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Abstract

The Standard Model of particle physics, while being able to make accu-
rate predictions, has been proved to fail to explain various phenomena,
such as astronomical dark matter observations. In this work, a machine
learning application has been implemented with the goal of studying
dark matter candidates. Images from Charge Coupled Devices (CCDs)
in different experiments DAMIC/DAMIC-M located underground will be
used to test different deep learning algorithms. A U-Net model has been
trained with Python’s open-source library Keras. The model performs
multi-class image segmentation in order to detect dark matter particle
signals among background noise.
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1 Introduction

The problem of the DM in the universe, together with the explanation of
dark energy, is still one of the major unsolved problems in cosmology, as-
trophysics and particle physics. Its identity links studies of the universe
at both the largest and smallest observable scales. The DM problem, his-
torically termed as the missing matter problem, was proposed by Fritz
Zwicky in 1933, when his research on the Coma galaxy cluster inferred
the existence of an anomaly. The virial theorem allows the calculation
of galaxy masses making use of gravitational attraction. Zwicky calcu-
lated the theoretical galaxy cluster mass using the rotational velocity of
luminous matter, and observed a discrepancy with the measured galaxy
cluster mass. For the coming years various DM evidences were found, all
of them based on gravitational interactions. However, given the univer-
sality of gravity, these evidences give very little information about the
nature of DM.

The Planck mission’s final data release (2018) showed that the dark
energy density in the universe is ΩΛ ≈ 0.68, while matter density is
Ωmh

2 ≈ 0.32, from which around 85% is non-baryonic. None of the
Standard Model particles is a good DM candidate; most of them are
unstable, with lifetimes far shorter than the age of the universe, and the
rest contribute to the baryonic energy density Ωb, which is too small to be
considered as a possibility. A vast majority of the scientific community
believes that the evidence for DM requires particles beyond the Stan-
dard Model. Neutralinos, gravitinos, sterile neutrinos, axions and other
particles related to hidden dark sectors, such as dark photons, are some
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of the researched candidates. Lately non-fundamental particles such as
SIMPS (strongly interacting massive particles), and macroscopic objects
such as primordial black holes, have also been proposed as DM candi-
dates. Nonetheless, a minor part of the community does not believe in
DM; they believe that the theory of gravitation is not complete, and
work with alternative theories of gravity, such as Modified Newtonian
dynamics (MOND).

Three strategies are followed for DM detection: accelerators, direct and
indirect detection (see Figure 1).

Figure 1. Sketch of different types of search strategies for DM detec-
tion. Digital Image. Virdee, T. S. Beyond the standard model of particle
physics. (Royal Society, 2016). https://royalsocietypublishing.org/
doi/10.1098/rsta.2015.0259.

https://royalsocietypublishing.org/doi/10.1098/rsta.2015.0259
https://royalsocietypublishing.org/doi/10.1098/rsta.2015.0259
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1.1 DAMIC-M

In this study the direct search strategy is followed. It is a huge endeavor
to develop experiments able to directly investigate the particle nature of
DM. These experiments aim to identify recoils produced by the scatter-
ing between the theoretical DM particles and a detector’s target nuclei
or electron. Specifically in this research, the silicon of the CCDs is used
as a target (see Figure 2). This kind of experiments are very sensi-
tive to any radiation background, either from the construction material
or cosmogenic. Moreover, the collision signals are expected to be rare
and low (keV scale and below). In order to screen out the radiation back-
ground, the material is thoroughly assayed. In addition, carrying out the
measurements in a subterranean location, inside a mountain or a mine,
shielded from cosmic-rays induced events, is key to achieve sensitivity to
DM particle detection.

Figure 2. Nuclear recoil produced by the scattering between a DM
particle and a detector’s Si nucleus. Digital image. Aguilar-Arevalo, A.
et al. Measurement of radioactive contamination in the CCD’s of the
DAMIC experiment. (Journal of Physics, 2015). https://arxiv.org/pdf/
1506.02562.pdf.

https://arxiv.org/pdf/1506.02562.pdf
https://arxiv.org/pdf/1506.02562.pdf


1. Introduction. DAMIC-M 4

Previously calibrated and tested 675 µm-thick (approx. 15g each) CCDs
are located inside an electroformed copper box, used for screening pur-
poses. The 36MP CCDs have a very low radiation background (0.1/even-
t/kg/day/keV) and a resolution better than 1e− by means of the skipper
readout system. The operating temperature can range between 135-140K
and a maximum of 240K. An array of 50 skipper CCDs will constitute
the future DAMIC-M experiment located in the Laboratoire Souterrain
de Mondane facility (France), which is still finalizing its design and is
scheduled to be installed by the end of 2023. Nevertheless, the collabo-
ration has been studying this technology approximately since 2012 and
data has been taken from the DAMIC experiment located at SNOLAB
(Canada). The data from DAMIC is the one that has been used in this
project.

CCD images contain a high-resolution two-dimensional projection on the
XY plane of the charge deposits in the active volume of the device. The
DAMIC data has been acquired with two different readout configurations:
1X1 and 1X100. The first one is the standard CCD readout, reading
each pixel individually. On the second one instead, columns of 100 pixel
rows are read individually. The image readout times are 24h and 8h,
respectively for the 1X1 and 1X100 setups. Immediately after taking
the image, a ”blank” image is acquired, whose exposure is only a few
seconds. Since the occurrence of a physical event during each readout
mode is < 5% and < 0.1% (respectively for 1X1 and 1X100), most blank
images contain only the image noise. The total exposure time presents a
statistically consistent white noise distribution.

Different ionizing particles in a CCD include: straight track-shaped cos-
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mic ray muons, large drop-shaped alpha particles, ”worm”-shaped strag-
gling electrons, and low-energy candidates, characterized by small round
clusters (see Figure 3 Right). Furthermore, the ionizing particles need to
be distinguished from noise signals such as hot pixels (i.e. pixels which
look much brighter than they should), glowing and any other issue with
the pixels. The major research problem is the difficulty involved in cor-
rectly masking out the background noise; signals from ionizing particles
are almost at the same energy level as the background (see Figure 3
Left). In order to face the challenge of discriminating the different ion-
izing particles from the background noise, machine learning is proposed
as a solution.

Figure 3. Left: DAMIC 4096×4096 pixel CCD image (T=240K). The
pixel intensity values are given in ADCs1. Right: Signatures of different
ionizing particles in a CCD (processed image). Adapted Digital image.
Aguilar-Arevalo, A. et al. Measurement of radioactive contamination in
the CCD’s of the DAMIC experiment. (Journal of Physics, 2015). https:
//arxiv.org/pdf/1506.02562.pdf.

The goal of this project is to implement an innovative deep learning ap-
plication able to extract all the information from the detector images. An

1Unit of measurement for charge in count of ADC through the digital output of the A/D con-
verter.

https://arxiv.org/pdf/1506.02562.pdf
https://arxiv.org/pdf/1506.02562.pdf
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automated quality monitoring system is sought with the purpose of iden-
tifying the main defects associated to the detector. Four main categories
are discriminated on each image: background, glowing, hot pixels and
pixel clusters. The ML algorithm implemented on the images performs
a behavior generalization seeking to uncover the signal of each category.
Thus, the output shows all the practical information at a glance; an ideal
segmented image is displayed making each category clearly distinguish-
able. As a result, pixel clusters can be differentiated, leading to further
research.

