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Abstract

This report includes our study of some optimization problems that arise when modeling the usual

chemotherapy treatments for cancer. Gompertz-type tumor growth is considered and that the effect

of the drug is proportional to the growth rate of the untreated tumor (Norton-Simon hypothesis).

Also, we use classical pharmacokinetics and two pharmacodynamics: Skipper and Emax.

We study optimization problems for initially fixed dosage times, and we find explicit expressions

for their solutions. We show examples that contrast this theoretical study. As far as we know,

these are results that have not been published previously.

In addition, we present several numerical results made with MATLAB for two types of drugs

used in chemotherapy: one with a long half-life (Cabazitaxel) and another with a short half-life

(Temozolomide).

Key words: Optimization problems, chemotherapy, Norton-Simon hypothesis, Skipper model,

Emax model.

Resumen

Esta memoria recoge un estudio propio de algunos problemas de optimización que surgen al

modelizar los tratamientos habituales de quimioterapia para el cáncer. Se considera el crecimiento

tumoral de tipo Gompertz y que el efecto del fármaco es proporcional a la tasa de crecimiento del

tumor no tratado (hipótesis de Norton-Simon). Además, utilizamos la farmacocinética clásica y

dos farmacodinámicas: Skipper y Emax.

Estudiamos los problemas de optimización con tiempos de dosificación fijos inicialmente, y hallamos

expresiones expĺıcitas para sus soluciones. Mostramos ejemplos que contrastan el estudio teórico.

Hasta donde nosotros sabemos, son resultados que no han sido publicados previamente.

Además, presentamos varios resultados numéricos realizados con MATLAB para dos tipos de

fármacos usados en quimioterapia: uno de vida media larga (Cabazitaxel) y otro de vida media

corta (Temozolomide).

Palabras clave: Problemas de optimización, quimioterapia, hipótesis de Norton-Simon, modelo

Skipper, modelo Emax.
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Chapter 1

Introduction

1.1 Chemotherapy: history, purpose and use

Cancer is a process of uncontrolled cell growth and spread. There are many types of treatment

for this disease, depending on the type and stage of the cancer (how advanced it is, the size of the

tumor...). The most common treatments today are surgery, immunotherapy, radiation therapy,

and chemotherapy. Chemotherapy is a type of cancer treatment that uses drugs to kill cancer

cells. Chemotherapy treatments began to be developed in the early 20th century, and it began to

be used to treat cancer in the 1940s.

Depending on the type of tumor and its condition, chemotherapy can have two principal purposes:

• Curative: Its aim is to cure the disease, when it is in a suitable phase. Chemotherapy can

reduce the size of a tumor before surgery or radiation therapy. Also, another of its purposes

may be to help other treatments work better.

• Palliative: If the state of the tumor is very advanced, chemotherapy can be used in order to

control the symptoms produced by it, reduce pain, and in some cases, increase the patient’s

survival.

There are different ways of administering chemotherapy: intravenous (the most common), oral

(for drugs that can be absorbed through the stomach or intestine), or directly in an hospital if

important safety measures are needed.

1.2 Metronomic chemotherapy and MTD therapy

The most common therapies in cancer treatments with chemotherapy are MTD therapy and

metronomic chemotherapy:

• MTD (Maximum Tolerated Dose) therapy consists on administering the maximum

tolerated dose with longer rest periods. Its goal is to be as harmful as possible with cancer

cells. However, the damage that this type of therapy can cause to healthy cells near the

tumor tissue must be taken into account (see [10]).

• Metronomic chemotherapy consists of the administration of low doses of the drug over

long periods of time and with the minimum possible spacing between doses. By administering

the drug in low doses, it is hoped to reduce the toxic effects of the treatment. In addition,

being long lasting treatments it is expected to improve the overall effect of the treatment

1



2 CHAPTER 1. INTRODUCTION

(see for instance [16]). This therapy is relatively recent (in 2007 there was a talk of it as a

new therapeutic strategy for the treatment of breast cancer, see [6]).

1.3 Mathematics in chemotherapy

There are numerous studies that highlight the importance of mathematical models (based on

differential equations) in the development of better schedules for chemotherapy treatments (through

optimization problems), as well as to predict the effect of certain drugs on patients (see for instance

[3] and [12]).

In the mid-1970s, the optimal control theory for chemotherapy treatments was first applied,

assuming the log-kill hypothesis, which will be explained in Chapter 2. Therefore, many articles

highlight the usefulness of mathematical models to find more effective and less toxic treatments

(see [8]).

We can consider different ODE models, such as: exponential, logistic, Bertalanffy for the untreated

tumor, which are studied in [1]. In this study we will consider the problems that arise when

modeling usual chemotherapy treatments under the assumptions of Gompertz-type tumor growth

and the Norton-Simon hypothesis (the effect of the drug is proportional to the growth rate of the

untreated tumor). That seem to provide a more precise and realistic framework for chemotherapy

(see [8]). In addition we will consider the classical pharmacokinetics and two pharmacodynamics:

Skipper and Emax (see Chapter 2).

1.4 Contribution and structure of the work

The interest of this work lies in the fact that it is an innovative study that has not been reported

previously, as far as we know. As we have already mentioned, we have based the line of research

on the Norton-Simon hypothesis. Most of the mathematical works we have found in this area are

restricted to a simpler framework (such as the log-kill hypothesis). However, we have not found

any in-depth mathematical studies using Norton-Simon’s hypothesis, nor any that reach the results

which we have achieved.

The complexity of this work is also illustrated by the fact that the optimization problems studied

are mixed, nonlinear, and with numerous variables. In most cases we have obtained explicit

expressions of the solutions based on the initial data. For the practical cases, we have carried

out numerous programs in MATLAB that have allowed us to make simulations to contrast the

theoretical results and, in some cases, to study problems which are complex in their theoretical

analysis. We have selected two drugs for the numerical simulations, which we have chosen after

analyzing different possibilities, because they were those that gave us more variety in the results as

they had very different characteristics. At the same time, both drugs are very used in the clinical

practice.

With this work we want to contribute to the study of the theory of optimization in chemotherapy

bringing unpublished results and leaving open lines to continue the research.

This report is divided into five chapters. After this introduction, in Chapter 2 we will present the

pharmacokinetics and pharmacodynamics models used, and the optimization problems which will
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be studied in the following. In Chapters 3 and 4 we will study the above optimization problems

for Skipper and Emax models, respectively, their solution and other characteristics, also providing

examples to illustrate the theoretical results. Also, in those chapters we will make some numerical

simulations for two different drugs, which have different half-life: Temozolomide and Cabazitaxel.

Finally, Chapter 5 reviews the results obtained in the previous chapters following the investigations

carried out, and proposes new lines to continue the research.





Chapter 2

The optimization problems

The objective of this chapter is to give the general formulation of the optimization problems

that we are going to study. For this purpose, we will first deal with some aspects related to

pharmacology1: pharmacodynamics (PD) and pharmacokinetics (PK). Pharmacodynamics is the

study of the biochemical and physiological effects of drugs and their mechanisms of action on the

organism. On the other hand, pharmacokinetics studies the processes a drug undergoes from the

time it is administered until it is eliminated by the body. As an intuitive idea, we can say that

pharmacodynamics can be defined as “what a drug does to the body” and pharmacokinetics as

“what the body does to a drug”.

As for the drugs used in chemotherapy, we are going to introduce two concepts: the volume of

distribution of a drug (VD) is the theoretical volume (studied in pharmacology) that would be

necessary to ensure that all organs or compartments have the same concentration of the drug as

in the blood plasma (see [24]). Depending on the type of drug, its units can be L or L/kg if it

depends on the patient’s weight. Also, many of these drugs are administered according to the

patient’s body surface area (BSA) which (on average) for men is 1.9 m2 and for women is 1.6 m2

(see, for instance [20]).

2.1 Pharmacokinetics

Let c(t) be the concentration of the drug in the body at the instant of time t. The simplest

pharmacokinetics model that we can consider is that the body does not interact with the drug,

but it is unrealistic although in some works this simplification is used. Instead, let’s consider the

following first-order Cauchy problem:{
c′(t) = −λc(t) + u(t)

c(0) = 0
.

The term −λc(t) represents that the body is eliminating the drug, and the function u(t) depends

on the drug and the way it is administered. In our work, taking into account that N doses {di}Ni=1

are given at the different instants of time 0 ≤ t1 < t2 < . . . < tN , and considering σ =
α

VDβ
, where

β is the patient weight (in kg) if VD is given in L/kg and α its BSA, we can write:

u(t) =
N∑
i=1

σdiδ(t− ti),

1Pharmacology is the study of drugs and their action.

5



6 CHAPTER 2. THE OPTIMIZATION PROBLEMS

where δ(t− ti) is the Dirac delta distribution concentrated at ti.

Therefore, the term u(t) represents that a di dose of the drug is given at the instant ti. Then, the

Cauchy problem takes the following form: c′(t) = −λc(t) +

N∑
i=1

σdiδ(t− ti)

c(0) = 0

, (2.1)

To solve problem (2.1), we must do it separately in each interval and we get the following results:

• In [0, t1),

{
c′(t) = −λc(t)
c(0) = 0

and therefore we get that c(t) = 0.

