magnetic fields, with which it has been obtained the vector of the flux of energy.

The material, shape, size, composition, and dielectric constant of the particle and the
surrounding medium are the parameters to keep in mind to design a nanoscale experiment or
application based in light scattering.

On one hand, larger nanoparticles are usually chosen for imaging applications due to their
larger scattering efficiency. On the other hand, small nanoparticles are preferred to convert
the energy carried by light into thermal radiation because of their larger light absorption
efficiency; it is useful for killing cells or burning tissues in biomedical applications.

In the near field regime there have been found exceptional properties due to the optical
response of a metallic surface when it interacts with a plane electromagnetic wave plane. It
is relevant to mention that these properties depends on different parameters such as surface
size, shape and morphology, characteristics that can be modified by temperature, pressure
time and pH conditions. Near field analysis provides another line of work related to non-
propagating waves, named as plasmonics.

Polarization also plays an important role in defining some properties related to chirality.
Polarization has not a fixed definition, as it has been discussed, it is crucial to consider the
specific conditions of each case, bringing the degree of polarization concept to the polarization
concept.

Localised surface plasmon resonances produce enhancements of the electromagnetic field
in the near field of metallic nanostructures. Thanks to surface plasmon resonances, the ab-
sorbed and scattered light may be enhanced in 5 or 6 orders of magnitude compared to the
strongly absorbing dye molecules and the emission of strongly fluorescent molecules. The
study of surface plasmon resonances implies to consider both the radiative and non radiative
properties of the emitter, and thus, the use and possible applications of those emitters.
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Plasmon-induced phenomena are attracting an increasing research interest due to their po-
tential for applications in photocatalysis, photodetection, and solar energy harvesting. Making
it a very promising field for oncoming investigations.
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Appendix A

Code of basic functions

This appendix merges the mathematical functions needed to calculate scattering coeffi-
cients, electric and magnetic fields. Constructing separate functions to call them in the main
code could facilitate the calculus and the computing time, as well as keep clear concepts and
make easier to search bugs in the program.

kY

The first function called ”legendre_p(n)” is able to obtain the associated Legendre polino-

mials of order 1 and any degree n.

function p=legendre_p(n)
pl=1;
p2=[1,0];
if n==0
p=pl; %PO
elseif n==
p=p2; %P1
else
for i=2:n
p=((2x(i-1)+1)*[p2,0]1-(i-1)*[0,0,p1])/1i;
p1=p2;
pP2=p;
end
end
end

The angle dependant functions m, and 7, for any value of n and 6.

function PI=legendre_PI(n,theta)
syms x
Pn=poly2sym(legendre_p(n));
Pmn=sqrt (1-(x) "2)*diff (Pn,x) ;
P=subs (Pmn,x,cos(theta));
PI=P/sin(theta);

end

function TAU=legendre_TAU(n,theta)
syms x thta
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Pn=poly2sym(legendre_p(n));
Pmn=sqrt (1-(x) "2)*diff (Pn,x) ;
P=subs (Pmn,x,cos(thta));
tau=diff (P, thta);

TAU=subs (tau,thta,theta);

end

Spherical Bessel functions of the first kind j, and of the third khuilﬁ}% which depend on
MatLab own Bessel functions. with this, it is also possible to calculate Riccati-Bessel functions
and its derivatives.

function jn=bessel_j(n,rho)
jn=sqrt (pi/ (2*rho))*besselj(n+1/2,rho);
end

function hn=bessel_h(n,rho)

hn=sqrt (pi/(2*rho))*besselj(n+1/2,rho)+1i*sqrt (pi/ (2*rho))*bessely(n+1/2,rho)
—

end

function dPSI=bessel_dpsi(n,rho)
syms ro

psiro=ro*bessel_j(n,ro);
dpsiro=diff (psiro,ro);
dPSI=subs(dpsiro,rho);

end

function dCHI=bessel_dchi(n,rho)
syms ro

chiro=rox*bessel_h(n,ro);
dchiro=diff (chiro,ro);
dCHI=subs(dchiro,rho);

end

Scattering coefficients a,, and b,, have been calculated by using previous functions.

function a=cte_a(n,m,X)
%Bessel para coefs a y b
psimX=m*X*bessel_j(n,m*X) ;
psiX=X*bessel_j(n,X);
chiX=X*bessel_h(n,X);

dpsimX=bessel_dpsi(n,m*X) ;

dpsiX=bessel_dpsi(n,X);

dchiX=bessel_dchi(n,X);

%Ctes a y b
a=(m*psimX.*dpsiX-psiX.*dpsimX) ./ (m*psimX.*dchiX-chiX.*dpsimX);
end
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function b=cte_b(n,m,X)
%Bessel para coefs a y b
psimX=m*Xx*bessel_j(n,m*X) ;
psiX=X*bessel_j(n,X);
chiX=X*bessel_h(n,X);

dpsimX=bessel_dpsi(n,m*X);
dpsiX=bessel_dpsi(n,X);
dchiX=bessel_dchi(n,X);