1.2 Simulated CCD images

In order to develop a ML model, data is vital. Frequently, collecting
suitable data is more troublesome than writing algorithms. Depending
on the sophistication of the problem, the number of parameters and the
amount of data needed varies significantly. Most commonly used datasets
for computer vision can provide over 100000 images, sometimes even a
million of them. However, possessing such a vast and appropriate dataset
is not always possible. Occasionally, data collection is overly costly, and
the lack of data limits the model.

This obstacle is overcome creating images that simulate the ones taken by
CCDs. The aim is to emulate the signatures of the four main categories
to discriminate, so that the model will learn and subsequently be able
to predict them on real detector images. To create a simulated image,
first the background is defined by a fixed intensity value, or pedestal,
to which an amount of noise can be added. Then the other three main
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categories to discriminate are added to the image: glowing, hot pixels
and pixel clusters. These three differ in shape and pixel intensity2 (being
pixel clusters the least intense, and glowing and hot pixels the most
intense). The freedom of choice is the main advantage of this solution; it
is possible to vary which objects (or categories) are included in a picture,
the amount of them, their pixel intensities, size, position, etc. This way,
a wide variety of simulated images can be used, ensuring that the model
learns all kind of signals that can appear in a real CCD image.

2Pixel intensity is proportional to the collected charge by each pixel.
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2 Machine Learning

Field of study that gives the ability to the computer to
self-learn without being explicitly programmed.

Arthur L. Samuel, 1959

As data growth continues to escalate, algorithms must keep improving to
be able to understand it all with higher speed and higher accuracy. Pro-
cessing the high amount of data that is produced every day is becoming
more challenging without the assistance of ML. ML is an AI subset which
is focused on developing programs that are able to teach themselves to
make accurate predictions when exposed to new data. It is found in
diverse sectors, due to its wide usage in image recognition, speech recog-
nition, medical diagnoses, trading, etc. There are three main types of
ML: supervised, unsupervised and reinforcement learning.

In supervised learning, algorithms are trained with labeled data. Thus,
known input and output is being used. Each image data is tagged with
its corresponding label, which is the desired output. The algorithm learns
by comparing its prediction with the given label, and modifies the model
accordingly. In this project classification supervised learning is applied,
meaning that the output variables are categories (’background’, ’glow-
ing’, ’hot pixels’, and ’pixel clusters’).
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2.1 Convolutional Neural Networks

Taking the human brain as a reference, artificial NNs are based on con-
nected nodes called neurons. A neuron receives inputs from other neurons
and combines them together. The output from a neuron is obtained by
a value transformation called activation function. The values used in
the activation function, termed weights, are randomly initialized. The
accuracy of a neuron output is determined by the loss function; the lower
the loss, the higher the output accuracy. Therefore the goal is to find
the right weights to minimize the loss function, thus, giving the most
accurate prediction. This is done by an optimizer, that identifies which
weights contribute most directly to the loss of the network, subsequently
updating them in order to minimize such loss. The training process is
repeated for a number of iterations, aiming to improve the weight value
readjustment.

CNNs are composed of an input layer, several hidden layers, and an out-
put layer. Their employment allows the recognition of specific properties
of image data, thereby becoming highly suitable for computer vision ap-
plications. Images are passed through the NN as an array of values
describing pixel intensities. Each of these values is a feature that char-
acterizes the image. The first few neuron layers learn low-level features
(basic elements such as edges and colors), leading to a more complex
pattern learning by the succeeding layers (see Figure 4). This way, the
network is able to differentiate one image from another. Generally, pre-
diction accuracy is improved with a deeper network, i.e. with more layers.
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Figure 4. CNN feature learning process. Adapted Digital Image. Tor-
res, J. Convolutional Neural Networks for Beginners. (Towards Data Sci-
ence, 2018). https://towardsdatascience.com/convolutional-neural-
networks-for-beginners-practical-guide-with-python-and-keras-
dc688ea90dca.

2.1.1 Convolution

CNNs are named after its most important layer, the convolution layer.
While a standard NN layer applies its activation function weights to the
whole image, a convolution layer applies a set of weights spatially across
the image, thereby reducing the number of parameters needed. This
set of activation function weights compose the filter, which is defined by
several hyper-parameters: filter size, stride, and depth. Filter size sets
the width and height of the filter. The number of pixels to move before
applying the filter again is set by stride. If the stride is smaller than the
filter size, regions of the image are overlapped. The depth defines the
number of channels of the filter, which is equal to the number of input
channels (e.g. for a RGB image the depth is 3, one for each color channel,
while for a grayscale image the depth is 1).

https://towardsdatascience.com/convolutional-neural-networks-for-beginners-practical-guide-with-python-and-keras-dc688ea90dca
https://towardsdatascience.com/convolutional-neural-networks-for-beginners-practical-guide-with-python-and-keras-dc688ea90dca
https://towardsdatascience.com/convolutional-neural-networks-for-beginners-practical-guide-with-python-and-keras-dc688ea90dca
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2.1.2 Max pooling

Max pooling layers, like convolution layers, apply a filter across the im-
age, which is also defined by a filter size and stride. The layer takes the
maximum value within the filter, reducing the spatial size of the input
(see Figure 5). However, it does not take the maximum value across
different depths, since it is applied to each depth channel individually.

Figure 5. Max pooling operation example. Adapted Digital Image.
CS231n Convolutional Neural Networks for Visual Recognition. https:
//cs231n.github.io/convolutional-networks/#pool.

2.1.3 Dropout

Overfitting is one of the most common issues when training a ML model.
It causes the model to memorize the training data, instead of learning
from it, which leads to a high accuracy on the predictions while training,
but a low accuracy on testing predictions. The most effective solution
is adding more training data. Nonetheless, adding a dropout layer also
helps avoiding the issue. Dropout layers randomly ignore a number of
neuron outputs, reducing the dependency on the training set.

https://cs231n.github.io/convolutional-networks/##pool
https://cs231n.github.io/convolutional-networks/##pool
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2.1.4 Fully connected

A fully connected layer is usually added as the last layer of the CNN.
Like in a standard NN layer, every neuron is connected to every neuron
in the previous layer. The fully connected layer classifies the image based
on the outputs of the preceding layers.

2.2 Image segmentation

An image classification problem consists in predicting the object within
the image. On the other hand, image segmentation requires a higher
understanding of the image; the algorithm is expected to classify each
pixel in the image. Thus, the output is a labeled image in which each pixel
is classified to its corresponding category. Self-driving cars development,
medical images diagnosis and satellite image analysis are some of the
numerous image segmentation applications.

2.2.1 U-Net

It is a widely held belief that a successful deep network training requires
thousands of labeled training data. However, the U-Net network archi-
tecture, originally developed for biomedical (cell) image processing3, uses
the available labeled images more efficiently. In consequence, it has be-
come one of the most popular networks in the medical domain, where

3Ronneberger, O. et al. Convolutional Networks for Biomedical Image Segmentation. (2015).
https://arxiv.org/pdf/1505.04597.pdf.

https://arxiv.org/pdf/1505.04597.pdf
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usually thousands of training samples are beyond reach. Furthermore,
the U-Net architecture is able to detect small size objects within the
image.

