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ARTICLE INFO ABSTRACT

Keywords: To reduce traffic accidents, an accurately estimated model is needed to capture the true relationships between

Traffic accident the injury severity and risk factors. This study aims to propose a robust procedure to address the biases in police-

Drugs reported accident data and subsequently to conduct sensitivity analyzes in order to estimate the variations in

Alcohol injury severity and distraction probability based on drivers’ behaviors/characteristics and psychophysical con-
yury y y Y y

IS)Ii’:terzction ditions. The results show that: (i) the excess speed will likely increase the probability of serious/fatal injury for

Human error
Bayesian network
Bias identification

drivers of all age groups by 10%; (ii) distraction and driver’ errors will likely increase the probability of serious/
fatal injury in all drivers driving at a proper speed up to 1.5%; (iii) alcohol and drug consumption can sig-
nificantly increase the probability of being distracted and making errors by 28.5% and 33.5% respectively; (iv)
Alcohol consumption reduces the probability of driving at an appropriate speed in drivers under 25 by 40%.

However, the results for drugs consumption are not as significant as the ones for alcohol consumption.

1. Introduction

Road safety is a vitally important topic nowadays, given the chilling
figures of the consequences of traffic accidents. According to the World
Health Organization, around 1.35 million people die each year as a
result of traffic accidents and up to 50 million people suffer from non-
fatal injuries around the world (WHO, 2018), many of these injuries
causedisability and pose significant financial consequences to victims,
their families and countries which are equivalent to 0.4-4.1% of gross
domestic product (Wijnen et al., 2019). In Spain, as in other in-
dustrialized countries, traffic accidents are one of the main causes of
death within the occupational accident category. According to Direc-
torate-General for Traffic (DGT) which is responsible for collecting
traffic accident data in Spain, there were 44,017 drivers involved in
traffic accidents on interurban roadways in 2016, of which 720 drivers
were killed, 2,752 drivers were injured and hospitalized and 22,861
were injured without hospitalization (DGT, 2016).

Spain has been generally concerned with alcohol and drug use while
driving and many legislative efforts have been made to mitigate traffic
accidents of this nature. For instance, Spain has strict legal limit for
alcohol in blood which is 0.5 g/1. In addition, there is no allowable limit
for illicit drugs. Nevertheless, alcohol has a major role in a high per-
centage of Spain’s road accidents. According to the crash statistics
provided by DGT, 68% of drivers involved in casualty accidents were
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tested for alcohol in 2016. As for drivers under influence, the percen-
tage of positive alcohol tests on interurban roads increases with the
injury severity, from 5% in uninjured drivers to 25% in fatally injured
(DGT, 2016).

Given the importance of alcohol and drug use in road safety, many
research efforts have attempted to investigate their impacts on accident
severity. However, most of these studies relied on police-reported ac-
cident data and ignored the reporting biases. The biases in accident
data occur because of underreporting effects, especially for non-severe
injury severities. As a result, the crash dataset degrades to an outcome-
based sample overrepresented by fatal or serious injury severities
(Yamamoto et al., 2008). This leads to biased estimates and erroneous
inferences on the impact of critical variables such as visibility condi-
tion, alcohol and drug use.

Therefore, despite the fact that the negative impacts of alcohol/drug
on driving have been already proved, quantifying their influences
through the use of real data is complicated (especially for the associated
bias problems) (Gjerde et al., 2019) and is still an open area of research
(Kwon et al., 2015). Hence, the main objectives of this work are to: (a)
develop a data-driven accident statistical dependence model to under-
stand how changes in the states of important variables such as speed
violation, driver’s distraction and errors, and alcohol/drugs use would
explain the variation in the probability of fatal/serious injury while
addressing the reporting biases, and (b) understand the extent to which

© 2020. This manuscript version is made available under the CC-
BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-
nc-nd/4.0/

Received 29 March 2019; Received in revised form 12 December 2019; Accepted 20 December 2019

0925-7535/ © 2020 Elsevier Ltd. All rights reserved.

Please cite this article as: Susana Garcia-Herrero, et al., Safety Science, https://doi.org/10.1016/j.ssci.2019.104586



http://www.sciencedirect.com/science/journal/09257535
https://www.elsevier.com/locate/safety
https://doi.org/10.1016/j.ssci.2019.104586
https://doi.org/10.1016/j.ssci.2019.104586
mailto:susanagh@ubu.es
https://doi.org/10.1016/j.ssci.2019.104586

S. Garcia-Herrero, et al.

the alcohol/drug consumption contribute to the probability of being
distracted and making errors while driving.

2. Literature review

Driving under the influence of drugs and/or alcohol is a critical risk
factor that impairs driving skills (Behnood and Mannering, 2017;
Bukova-Zideluna and Villerusa, 2016; de Onia et al., 2014; Goss et al.,
2008; Khanjani et al., 2017; Valen et al., 2019) because of reduced
sense of risk and reaction time, drowsiness, speeding and aggressive
behavior behind the wheel (Madrid, 2010). Excess speed or aggressive
driving is considered as one of the most influential driving behaviors in
fatal accidents (WHO, 2017), as slight increases in speed considerably
raise the risk of being in an accident and the severity of the injuries
(Castillo-Manzano et al., 2019; Pesi¢ et al., 2019).