• In [t1, t2):

{
c′(t) = −λc(t)
c(t+1 ) = σd1

and we get that c(t) = σd1e
λ(t1−t).

• In [t2, t3):

{
c′(t) = −λc(t)
c(t+2 ) = σ(d1e

λ(t1−t2) + d2)
and then c(t) = σe−λt(d1e

λt1 + d2e
λt2).

• Proceeding inductively, we obtain the following values for c(t):

c(t) =



0 t ∈ [0, t1)

σe−λtd1e
λt1 t ∈ [t1, t2)

σe−λt(d1e
λt1 + d2e

λt2) t ∈ [t2, t3)
...

...

σe−λt(d1e
λt1 + d2e

λt2 + · · ·+ dN−1e
λtN−1) t ∈ [tN−1, tN )

σe−λt(d1e
λt1 + d2e

λt2 + · · ·+ dNe
λtN ) t > tN

. (2.2)

2.2 Pharmacodynamics

In the following equations, L(t) represents the volume of the tumor at time t, ξ is its growth rate

and, θ the maximum size it can reach. In practice θ can change over time, but we will focus on

the problem in which θ is fixed. Also, we are going to consider θ = 1 as the maximum size of the

tumor, therefore, if the volume of the tumor is 0.2, we are meaning that it is 20% of the maximum

size.

Although several mathematical models can be considered for the study of tumor growth, such as

the logistic or exponential, in this case we will use the Gompertzian one, which has been considered

recently in numerous studies (see [1]). It is given by the ODE:

L′(t) = ξL(t) log

(
θ

L(t)

)
. (2.3)

There are different models to formulate the effect of chemotherapy on the volume of the tumor,

the most basic one is known as log-kill hypothesis:

L′(t) = ξL(t) log

(
θ

L(t)

)
− L(t)ρ̃(t). (2.4)

The log-kill hypothesis establishes that a given dose of drug on a chemotherapy treatment kills

the same fraction of tumor cells regardless of the size of the tumor at the time of treatment [13].

Note that ρ̃(t) is related to the level of therapy and the two classic expressions are:
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• Skipper: ρ̃(t) = k1c(t), with k1 ∈ R, k1 > 0.

• Emax: ρ̃(t) =
k1c(t)

k2 + c(t)
, with k1, k2 ∈ R, k1, k2 > 0.

In both cases, k1 and k2 are constants that are experimentally estimated. In this study we are

going to consider the Norton-Simon hypothesis [8]. It states that the rate of cancer cell death due

to the treatment is directly proportional to the tumor growth rate at the time of treatment. That

is, we will consider the following Cauchy problem:s L′(t) = ξL(t) log

(
θ

L(t)

)
(1− ρ̃(t))

L(0) = L0

. (2.5)

Now let’s get the expression of the solution to problem (2.5). We solve the first order separable

ODE:
L′(t)

L(t) log

(
θ

L(t)

) = ξ (1− ρ̃(t)).

We integrate to reach the solution:

For any k ∈ R, log

(
log

(
θ

L(t)

))
= k − ξ

∫ t

0
(1− ρ̃(s))ds

L(0)=L0
=⇒

=⇒ L(t) = θ exp

(
log

(
L0

θ

)
exp

(
−ξ
∫ t

0
(1− ρ̃(s))ds

))
. (2.6)

Note that the volume of the tumor L(t) depends on the value of

∫ t

0
(1− ρ̃(s))ds. We are interested

in calculating L(T ) (the tumor size at T , the final time to study, fixed a priori, with T ≥ tN ). As

the value of ρ̃(s) depends on the model considered (Skipper or Emax), L(T ) varies according to

the model under study:

L(T ) = θ exp

(
log

(
L0

θ

)
exp

(
−ξ
(
T −

∫ T

0
ρ̃(s)ds

)))
. (2.7)

2.3 Associated optimization problems

We are going to study two different optimization problems that arise when modeling the usual

chemotherapy treatments for cancer, under the assumptions of tumor growth of the Gompertz

model and the Norton-Simon hypothesis, considering the classical pharmacokinetic and the Skipper

or Emax pharmacodynamic in each case. Be the times in which the doses are given 0 ≤ t1 < . . . <

tN ≤ T , fixed during all this work. In addition, each given dose must be between a maximum

dose, dmax, (for reasons of toxicity), and above a minimum dose, dmin > 0, so that the treatment

is effective.

• In the first problem, the goal is to minimize the volume of the tumor, subject to a total dose,

D > 0, which is divided into N doses, {di}Ni=1 in the treatment period. Hence we consider

the following problem with N + 1 variables:

(P1)



Min L(T )

N ∈ N, d ∈ RN

subject to
N∑
i=1

di = D,

dmin ≤ di ≤ dmax, ∀i ∈ {1, . . . , N},

, (2.8)
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As we saw in (2.7), the volume of the tumor L(T ) depends on the value of

∫ T

0
ρ̃(s)ds. Also, as

L0 < θ (because L0 is the initial tumor volume and θ is its maximum volume), log

(
L0

θ

)
< 0,

so (P1) is equivalent to the following problem:

(P̂1)



Max

∫ T

0
ρ̃(s)ds

N ∈ N, d ∈ RN

subject to

N∑
i=1

di = D,

dmin ≤ di ≤ dmax, ∀i ∈ {1, . . . , N},

, (2.9)

• Now, let’s present the problem in which we want to maintain the tumor volume under a

level that is not harmful to the patient, allowing him to lead a normal life (formulations

considered, for example, in [4] and [9]). Then, be L∗ the maximum tumor size allowed at

the final time T . We are going to minimize the total dose that a patient should take for

a specified period of time so that the volume of the tumor at T does not exceed L∗. We

consider the same restrictions on doses as in the previous case:

(P2)


Min

N∑
i=1

di

N ∈ N, d ∈ RN

subject to L(T ) ≤ L∗
dmin ≤ di ≤ dmax, ∀i ∈ {1, . . . , N},

, (2.10)

with L∗ ∈ (0, 1).

Let’s see a condition equivalent to L(T ) ≤ L∗:

L(T ) ≤L∗ ⇐⇒ θ exp

(
log

(
L0

θ

)
exp

(
−ξ
(
T −

∫ T

0
ρ̃(s)ds

)))
≤ L∗ ⇐⇒

⇐⇒ log

(
L0

θ

)
exp

(
−ξ
(
T −

∫ T

0
ρ̃(s)ds

))
≤ log

(
L∗
θ

)
⇐⇒

⇐⇒T −
∫ T

0
ρ̃(s)ds ≤ −1

ξ
log

(
log
(
L∗
θ

)
log
(
L0
θ

))⇐⇒ ∫ T

0
ρ̃(s)ds ≥ T + γ̃ ,

(2.11)

with γ̃ =
1

ξ
log

(
log
(
L∗
θ

)
log
(
L0
θ

)).

We can therefore reformulate the problem (P2) as follows:

(P̂2)



Min

N∑
i=1

di

N ∈ N, d ∈ RN

subject to

∫ T

0
ρ̃(s)ds ≥ T + γ̃

dmin ≤ di ≤ dmax, ∀i ∈ {1, . . . , N}.

. (2.12)

In Chapters 3 and 4 we are going to consider these two problems, (P̂1) and (P̂2) for the two

pharmacodynamic models under study: Skipper and Emax, so we must calculate

∫ T

0
ρ̃(s)ds for

each case.



Chapter 3

Skipper model

In this chapter we consider (2.5) with the Skipper model for the level of therapy, in which

ρ̃(t) = k1c(t), with k1 > 0 a given constant and c(t) as we have defined in (2.2).

We are interested in the formulation that takes in this case the two optimization problems raised

in the previous chapter: (P̂1) and (P̂2). Then, let’s calculate

∫ T

0
c(s)ds. Using (2.2):

∫ T

0
c(s)ds =

∫ t2

t1

σe−λsd1e
λt1ds+

∫ t3

t2

σe−λs(d1e
λt1 + d2e

λt2)ds+ · · ·+∫ tN

tN−1

σe−λs(d1e
λt1 + · · ·+ dN−1e

λtN−1)ds+

∫ T

tN

σe−λs(d1e
λt1 + · · ·+ dNe

λtN )ds =

σ

(
−d1
λ
eλ(t1−t2) +

d1
λ

)
+ σ

(
−d1
λ
eλ(t1−t3) − d2

λ
eλ(t2−t3) +

d1
λ
eλ(t1−t2) +

d2
λ

)
+ · · ·+

+ σ

(
−d1
λ
eλ(t1−tN ) − · · · − dN−1

λ
eλ(tN−1−tN ) +

d1
λ
eλ(t1−tN−1) + · · ·+ dN−1

λ

)
+

+ σ

(
−d1
λ
eλ(t1−T ) − · · · − dN

λ
eλ(tN−T ) +

d1
λ
eλ(t1−tN ) + · · ·+ dN

λ

)
=

= σ

(
d1
λ

(
1− eλ(t1−T )

)
+
d2
λ

(
1− eλ(t2−T )

)
+ · · ·+ dN

λ

(
1− eλ(tN−T )

))
=

=
σ

λ

N∑
i=1

di

(
1− eλ(ti−T )

)
.