The U-Net architecture contains two paths: the contraction path, called
encoder, and its symmetric expanding path, the decoder (see Figure 12).
The encoder is built stacking convolutional and max pooling layers. This
way the size of the image is reduced, which is called down sampling. The
deeper the network, the more reduced is the image. This allows obtaining
information about the objects within the image, but the spatial informa-
tion is lost. Therefore the image needs to be up sampled to the original
image size, i.e. restore the low resolution image to a high resolution im-
age. For this purpose, the decoder is built stacking convolutional and
transposed convolutional layers. Every step of the decoder uses skip con-
nections by concatenating the outputs of the down sampling layers with
the up sampling layer at the corresponding level. The network does not
contain fully connected layers, therefore is defined as a fully convolutional
network.
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3 Implementation

In this section the core of the project is dissected. Every employed
method is explained; from the origination of an image, to the training
of the model, every necessary step in the creation of the deep learning
application is analyzed.

3.1 Image simulation

As stated in previous sections, the simulated images contained four classes4

to segment: background, glowing, hot pixels and pixel clusters. Two
datasets were created: a training and a testing set. The training set was
used to train the ML model, while the testing set was only used once
the model was fully trained. Trying to recreate real DAMIC images at
T =140K as accurate as possible, specific pixel intensities were assigned
to each class in 256×256 pixel images (see Figure 6).

The background intensity, also referred as pedestal, was set a value of
8800ADC with a noise of ±60ADC, meaning that the background pixel
intensities took values between 8740 and 88605ADC. Glowing was added
as a vertical column with an intensity above background of range [1400,
1500]ADC. Hot pixels were added as thin vertical and horizontal lines of
different lengths with intensities above background of 2200ADC, being
the class with the highest pixel intensity value. Clusters, on the other

4Previously defined as categories.
5All pixel intensity ranges followed a gaussian distribution.
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Figure 6. Simulated 256×256 pixel CCD image containing glowing, hot
pixels and pixel clusters. The pixel intensity values are given in ADCs.

hand, were added from a file containing the intensity and position of 803
pixel clusters. The file did not contain any alpha particle, hence almost6

all clusters were low-energy events and their intensity value was slightly
above background.

Both python files containing the code for creating the simulated images,
as well as the file with cluster information were provided by Agust́ın
Lantero Barreda, PhD Student of DAMIC-M.

3.2 Image labeling

In supervised learning image labels are as essential as images. A label
represents the desired output, i.e. an image where each pixel is classified
to its corresponding class. A model learns by comparing its prediction
with the label and trying to minimize the number of incorrectly predicted
pixels.

6Some pixels representing electrons reached higher intensity values.
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3.2.1 Labelme

Taking advantage of the existence of data labeling platforms, the graph-
ical annotation tool labelme was used as a first attempt to create labels.
Opening the simulated images in the graphical interface, each object was
individually classified; the border of each glowing, hot pixel or cluster was
drawn one by one with the computer mouse. Then, a JSON (JavaScript
Object Notation) file was created and subsequently converted to PNG
(Portable Network Graphics) file format. The created label contained
each class differently colored (see Figure 7).

Figure 7. Left: simulated image. Right: image label created with labelme

Nonetheless, this method happened to be highly inefficient. On the one
hand, individually drawing the border of each object within every im-
age was very time-consuming. On the other hand, it was impossible to
achieve an accurate label, particularly for clusters, due to the difficulty
to distinguish them. For these reasons, a new labeling method had to be
researched.
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3.2.2 Automated labeling

A new method of image labeling was studied, straightforwardly without
the employment of any labeling platform or annotation tool. Reflect-
ing on how the simulated images were created, a great convenience was
found: the images were created with predetermined pixel intensities.
Thus, the threshold values that determined whether a pixel belonged to
a certain class were known. This knowledge played a decisive part in the
development of an automated labeling method.

The datasets were three-dimensional arrays of shape (number of images,
height, width). The goal was to obtain a four-dimensional array of shape
(number of images, height, width, 4), where the last dimension informed
about the class corresponding to the pixel. This way, the label was a
segmentation map where each pixel contained a class label represented
as an integer; numbers 1, 2, 3 and 4 were respectively assigned to the
classes ’background’, ’glowing’, ’hot pixel’ and ’cluster’. These class labels
were described in a one-hot encoded way, meaning that each one had a
depth channel (e.g. [0,0,1,0] represented the class ’hot pixel’).

To get started, a blank four-dimensional array was created. Then, going
through all the images, each pixel was classified. Knowing the threshold
values of the four categories, the pixel intensity value determined its class
label. Based on this classification, the corresponding depth channel took
value 1 while the other three remained at value 0 (see Figure 8). Going
through all the images, the segmentation maps were obtained.
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Figure 8. Image label example, where each pixel is classified as a class
and its corresponding depth channel takes value 1. Adapted Digital Image.
Jordan, J. An overview of semantic image segmentation. (2018). https://
www.jeremyjordan.me/semantic-segmentation.

This new automated way to create labels solved the inefficiencies of the
previous method. Labeling each image individually was no longer needed,
saving a substantial amount of time. Additionally, the knowledge of the
threshold values of each class allowed correctly classifying every pixel,
thereby obtaining an exact label.

In order to visualize the label, the array needed to be reshaped into
(number of images, height, width, 3(RGB)). First, the position of the
maximum value on the fourth dimension (i.e. the integer assigned to
the class) was taken. This showed the regions of the image where each

https://www.jeremyjordan.me/semantic-segmentation
https://www.jeremyjordan.me/semantic-segmentation
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class was present (see Figure 9). Lastly, a different color multiplier (a
three-dimensional RGB array) was applied to each class.

Figure 9. Segmentation map example. Adapted Digital Image. Jor-
dan, J. An overview of semantic image segmentation. (2018). https://
www.jeremyjordan.me/semantic-segmentation.

3.3 Data augmentation

Data augmentation is especially useful to teach invariance properties to
the network. Augmentation is applied when only a few training samples
are available, or when the desired property is not present in the dataset.

The lack of samples did not pose a problem, since the images were sim-
ulated. However, when the first labeling method was being employed,
augmentation was applied in order to shorten the time-consuming la-
beling process. Labels were augmented together with images with the
purpose of having a larger dataset. These augmentation transformations
included rotations, translations, scaling and cropping (see Figure 10).

https://www.jeremyjordan.me/semantic-segmentation
https://www.jeremyjordan.me/semantic-segmentation
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Figure 10. Image and label augmentation example. The applied transfor-
mations are translation and scaling.

On the other hand, when the automated labeling method was applied,
the number of samples and labels was no longer a concern. Neverthe-
less, possessing data with certain properties that could not be simulated
was essential in the project. A color change invariant model could be
trained owing to augmentation; the images were transformed into ro-
tated grayscale images, and color channel inversion7 was performed (see
Figure 11). This was key in the accomplishment of the final model.

7Color channel inversion inverts all pixel values in an image, e.g. in the standard RGB value
range of [0,255], turns 5 into 255-5=250.
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Figure 11. Image and label augmentation example on a grayscale image.
The applied transformations are rotation and color channel inversion.

3.4 Network implementation

Due to its capacity to work efficiently with a reduced amount of images
and to detect small size objects, a U-Net structure was implemented (see
Figure 12). The structure, originally developed by O. Ronneberger et
al.8, is constituted by two main parts: the encoder and the decoder.

8Ronneberger, O. et al. Convolutional Networks for Biomedical Image Segmentation. (2015).
https://arxiv.org/pdf/1505.04597.pdf.

https://arxiv.org/pdf/1505.04597.pdf
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Figure 12. Implemented U-Net architecture. Adapted from Ronneberger,
O. et al. Convolutional Networks for Biomedical Image Segmentation.
(2015). https://arxiv.org/pdf/1505.04597.pdf.