2.1. Trends in alcohol-related accidents

Traffic accidents caused by alcohol or drugs consumption are more
common in a specific circumstance or in specific groups of the popu-
lation rather than in others. For example, Owen et al. (2019) explained
that accidents caused by alcohol consumption are more frequent in
drivers between 25 and 35 years old and at night between 3 pm and
4 pm. Also, Gomez-Talegén et al. (2012) reported that the consumption
of alcohol and drugs while driving are more common in young men on
urban roads and on weekend nights. Also, Papalimperi et al. (2019)
reported that fatal alcohol-related traffic accidents are more likely to
happen during weekends and the summer period than during week-
days. Wu and Zhang (2018) demonstrated that the risk of having severe
injuries is higher for alcohol-impaired drivers when the drivers are
65 years old or older and when the drivers make left turns in inter-
sections. Valen et al. (2019) reported that at least one of the risk factors
speeding, non-use of a seatbelt/helmet, and driving without a valid li-
cense were present among most of the drug/alcohol-impaired drivers
fatally injured.

With the aim of reducing the consumption and the consequences of
alcohol and drugs in road traffic, different approaches have been pro-
posed: revising the legislative limits of blood alcohol (Ferrari et al.,
2018; Pesic et al., 2019), increasing the public education campaigns,
improving rehabilitation programs, promoting research, improving
data collection, etc. For example, Pesic et al. (2019) suggested that the
blood alcohol concentration limit should be the same for professional
and non-professional drivers, because different limits confuse drivers.
On the other hand, Ferrari et al. (2018) reported that a blood alcohol
concentration below the legal limits is not likely a risk factor for acci-
dent occurrence.

2.2. Role of visibility in traffic safety

Prior studies also assessed the impact of light condition on accident
severity. For example, Behnood and Mannering (2017) reported that
accident occurring in daylight are more likely to increase the risk of
minor injury and less likely to cause no injury or severe injury to dri-
vers. Moreover, they found that dark and lighted roadways may in-
crease the probability of no injury for the drivers under the influence of
alcohol/drug. In contrast, Wang and Zhang (2017) showed that acci-
dent severity is likely to be higher in rural roadways, major arterials,
not at intersection locations, locations with curves, dark and unlighted
roadways, dry roadway and streets with high speed limits.

2.3. Role of distraction in traffic safety

Another aspect that can be detrimental for drivers is distraction
caused by secondary tasks which can divert driver’s attention away
from the activities needed for safe driving (Bowden et al., 2019; Neyens
and Boyle, 2008; Papantoniou et al., 2019; Sundfer et al., 2019).
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Secondary tasks include interaction with in-vehicle information systems
(Reyes and Lee, 2008; Strayer et al., 2016), talking with passengers,
texting or calling (Aksjonov et al., 2019), using intelligent personal
assistant (Strayer et al., 2017), etc. For example, Bowden et al. (2019)
reported that one-minute distractions is likely to negatively impact
driver’s performance for 40 s post-distraction. Moreover, Bowden et al.
(2019) Impairs driver’s response time and increase the speed variations
during 0-20 s post-distraction. Besides, other researchers (Donmez and
Liu, 2015; Neyens and Boyle, 2008) demonstrated that teenage and
older drivers (65+) are more likely to sustain severe when engaged in
phone conversation. In general, review of existing literature indicate
that previous research mostly attempted to measure the impact of dis-
traction on driver’s performance and only few of them (Donmez and
Liu, 2015; Neyens and Boyle, 2008) have attempted to quantify the
impact of driver’s distraction/error on injury severity. It should be
noted that although the impact of alcohol on driver’s injury, and the
impact of distraction on driver’s performance were studied in past re-
search. But the literature still lacks the quantification of the impact of
alcohol/drug consumption on driver’s distraction/errors. For more in-
formation regarding the factors affecting injury severity please refer to
the existing driver injury severity studies listed in Table 1 in Appendix
A.

2.4. Existing methods in accident severity modeling

The majority of previous research efforts that investigated the ef-
fects of alcohol/drug, distraction and driver’s errors on accident se-
verity highly relied on classical statistical methods such as Logistic
Regression (Buendia et al., 2015; Koopmans et al., 2015); Ordered
Probit (Chiou et al., 2013) among others. However, in the last decades,
the development of new data mining and machine learning techniques,
together with the availability of data and computing resources have
allowed researchers to apply these techniques to traffic safety field. The
works of Chang and Wang (2006) and Halim et al. (2016) contain a
sample review of the bibliography on the different techniques used to
analyze and predict traffic accidents, justifying the use of current data
mining techniques, such as the classification and regression trees, ge-
netic algorithms, artificial neural networks, principal component ana-
lysis and fuzzy logic.

Among new data-mining techniques, the Bayesian Networks have
been increasingly applied to the traffic accident studies (De Ona et al.,
2013; de Ona et al., 2011; Garcia-Herrero et al., 2016; Gregoriades and
Mouskos, 2013; Liang and Lee, 2014; Mujalli and De ONa, 2011; Sun
and Sun, 2015). Castro and Kim (2016) developed different accident
severity models based on Bayesian networks, decision trees and artifi-
cial neural networks. Comparison of their models indicated that the
Bayesian Networks outperformed other models in terms of accuracy.
This finding confirms that the Bayesian Network would be an ideal
method to evaluate the severity of traffic accidents, analyze their causes
and risks and predict the likelihood of serious and fatal traffic accidents
(Zong et al., 2013). Additionally, due to flexibility of Bayesian Net-
works, they could be used in combination with other statistical methods
to analyze traffic accidents (Chen et al., 2015; Gregoriades et al., 2012).

Despite the vast availability of literature on accident severity ana-
lysis, most studies utillized the frequentist approaches like logit models
in different forms and very few studies have employed the Bayesian
Networks in this context (see Table 1 in Appendix A). Bayesian Net-
works provides probabilistic presentation of the interactions and gives
better estimation of risk and uncertainties compared to the frequentist
models that only account for the expected values (Uusitalo, 2007).
Furthermore, the sensitivity analysis in Bayesian Networks allows to
measure the variation in a target variable in relation to other variables.