(3.1)

Then, we get the following expression for L(T ):

L(T ) = θ exp

(
log

(
L0

θ

)
exp

(
−ξ

(
T − k1σ

λ

N∑
i=1

di

(
1− eλ(ti−T )

))))
. (3.2)

3.1 Minimizing the tumor volume with a fixed cumulative dose

We will start by considering the problem (P̂1) defined in Section 2.3, in which we want to minimize

the tumor volume at time T . Using (3.1), σ, λ > 0, we reformulate the problem (P̂1) as follows:

9



10 CHAPTER 3. SKIPPER MODEL

(P1S)



Max f(N, d) =

N∑
i=1

(
1− eλ(ti−T )

)
di

N ∈ N, d ∈ RN

subject to

N∑
i=1

di = D,

dmin ≤ di ≤ dmax, ∀i ∈ {1, . . . , N},

.

Note that (P1S) is a mixed optimization problem, that is, it has N continuous variables, d, and

an integer variable, N . In order to have a non-empty set of feasible points, N must take a finite

number of values (N ∈ [ D
dmax

, D
dmin

] ∩ N). We are interested in solving this problem for each of

these values. Furthermore, by setting the value of N , we are going to solve the following problem:

(PN1S)



Max fN1 (d) =
N∑
i=1

widi

d ∈ RN

subject to

N∑
i=1

di = D,

dmin ≤ di ≤ dmax, ∀i ∈ {1, . . . , N}

.

with 0 < wN < . . . < w2 < w1 < 1. In the two following theorems we consider a general array w, so

they are valid for a more general problem where the coefficients of the objective function verify the

previous inequality. Later, when we come back to (P1S) resolution, we will take wi = 1− eλ(ti−T )

(remember that {ti}Ni=1 are fixed and verify 0 ≤ t1 < t2 < . . . < tN ≤ T ).

Theorem 3.1.1. If dmin > 0 and N ∈
[
D

dmax
,
D

dmin

]
∩ N, then the problem (PN1S) has, at least, a

solution.

Proof. Be K1 the set of restrictions of the problem (PN1S), as N ∈
[
D

dmax
,
D

dmin

]
∩N, then K1 6= ∅.

Let’s consider the following continuous functions:

• g1 : RN −→ R such as g1(d) =
N∑
i=1

di −D.

• ĝi : RN −→ R such as ĝi(d) = di, ∀i ∈ {1, . . . , N}.

Now we can represent the set of restrictions of problem (PN1S), K1, as follows:

K1 = g−11 ({0}) ∩

(
N⋂
i=1

ĝi
−1([dmin, dmax])

)
.

K1 is closed because it is an intersection of closed sets. Furthermore, as all the variables are

bounded, K1 is compact. Since K1 is compact and the function fN1 is continuous, there is at least

a global solution to the problem (PN1S) (see Appendix A).

Theorem 3.1.2. Under the hypothesis of the previous theorem, the solution of problem (PN1S) is:

1. (dmin, . . . , dmin) if N =
D

dmin
∈ N.

2. (dmax, . . . , dmax) if N =
D

dmax
∈ N.
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3. (dmax, . . . , dmax, d
∗, dmin, . . . , dmin) if D

dmax
< N < D

dmin
, N ∈ N,

with d∗ verifying dmin ≤ d∗ ≤ dmax and d∗ = D − (j0 − 1)dmax − (N − j0)dmin, where

j0 = max {j ∈ {1, . . . , N} : (j0 − 1)dmax + (N − j0 + 1)dmin ≤ D}.

Proof. Let’s study the different possible cases:

1. If D = Ndmin with N ∈ N, then d = (dmin, . . . , dmin) it is the solution of the problem

because is the unique feasible point.

2. If D = Ndmax with N ∈ N, then d = (dmax, . . . , dmax) is the unique feasible point.

3. If D ∈ (Ndmin, Ndmax) with N ∈ N:

• If D ∈ [(N − 1)dmax + dmin, Ndmax), d = (dmax, . . . , dmax, d
∗) is the solution with

d∗ = D − (N − 1)dmax. Indeed, using w1 > w2 > . . . > wN , f(d) > f(d), ∀d ∈ RN , d

being a feasible point.

• If D ∈ [(N − 2)dmax + 2dmin, (N − 1)dmax + dmin), d = (dmax, . . . , dmax, d
∗, dmin) is

the solution with d∗ = D − (N − 2)dmax − dmin. Again, using w1 > w2 > . . . > wN ,

f(d) > f(d), ∀d ∈ RN , d being a feasible point.

• IfD ∈ [(j0 − 1)dmax + (N − j0 + 1)dmin, j0 dmax + (N − j0)dmin), following the pattern

of the two previous cases, d = (dmax, . . . , dmax︸ ︷︷ ︸
j0−1

, d∗, dmin, . . . , dmin︸ ︷︷ ︸
N−j0

) is the solution of

(PN1S), with d∗ = D − (j0 − 1)dmax − (N − j0)dmin, dmin ≤ d∗ ≤ dmax and with

j0 = max {j ∈ {1, . . . , N} : (j0 − 1)dmax + (N − j0 + 1)dmin ≤ D}.

In Theorem 3.1.2 we have seen that the solution of (PN1S) does not depend on the values of wi
against what might seem intuitively (although the value of the objective function depends on

them). Note that only the strictly decreasing order of these values has been used.

Now, we know how to solve (PN1S) for each value of N ∈ N, D
dmax

≤ N ≤ D
dmin

. Then, to try to

solve (P1S) we propose the following strategy:

• First, we can considerN = d D
dmax
e, where dxe denotes the smallest integer that is not less than

x. Then, we solve the problem (PN1S) to get d
(N)

. To evaluate the objective function fN1 (d̄(N))

we need to know the coefficients {wi}Ni=1 from the pre-set values of {ti}Ni=1 (according to the

specialists’ criteria).

• Then, we can repeat this process for N = d D
dmax
e+ k, k ∈ N, verifying N ≤ D

dmin
.

Then, a solution of (P1S) is each tuple (N, d
(N)

) which maximizes {fN1 (d̄(N)) : N ∈
[

D
dmax

, D
dmin

]
∩

N}.

To illustrate this procedure, let’s see an example (only for mathematical purposes) where we

consider the times fixed and solve (PN1S) for each feasible value of N .

Example 3.1.1. Be D = 1050 mg/m2, dmin = 100 mg/m2, dmax = 200 mg/m2, T = 28, λ = 0.1

and the times fixed for each value of N : t1 = 0 and ti+1 = 2 + ti ∀i ∈ {1, . . . , N − 1}. The values

have been chosen for illustrative purposes and they are not based on clinical practice. In order to

solve problem (P1S) with these data, we have to solve (PN1S) for N ∈ [5.25, 10.50] ∩ N:
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• If N = 6, be t
(6)

= (0, 2, 4, 6, 8, 10). Then, d
(6)

= (200, 200, 200, 200, 150, 100), and f61 (d
(6)

) =

945.85.

• If N = 7, be t
(7)

= (0, 2, 4, 6, 8, 10, 12). Then d
(7)

= (200, 200, 200, 150, 100, 100, 100) and

f71 (d
(18)

) = 937.97.

• If N = 8, then d
(8)

= (200, 200, 150, 100, . . . , 100︸ ︷︷ ︸
5

) and f81 (d
(8)

) = 923.38.

• If N = 9, then d
(9)

= (200, 150, 100, . . . , 100︸ ︷︷ ︸
7

) and f91 (d
(9)

) = 901.51.

• If N = 10, then d
(10)

= (150, 100, 100, . . . , 100︸ ︷︷ ︸
9

) and f101 (d
(10)

) = 871.48.

Finally, the solution for (P1S) in this case is the tuple (6, d
(6)

) because we get that max{fN1 (d
(N)

), N ∈
{6, . . . , 10}} = f61 (d

(6)
).

Once the general scheme for the resolution of the problem (P1S) is clear, note that the coefficients

of the objective function depend on λ, so we can distinguish two cases depending on the type of

drug used:

• If λ >> 0, then
(
1− eλ(ti−T )

)
≈ 1, and as a consequence the influence of dosing times is

hardly noticeable and only total dose

N∑
i=1

di = D matters. For example, this would be the

case of short-lived drugs, whose treatments are carried out for long periods of time. Let’s go

back to the Example 3.1.1, and now consider the case of Temozolomide, where λ = 9.242:

Example 3.1.2. With the data of the Example 3.1.1 and λ = 9.242, we obtain five solutions

for (P1S): d̄(N) for N ∈ {6, 7, 8, 9, 10}. In all these cases the numerical result fN1 (d̄(N)) =

1050 is obtained.

Also, in Table 3.1 in Section 3.3 we see that treatments 2 and 3 described in Figure 3.1

achieve the same objective (in both the same total dose is given). From the computational

point of view there are an infinite number of solutions in this case.

• If the value of λ or λT is not big, then the terms

N∑
i=1

di

(
1− eλ(ti−T )

)
and

N∑
i=1

di behave

differently, so the dosing time influence the value of the objective function in the solution.

In Table 3.4 in Section 3.4 we will see an example of this situation for the drug Cabazitaxel,

with the treatments of 20 mg/m2 dose every 3 week and 10 mg/m2 dose once a week (in

both the same cumulative dose is given but the final tumor size is different).