The encoder, following a typical CNN architecture, consisted of the re-
peated application of two 3×39 convolutional layers along with a 2×2
max pooling layer. The decoder, on the other side, consisted of an iter-
ation of a 2×2 transposed convolution, a concatenation with the down
sampling layer at the corresponding level, and two 3×3 convolutional
layers. The last layer was a 1×1 convolutional layer with a softmax
activation function, which returned a four-dimensional vector with the
output of the previous layer transformed into a probability distribution
ranged between 0 and 1.

9Referred to the filter size.

https://arxiv.org/pdf/1505.04597.pdf
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The total number of convolutional layers in this project was 19, in con-
trast to the 23 in the original architecture. The model was not able to
properly train with the initial structure, due to the excessive depth; the
images were being overly down sampled and the model was struggling to
learn such small details. For this reason, one level of layers was removed
from the structure, leading to a proper model training.

The implemented network also differentiated in the activation function
(except in the last convolutional layer); the ELU (Exponential Linear
Unit) was applied, instead of the ReLU (Rectified Linear Unit) function.
The ELU function was found to be slower to train, but produced more
accurate results.

The original loss function, on the other side, was the categorical crossen-
tropy. This function is used on multi-class classification applications,
where the last activation function outputs a probability distribution vec-
tor. However, its employment did not allow obtaining meaningful pre-
dictions. This loss function gives the same importance to all classes, no
matter how frequent they are in the dataset. Since the simulated set
contained background pixels in its majority, this class had a significantly
greater impact on the loss function. For this reason, in order to work with
the imbalanced dataset, a weighted version of the loss function was imple-
mented. With the weighted categorical crossentropy, the least frequent
classes are given the highest weight, or importance, thereby balancing
the impact of all classes on the loss function.

The optimizer was not originally detailed, therefore the most common
ones were tested: Adam, Adagrad, Adadelta and SGD. All of them are
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adapted stochastic gradient descent methods. These methods are the
algorithms that change the weights of the activation function in order to
reduce the loss given by the loss function. An optimizer is defined by its
learning rate. This hyper-parameter determines the amount of weights
that are updated at each training iteration. The larger the learning rate,
the faster the optimizer will minimize the loss function. However, if the
learning rate is too large, the optimizer might not be able to converge
and minimize the loss function. In the end, the chosen optimizer was
adadelta, a method which dynamically adapts its learning rate over time.
The automatic learning rate setting was found to be highly convenient,
and worked efficiently on the simulated dataset.

Finally, unlike in the original structure, dropout layers were added be-
tween every pair of convolutional layers. The intention was to avoid
overfitting as much as possible.

3.5 Model training

Previously, the creation of two datasets was explained: the training and
testing sets. As a matter of fact, the training set was splitted into a
training and a validation set. The validation set can be understood as a
testing set that is applied while training. It is essential to verify that the
network has not memorized the training data (i.e. overfitting) and will
later be able to reliably perform on the ’unseen’ test dataset.

The training dataset was shuffled and divided into batches. Then, these
batches were passed through the network a certain number of times, de-
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fined as epochs. A small batch size introduces a high variation within
each batch, as it is improbable that a small number of training samples
represent the dataset reasonably. Nonetheless, choosing a large batch
size may tend to overfit the data. During the training process, the model
is expected to stabilize at its optimum state, and converge its loss and ac-
curacy (see Figure 19). However, models can occasionally be overtrained
after reaching their optimum state and cause overfitting (see Figure 13).
In order to avoid this, the training process was programmed to stop if
the validation loss had not improved in 20 epochs, and only the model
with the lowest loss was saved.

Figure 13. Example of an overtrained model that overfits after reaching
its optimum state at epoch 25. Left: Training and validation loss. Right:
Training and validation accuracy.

There exists no rule on which layers, activation function, loss function,
optimizer or batch size work better, therefore various models had to be
tested. Not only all parameters had to be tested, but even different com-
binations of them, in order to find out which ones worked most efficiently
on the given set. Considering that a 100 epoch training took more than
5h (∼ 3-4 minutes per epoch), the structure and parameter optimization
of the model ended up being especially time-consuming.
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The Python application consisted on 8 files, each of them with a partic-
ular implementation purpose. A summary is shown in Figure 14. See
Appendix for technical specifications of the implementation.

Figure 14. Python implementation summary.
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4 Results

While the implementation process already poses a challenge itself, a
seemingly correct model structure and parameter choice does not always
translate into a correct model training. The goal of this application was
to train a suitable model for the given dataset, but most importantly, for
the CCD images from DAMIC. All the challenges that had to be faced,
together with the different attempts to overcome them in order to obtain
the desired results, are revealed in this section.

4.1 Test dataset

For this project 200 training and 42 test images were created. As previ-
ously explained, each image contained glowing on the left side, and hot
pixels and clusters randomly placed on the right (see Figure 6). From
the training set 42 samples were taken for validation. The network was
set with an 18% dropout. Small variations of this value (10-25% is the
common dropout range) did not significantly alter the final result. Tak-
ing the original U-Net model as a reference, a batch size of 1 sample was
set. The training was defined for 100 epochs.

4.1.1 Original U-Net

At the first attempt, the original U-Net architecture and parameters
were employed. The trained model predicted all pixels on the test set
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as background. These meaningless predictions were mainly caused by
the loss function, which only focused on minimizing the loss caused by
background pixels, regardless of the other three classes.

Nevertheless, this is also the reason why a misleadingly high accuracy was
obtained. Due to the fact that 5% of the pixels in the dataset represented
objects to detect, and all pixels were predicted as background, a 95%
accuracy was achieved.

4.1.2 Hyper-parameter optimization

After the initial failure, new structures and parameters were tested in or-
der to find the model settings that worked most efficiently on the dataset.
The optimized model was trained, achieving a 98% accuracy. All back-
ground, glowing and hot pixels were correctly segmented. However, clus-
ters were not detected (see Figure 16 Bottom left). The remaining 2%
accuracy was equal to the percentage of cluster pixels in the dataset.

4.1.3 Employment of pretrained weights

In order to detect every class within an image, a new approach was
required. With the intention of forcing the model to learn segmenting
clusters, a first model was trained with a new set. These new images only
contained clusters. Afterward, a second model was trained with images
containing all classes. This time, the activation function weights were
no longer randomly initialized; the trained weights from the first model
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were used as pretrained weights on the second.

Despite the usage of pretrained weights, the model predicted the same
as if the weights were randomly initialized; background, glowing and hot
pixels were correctly segmented, while clusters were not.

4.1.4 Loss function adjustment

A second try to detect clusters was based on the adjustment of the loss
function. Suggesting that the function was not focusing on correctly pre-
dicting clusters, the weight of this class was increased. In this occasion,
glowing, hot pixels and clusters were segmented, while the background
was not (see Figure 16 Bottom middle). The loss function was found
to be significantly sensitive to its weights. Increasing the weight corre-
sponding to clusters did translate into their detection, but at the cost of
incorrectly predicting the background.

4.1.5 Creation of a balanced dataset

The previous failed attempts suggested that the issue was related to the
images, rather than to the model structure and parameters. The goal was
to work with more balanced loss function weights. In order to achieve
that, the training set had to be modified. Greatly increasing the number
of objects within the images, the percentages of each class on the dataset,
and therefore the loss function weights, were more similar to each other.
The new images were composed of three sections. The left side remained
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unchanged, were a glowing vertical column was added. The right side was
divided into two sections: one section containing hot pixels, and the other
containing clusters (see Figure 15). The new dataset was constituted by
41% background, 25% glowing, 21% hot pixel and 13% cluster pixels.