2.5. Research contributions

In general, the major contributions of this paper are as follows:
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Table 2
Database. Records in the database for the states of each variable.
Variables Number of % of Comments
samples Cases
Type of Vehicle
Car 107,427 88,9% Car
Van 10,768 8,9% Van
Off-the-road 2636 2,2% Off-the-road vehicles
vehicles
Anomalies
Yes 78,256 64,8% With anomalies in the tires,
blowout, address, brakes or other
anomalies
None 853 0,7% Without any anomalies in the car
Unknown 41,722 34,5% Unspecified
Maneuver
Normal driving 40,262 33,3% Following straight path
Overtaking 1220 1,0% Overtaking
Fast maneuver 877 0,7% Fast maneuver to save obstacle,
pedestrian or animal
Others 41,047 34,0% Taking a curve, changing lanes,
circulating reverse, crossing the
road, entering the circulation,
spinning, detained, braking,
stopped or parked
Unknown 37,425 31,0% Unspecified
Zone
Inter-Urban 48,109 39,8% Roads
Crossing road 1846 1,5% Section of interurban road that
runs through urban land
Urban 69,585 57,6% Street
Motorway 1255 1,0% Motorway or urban highway
Condition-Firme
Good 97,242 80,5% Dry and clean
Bad 17,675 14,6% With mud or loose gravel, wet,
very waterlogged or flooded, with
ice snow or oil and others
Unknown 5914 4,9% It is unknown or not specified
Meteo
Good 84,776 70,2% Clear day
Bad 17,149 14,2% Cloudy, weak rain, strong rain,
hailing, snowing
Unknown 18,906 15,6% It is unknown or not specified
Table 3
Variable: Overall severity of accident. Labels and percentage of cases.
Overal accident severity state Label Percentage
1 Fatal or serious injury 7,46%
2 Minor injury 92,54%

1. Develop a Bayesian Network model while accounting for the biases
in accident dataset.

2. Perform sensitivity analysis to determine the degree to which var-
iation in fatal/serious injury probability is explained by driver's
behavior/characteristics and psychophysical conditions.

3. Perform sensitivity analysis to determine how changes in alcohol/
drug consumption would affect the probability of committing speed
violations, driving distractedly and making errors while driving.

Safety Science xxx (Xxxx) XxXxXx

3. Data collection
3.1. Statistical questionnaire of traffic accidents with victims

The statistical questionnaire of traffic accidents with victims is a
tool established by DGT (BOE, 1993, 2014) to gather information re-
lated to the traffic accident such as accident date, accident location,
charactersitics of accident-involved vehicles and persons, road char-
acteristics, accident type, accident victims, number of fatalities, trip
purpose, drivers’ actions, presumed violations made by the driver (ad-
ministrative, speeding and others), psychophysical conditions of the
drivers, etc. The statistical questionnaires are generally collected by the
Civil Guard General Directorate or by a local police officers and are
then recorded in the ARENA2 software upon approval of the National
Registry of Traffic Accident Victims. The ARENA2 is a “traffic accident
information system that is part of the computer infrastructure of the DGT
and is designed to gather, store, integrate, distribute and use accident data in
Spain. It includes all of the information sources that exist nationally and
can be consulted and used as a source of data by all direct consumers of
accident information” (Ramos, 2012).

3.2. Database

The database used in our research was provided by DGT. This da-
tabase consists ofthree data tables related to the traffic accidents that
occured in Spain in 2016. The first one contains general data on acci-
dents consisting of a total of 102,362 records. The second includes data
on people, consisting of a total of 174,679 records of drivers involved in
accidents. Finally, the third table contains microdata on vehicles, con-
taining a total of 179,295 records of vehicles involved in accidents. In
order to relate the tables, two identifiers were used, ID_Accidente and
ID_vehiculo, which assign to each accident and vehicle, respectively, a
unique identification. These relationships are based on the structure of
the accident victim database, in which each record in the accident table
have one or more vehicles involved in an accident, and each accident-
involved vehicle may have zero (p.e. a parked car) or one driver.

The database used in this study is based on the Table of Drivers
involved in traffic accidents with victims in Spain in 2016 which in-
cludes a total of 174,679 records. First, the database was filtered to
classify the drivers based on vehicle type; cars, vans and off-the-road
vehicles. Second, a new variable called Overall Severity was extracted
from the table of accidents which represents the injury severity for
drivers, vehicle occupants and pedestrians. Overal severity is used as
the target variable in this study and has two possible states:

(1) Fatal/Serious Injury (F/SI) if at least one of the vehicle occupants
(drivers and passengers and pedestrians) was fatally or seriously
injured (F/SID) in the accident, and

(2) Minor/No Injury (M/NI) if the vehicle occupants and pedestrians
had no or minor injury

As a result, the final database contains 120,831 records for the
drivers involved traffic accident. The variables included in the model,
the states of each variable, the number of cases, its percentage and the
explanation of each state are show in Table 2 in Appendix B. In addi-
tion, the percentage of records in the database for each state of the
Overall Severity, with respect to the total, are shown in Table 3.

4. Methodology

This section first describes the overall research procedure and
principles underlying the development of the proposed approach
(Section 4.1). Then, it provides a summary of the Bayesian Network
methodology and then explains how it is used to perform sensitivity
analysis (Section 4.2).
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Sensitivity Analysis

Fig. 1. Flowchart of overall methodology.