To conclude this section, let’s look at an example of the influence of times on results, considering

the same doses:

Example 3.1.3. Be N = 6, d̄ = (200, 200, 200, 200, 200, 200), and t̃ = (1, 2, 3, 4, 5, 28), t̂ =

(1, 6, 11, 16, 21, 26), T = 29:

• If λ = 9.242, with both t̃ and t̂, fN1 (d̄) = 1200. In this case, we can see that there is no

influence of the time on the value of the objective function in d̄.

• If λ = 0.1, with t̃, fN1 (d̄) = 944.01 and with t̂, fN1 (d̄) = 842.19. We observe that in this case,

the dosing times influence the value of the objective function in d̄, giving a better result than

the one obtained with t̃.
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3.2 Minimizing the cumulative dose and keeping the tumor size

below a level

As in (2.10), we are interested in minimizing the given drug dose, but with a constraint on the

tumor size at the final time: L(T ) ≤ L∗, where L∗ is a given level beforehand. Using (2.11), the

Skipper model and (3.1), that constraint is equivalent to the following inequality:

N∑
i=1

di

(
1− eλ(ti−T )

)
≥ γ, with γ =

λ

k1σ
(T + γ̃) . (3.3)

Remember that as we defined γ̃ in Section 2.3, this constant depends on the data ξ, θ, L0 and L∗.

Therefore the optimization problems (P2) and (P̂2) can be reformulated as follows:

(P2S)



Min f̃(N, d) =
N∑
i=1

di

N ∈ N, d ∈ RN

subject to
N∑
i=1

di

(
1− eλ(ti−T )

)
≥ γ,

dmin ≤ di ≤ dmax, ∀i ∈ {1, . . . , N}.

.

with dmin > 0 and γ ∈ R defined as in (3.3). This problem is a mixed optimization problem,

because it has continuous variables, d, and an integer variable, N . In this case, let us note that

there is an infinite set of feasible N values, but only a finite subset of them has practical interest.

First of all, using di < dmax we have the bound γ ≤
N∑
i=1

dmax

(
1− eλ(ti−T )

)
. On the other hand,

there should be a N̂ large enough so that
N̂∑
i=1

dmin

(
1− eλ(ti−T )

)
≥ γ. Once we find that value,

it doesn’t make sense to take a higher value, since if N > N̂ , then f̃(N̂ , d̂) = N̂dmin < f̃(N, d)

for d̂ = (dmin, . . . , dmin) and for all (N, d) feasible for (P2S). If we fix the value of N we get the

following problem of N variables:

(PN2S)



Min fN2 (d) =

N∑
i=1

di

d ∈ RN

subject to
N∑
i=1

widi ≥ γ,

dmin ≤ di ≤ dmax, ∀i ∈ {1, . . . , N}

.

with wi = 1 − eλ(ti−T ), 0 < wi < 1, ∀i ∈ {1, . . . , N} and w1 > w2 > . . . > wN . Note that this

problem can be interpreted similarly to the knapsack problem 1.

Theorem 3.2.1. If γ ≤
N∑
i=1

widmax, then there is, at least, a solution for (PN2S).

Proof. Be K2 the set of restrictions of the problem (PN2S). If γ ≤
N∑
i=1

widmax, then K2 6= ∅. From

K2 = g−12 ((−∞, 0]) ∩

(
N⋂
i=1

ĝi
−1([dmin, dmax])

)
with g2(d) = −wTd+ γ and ĝi the same as that of

1It models a situation analogous to minimize the weight of the backpack contents with the restriction that the

contents provide a minimum level of nutrition. [22]
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problem (PN1S), we deduce that K2 is a closed and bounded set. As in addition fN2 is a continuous

function, we conclude that there is a global solution to the problem (PN2S) (see Appendix A).

Theorem 3.2.2. Under the hypotheses of the above theorem, the solution of the problem (PN2S) is

given by:

1. (dmax, . . . , dmax) if γ =
N∑
i=1

widmax.

2. (dmin, . . . , dmin) if γ ≤
N∑
i=1

widmin.

3. (dmax, . . . , dmax, d
∗, dmin, . . . , dmin) in other case, where

d∗ verifies: dmin ≤ d∗ ≤ dmax, d∗ =

γ − j0−1∑
i=1

widmax −
N∑

i=j0+1

widmin

 /wj0, with

j0 = min

j ∈ {1, . . . , N} : γ ≤
j∑
i=1

widmax +
N∑

i=j+1

widmin

.

Proof. Let’s study the three cases:

1. If γ =

N∑
i=1

widmax, then (dmax, . . . , dmax) is the solution of (PN2S), because it’s the unique

feasible point.

2. If γ ≤
N∑
i=1

widmin, then (dmin, . . . , dmin) is the solution of (PN2S) due to the components are

the lower bound for di, ∀i ∈ {1, . . . , N}.

3. Now let us assume that γ ∈

(
N∑
i=1

widmin,
N∑
i=1

widmax

)
. First let us note that (PN2S) is a linear

programming problem and the necessary and sufficient optimally conditions for d̄ being a

solution of (PN2S), are given by the Kuhn-Tucker conditions (see [2]):

1.

1
...

1

 -

w1µ
...

wNµ

 +

µ1
...

µN

 -

 µ̂1
...

µ̂N

 =

0
...

0

 .

2. µi(di − dmax) = 0, µi ≥ 0, ∀i ∈ {1, . . . , N}.
µ̂i(−di + dmin) = 0, µ̂i ≥ 0, ∀i ∈ {1, . . . , N}.
µ(−wTd+ γ) = 0, µ ≥ 0.

3. d̄ must also be feasible.

Moreover, let us show that those conditions imply that the general linear constraint is active

at d̄. If wTd > γ, using conditions 2 and 1 above, we get µ = 0, 1 + µi − µ̂i = 0, ∀i ∈
{1, . . . , N} and then µ̂i > 0 and di = dmin, ∀i ∈ {1, . . . , N}, which contradicts the fact that

γ >
N∑
i=1

widmin.

Now, we can distinguish several subcases:
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• If γ ∈

(
N∑
i=1

widmin, w1dmax +

N∑
i=2

widmin

]
, then d = (d∗, dmin, . . . , dmin), with d∗ =(

γ −
N∑
i=2

widmin

)
/w1 ∈ (dmin, dmax] verifies the optimality conditions above with

µ1, µ̂1 = 0, µi = 0, µ̂i = 1 − wi
w1

, ∀i ∈ {2, . . . , N} and µ = 1
w1

. Let us note that,

using wi < w1, ∀i ∈ {2, . . . , N}, we get µ̂i ≥ 0.

• If γ ∈

(
w1dmax +

N∑
i=2

widmin, (w1 + w2)dmax +

N∑
i=3

widmin

]
, taking d̄1 = dmax and

arguing as in the previous subcase, we get that d̄ = (dmax, d
∗, dmin, . . . , dmin) is solution

of the problem (PN2S) with d∗ verifying d∗ =

(
γ − w1dmax −

N∑
i=3

widmin

)
/w2 ∈ (dmin, dmax].

It is enough to take in Kuhn-Tucker conditions the values: µ̄1 = −1 + w1
w2

, µ̂1 = 0,

µ̄2 = µ̂2 = 0, µ̄i = 0, µ̂i = 1− wi
w2

for i > 2 and µ = 1
w2

.

• If γ ∈

j0−1∑
i=1

widmax +
N∑
i=j0

widmin,

j0∑
i=1

widmax +
N∑

i=j0+1

widmin

, we obtain that the

solution d is given by:

di =


dmax if i < j0
d∗ if i = j0
dmin if i > j0

,

where d∗ ∈ (dmin, dmax], d∗ =

γ − j0−1∑
i=1

widmax −
N∑

i=j0+1

widmin

 /wj0 , and

j0 = min

j ∈ {1, ..., N} : γ ≤
j∑
i=1

widmax +
N∑

i=j+1

widmin

.

Finally let’s prove the uniqueness of solution: using the inequalities of the {wi}Ni=1 and that the

general inequality constraint is active in d̄, fN2 (d̄) < fN2 (d) for any other feasible point d.

From Theorem 3.2.2 we know the structure of the solution of problem (PN2S), so we have carried

out a program in MATLAB that solves it following the scheme of the theorem’s proof. Let’s see

an example in which we set the values of N , w, dmin, dmax and vary γ:

Example 3.2.1. Be N = 10, wi =
1

(i+ 1)2
, dmin = 10 mg/m2 and dmax = 20 mg/m2.

• If γ = 5, then γ < dmin

N∑
i=1

wi, so we obtain d = (10, . . . , 10︸ ︷︷ ︸
N

).

• If γ = 10, then we get as a solution d = (20, 20, 20︸ ︷︷ ︸
3

, 14.59, 10, . . . , 10︸ ︷︷ ︸
6

), with the value d∗ =

14.59 mg/m2 in the fourth position.

• If γ = 11, we get as a solution d = (20, . . . , 20︸ ︷︷ ︸
8

, 12.20, 10), with d∗ = 12.20 mg/m2 in the

ninth position.