Figure 15. Simulated 256×256 pixel image with a similar number of pix-
els belonging to each class.

A new model was trained with the balanced dataset, and above 99%
prediction accuracy was achieved in the test set, correctly segmenting
every object (see Figure 16 Bottom right).

4.2 DAMIC data

DAMIC data was received in FITS (Flexible Image Transport System)
file format. These files were read and saved as arrays that contained the
collected charge by each CCD pixel. Since 256×256 pixel images were
used for training the model, the DAMIC image was divided into sections
of the same size. Next, each section was passed trough the trained model,
obtaining the respective predicted labels. In the end, all predictions were
reconstructed into a full segmentation map.
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Figure 16. Top left: test image to be passed through the trained model.
Top middle: correct label of the test image. Top right: classes to segment in
a label. Bottom left: predicted label by the model trained after the hyper-
parameter optimization. Bottom middle: predicted label by the model
trained after the loss function adjustment. Bottom right: predicted label by
the model trained with the balanced dataset.

4.2.1 First test

A DAMIC image was tested by the model trained with the balanced
dataset. Although this model had correctly worked on the test set, an
undoubtedly incorrect output was obtained for the real image; all pixels
were predicted as clusters. This result forced the need to take a step
back and analyze the simulated images once again.
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4.2.2 Color change invariance testing

Reflecting on the reason of the failure, the color of the images was pro-
posed as a possible cause. It seemed like the model was learning to
segment objects based on color. In order to confirm the hypothesis, two
tests were made.

On the first test, the color of some samples was changed. The modified
images were passed through the trained model, which failed to correctly
label the objects (see Figure 17 Bottom second).

The second test consisted on a binary classification model. It was trained
to segment two classes: background and object, without distinction of
the type. Yet again, when a modified image was passed through the
model, an incorrect output was obtained (see Figure 17 Bottom third).

4.2.3 Color change invariance learning

At this stage begun the attempt to teach color change invariance to a
model. In order to achieve this goal, two methods were studied.

First, data augmentation was applied to randomly change the color of
images. A model was trained with the modified images, and consequently
tested. The model correctly predicted the label of the non-modified sam-
ples. When the modified samples were tested, on the other hand, the
model failed, as it did when no data augmentation was applied.
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As a last attempt, data augmentation was applied to generate grayscale
images, rotate them, and invert their pixel intensity values (see Fig-
ure 11). The intention was to prevent the model from learning which
class should have a higher pixel intensity. Moreover, the predictions
should not depend on the orientation of the objects. A new model was
trained and tested. The model was able to correctly segment and label
every object in non-modified and modified samples (see Figure 17 Bot-
tom fourth). Nevertheless, when a DAMIC image was tested, all pixels
were still being classified as clusters.

Figure 17. From left to right. Top first: test image to be passed through
the trained model. Top second: correct label of the test image. Top third:
correct binary classification label of the test image. Top fourth: classes to
segment in a label. Bottom first: test image after a random color change.
Bottom second: predicted label by the model trained with the balanced
dataset. Bottom third: predicted label by the binary classification model.
Bottom fourth: predicted label by the color change invariant model.
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4.2.4 Image normalization

The simulated datasets were being loaded as PNG images, meaning that
standard RGB pixel values were being used, which range between 0 and
255. These were hundreds of times smaller than the pixel intensity values
contained in real data. For that reason, a DAMIC image normalization
was proposed. However, it was proved to be ineffective; when real data
was normalized to 255, the model predicted all pixels as the same class.

4.2.5 Dataset loading method modification

Trying to find a new solution, the way in which the simulated datasets
were loaded was changed. Instead of loading them as PNG files, the
arrays containing the predetermined pixel intensities were loaded. With
this new data loading method a model was trained. When a DAMIC
image was tested, an unusual signal was found; vertical lines of glowing
were being predicted, coinciding with the beginning of each 256×256
section (see Figure 18).

Therefore, a last modification was made to the simulated sets; only 60%
of the images contained glowing, and it did not always start from the
first pixel. This way, the model did not learn that all predictions should
have a glowing column, nor where should it be. The loss (see Figure 19
Left) and accuracy (see Figure 19 Right) of the training and evaluation
set verified that the model did not suffer from overfitting.
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Figure 18. Left: A 4096×4096 pixel DAMIC image (T=140K). The pixel
intensity values are given in ADCs. Right: Predicted label with unusual ver-
tical lines of glowing every 256 pixels.

Figure 19. Learning process of the last model, trained with arrays con-
taining the predetermined pixel intensities. Left: Training and validation
loss. Right: Training and validation accuracy.
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The model performed correctly on the test dataset, segmenting every
object and reaching a 99.2% accuracy. The classification report showed
how efficiently each class performed (see Table 1).

Table 1. Classification report of the predictions on the test set.

Class Precision Recall F1-score Support
Background 1.00 0.99 1.00 2535931

Glowing 1.00 1.00 1.00 187442
Hot pixel 0.99 0.98 0.95 10594
Cluster 0.44 0.63 0.52 18545

Precision: percentage of correctly classified pixels among all pixels classified as the class.
Recall: percentage of correctly classified pixels among all pixels that truly are of the class.
F1-score: harmonic mean between precision and recall.
Support: number of pixels of the class in the dataset.

The model also gave a seemingly correct prediction of a DAMIC image
(T=140K). Due to the small size of the objects, these could not be seen
when the whole image was displayed. If the 256×256 sections were indi-
vidually observed instead, the segmented clusters could be analyzed (see
Figure 20).

Figure 20. Left: A 256×256 pixel DAMIC image (T=140K) section. The
pixel intensity values are given in ADCs. Right: Predicted label with seg-
mented clusters.
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5 Discussion and future work

The relevance of the network structure and parameters has been eval-
uated, as shown by the inaccurate output given by the original U-Net
settings. Furthermore, the results contribute a clearer understanding of
how the model learns from the dataset. In spite of the employment of the
weighted categorical crossentropy, the model is not able to segment all
categories when it is being trained with an imbalanced set. The influence
of data on the performance of the model is also proved by the unsuccess-
ful predictions on DAMIC images. Figure 18 provides an insight into
how the model learns from data. These findings should be taken into
account when considering to improve the model.

The study shows the good performance of the U-Net structure detecting
small size objects and its capability to work with less images than other
networks. By its implementation, an automatic data quality monitoring
system is created, supporting the potential of deep learning techniques
in DM searches.

Nonetheless, the application’s shortcomings are revealed when a more
complex image is passed through the model, obtaining a prediction that
is not entirely correct (see Figure 21). In order to deal with this is-
sue, defining geometrical restrictions is a possible solution. For instance,
imposing a hot pixel prediction to have its expected shape, which is a
vertical or horizontal line. Likewise a maximum cluster size can be de-
fined. Additionally, glowing predictions are likely to improve if different,
more realistic shapes are generated in the simulated dataset.
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Figure 21. Left: DAMIC image (T=240K). The pixel intensity values are
given in ADCs. Right: Predicted label with unusual hot pixel and cluster
segmentation on the bottom right side.

The results might suggest that a model is limited to the range of inten-
sities to which it is trained. However, applying different normalization
techniques, such as linear scaling10 or clipping11, to the DAMIC images
is a seemingly good approach to solve this limitation.