4.1. Overall procedure

The Bayesian network proposed in this study represents the impacts
of drivers’ characteristics (e.g., age and gender), behavioral factors (e.g.,
speed violations, distractions and errors) and psychophysical conditions
(e.g., alcohol/drugs use) on accident severities. Furthermore, the model
can be used to analyze the differences among the likelihood of violating
speed limit, driving distractedly or making errors as a function of alcohol
and drug use. As shown in Fig. 1, once the accident data collected from
the DGT Traffic questionnaire and the variables of interest were identi-
fied and discretized which is discussed in Section 3, they will be analyzed
to identify possible biases. In order to detect the biased variables, for
each variable, the difference between the percentage of severe injuries
for drivers with known states (e.g., positive or negative alcohol test re-
sult) and the percentage of severe injuries for the drivers with unknown
state (e.g., unknown alcohol test result) will be estimated. In this sense, if
the difference is significant, then this implies that the variable is biased,
and a dummy variable is needed to be defined for the variable in order to
isolate homogeneous samples. In the next, the Bayesian network will be
learned from all variables including the dummy variables to estimate the
conditional probability for fatal/injury severity. The resulting model will
be evaluated using 10-fold cross-validation approach to assess its pre-
diction accuracy. Later on, four models/classifiers will be considered
from the Bayesian Network to conduct sensitivity analysis. The results
from the first model will be used to estimate the variations in the
probability of fatal or serious injurie as a function of speeds, drivers’
errors and distraction, gender and age. The second model will be used to
estimate the variations in the probabilities of driver error as a function of
alcohol and drugs. The third model will determine the variations in the
probability of speed violation as a function of age, alcohol and drugs, and
the last model will determine the variations in the probability of speed
violation as a function of the age of the driver and alcohol and drugs
uses.

4.2. Bayesian networks

Bayesian networks (BNs) are probabilistic graphical models based
on directed acyclic graphs (DAG) which combine probability and graph
theories to efficiently learn the joint probability distribution (JPD) of a
multivariate problem involving discrete variables. As a result, Bayesian
networks explicitly represent our knowledge of the given problem in
probabilistic terms through the DAG and the joint probability dis-
tribution (JPD) of the variables that comprise it (Castillo, Gutiérrez, and
Hadi, 1997):

px) = p(a, ..xn) @

where x; corresponds to a realization of the aleatory variable X;. The
particular JPD structure for a given problem is obtained by a factor-
ization (using the Bayes rule) as a set of conditional probability func-
tions, which are obtained from the dependence/independence structure
among the variables reflected in the DAG. This allows to factorize the
JPD using the product of several conditional probabilities, as follows:

P(X1, %, Xz, oo Xp) = H?:I p(xi vV m) )

where 7; is the set of parents of node X; in the graph. The in-
dependencies in the graph are thus immediately translated into the
probabilistic model in a very practical manner. In this study, this
methodology was used to build probabilistic models reflecting the sig-
nificant relationships (probabilistic dependences/independences) be-
tween the driver's behavior considered (as given by the factors de-
scribed previously) and the overall severity of the accident, which let us
analyze the severity of traffic accidents as a function of the driver’s
behavior. There are currently many programs that can be used to solve
this problem efficiently, such as Netica Software, Hugin Investigator,
Genie, Matlab, R or Microsoft with MSBNx sotfware. In this study, The
Bayes Net (https://github.com/bayesnet/bnt) toolbox for Matlab
(Matlab, 2014) have been proposed to perform the analysis.
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Fig. 2. Directed acyclic graph corresponding to the Bayesian.

Moreover, it is noteworthy to mention that, once the target variable
is identified, the Bayesian Network can be interpreted as a Bayesian
Classifier by means of the JPD and, then, it can be evaluated in order to
indentify the skill of our model and to avoid model over-fitting. To this
aim, a 10-fold cross-validation was developed creating a random par-
tition of the database in ten subsamples, so using the 90% to train and
the remaining 10% to evaluate, and repeating this procedure ten times,
one for each subsample. The evaluation of each model was done using
several parameters. First, the area under the ROC (Receiver Operating
Characteristic) curve (AUC), which is a standard score for probabilistic
and binary classifiers that varies from 0.5 (random guess) to 1 (perfect
performance), was considered as a measure of the overall accuracy of
the model. Secondly, the sensitivity and specificity were considered to
identify if the model presents some bias to one of the categories. Both
indices are defined as:

Sensitivity = TP/P A Specifity = TN/N 3)

where TP and TN are the number of predicted true positives and ne-
gatives respectively. Whereas, P and N are the number of observed
positives and negatives respectively. On the one hand, note that the
output of the Bayesian Network is a probability, so, in order to make the
binary validation, the observed “a-priori” probability of the category
has been considered as threshold to define the occurrence from the
obtained probability. On the other hand, note that for each category of
the target variable we have a binary classifier (occurring or not oc-
curring) and, as a result, a value for each of the defined parameters.
This is mainly relevant for those variables with several categories (e.g.
Distractions). Finally, once the model has been evaluated and its pre-
dictability tested, the 100% of the database has been considered to train
the model used for the sensitivity analysis.

5. Results and discussion

This section presents the results of the sensitivity analysis conducted
on the Bayesian network. Section 5.1 represents the outputs from the
Bayesian Network, which is developed by introducing dummy variables
for “Visibility”, “Alcohol” and “Drugs” in order to address the biases in
accident dataset. The performance of Bayesian Network has been
evaluated using 10-fold cross-validation method. Section 5.2 sum-
marizes the a-priori probabilities which represent the probabilities of
fatal/serious injury in relation to the variable and their states in the
Bayesian Network. Section 5.3 represents four classifiers/models ob-
tained from the Bayesian Network in order to perform the sensitivity
analysis. As sensitivity analysis in Bayesian Network is defined based on
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the relationship between the network nodes/variables, conditional
probabilities associated with each variable have been estimated. The
sensitivity of changes in the probability of Fatal/Serious injury as a
result of changes in the state of speed violations, distraction/errors, and
alcohol and drug use have been explained in Sections 5.3.1-5.3.3 re-
spectively. Finally, the sensitivity of changes in the probability of dri-
ver’s distraction/error and speed violations as a result of alcohol and
drug use have been summarized and discussed in Sections 5.3.4 and
5.3.5 respectively.