• If γ = 12, there are no feasible points because γ >
N∑
i=1

widmax.
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In the previous example we can see the usefulness of the theorem 3.2.2. As we know the structure

of the solution of the problem (PN2S), we can quickly calculate it. Also, in order to solve (P2S)

we have to do it for the different values of N with interest in the clinical practice which are also

conditioned by the desired duration of the treatment.

3.3 Temozolomide

Temozolomide (Temodar and Temodal) is an oral chemotherapy drug, used for the treatment of

refractory anaplastic astrocytoma, which is a type of cancerous brain tumor. Its half life2 is about

1.8 hours, and its volume of distribution (VD) is 0.4 L/kg (this information is available at [17]).

In Figure 3.1 we show the structure of the usual treatments which we will describe below:

Figure 3.1: Usual treatments with Temozolomide.

• Treatment 1: 28 days of treatment, in which the first 5 days a dose of 200 mg/m2 is given,

and the other 23 days no dose is given.

• Treatment 2: 28 days of treatment, in which the first 7 days doses of 150 mg/m2 are given,

the next 7 days (between the 8 and the 14) no dose is given, the next 7 days (between 15

and 21) 150 mg/m2 day dose, and the last 7 days no dose is administrated.

• Treatment 3: 28 days of treatment, in which the first 21 days doses of 100 mg/m2 are

administrated, and the other 7 days no dose is given.

• Treatment 4: 28 days of treatment, in which the first 21 days doses of 75 mg/m2 are given,

and the other 7 days no dose is administrated.

• Treatment 5: 28 days of treatment in which daily doses of 50 mg/m2 are given.

2The half-life of a drug is the time it takes to reduce to half the amount of agent present in the body, through

various elimination processes. This is a fundamental parameter for knowing the intervals of application of this drug

(see, for instance, [19]).
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First of all, we are going to estimate the value of λ of (2.1) using that the half-life of the

Temozolomide is about 1.8 hours (t̃ = 0.075 days):

c′(t) = −λc(t) =⇒ c(t) = c0e
−λt =⇒ c(t̃) =

c0
2

= c0e
−λt̃ =⇒ λ =

log(2)

t̃
≈ 9.2419 days−1.

Let’s see how can we estimate the value of the parameter ξ of (2.3):

Without medication, L(t) = θ
(
L(0)
θ

)exp(−ξt)
(see (2.7) with ρ̃ = 0). If we take θ = 1 as the

maximum tumor volume and L(t∗) = 2L(0), we get:

L(t∗) = 2L(0) = (L(0))exp(−ξt
∗) =⇒ log(2L(0)) = exp(−ξt∗) log(L(0)) =⇒

=⇒ exp(−ξt∗) =
log(2L(0))

log(L(0))
=⇒ ξ = − 1

t∗
log

(
log(2L(0))

log(L(0))

)
.

The value of t∗ depends on the type of tumor and it is calculated experimentally. Taking L(0) =

0.03, we can make different estimations depending on the value of t∗, for example, for t∗ = 40

days, ξ ≈ 0.00551, for t∗ = 10 days, ξ ≈ 0.022, and for t∗ = 2 days, ξ ≈ 0.11. In this work we are

going to consider ξ = 0.00551 (also, see [7]).

Note that the given doses depend on whether the patient is male or female. In each treatment, we

estimate the mg of drug that must be given for m2, and we consider the average BSA which for

men is 1.9 m2 and for women is 1.6 m2 (see, for instance [20]). For the analysis of Temozolomide,

we are going to estimate the constant k1 of the Skipper model as an academic value to illustrate

the theoretical results (its estimation is in itself a complex problem). Let’s consider the minimum

dose that is applied in treatments, 50 mg/m2, and 2 mg/m2 as a dose that has no effect on the

body. Then, considering the male’s and women’s BSA, and the distribution volume (VD = 0.4

L/kg), we can make the following reasoning:

Be c the concentration of the drug in the body at the instant of time t1, and d1 the dose given at

t1. Let’s consider a man with a weight β = 80 kg. If the tumor volume decreases with doses of 50

mg/m2, then by (2.5), (1−k1c) < 0. Note that by (2.2) we get that c = d1σ =
d1α

vDβ
= 2.96875 ≈ 3

mg/L (σ defined in Section 2.1). So in this case k1 >
1

c
=

1

3
. In the same way, if the volume of

the tumor increases with doses of 2 mg/m2, by (2.5), (1− k1c) > 0. Now, as c =
d1α

vDβ
= 0.11875

mg/L, in this case k1 <
1

0.11875
≈ 8.42. Then we get the following interval: k1 ∈ (0.33, 8.42).

For the case of a woman (β = 60 kg) we can make an analogous reasoning, so in this case we get:

k1 ∈ (0.3, 7.5). Finally, for our numerical experiments we will take k1 = 3.

We are going to study what is the total dose given in each usual treatment of Temozolomide, and

what is the final size of the tumor at time T , considering a study period of 28 days (from 0 to 27),

T = 29 (two days after the end of the treatment), L0 = 0.03 and that the patient is a woman (so

the final total dose given is always multiplied by 1.6). As an illustration, we are going to compare

the results for each treatment taking k1 = 3 and ξ = 0.00551. In Table 3.1 we show the results

obtained, and in Figure 3.2 the graphic representation of the evolution of the tumor with each

treatment.
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L(T) Total dose

Treatment 1 0.0345 1000 mg/m2

Treatment 2 0.0215 2100 mg/m2

Treatment 3 0.0215 2100 mg/m2

Treatment 4 0.0272 1575 mg/m2

Treatment 5 0.0293 1400 mg/m2

Table 3.1: Results obtained for each treatment of Temozolomide and the Skipper model.

Figure 3.2: Tumor’s size evolution with the five treatments.

Note that in treatments 2 and 3, the same total dose is given, and the tumor volume has been

reduced to the same size (see rows 2 and 3 of Table 3.1). This exemplifies what was seen in Section

3.1, because in this case λ >> 0. Furthermore, there is not a great reduction in the volume of the

tumor, because if k1 is small, it means that the human organism has a high resistance to the drug.

In relation to problem (P̂2) defined in (2.10), assuming that times have no influence, and using what

we saw while studying problem (P2S), we have used the total dose so that the bound γ is satisfied

in two different ways, with the five treatments considered for Temozolomide. Experimentally we

have made the calculations assuming that the patient is a woman of 60 kg, the initial size of the

tumor is 0.3 and we do not want it to be greater than 0.5 at the final time T = 365. We have also

consider k1 = 3 and ξ = 0.00551. Let’s estimate the bound γ calculated in (3.3): In this specific

case, γ̃ =
1

ξ
log

(
log
(
L∗
θ

)
log
(
L0
θ

)) = −100.2068 and σ =
1.6

24
. Then, γ =

λ

k1σ
(T + γ̃) = 12236.09.

• CASE 1: Fixed the final time of treatment T and a maximum tumor volume that we do

not want to exceed (L∗) we are going to compare the possible treatments, with di = d,

∀i ∈ {1, ..., N}. In this way we are going to study how often each dose of Temozolomide
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should be given (d = 200, 150, 100, 75 or 50 mg/m2).

To this end we are going to take into account that the sum of the doses {di}Ni=1 must

be greater or equal than γ = 12236.09. As an example, if all doses are of 200 mg/m2,

N ≥ d12236.09/200e = 62. Since we are interested in minimizing the total dose, we take

N = 62. As the time period under study is 365 days, each dose should be given every

b365/62c = 5 days (where bxc denotes the largest integer that does not exceed x). We

proceed in the same way with the other possible doses, and obtain the results of the second

column of Table 3.2, Also, in that table we show the results obtained: the total dose given

and the value of L(T ), and in Figure 3.3 we can see the evolution of the tumor size for each

case.

Dose Frequency Total dose L(T)

200 mg/m2 62 doses given, every 5 days 12400 mg/m2 0.4913

150 mg/m2 82 doses given, every 4 days 12300 mg/m2 0.4954

100 mg/m2 123 doses given, every 2 days 12300 mg/m2 0.4954

75 mg/m2 164 doses given, every 2 days 12300 mg/m2 0.4954

50 mg/m2 245 doses given, every day 12250 mg/m2 0.4975

Table 3.2: Results obtained for each treatment in CASE 1 with Temozolomide.

Figure 3.3: Evolution of the tumor size for each case of Table 3.2.

Conclusions: In the first row of Table 3.2, 200 mg/m2 doses are given every five days during

62 cycles, and the tumor reaches the smallest volume. However this case is not very safe in

terms of toxicity: we know that a usual treatment in which 200 mg/m2 dose are given is

carried out for 5 days in a row, and with 23 days off, so it is not clear that it is safe to give

that dose it every 5 days. On the other hand, the most reasonable treatment seems to be the

fifth, because the maximum allowed tumor size is not exceeded and 50 mg/m2 dose will be

given every day during a period of 245 days with 120 days off (metronomic chemotherapy),
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which is reasonable in regards to toxicity because usually, in treatment 5, 50 mg/m2 dose

are given daily. In this instance the final tumor size would be 0.4979. Furthermore, Table

3.2 shows that the reduction in size of the tumor only depends on the total dose given: the

higher the total dose, the lower the final tumor size. Also, we can see that in those cases

where the same total dose is given (see the rows 2, 3 and 4 of the Table 3.2), the same value

of L(T ) is reached.