Moreover, in future work more classification categories can be added,
allowing particle identification by measuring their energy, and possible
DM signals could be discerned.

10Linear scaling converts the values from their natural range into a standard range, usually [0,1].
11Clipping caps all values above or below a certain value to a fixed value.
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Appendix A

The source code of the application was implemented in Python, with the
requirement of the following open-source libraries (version numbers are
up to date: 21.06.2020):

• Keras (2.3.1)
• TensorFlow (2.1.0)
• NumPy (1.18.1)
• scikit-learn (0.22.1)
• scikit-image (0.9.3)
• OpenCV-Python (4.0.1)
• imgaug (0.4.0)
• Matplotlib (3.2.1)
• Pillow (7.1.2)

The core files of the implementation are shown in Appendix A.1 and Ap-
pendix A.2. All the files can be found on GitHub: https://github.com/

aritzLizoain/Image-segmentation

Appendix A.1

The U-Net structure is implemented in the model.py file. Every layer
composing the CNN and each hyper-parameter is specified in it. In
addition, the weighted categorical crossentropy loss function is defined.

https://github.com/aritzLizoain/Image-segmentation
https://github.com/aritzLizoain/Image-segmentation


Appendix A.1 40

1 """
2 @author : Aritz Lizoain
3 ARCHITECTURE : U-Net
4 Input: images (n_img , h, w, 3( rgb )) and labels (n_img , h, w, 4)
5 Output : predicted label (n_img , h, w, 4)
6 """
7
8 import numpy as np
9 import os

10 import matplotlib . pyplot as plt
11 from keras. models import *
12 from keras. layers import *
13 from keras. optimizers import *
14 from keras. callbacks import ModelCheckpoin
15 from keras. callbacks import LearningRateScheduler
16 from keras import backend as keras
17 import keras. losses
18 from keras import regularizers
19 import keras. backend as K
20
21 ##############################################################
22 # WEIGHTED CROSSENTRPY LOSS FUNCTION (For imbalanced datasets )
23 def weighted_categorical_crossentropy ( weights = [1. ,1. ,1. ,1.]):
24 print (’Loss function : weighted categorical crossentropy ’)
25 def wcce(y_true , y_pred ):
26 Kweights = K. constant ( weights )
27 if not K. is_tensor ( y_pred ): y_pred = K. constant ( y_pred )
28 y_true = K.cast(y_true , y_pred .dtype)
29 return K. categorical_crossentropy (y_true , y_pred ) *\
30 K.sum( y_true * Kweights , axis =-1)
31 return wcce
32
33 #-------------------------------------------------------------
34 def unet( pretrained_weights = None , input_size = (256 ,256 ,1) ,\
35 weights = get_weights ( train_images , test_images ),\
36 activation = ’elu ’, dropout = 0.18 , loss =\
37 weighted_categorical_crossentropy ( weights ), optimizer \
38 =’adadelta ’, reg = 0.01):
39
40 inputs = Input( input_size )
41 s = Lambda ( lambda x: x / 255) ( inputs )
42
43 """ CONTRACTIVE Path ( ENCODER )"""
44
45 c1 = Conv2D (32, 3 , activation , kernel_initializer =\
46 ’he_normal ’, padding =’same ’,\
47 kernel_regularizer = regularizers .l2(reg )) (s)
48 c1 = Dropout ( dropout ) (c1)
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49 c1 = Conv2D (32, 3 , activation , kernel_initializer =\
50 ’he_normal ’, padding =’same ’,\
51 kernel_regularizer = regularizers .l2(reg )) (c1)
52 p1 = MaxPooling2D ((2, 2)) (c1)
53
54 c2 = Conv2D (64, 3, activation , kernel_initializer =\
55 ’he_normal ’, padding =’same ’,\
56 kernel_regularizer = regularizers .l2(reg )) (p1)
57 c2 = Dropout ( dropout ) (c2)
58 c2 = Conv2D (64, 3, activation , kernel_initializer =\
59 ’he_normal ’, padding =’same ’,\
60 kernel_regularizer = regularizers .l2(reg )) (c2)
61 p2 = MaxPooling2D ((2, 2)) (c2)
62
63 c3 = Conv2D (128 , 3, activation , kernel_initializer =\
64 ’he_normal ’, padding =’same ’,\
65 kernel_regularizer = regularizers .l2(reg )) (p2)
66 c3 = Dropout ( dropout ) (c3)
67 c3 = Conv2D (128 , 3, activation , kernel_initializer =\
68 ’he_normal ’, padding =’same ’,\
69 kernel_regularizer = regularizers .l2(reg )) (c3)
70 p3 = MaxPooling2D ((2, 2)) (c3)
71
72 c4 = Conv2D (256 , 3, activation , kernel_initializer =\
73 ’he_normal ’, padding =’same ’,\
74 kernel_regularizer = regularizers .l2(reg )) (p3)
75 c4 = Dropout ( dropout ) (c4)
76 c4 = Conv2D (256 , 3, activation , kernel_initializer =\
77 ’he_normal ’, padding =’same ’,\
78 kernel_regularizer = regularizers .l2(reg )) (c4)
79 p4 = MaxPooling2D ( pool_size =(2, 2)) (c4)
80
81 c5 = Conv2D (512 , 3, activation , kernel_initializer =\
82 ’he_normal ’, padding =’same ’,\
83 kernel_regularizer = regularizers .l2(reg )) (p4)
84 c5 = Dropout ( dropout ) (c5)
85 c5 = Conv2D (512 , 3, activation , kernel_initializer =\
86 ’he_normal ’, padding =’same ’,\
87 kernel_regularizer = regularizers .l2(reg )) (c5)
88
89 """ EXPANSIVE Path ( DECODER )"""
90
91 u6 = Conv2DTranspose (256 , 2, strides =(2, 2),\
92 padding =’same ’) (c5)
93 u6 = concatenate ([u6 , c4])
94 c6 = Conv2D (256 , 3, activation , kernel_initializer =\
95 ’he_normal ’, padding =’same ’,\
96 kernel_regularizer = regularizers .l2(reg )) (u6)
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97 c6 = Dropout ( dropout ) (c6)
98 c6 = Conv2D (256 , 3, activation , kernel_initializer =\
99 ’he_normal ’, padding =’same ’,\