5.1. Bias identification and model estimation

As the procedure in which the questionnaires are filled out by the
corresponding authorities introduces some biases in the analysis (e.g.,
the police officers complete the accident questionnaire more ex-
haustively for serious accidents when reporting the visibility conditions
and carrying out the alcohol and drug tests on the drivers involved in
these accidents), an extensive analysis of the “a-priori” probabilities of
serious injury was performed for each variable in the accident. As the
knowledge of the variables, “Visibility”, “Alcohol” and “Drugs” can
dramatically modify the probability of serious injury, three dummy
variables corresponding to these variables have been introduced in the
models to reflect the known/unknown state of these variables. These
“dummy variables” isolate homogeneous subsamples and generate
valid model and unbiased parameter estimate. Fig. 2 represents the
DAG obtained from the learnt Bayesian Network after accommodating
the dummy variables in the model. DAG is obtained by applying the
score-based greedy learning algorithm proposed by Buntine (1991)
with a regularization term to penalize the model's complexity. Later,
the parameters given by the DAG are obtained using maximum like-
lihood estimation. It should be noted that, in this study, the analysis
was performed using Matlab (Matlab, 2014), in particular the last stable
version (R2018b), the toolbox Bayes Net (Murphy, 2001; Toolbox,
2001) and MeteoLab toolbox (Gutiérrez et al., 2004).

As discussed earlier, a 10-fold cross-validation approach was con-
sidered to evaluate the results from the learnt Bayesian Network shown
in Table 4. First, as could be expectable in the case of binary variables
the accuracy given by the AUC, is approximately similar for both ca-
tegories while the Sensitivity and Specificity exchange their values in
both variables. Moreover, the results demonstrate that 85% of the
traffic accidents with fatal/severe injuries are predicted by the model
correctly. This value decreases to 70% for the accidents with minor/no
injuries, slightly overestimating the cases of severe injury in spite of the
initial probabilities of both categories (see Table 3). As a result, the
developed model has shown a good performance and is able to smooth
the imbalance effects between both sample categories.

5.2. A-priori probabilities

After having built the Bayesian Network, a-priori probabilities for each
node have been estimated. A-priori probabilities represent the probability
of fatal and/or serious injury (F/SI) in relation to all variables including
“visibility”, “alcohol” and “drug”. As shown in Table 5, poor visibility was
likely to increase the probability of F/SI by 10.4% (24.7%-14.3%). In
addition, alcohol and drug consumption were likely to increase the
probability of F/SI by 3.3% (14.8%-11.5%) and 45.9% (58.2%-12.3%)
respectively. This implies that drug consumption is likely to have more
adverse impact on driver’s accident severity than other variables.

Table 4

Validation parameters for the 10-fold cross-validation.
Overall severity AUC Sensitivity Specificity
M/NI 0,839 0,700 0,850
F/SI 0,839 0,850 0,700
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Table 5
Initial probabilities of drivers based on the states of each variable.
Variable P(F/SD)
Vehicle-Type  Car Van Off road
0,074 0,075 0,082
Normal Overtaking Fast maneuver Other Unknown
Maneuver 0,094 0,148 0,104 0,081 0,043
Inter-Urban  Crossing road  Urban Motorway
Zone 0,104 0,085 0,054 0,037
Good Bad Unknown
Condition- 0,074 0,084 0,050
Firme
Good Bad Unknown
Meteo 0,077 0,089 0,049
Good Bad Unknown
Visibility 0,143 0,247 0,027
<25 25-65 > 65 Unknown
Age 0,074 0,072 0,109 0,037
Male Women Unknown
Gender 0,076 0,074 0,030
Non Yes Unknown
Alcohol 0,115 0,148 0.058
Non Yes Unknown
Drugs 0,123 0,582 0.068
Yes Non Unknown
Seat-Belt 0,079 0,070 0,061
Appro. Inappro. Excessive Unknow
Speed 0,079 0,129 0,273 0,063
Non Yes Unknown
Distraction 0,084 0,095 0,070
Non Yes Unknown
Errors 0,084 0,092 0,063

Note: Values with bold letters correspond to the suspicious variable for which a
“dummy” variable has been introduced in the model.

5.3. Sensitivity analysis

Based on the learnt Bayesian Network which includes the Joint
Probability Distribution of all the variables, four classifiers/models
have been obtained based on four target variables (see Table 6). Model
1 considers all the variables to assess their impacts on overall accident
severity which is a target variable. While Model 2, Model 3 and Model 4
have been considered to further analyze the impacts of drug and alcohol
consumption on speed violations, driver’s distractions and drivefs er-
rors, respectively. To assess the reliability of these models, the valida-
tion scores were estimated and were summarized in Tables 6. With the
exception of the excessive speed all estimated AUCs range between 0.79
and 0.90 reflecting the accuracy of the four classifiers obtained from the
learnt Bayesian Network. Also in most cases a higher equilibrium be-
tween the Sensitivity and Specificity is obtained with the values around
the 80%. The main differences are obtained for the Unknown category
which switch the behavior of both the negative and positive cases.

The influence of the driver’s behavior on the severity of an accident
was determined by conducting a sensitivity analysis with Model 1 of the

Safety Science xxx (Xxxx) XxXxXx

Table 7
Sensitivity analysis of the probability of a fatal/serious injury in a traffic acci-
dent based on speed, gender and age.