• CASE 2: In this case, we are going to estimate how long each treatment should be carried

out minimizing the dose given, but without exceeding the maximum tumor volume at the

time T , L∗ = 0.5.

Now let’s consider the treatments in Figure 3.1 and the number of doses exposed in the

second column of Table 3.2. If we use Treatment 1, taking into account that we need to give

62 doses of 200 mg/m2 to satisfy the restriction, and that 5 doses are given in each cycle,

then 12 cycles and 2 more days (338 days) are needed. Proceeding in a similar way with the

rest of the treatments, we obtain the duration of each one of them so that L(T ) ≤ L∗. We

show the results in the last column of Table 3.3.

Dose Duration

Treatment 1 200 mg/m2 338 days

Treatment 2 150 mg/m2 152 days

Treatment 3 100 mg/m2 158 days

Treatment 4 75 mg/m2 213 days

Treatment 5 50 mg/m2 245 days

Table 3.3: Results obtained in CASE 2 with Temozolomide.

Conclusions: In Table 3.3 we observe that when the doses given are between 100 and 150

mg/m2 we get the shortest treatment times. In this case, these two seem the most interesting,

since they respect toxicity criteria (being treatments that are commonly used), verify that

the volume L∗ = 0.5 of the tumor is not exceed, and they are the ones which require less

treatment time. It is therefore noted that in this case the therapy that seems to be most

recommended is not MTD therapy, but smaller doses with less spacing.

3.4 Cabazitaxel

The drug Cabazitaxel is used to treat people with prostate cancer. It belongs to a group of

anticancer drugs known as taxanes. These types of drugs prevent cell growth by stopping the

cells from dividing. Its half life is about 95 hours and its volume of distribution (VD) is 4.864 L

(see [17]). It is administered intravenously, and the dose varies depending on the patient’s body

surface, as in the case of Temozolomide. There are numerous studies on the dose that should

be administered, and there are three common treatments which depend on the possible adverse

reactions that may occur (see [15]):

• Treatment 1: 25 mg/m2 administered for 1 hour intravenously every 3 weeks. It is the

most common treatment.

• Treatment 2: 20 mg/m2 administered for 1 hour intravenously every 3 weeks. This

treatment is administered in case of adverse reactions.
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• Treatment 3: 15 mg/m2 administered for 1 hour intravenously every 3 weeks. This

treatment is administered in case the adverse reactions continue after treatment 2.

As we have seen, its half-life is 95 hours (3.96 days), which we can use to estimate the value λ of

(2.1) as follows:

c′(t) = −λc(t) =⇒ c(t) = c0e
−λt =⇒ c(t̃) =

c0
2

= c0e
−λt̃ =⇒ λ =

log(2)

t̃
≈ 0.175 days−1.

In a similarly way to the case of Temozolomide, we are going to take ξ = 0.00551 on equation

(2.3). Also, we have taken this value based on the one calculated in experimental studies for drugs

with long half-life. See, for example [11], where a value ξ = 0.0075 is obtained for a drug with long

half-life: Bevacizumab.

In order to estimate the value of the constant k1 of the Skipper model, note that there is not usual

to give doses of less than 10 mg/m2. Then, considering that the minimum dose that is applied

in treatments is 10 mg/m2 and 2 mg/m2 as a dose that has no effect on the body, and making

a reasoning analogous to that of Temozolomide, we take as theoretical value k1 = 1.2 for women

and k1 = 1 for men.

We are going to study the 3 treatments exposed previously, and another case that although it’s not

medically used, serves us to check the results of the Section 3.1 numerically. We want to compare

two different treatments but in which the same total dose is given. Therefore, we introduce a

fourth treatment in which 10 mg/m2 dose is administrated every week, so in this treatment the

same cumulative dose is given as in treatment 2. Then, let’s consider a period of time of 28 days,

T = 29, L0 = 0.03, and that the patient is a male (so the total dose given will be multiplied by

1.9 and k1 = 1). In Figure 3.4 and in Table 3.4 we can see the comparison of these 4 treatments.

Figure 3.4: Tumor volume evolution with the four treatments of Cabazitaxel.
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Dose Frecuency Total dose L(T)

25 mg/m2 Every 3 weeks 50 mg/m2 0.0056

20 mg/m2 Every 3 weeks 40 mg/m2 0.0097

15 mg/m2 Every 3 weeks 30 mg/m2 0.0157

10 mg/m2 Once a week 40 mg/m2 0.0092

Table 3.4: Results obtained for each treatment of Cabazitaxel with the Skipper model.

In the case of this drug, in which the value of λ is small (λ = 0.175), and taking T = 29, a small

value for λT is obtained. Then, we can observe (as we saw in Section 3.1) that although the total

dose given in treatments 2 and 4 is the same, we don’t get the same value for the final volume of

the tumor (see rows 2 and 3 of Table 3.4).

Now, let’s study the problem (P̂2) by considering the same two cases which we studied for the

Temozolomide. Again we are going to assume that the times have no influence. Be L0 = 0.3,

L∗ = 0.5, k1 = 1 (considering that the patient is a male), ξ = 0.00551, and T = 365, then

γ = 118.63.

• CASE 1: For the 3 possible doses, 25, 20 and 15 mg/m2, we are going to see how many and

how often they should be administered during a year so that the final volume of the tumor

is less than L∗ = 0.5. To this end, we have carried out a process analogous to that of the

Temozolomide case. In Figure 3.5 we can see the evolution of the volume of the tumor in

each case and in the Table 3.5 the results obtained.

Figure 3.5: Evolution of the tumor size for each treatment of Cabazitaxel using the assumptions

of case 1.

Dose Frequency Total dose L(T)

25 mg/m2 5 doses given, every 73 days 125 mg/m2 0.47057

20 mg/m2 6 doses given, every 60 days 120 mg/m2 0.49221

15 mg/m2 8 doses given, every 45 days 120 mg/m2 0.49222

Table 3.5: Results obtained for each treatment in CASE 1 with Cabazitaxel.

Conclusions: As expected, the case that produces the best results is the one in which

the total dose administered is higher (see the first row of Table 3.5). On the other hand,
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we cannot be sure that these three treatments are effective in practice due to the spacing

between doses. Therefore, the treatment that produces the best results is a dose of 25 mg/m2

every 73 days (only 5 mg/m2 more are given in total respect the other two cases). Note that

now, although the value of λ is small, λT >> 0, so there is a great similarity in the final

result (L(T )) of the two cases where the same total dose is given (see rows 2 and 3 of Table

3.5).

• CASE 2: For the 3 possible treatments, we’re going to study what the duration of these

would be so that the final size of the tumor at T = 365 is less than L∗ = 0.5. Note that in

all the cases, a dose is given every 3 weeks. Figure 3.6 represents the evolution of the size of

the tumor over a year, and Table 3.6 shows the duration of each treatment and the results

obtained.

Figure 3.6: Tumor size evolution for each treatment of Cabazitaxel with the assumptions of the

case 2.

Dose Duration L(T)

Treatment 1 25 mg/m2 105 days 0.47057

Treatment 2 20 mg/m2 126 days 0.49221

Treatment 3 15 mg/m2 168 days 0.49221

Table 3.6: Results obtained for each treatment in CASE 2 with Cabazitaxel.

Conclusions: Again, the treatment that produces the best results is the one in which

a higher total dose is given and it is also which finishes earlier (first row of Table 3.6).

Although λ is small, as λT >> 0, in both approaches to the problem we arrive to similar

values of L(T ). It is also observed that the best results are not produced by the treatment

that ends later (the same as in the case of Temozolomide).

To conclude this chapter, let’s see why we have decided to consider in the numerical simulations

t1 = 0 with a simple two variable example. As in all the cases under study, let’s consider 0 ≤ t1 <
t2 ≤ T , and let’s assume the following problem:

Max d1

(
1− eλ(t1−T )

)
+ d2

(
1− eλ(t2−T )

)
d ∈ R2

subject to d1 + d2 = D,

dmin ≤ d1, d2 ≤ dmax,

⇐⇒


Max D − e−λT

(
d1e

λt1 + d2e
λt2
)

d ∈ R2

subject to dmin ≤ d1, d2 ≤ dmax,
⇐⇒



24 CHAPTER 3. SKIPPER MODEL

⇐⇒


Min d1e

λt1 + d2e
λt2

d ∈ R2

subject to dmin ≤ d1, d2 ≤ dmax,

t1=0⇐⇒

{
Min d1 + (D − d1)eλt2
d1, d2 ∈ [dmin, dmax] ∩ [D − dmax, D − dmin]

.

Note that in the last equivalence we are taking t1 = 0 the minimum possible value, since our

interest is to reduce the volume of the tumor as much as possible.

On the other hand, let’s see an example in which the conclusions of Theorem 3.1.2 are not true

in the case where the values of the times {ti}Ni=1 are not fixed from the beginning. This does not

contradict the theorem, since in the hypotheses that led us to state it, we counted on fixed times.