#Ctes a y b
b=(psimX.*dpsiX-m*psiX.*dpsimX) ./ (psimX.*dchiX-m*chiX.*dpsimX) ;
end

Finally, electric and magnetic field are obtained by calling those mathematical functions.

function Es=campo_sc(n,X,m,k,r,theta,phi)

rho=kx*r;

EO=1;

%Pin y Taun

pin=legendre_PI(n,theta);

taun=legendre_TAU(n,theta);

%Bessel for coefs a & b

psimX=m*X*bessel_j(n,m*X) ;

psiX=Xx*bessel_j(n,X);

chiX=Xx*bessel_h(n,X);

dpsimX=bessel_dpsi(n,m*X) ;

dpsiX=bessel_dpsi(n,X);

dchiX=bessel_dchi(n,X);

h=bessel_h(n,rho);

%h=((-1) "n) *exp (i*k*r)/(i*k*r) ;

%Ctes a y b
a=(m.*psimX.*dpsiX-psiX.*dpsimX) ./ (m.*psimX.*dchiX-chiX.*dpsimX) ;
b=(psimX.*dpsiX-m.*psiX.*dpsimX) ./ (psimX.*dchiX-m.*chiX.*dpsimX) ;

%#Bessel for modes

dchi=bessel_dchi(n,rho);

%#Modes
Mot=cos(phi)*pin*h; %Theta component of Mo
Mop=-sin(phi)*taun*h;%Phi component of Mo
Met=-sin(phi)*pin*h; %Theta component of Me
Mep=-cos(phi)*taun*h; %Phi component of Me
Nor=sin(phi)*n*(n+1)*sin(theta)*pin.*h./rho; %Rho component de No
Not=sin(phi)*taun*dchi./rho;%Theta component of No
Nop=cos(phi) *pin*dchi./rho;%Phi component of No
Ner=cos(phi)*n*(n+1)*sin(theta)*pin.*h./rho;%Rho component of Ne
Net=cos(phi)*taun*dchi./rho; %Theta component of Ne
Nep=-sin(phi)*pin*dchi./rho;%Phi component of Ne
Mo=[0 Mot Mop];
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Me=[0 Met Mep];

No=[Nor Not Nop];

Ne=[Ner Net Nep];

%Electric field
En=1i"n*E0* (2*n+1) / (n* (n+1)) ;
Es=En.*((1i*a.*Ne)-(b.*Mo));
end

function Hs=campo_hsc(n,X,m,k,w,mu,r,theta,phi)

rho=kx*r;

EO=1;

%Pin y Taun

pin=legendre_PI(n,theta);

taun=legendre_TAU(n,theta);

h=bessel_h(n,rho);

%Bessel para coefs a y b

psimX=m*X*bessel_j(n,m*X) ;

psiX=X*bessel_j(n,X);
chiX=X*bessel_h(n,X);

dpsimX=bessel_dpsi(n,m*X);

dpsiX=bessel_dpsi(n,X);

dchiX=bessel_dchi(n,X);

h=bessel_h(n,rho);

#Ctes a y b
a=(m.*psimX.*dpsiX-psiX.*dpsimX) ./ (m.*psimX.*dchiX-chiX.*dpsimX) ;
b=(psimX.*dpsiX-m.*psiX.*dpsimX) ./ (psimX.*dchiX-m.*chiX.*dpsimX) ;

%Bessel for modes

dchi=bessel_dchi(n,rho);

#Modes
Mot=cos(phi)*pinx*h; %Theta component of Mo
Mop=-sin(phi)*taun*h;%Phi component of Mo
Met=-sin(phi)*pinx*h; %Theta component of Me
Mep=-cos(phi)*taun*h; %Phi component of Me
Nor=sin(phi)*n*(n+1)*sin(theta)*pin.*h./rho; %Rho component of No
Not=sin(phi)*taun*dchi./rho;%Theta component of No
Nop=cos (phi)*pin*dchi./rho;%Phi component of No
Ner=cos (phi) *n* (n+1) *sin(theta)*pin.*h./rho;%Rho component of Ne
Net=cos(phi)*taun*dchi./rho; %Theta component of Ne
Nep=-sin(phi)*pin*dchi./rho;%Phi component of Ne
Mo=[0 Mot Mop];

Me=[0 Met Mep];

No=[Nor Not Nopl;

Ne=[Ner Net Nep];

#Magnetic field
En=1i"n*E0%* (2+n+1) / (n*(n+1)) ;
Hs=En.*((1i*b.*No)+(a.x*Me));
end
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