Age Speed violations Male Female Unknown
<25 Appropriate speed 0,069 0,064* 0,061
Inappropriate Speed 0,143* 0,133* 0,119
Excessive speed 0,244* 0,229 0,219
Unknown 0,061 0,063* 0,042
25-65 Appropriate speed 0,077 0,073 0,068
Inappropriate Speed 0,127* 0,122* 0,112
Excessive speed 0,296* 0,285* 0,273
Unknown 0,060* 0,065* 0,044
> 65 Appropriate speed 0,127* 0,127* 0,110
Inappropriate Speed 0,128* 0,128 0,108
Excessive speed 0,302* 0,301 0,272
Unknown 0,088* 0,084 0,066
Unknown Appropriate speed 0,058 0,060 0,060
Inappropriate Speed 0,115 0,117 0,108
Excessive speed 0,000* 0,000* 0,000*
Unknown 0,041* 0,042* 0,025

Note: Values highlighted with an asterisk (*) reflect significant differences at a
significance level of 95%.

Bayesian network. This has been done by: First, estimating the prob-
ability of the accident’s severity based on speed violations (differ-
entiating between excess speed and inappropriate speed), gender and
age (see Section 5.3.1). Second, estimating the probability of accident
severity based on the driver’s behaviors (differentiating between dis-
tractions and errors), gender and age (see Section 5.3.2). Third, esti-
mating the probability of overall accident severity based on the driver’s
psychophysical conditions (drug and alcohol consumption), gender and
age (see Section 5.3.3). Furthermore, to measure the variations in the
probability of driving distractedly/making error, and committing speed
violations as a result of alcohol/drug use, similar sensitivity analysis
have been conducted which are explained in Sections 5.3.4 and 5.3.5,
respectively. In all cases, a 95% confidence interval has been con-
sidered to evaluate the statistical significance of the changes (the hy-
pothesis test of difference between proportions/probabilities).

5.3.1. Overall accident severity based on drivers’ speed violations

Table 7 shows the results of the first sensitivity analysis for Model 1,
which gives the estimated probabilities for a F/SI in a traffic accident
based on the driving speed and the driver’s gender and age. From the
results it can be seen that a male aged under 25 driving at an appro-
priate speed at the time of the accident would have a probability of a F/
SI of 6.9%. In the case of inappropriate speed, the F/SI probability rises
to 14.3%. And finally, if the driver is exceeding the speed limit, the
probability of a F/SI would be 24.4%. Additionally, the increased
probability of a fatal or serious injury in people driving at an in-
appropriate speed are different in males and females (24,4% for young
male against 22,9% for young women) which is consistent with findings
of Lawpoolsri et al. (2007) that reported young male drivers tend to

Table 6
AUCG, sensitivity and specificity obtained for the four models considered and the different states of the target variables.
Model/category AUC Sens. Spec. AUC Sens. Spec. AUC Sens. Spec. AUC Sens. Spec.
1-Overall Severity M/NI E/SI
0,86 0,78 0,80 0,86 0,80 0,78
Appro. Inappro. Excessive Unknown
2-Speed Violation 0,89 0,96 0,69 0,81 0,84 0,66 0,64 0,79 0,74 0,90 0,71 0,99
Non Yes Unknown
3-Distraction 0,92 0,88 0,81 0,79 0,76 0,79 0,92 0,76 0,94
Non Yes Unknown
4-Driver's Errors 0,91 0,80 0,82 0,85 0,89 0,65 0,95 0,82 0,92
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Table 8
Analysis of the probability of death or serious injury in a traffic accident based
on driver distraction, gender and age.

Safety Science xxx (Xxxx) XxXxXx

Table 10
Probability of a F/SI in a traffic accident based on age, gender and alcohol
consumption.

Age Distraction Male Female Unknown Age Alcohol Male Female Unknown
<25 No 0,082 0,074 0,065 <25 No 0,112 0,099* 0,143
Yes 0,096 0,088 0,081 Yes 0,163* 0,145 0,125
Unknown 0,070 0,070 0,046 25-65 No 0,114 0,104* 0,122
25-65 No 0,082* 0,077 0,068 Yes 0,147* 0,137 0,124
Yes 0,092* 0,087 0,082 > 65 No 0,165* 0,169* 0,135
Unknown 0,067* 0,070* 0,050 Yes 0,183* 0,183 0,142
> 65 No 0,127* 0,128* 0,105
Yes 0,134* 0,133 0,109 Note: Values highlighted with an asterisk (*) reflect significant differences at a
Unknown 0,101* 0,097* 0,078 significance level of 95%.
Unknown No 0,054 0,057 0,052
Yes 0,059 0,060 0,057
Unknown 0,042 0,043* 0,025* Table 11

Note: Values highlighted with an asterisk (*) reflect significant differences at a
significance level of 95%.

engage in more risky driving behaviors compared to young women.

5.3.2. Overall accident severity based on drivers’ distractions and errors

Table 8 represents the results from the sensitivity analysis corre-
sponding to Model 1 and it contains probabilities of a F/SI in an acci-
dent based on whether the driver was distracted behind the wheel.
From the results, a non-distracted male drivers aged between 25 and 65
has a F/SI probability of 8.2%. While, this value rises to 9.2% for dis-
tracted ones. Moreover, in every case, by age and gender, the prob-
ability of F/SI under distracted condition would be higher than that
under non-distracted condition which are consistent with the findings
of Gong and Fan (2017) and Choudhary and Velaga (2019). Table 9
shows that drivers’ errors slightly increase the risk of F/SI significantly
in young and middle aged male drivers. Also, it can be seen that the
difference between the probabilities of F/SI when driving with and
without errors is around 1% in male drivers under 25. However, such
difference is zero in drivers over 65 years.