With Example 3.4.1 we want to emphasize why we had fixed them initially:

Example 3.4.1. Be N = 2, λ = 1, dmin = 1 mg/m2, dmax = 9 mg/m2, D = 10 mg/m2. Let’s

solve the problem (P1S) without considering the times initially fixed.

From Theorem 3.1.2, we would consider taking d = (9, 1). As in this case we do not consider fixed

times, we must estimate t1 and t2. From what was seen before t1 = 0, and as the dose d1 is big,

we can consider, for example, t2 = 3 (3 days between each dose), and the cost functional of the

problem would be approximately 29.

Let’s consider the case where we start with the lowest dose. That is, d = (1, 9). Again we take

t1 = 0, but now, as the first dose is small, we could consider that one day of spacing is enough,

and therefore t2 = 1. In this way the cost functional of the problem becomes approximately 25.5.

This shows that the hypothesis of having fixed times is absolutely necessary in Theorem 3.1.2.
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Emax model

For the Emax model, we consider ρ̃(t) =
k1c(t)

k2 + c(t)
in (2.5), with given k1, k2 > 0, and c(t) as we

have defined in (2.2).

In order to study the problems presented in Section 2.3, using (2.2) and considering k̂2 =
k2
σ

, let’s

calculate

∫ T

0

c(s)

k2 + c(s)
ds:

∫ T

0

c(s)

k2 + c(s)
ds =

∫ t2

t1

e−λsd1e
λt1

k̂2 + e−λsd1eλt1
ds+

∫ t3

t2

e−λs(d1e
λt1 + d2e

λt2)

k̂2 + e−λs(d1eλt1 + d2eλt2)
ds+ · · ·+

+

∫ tN

tN−1

e−λs(d1e
λt1 + · · ·+ dN−1e

λtN−1)

k̂2 + e−λs(d1eλt1 + · · ·+ dN−1eλtN−1)
ds+

+

∫ T

tN

e−λs(d1e
λt1 + · · ·+ dNe

λtN )

k̂2 + e−λs(d1eλt1 + · · ·+ dNeλtN )
ds =

= − 1

λ
log

(
d1e

λ(t1−t2) + k̂2

d1 + k̂2

)
− 1

λ
log

(
d1e

λ(t1−t3) + d2e
λ(t2−t3) + k̂2

d1eλ(t1−t2) + d2 + k̂2

)
− · · ·−

− 1

λ
log

(
d1e

λ(t1−tN ) + · · ·+ dN−1e
λ(tN−1−tN ) + k̂2

d1eλ(t1−tN−1) + · · ·+ dN−2eλ(tN−2−tN−1) + dN−1 + k̂2

)
−

− 1

λ
log

(
d1e

λ(t1−T ) + · · ·+ dNe
λ(tN−T ) + k̂2

d1eλ(t1−tN ) + · · ·+ dN−1eλ(tN−1−tN ) + dN + k̂2

)
=

=
1

λ
log

(
(d1 + k̂2) · · · (d1eλ(t1−tN ) + · · ·+ dN−1e

λ(tN−1−tN ) + dN + k̂2)

(d1eλ(t1−t2) + k̂2) · · · (d1eλ(t1−T ) + · · ·+ dNeλ(tN−T ) + k̂2)

)
= F (N, d)

(4.1)

Then, using (2.7) we get the following expression for L(T ):

L(T ) = θ exp

(
log

(
L0

θ

)
exp (−ξ (T − k1F (N, d)))

)
. (4.2)

4.1 Minimizing the tumor volume with a fixed cumulative dose

As in the case of the Skipper model, first of all we want to minimize the tumor volume: problem

(P̂1) defined in Section 2.3. As we saw in that section, it is equivalent to maximize F (N, d):

25
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(P1E)



Max F (N, d)

N ∈ N, d ∈ RN

subject to
N∑
i=1

di = D,

dmin ≤ di ≤ dmax, ∀i ∈ {1, . . . , N},

. (4.3)

In this problem, we have N + 1 variables to determine: N , di, ∀i ∈ {1, . . . , N}. As in the previous

cases, the values of T , D, dmin dmax and ti, ∀i ∈ {1, . . . , N} are fixed. Also, the objective function

is nonlinear. To study (P1E) we are going to consider two cases: λ >> 0 and λ ≈ 0.

4.1.1 Case 1: λ >> 0

Let’s start by studying a simple case, in which λ >> 0 (for example the case of Temozolomide).

Here, the times ti do not seem to play a relevant role, because as T > ti, ∀i ∈ {1, . . . , N}, λT >> 0,

then eλ(ti−T ) ≈ 0 and eλ(ti−tj) ≈ 0, ∀i, j ∈ {1, . . . , N}, j > i. Therefore, we can take:

F (N, d) ≈ 1

λ

(
log

(
N∏
i=1

(di + k̂2)

)
− log(k̂N2 )

)
.

To maximize F (N, d), as k̂2 > 0 is constant and log is a strictly increasing function , it is equivalent

to maximize
N∏
i=1

(di + k̂2), so we get the problem (P 1E):

(P 1E)



Max f3(N, d) =
N∏
i=1

(di + k̂2)

N ∈ N, d ∈ RN

subject to
N∑
i=1

di = D,

dmin ≤ di ≤ dmax, ∀i ∈ {1, . . . , N}.

.

Once more, this is a mixed nonlinear optimization problem, and we have to determine the value

of N + 1 variables: N and {di}Ni=1.

Theorem 4.1.1. If dmin > 0 and N ∈
[
D

dmax
,
D

dmin

]
∩ N, then there is a solution for (P 1E).

Proof. It is enough to consider values of N in the interval
[

D
dmax

, D
dmin

]
∩N. Then, fixed the value

of N , the set of restrictions of the problem is nonempty and compact (it’s the same of problem

(PN1S), see the proof of Theorem 3.1.2). Then, as the function f3 is continuous in the variable d

(for N fixed) there is a global solution to the problem (P 1E) (see Appendix A).

It is a well known result the following relation between the geometric and arithmetic means:

Proposition 4.1.1. The arithmetic mean of a set of positive numbers (di ∈ R+, i ∈ {1, . . . , N}) is

always equal to or greater than the geometric mean. Therefore, the following inequality is verified:

N

√√√√ N∏
i=1

di ≤
1

N

N∑
i=1

di. (4.4)

We only obtain the equality when di = dj, ∀i, j ∈ {1, . . . , N}.
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Proof. See Proposition B.0.1 in Appendix B.

Using Proposition 4.1.1 for problem (P 1E), we get:

N

√√√√ N∏
i=1

(di + k̂2) ≤
∑N

i=1(di + k̂2)

N
=
D

N
+ k̂2 =⇒

N∏
i=1

(di + k̂2) ≤
(
D

N
+ k̂2

)N
. (4.5)

Therefore, by (4.5) the maximum of (P 1E) with N fixed is reached when di =
D

N
, ∀i ∈ {1, . . . , N}.

Now we want to study the dependence on N . To do this we are interested in studying the function

f4 defined below. In the following we will write x instead of N , but we are only interested in the

values of x ∈ N.

For simplicity, we will consider the case where D is a natural multiple of dmin and dmax, that is:

D = N1 dmax = N2 dmin, with dmin > 0 and N1, N2 ∈ N.

(P4)

 Max f4(x) =

(
D

x
+ k̂2

)x
subject to x ∈ [N1, N2] ∩ N.

.

Let’s study the growth of the function f4(x) for different values of k̂2. By hypothesis of the Emax

model, we know that it must be k̂2 > 0. Moreover, it is easy to get the derivative:

f ′4(x) =

(
D

x
+ k̂2

)x(
log

(
D

x
+ k̂2

)
− D

D + k̂2 x

)
.

To see the behavior of function f4, in Figure 4.1 we represent its graph for D = 100 and k̂2 ∈
[0.3, 0.5], k̂2 ∈ [1, 1.2]:

Figure 4.1: Graphic of f4(x) for different values of k̂2.

Let’s study the positive roots of f ′4(x):

f ′4(x) = 0⇐⇒ log

(
D

x
+ k̂2

)
=

D

D + k̂2x
⇐⇒ log

(
D

x
+ k̂2

)
(D + k̂2x) = D ⇐⇒

⇐⇒ log

(
D

x
+ k̂2

)(
D

x
+ k̂2

)
=
D

x
⇐⇒

(
log

(
D

x
+ k̂2

)
− 1

)(
D

x
+ k̂2

)
= −k̂2 ⇐⇒

⇐⇒
(

log

(
D

x
+ k̂2

)
− 1

)
elog(

D
x
+k̂2)−1 = − k̂2

e

k̂2∈(0,1)⇐⇒ log

(
D

x
+ k̂2

)
− 1 = W (−k̂2/e)⇐⇒
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⇐⇒ D

x
+ k̂2 = eW (−k̂2/e)+1 ⇐⇒ x =

D

eW (−k̂2/e)+1 − k̂2
, (4.6)

where W is the Lambert W function (see Appendix C). Let’s see what branch of Lambert’s W

function we should consider:

x > 0⇐⇒ eW (−k̂2/e)+1 > k̂2 ⇐⇒W (−k̂2/e) > log(k̂2/e)
r=k̂2/e⇐⇒ W (−r) > log(r)

In Figure 4.2 we show the graphs of W (−r) and log(r), and we see that W (−r) > log(r) if and

only if r ∈ (0, 1/e) (so, as r = k̂2/e, k̂2 ∈ (0, 1)), then with W we represent the branch W0 of the

W Lambert function:

Figure 4.2: Graphs of W (−r) and log(r).