100 kernel_regularizer = regularizers .l2(reg )) (c6)
101
102 u7 = Conv2DTranspose (128 , 2, strides =(2, 2),\
103 padding =’same ’) (c6)
104 u7 = concatenate ([u7 , c3])
105 c7 = Conv2D (128 , 3, activation , kernel_initializer =\
106 ’he_normal ’, padding =’same ’,\
107 kernel_regularizer = regularizers .l2(reg )) (u7)
108 c7 = Dropout ( dropout ) (c7)
109 c7 = Conv2D (128 , 3, activation , kernel_initializer =\
110 ’he_normal ’, padding =’same ’,\
111 kernel_regularizer = regularizers .l2(reg )) (c7)
112
113 u8 = Conv2DTranspose (64, 2, strides =(2, 2),\
114 padding =’same ’) (c7)
115 u8 = concatenate ([u8 , c2])
116 c8 = Conv2D (64, 3, activation , kernel_initializer =\
117 ’he_normal ’, padding =’same ’,\
118 kernel_regularizer = regularizers .l2(reg )) (u8)
119 c8 = Dropout ( dropout ) (c8)
120 c8 = Conv2D (64, 3, activation , kernel_initializer =\
121 ’he_normal ’, padding =’same ’,\
122 kernel_regularizer = regularizers .l2(reg )) (c8)
123
124 u9 = Conv2DTranspose (32, 2, strides =(2, 2),\
125 padding =’same ’) (c8)
126 u9 = concatenate ([u9 , c1], axis =3)
127 c9 = Conv2D (32, 3, activation , kernel_initializer =\
128 ’he_normal ’, padding =’same ’,\
129 kernel_regularizer = regularizers .l2(reg )) (u9)
130 c9 = Dropout ( dropout ) (c9)
131 c9 = Conv2D (32, 3, activation , kernel_initializer =\
132 ’he_normal ’, padding =’same ’,\
133 kernel_regularizer = regularizers .l2(reg )) (c9)
134
135 # softmax activaition function of the last layer
136 outputs = Conv2D (4, 1, activation =’softmax ’) (c9)
137
138 model = Model( inputs =[ inputs ], outputs =[ outputs ])
139 model. compile ( optimizer =optimizer , loss=loss ,\
140 metrics = [’accuracy ’])
141 if( pretrained_weights ):
142 print (’ Pretrained weights ’. format ( pretrained_weights ))
143 model. load_weights ( pretrained_weights )
144 return model
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Appendix A.2

Train.py and load model.py are the files that are executed. Every func-
tion defined in the rest of the files is imported by them. Here, a com-
bination of both files is shown. First, the data is loaded, and the labels
are created. Then, data augmentation is applied. Next, the model is
trained with the determined hyper-parameters. After that, the model
is evaluated and tested; the accuracy and loss are plotted, the test set
is passed through the model, and the classification report is displayed.
Last, the DAMIC image prediction is obtained.

1 """
2 @author : Aritz Lizoain
3 TRAINING + TESTING + DAMIC IMAGE PREDICTION
4 Working directory must be where all files are located .
5 """
6
7 """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """
8 DATA LOADING , LABEL CREATION AND DATA AUGMENTATION
9 """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """

10 import numpy as np
11 import random
12 import matplotlib . pyplot as plt
13 from mask import *
14 from load_dataset import load_images
15 from augmentation import *
16
17 ##############################################################
18 """ Load dataset ARRAYS ( predefined pixel intensities )"""
19 images_original = np.load(’ Images /Train/ training_data .npy ’)
20 test_images_original = np.load(’ Images /Test/ test_data .npy ’)
21 print (’Data arrays correctly loaded ’)
22
23 """ Create labels """
24 # create_masks () from mask.py
25 print (’ Creating training image labels ... ’)
26 masks = create_masks ( images_original )
27 print (’ Creating test image labels ... ’)
28 test_masks = create_masks ( test_images_original )
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29
30 """ Create labels """
31 # create_labels () from mask.py. For label visualization .
32 print (’ Creating training image labels ... ’)
33 labels = create_labels ( images_original )
34 print (’ Creating test image labels ... ’)
35 test_labels = create_labels_noStat_noPrint ( test_images_original )
36
37 """ Augmentation """
38 # augmentation_operationName () from augmentation .py
39 # Augmented images and labels are added to the datasets
40 images_augmented , labels_augmented = augmentation_Invert \
41 ( images_original , labels )
42
43 """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """
44 MODEL TRAINING
45 """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """
46 from models import unet , weighted_categorical_crossentropy
47 from keras. callbacks import EarlyStopping , ModelCheckpoint
48 from keras. callbacks import ReduceLROnPlateau , CSVLogger
49 from load_dataset import get_weights
50
51 ##############################################################
52 """ HYPERPARAMETERS """
53 #-Model -------------------------------------------------------
54 split =0.21 # Validation and training dataset split
55 pretrained_weights = None
56 input_size = (IMG_HEIGHT , IMG_WIDTH , 1)
57 weights = get_weights ( images_original , test_images_original )
58 activation = ’elu ’
59 dropout = 0.18
60 loss = weighted_categorical_crossentropy ( weights )
61 optimizer = ’adadelta ’
62
63 #-Fit ---------------------------------------------------------
64 epochs = 100
65 batch_size = 1
66 callbacks =[ EarlyStopping ( patience =20, verbose =1) ,\
67 ReduceLROnPlateau ( factor =0.1 , patience =5,\
68 min_delta =0.001 , min_lr =0.0000001 ,\
69 verbose =1), ModelCheckpoint \
70 (’ Models / modelName .h5 ’. format ( epochs ),\
71 save_best_only =True , save_weights_only =False ),\
72 CSVLogger (’ Models / modelName .log ’)]
73 # module ’h5py ’ has no attribute ’Group ’ <--folder doesn ’t exist
74
75 #-------------------------------------------------------------
76 """ Structure settings """
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77 model = unet( pretrained_weights , input_size , weights ,\
78 activation , dropout , loss , optimizer )
79 #one more dimension needs to be created in order to train
80 images_all = images_original [... , np. newaxis ]
81 test_images_all = test_images_original [... , np. newaxis ]
82 # normalize
83 # normalization_value = 255
84 # images_all = images_all / images_all .max ()* normalization_value
85
86 """ Training """
87 results = model.fit(images_all , masks , validation_split ,\
88 epochs ,batch_size ,callbacks , shuffle =True)
89 print (’Model correctly trained and saved ’)
90
91 """ Loss plot """
92 plt. figure ( figsize =(8, 8))
93 plt.grid(False)
94 plt.title (" Learning curve LOSS", fontsize =25)
95 plt.plot( results . history [" loss "], label =" Loss ")
96 plt.plot( results . history [" val_loss "], label =" Validation loss ")
97 p=np. argmin ( results . history [" val_loss "])
98 plt.plot( p, results . history [" val_loss "][p], marker ="x",\
99 color ="r", label =" best model ")