5.3.3. Overall accident severity based on drug and alcohol consumption

Tables 10 and 11 show the results from the sensitivity analysis
corresponding to Model 1 and it gives the probability of a fatal or
serious injury in a traffic accident based on the driver’s age, gender and
psychophysical conditions. In other words, they present the results by
age and gender when driving normally or under the influence of alcohol
and drugs (see Tables 10 and 11). The results imply that driving under
the effects of drugs or alcohol, drastically increases the severity of an
accident in men and women and in all age groups which are consistent
with those in previous studies (Chen et al., 2015; Robertson et al.,
2017).

Table 9
Analysis of the probability of death or serious injury in a traffic accident based
on driver errors, gender and age.

Age Error Male Female Unknown
<25 No 0,084 0,077 0,065
Yes 0,094+ 0,086 0,072
Unknown 0,061* 0,063* 0,044
25-65 No 0,082* 0,078 0,067
Yes 0,089* 0,084* 0,078
Unknown 0,060 0,064+ 0,047
> 65 No 0,127* 0,129* 0,104
Yes 0,127* 0,126 0,106
Unknown 0,089* 0,086 0,071
Unknown No 0,051 0,053 0,045*
Yes 0,058 0,058 0,053
Unknown 0,039+ 0,040* 0,024*

Notes: Values highlighted with an asterisk (*) reflect significant differences at a
significance level of 95%.
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Probability of a F/SI in a traffic accident based on age, gender and drugs
consumption.

Age Drug Male Female Unknown

<25 No 0,123 0,115 0,000
Yes 0,569* 0,579* 0,000

25-65 No 0,121* 0,118* 0,086
Yes 0,570* 0,574* 0,550

> 65 No 0,186* 0,180 0,000
Yes 0,678 0,686 0,000

Note: Values highlighted with an asterisk (*) reflect significant differences at a
significance level of 95%.

Note that, in both cases we have considered the dummy variables
corresponding to the drug or alcohol consumption to obtain a homo-
geneous and unbiased sample. In addition, the significance of the
changes in the probabilities is referred to the probability of the sub-
sample filtered by the corresponding dummy variable. In general, and
in agreement with previous studies, the probabilities of a F/SI in a
traffic accident are higher for men than women. The results indicate
that the probability of a F/SI does not always rise with age. For in-
stance, the consequences of alcohol for drivers under the 25 are worse
than other groups, but in the case of drugs use there are not differences
in all age groups.

Additionally, it can be seen that a young female driver without al-
cohol influence has a F/SI likelihood of 9.9%. In contrast, the corre-
sponding probability under alcohol influence is 14.5% (4.6% higher).
For a male driver in the same age range, the alcohol consumption is
likely to increase the F/SI probability up to 5.1%. Referring to Table 11,
the differences between the estimated probability of a F/SI for an in-
dividual with and without drug influence across all age ranges are re-
latively high. For example, young male drivers under 25 with drug
influence has an accident rate of 56.9% which is 44.6% higher than that
in the same group of male drivers without drug influence.

5.3.4. Alcohol and drugs impact on driving distraction and errors

To further investigate the impacts of psychophysical conditions on
distraction and errors sensitivity analysis has been performed based on
Model 3 and Model 4. The evidence variables used in Model 3 were
“Alcohol-D” and “Alcohol”. The variable “Alcohol-D” was used to
eliminate the uncertainty generated by the sample bias. Hence the
following results correspond to the drivers who were subjected to the
alcohol test and the estimated values in the table show the relative
probabilities. The same procedure was followed to estimate the relative
probabilities for drug/distraction. Table 12 shows represents the
probability that a driver being distracted under distracted or None-
distracted condition. The quantification of these probabilities yields
clear results, such as, on the one hand, how alcohol consumption raises
the likelihood of distracting from 15,2% to 43,7%. On the other hand,
the drugs impact is different and there is no direct effect between drug
use and driving distractions.

Table 13 indicates the relationships between alcohol and drug
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Table 12
Probability of driver distractions based on psychophysical conditions.

Safety Science xxx (Xxxx) XxXxXx

Table 15
Probability of driving at various speeds based on age and drug consumption.

Distraction None Distraction Yes Age Drugs Appropriate speed Inappropriate speed Excessive speed
Alcohol none 84,8% 15,2% <25 None 67,9% 26,1% 6,1%
Alcohol yes 56,3% 43,7% Yes 68,4% 26,2% 5,4%
Drugs none 81,9% 18,1% 25-65 None 85,9% 11,8% 2,3%
Drugs yes 84,1% 15,9% Yes 86,2% 11,8% 2,1%
> 65 None 92,7% 6,5% 0,8%
Yes 92,6% 6,7% 0,7%
Table 13
Probability of driver errors based on age and psychophysical conditions.
consumption test. We see in this case, the absence of a relationship
Errors none Errors yes . L. . ..
between both factors (drug consumption and variation in driving
Alcohol none 62,3% 37,7% speed). That is, the probabilities of driving at adequate speeds are si-
Alcohol yes 28,8% 71,2% milar regardless of drug use by drivers.
Drugs none 57,6% 42,4%
Drugs yes 61,0% 39,0%

consumption and drivers’ errors at the wheel based on Model 4. There is
a direct relationship between the consumption of alcohol and the
probability that the driver has an error while driving, for example, from
the results, the probability of committing an error with and without
alcohol influence are 71.2% and 37.7% in respectively. However, when
it comes to the drug consumption, there are no difference in the
probability of making or not making mistakes during driving (42,4% vs
39,0%).

5.3.5. Alcohol and drugs impact on speed violations

To analyze the effect that drug and alcohol consumption have on
speed violations, a Bayesian network was developed for Model 2. The
sensitivity analysis was carried out by taking as the study variable the
speed violations. The evidence variables were the driver’s psychophy-
sical conditions and drivers’ age. The results, presented in Table 14,
show the relative probabilities of driving at an adequate, inappropriate
or excessive speed depending on the age range and the whether or not
the driver is under alcohol influence. To carry out a sensitivity analysis,
the artificial variable “Alcohol-D” has been taken into account which
corresponds to the records of those drivers who were subjected to the
alcohol test.

The results indicate that alcohol consumption significantly reduces
the likelihood of driving at an appropriate speed in each age range
which is consistent with previous studies (Bogstrand et al., 2015;
Phillips and Brewer, 2011; Stiibig et al., 2012). For example, the
probability of driving at an appropriate speed in young drivers not
under the influence of alcohol is 78.2%. In contrast, when driving under
the influence of alcohol, the likelihood of driving at an appropriate
speed drops to 38,1%. The alcohol consumption is likely to increase the
risk of speed violations in all age groups, especially in drivers under 25.
As shown in Table 14 the alcohol consumption has increased the
probability of driving at excessive speed from 2.3% to 13.8% in young
drivers.

On the other hand, Table 15 shows the probability of moving at
appropriate speeds depending on age and drug consumption. As in the
case of alcohol, to carry out this sensitivity analysis, the variable
“Drugs-D” was used to consider only the drivers subjected to the drug

Table 14
Probability of driving at various speeds based on age and alcohol consumption.

Age Alcohol  Appropriate speed  Inappropriate speed  Excessive speed
<25 None 78,2% 19,5% 2,3%
Yes 38,1% 48,1% 13,8%
25-65  None 90,3% 9,0% 0,7%
Yes 61,2% 32,5% 6,3%
> 65 None 93,3% 6,4% 0,3%
Yes 74,5% 22,9% 2,5%
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6. Conclusions

The main goal of this work is to define a robust process to address
possible inhomogeneities in the sample which could result in biased
parameter estimates by introducing dummy variables for the suspicious
variables. First, three variables including Visibility, Drugs and Alcohol
have been found to be suspicious as the police officers might overstate
these them when there are not serious injuries in the traffic accident. As
a result, three dummy variables (Visibility-D, Drugs-D and Alcohol-D)
have been and were used in the sensitivity analysis to filter homo-
geneous subsamples.

Second, the Bayesian Networks have been trained and evaluated
using a 10-fold cross-validation process. The resulting AUCs fall be-
tween 0.77 and 0.85 which represents a good model performance. By
taking the advantage of the Bayesian Network’s properties which in-
cludes the DAG and the JPD, four different models have been developed
in order to conduct the sensitivity analysis. From the models, it was
found that, on average, the excess speed will likely increase the prob-
ability of serious/fatal injury for drivers of all age groups by 10%.
Additionally, there is not a significant difference between the prob-
ability of fatal/serious injury in males and females for all age groups
and speed states. Also, distraction and driver’ errors will likely increase
the probability of serious/fatal injury in all drivers up to 1.5% even
when they are driving at a proper speed. This implies that distracted
drivers may have lower chance to detect hazard on roadway and
therefore, they may not be able to reduce the impact speed with other
vehicle(s) or object. As distracted driving is prevalent among young
drivers, education and computer-based training program are effective
tool to improve their knowledge and safety awareness (Kumfer et al.,
2017; Rodwell et al., 2018).

Additionally, it was found that driving under the effects of drugs/
alcohol will likely increase the probability of fatal/serious injury up to
5%. This is consistent with the findings of previous studies (Chen et al.,
2015; Robertson et al., 2017). Besides, alcohol and drug consumption
can significantly increase the probability of being distracted and
making errors by 28.5% (from 15.2% to 43.7%) and 33.5% (from
37,7% to 71,2%) respectively. Finally, alcohol consumption sig-
nificantly reduces the probability of driving at an appropriate speed.
This reduction is relatively high for drivers under 25. That is the
probability of driving at an appropriate speed for young None-alcohol
involved drivers is %78. However, this value drops to 38.1% when it
comes to young alcohol involved drivers. The results for drugs con-
sumption are not as significant as the ones for alcohol consumption.

As found in this study, alcohol use poses significant threat to the
health and safety of drivers, especially drivers under 25, by impairing
their attention and performance. Some of the effective preventive ac-
tions that can be used by transportation authorities and decision makers
in order to reduce alcohol-related accidents and/or the consumption of
alcohol while driving are (a) lower the legal blood alcohol limits (b)
obligate the car manufacturers to equip the vehicles with ignition
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interlock devices to prevent drunk driving, and (d) Run enforcement
campaigns targeting drink and drug driving.

7. Limitations and future research

Our study presents some limitations. First, it is noteworthy to
mention that the data collection system for traffic accidents in Spain has
been modified since 2013, however this was not applied to all regions
equally. For this reason, the database for years 2014 and 2015 are not
homogeneous. Therefore, it is not possible to carry out a cross-sectional
study and our research has been carried out based on 2016 traffic ac-
cident data. In addition, the drug test results in our database are re-
corded as dichotomous outcomes (positive/negative). Therefore, it is
impossible to analyze the influence of different levels of drugs con-
sumption.

In terms of future research, it would be valuable to study the change
in the habits of drug users and alcohol consumption across the time in
order to assess the influence of alcohol consumption campaigns, legis-
lation changes, new drugs in the market, etc. on the consequences of
traffic accidents. it is recommended to adopt new data collection
methods to measure different levels of alcohol and drug consumption.
Such information would help law enforcement agencies to promote
accident reduction strategies.
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