100 plt. xlabel (" Epochs ", fontsize =16)
101 plt. ylabel (" Loss", fontsize =16)
102 plt. legend ();
103 plt. savefig ( TEST_PREDICTIONS_PATH +’Loss ’)
104
105 """ Accuracy plot """
106 plt. figure ( figsize =(8, 8))
107 plt.grid(False)
108 plt.title (" Learning curve ACCURACY ", fontsize =25)
109 plt.plot( results . history [" accuracy "], label =" Accuracy ")
110 plt.plot( results . history [" val_accuracy "],\
111 label =" Validation Accuracy ")
112 plt.plot( p, results . history [" val_accuracy "][p], marker ="x",\
113 color ="r", label =" best model ")
114 plt. xlabel (" Epochs ", fontsize =16)
115 plt. ylabel (" Accuracy ", fontsize =16)
116 plt. legend ();
117 plt. savefig ( TEST_PREDICTIONS_PATH +’Accuracy ’)
118
119 """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """
120 TESTING AND EVALUATING THE MODEL
121 """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """
122 from mask import output_to_label , get_max_in_mask
123 import matplotlib . patches as mpatches
124
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125 ##############################################################
126 """ Model predictions """
127 print (’ Testing on {0} images ’. format (len( test_images_all )))
128 test_outputs = model. predict ( test_images_all , verbose =1)
129 # output_to_label () from mask.py for visualization
130 print (’ Creating predicted labels of test images ... ’)
131 test_outputs_labels = output_to_label ( test_outputs )
132
133 # Legend
134 red_patch = mpatches .Patch(color =[1, 0.2, 0.2] ,\
135 label=’Cluster ’)
136 blue_patch = mpatches .Patch(color =[0 ,0.5 ,1.] ,\
137 label=’Hot pixel ’)
138 green_patch = mpatches .Patch(color =[0.35 ,1. ,0.25] ,\
139 label=’Glowing ’)
140 black_patch = mpatches .Patch(color =[0./255 , 0./255 , 0./255] ,\
141 label=’Background ’)
142
143 """ Prediction of ALL TEST samples """
144 for ix in range (len( test_outputs )):
145 fig , ax = plt. subplots (1, 3, figsize =(20 , 10))
146 ax [0]. grid(False)
147 ax [0]. imshow (np. squeeze ( test_images_all [ix]), cmap =" gray ")
148 ax [0]. set_title (’Test image {0} ’. format (ix+1), fontsize =25)
149 ax [0]. set_xlabel (’pixels ’, fontsize =16)
150 ax [0]. set_ylabel (’pixels ’, fontsize =16)
151 ax [1]. grid(False)
152 ax [1]. imshow (np. squeeze ( test_labels [ix ]))
153 ax [1]. set_title (’Label ’, fontsize =25);
154 ax [1]. set_xlabel (’pixels ’, fontsize =16)
155 ax [1]. set_ylabel (’pixels ’, fontsize =16)
156 ax [2]. grid(False)
157 ax [2]. imshow ( test_outputs_labels [ix])
158 ax [2]. set_title (’ Predicted label ’, fontsize =25);
159 ax [2]. set_xlabel (’pixels ’, fontsize =16)
160 ax [2]. set_ylabel (’pixels ’, fontsize =16)
161 plt. legend (loc=’upper center ’, bbox_to_anchor =\
162 ( -0.12 , -0.15) , fontsize =18 ,\
163 handles =[ red_patch , blue_patch , green_patch ,\
164 black_patch ], ncol =4)
165 plt. savefig ( TEST_PREDICTIONS_PATH +’Test {0} ’. format (ix +1))
166 plt.show ()
167
168 """ Model evaluation """
169 evaluation = model. evaluate ( test_images_all ,\
170 test_masks , batch_size =16)
171 print (’The accuracy of the model on the test set is: ’,\
172 evaluation [1]*100 , ’% ’)
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173 print (’The loss of the model on the test set is: ’,\
174 evaluation [0])
175
176 """ Classification report """
177 number_to_class = [’background ’, ’glowing ’,\
178 ’hot pixel ’, ’cluster ’]
179 test_max_masks = get_max_in_mask ( test_masks )
180 test_max_outputs = get_max_in_mask ( test_outputs )
181 test_masks_array = test_max_masks .ravel ()
182 test_outputs_array = test_max_outputs .ravel ()
183 from sklearn . metrics import classification_report
184 print ( classification_report ( y_true = test_masks_array ,\
185 y_pred = test_outputs_array ,\
186 target_names = number_to_class ))
187
188 """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """
189 DAMIC IMAGE (. FITS FILE)
190 """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """ """
191 """ Loading the DAMIC image and creating the sections """"
192 print (’ Loading real test image from fits file ... ’)
193 size =256 # section size
194 normalized =’no ’
195 normalization_value = 255
196 name = ’DAMIC ’
197 # process_fits () from load_dataset
198 image_data_use , test_images_real , details = process_fits \
199 (name=’ Fits_files /{0}. fits ’. format (name), size ,\
200 normalized , normalization_value )
201 print (’> Test image {0} ’. format (name ))
202 test_images_real = test_images_real [... , np. newaxis ]
203
204 """ Prediction of all the sections """"
205 print (’ Testing on {0} real image sections ’. format \
206 (len( test_images_real )))
207 test_outputs_real = model. predict ( test_images_real , verbose =1)
208
209 """ Reconstruction of the predicted labels """
210 # images_small2big () from load_dataset
211 test_outputs_real_big = images_small2big \
212 ( images = test_outputs_real , details = details )
213 test_outputs_real_big = test_outputs_real_big [np.newaxis , ...]
214 unique_elements_real , percentages_real = percentage_result \
215 ( test_outputs_real_big )
216
217 # Legend
218 real_percentages = np.zeros (4)
219 for i in range (0, len( percentages_real )):
220 real_percentages [int( unique_elements_real [i])] = \
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221 percentages_real [i]
222 Background_percentage = mpatches .Patch\
223 (color =[0./255 , 0./255 , 0./255] , label=’ Background : {0} %’\
224 . format ( real_percentages [0]))
225 Glowing_percentage = mpatches .Patch\
226 (color =[0.35 ,1. ,0.25] , label=’ Glowing : {0} %’.\
227 format ( real_percentages [1]))
228 Hot_pixel_percentage = mpatches .Patch\
229 (color =[0 ,0.5 ,1.] , label=’Hot pixel: {0} %’.\
230 format ( real_percentages [2]))
231 Cluster_percentage = mpatches .Patch\
232 (color =[1, 0.2, 0.2] , label=’ Cluster : {0} %’.\
233 format ( real_percentages [3]))
234
235 """ Finding a specific class """
236 # Check the ones with clusters in small sections
237 # check_one_object () from load_dataset
238 check_one_object ( test_outputs_real , test_images_real ,\
239 object_to_find =’hot pixel ’, real_percentages \
240 = real_percentages , details = details )
241 # options : ’background ’, ’glowing ’, ’hot pixel ’, ’cluster ’
242
243 """ Prediction of the DAMIC image """
244 fig , ax = plt. subplots (1, 2, figsize =(20 , 10))
245 ax [0]. grid(False)
246 ax [0]. imshow ( image_data_use )
247 ax [0]. set_title (’DAMIC image ’, fontsize =25);
248 ax [0]. set_xlabel (’pixels ’, fontsize =16)
249 ax [0]. set_ylabel (’pixels ’, fontsize =16)
250 ax [1]. grid(False)
251 # output_to_label () from mask.py
252 ax [1]. imshow ( output_to_label ( test_outputs_real_big )[0])
253 ax [1]. set_title (’ Predicted label ’, fontsize =25);
254 ax [1]. set_xlabel (’pixels ’, fontsize =16)
255 ax [1]. set_ylabel (’pixels ’, fontsize =16)
256 plt. legend (loc=’upper center ’, bbox_to_anchor =(0.15 , -0.09) ,\
257 fontsize =16, handles =\
258 [ Background_percentage , Glowing_percentage ,\
259 Hot_pixel_percentage , Cluster_percentage ], ncol =4)
260 plt. savefig ( TEST_PREDICTIONS_PATH +’ DAMIC_prediction_ {0}_{1} ’.\
261 format (model_name , name ))
262 plt.show ()



49

References

[1] Bergström, L. Dark Matter Evidence, Particle Physics Candidates
and Detection Methods. 479–496 (Annalen der Physik, 2012). https:

//arxiv.org/pdf/1205.4882.pdf.

[2] Feng, J. Dark Matter Candidates from Particle Physics and Methods
of Detection. 495-545 (Annual Review of Astronomy and Astrophysics,
2010). https://arxiv.org/pdf/1003.0904.pdf.

[3] Aghanim, N. et al. Planck 2018 results. VI. Cosmological pa-
rameters. (Planck Collaboration, 2018). https://arxiv.org/pdf/

1807.06209.pdf.

[4] Aguilar-Arevalo, A. et al. Measurement of radioactive contamination
in the CCD’s of the DAMIC experiment. (Journal of Physics, 2015).
https://arxiv.org/pdf/1506.02562.pdf.
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