Then, we distinguish two cases:

• k̂2 ≥ 1. As x > 0 and D > 0, the function f4 is strictly increasing because it has no real

roots for x > 0 (see Figure 4.1) and lim
x→+∞

log

(
D

x
+ k̂2

)
= log(k̂2) and lim

x→+∞

D

D + k̂2 x
=

0 < log(k̂2).

Then, the solution of (P4) is N2 =
D

dmin
, and (N2, (dmin, . . . , dmin)︸ ︷︷ ︸

N2

) is the solution of (P 1E)

(Metronomic chemotherapy).

• 0 < k̂2 < 1. As x > 0, f ′4(x) has one positive root x = D

eW (−k̂2/e)+1−k̂2
then:

– If x < x̄ the function f4 increases.

– If x > x̄ the function f4 decreases.

As the maximum of f4 is reached at x̄ =
D

eW (−k̂2/e)+1 − k̂2
let’s study the solution of (P4)

and (P 1E):

– If eW (−k̂2/e)+1 − k̂2 ≥ dmax, then N1 =
D

dmax
is the solution of (P4), and the solution of

(P 1E) is (N1 (dmax, . . . , dmax)︸ ︷︷ ︸
N1

) (MTD therapy).

– If eW (−k̂2/e)+1 − k̂2 ≤ dmin, then N2 =
D

dmin
is the solution of (P4), and the solution of

(P 1E) is (N2, (dmin, . . . , dmin)︸ ︷︷ ︸
N2

) (Metronomic chemotherapy).
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– If dmin ≤ eW (−k̂2/e)+1 − k̂2 ≤ dmax then N3 ∈ N such as f4(N3) ≥ f4(N) for each

N ∈ [N1, N2] ∩ N is the solution of (P4), and

N3,

(
D

N3
, . . . ,

D

N3

)
︸ ︷︷ ︸

N3

 is the solution of

(P 1E), where N3 = bx̄c or N3 = dx̄e.

Let’s see an example where we can observe the variation in the solution of the problem (P 1E)

according to the value of k̂2:

Example 4.1.1. Let’s set a value for D, dmin, dmax and vary the value of k̂2 to see how the

optimal treatment changes according to the value of this constant. Be z = eW (−k̂2/e)+1 − k̂2:

a) Be D = 1000 mg/m2, dmin = 50 mg/m2 and dmax = 200 mg/m2. This is a realistic example

for the case of the Temozolomide.

– If k̂2 = 0.2, z = 2.31 < dmin, so N = 20, di = dmin = 50 mg/m2, i = 1, . . . , N .

– If k̂2 = 0.5, z = 1.66 < dmin, so N = 20, di = dmin = 50 mg/m2, i = 1, . . . , N .

– If k̂2 ≥ 1, f ′4(x) has no real roots, so we get that again N = 20, di = dmin = 50 mg/m2,

i = 1, . . . , N .

In view of the treatment 1 defined in Figure 3.1, in the three cases t = (1, 2, 3, . . . , 20), so the

treatment that seems most reasonable is metronomic chemotherapy.

b) Be D = 100 mg/m2, dmin = 2 mg/m2 and dmax = 10 mg/m2. This is not a realistic

example.

– If k̂2 = 0.2, z ∈ (dmin, dmax), so N = 43, di = 2.33 mg/m2, i = 1, . . . , N .

– If k̂2 = 0.5, z < dmin, so N = 50, di = dmin = 2 mg/m2, i = 1, . . . , N .

– If k̂2 ≥ 1, f ′4(x) has no real roots, so N = 50 and di = dmin = 2 mg/m2, i = 1, . . . , N .

In this example, when k̂2 ≥ 0.5 the treatment that seems to be most effective is metronomic

chemotherapy. Note that taking into account the interpretation of k̂2 (whih will be explained

in Section 4.3), usually k̂2 > 1.

4.1.2 Case 2: λ ≈ 0

Be h(λ) = log

(
d1 + k̂2

d1eλ(t1−t2) + k̂2

)
+ log

(
d1e

λ(t1−t2) + d2 + k̂2

d1eλ(t1−t3) + d2eλ(t2−t3) + k̂2

)
+ · · ·+

+ log

(
d1e

λ(t1−tN ) + · · ·+ dN + k̂2

d1eλ(t1−T ) + · · ·+ dNeλ(tN−T ) + k̂2

)
.

Let’s consider the case of drugs with long half-life (λ ≈ 0). By (4.1), lim
λ→0

F (N, d) = lim
λ→0

h(λ)

λ
=

0

0
and let’s apply L’Hopital’s rule:

lim
λ→0

h′(λ) =(t2 − t1)
d1

d1 + k̂2
− (t2 − t1)

d1

d1 + d2 + k̂2
+ (t3 − t1)

d1

d1 + d2 + k̂2
+

+ (t3 − t2)
d1 + d2

d1 + d2 + k̂2
+ · · ·+ d1(t1 − tN ) + · · ·+ dN−1(tN−1 − tN )

d1 + · · ·+ dN + k̂2
−

− d1(t1 − T )− · · · − dN (tN − T )

d1 + · · ·+ dN + k̂2
=

= (t2 − t1)
d1

d1 + k̂2
+ (t3 − t2)

d1 + d2

d1 + d2 + k̂2
+ · · ·+ (T − tN )

d1 + · · ·+ dN

d1 + · · ·+ dN + k̂2
.
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Therefore, we can consider the following optimization problem to minimize L(T ), with N variable:

(P̃1E)



Min f̃5(N, d) = −(t2 − t1)d1
d1 + k2

− (t3 − t2)(d1 + d2)

d1 + d2 + k2
− · · · − (T − tN )(d1 + · · ·+ dN )

d1 + · · ·+ dN + k2
N ∈ N, d ∈ RN

subject to
N∑
i=1

di = D,

dmin ≤ di ≤ dmax, ∀i ∈ {1, ..., N}.

.

For simplicity, let us begin by stating the problem (P̃1E) in the case N = 3 fixed, and considering

wi = (ti+1− ti), i ∈ {1, 2}. We can reduce it to a 2 variable problem because as w3 = (T − t3) and

d1 + d2 + d3 = D, then the last term is constant. Also, using the equality constraint, we get:

(P̃ 3
1E)


Min f35 (d) = − w1d1

d1 + k̂2
− w2(d1 + d2)

d1 + d2 + k̂2
d ∈ R2

subject to D − dmax ≤ d1 + d2 ≤ D − dmin
dmin ≤ di ≤ dmax, ∀i ∈ {1, 2}.

.

Let’s see that the function f35 is strictly convex:

∇2f35 (d) =
2w1k̂2

(d1 + k̂2)3

(
1 0

0 0

)
+

2w2k̂2

(d1 + d2 + k̂2)3

(
1 1

1 1

)
.

As w1, w2, k̂2 > 0 and d1, d2 > 0, then zT [∇2f35 (d)]z > 0, ∀z ∈ R2\{0}, and ∇2f35 (d) is a positive

definite matrix. Therefore, as f35 (d) is strictly convex and the set of restrictions is convex (because

the restrictions are linear), the problem (P̃ 3
1E) has only one solution (see, for instance [2]).

Let’s see in Figure 4.3 an example of the graphical representation of this problem, with w1, w2 = 1,

k̂2 = 1, dmin = 1, dmax = 3 and D = 4.

Figure 4.3: Example of problem (P̃ 3
1E).

Let’s come back to problem (P̃1E) and now, we are going to study it in the case of N fixed and
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with wi = (ti+1 − ti), i ∈ {1, . . . , N − 1}, wN = (T − tN ):

(P̃N1E)



Min f5(d) = − w1d1

d1 + k̂2
− w2(d1 + d2)

d1 + d2 + k̂2
− · · · − wN−1(d1 + · · ·+ dN−1)

d1 + · · ·+ dN−1 + k̂2
− wN (d1 + · · ·+ dN )

d1 + · · ·+ dN + k̂2
d ∈ RN

subject to

N∑
i=1

di = D,

dmin ≤ di ≤ dmax, ∀i ∈ {1, . . . , N − 1}.

.

Also, we can reduce this problem to a N − 1 variable problem because as wN = (T − tN ) is fixed

and

N∑
i=1

di = D, the term
wN (d1 + · · ·+ dN )

d1 + · · ·+ dN + k̂2
is constant:

(P̃N−11E )



Min f5(d) = − w1d1

d1 + k̂2
− w2(d1 + d2)

d1 + d2 + k̂2
− · · · − wN−1(d1 + · · ·+ dN−1)

d1 + · · ·+ dN−1 + k̂2
d ∈ RN−1

subject to D − dmax ≤
N−1∑
i=1

di ≤ D − dmin,

dmin ≤ di ≤ dmax, ∀i ∈ {1, . . . , N − 1}.

.

However, for simplicity, in order to study the existence of a unique solution and its structure, we

are going to consider the problem (P̃N1E).

Theorem 4.1.2. If dmin > 0 and N ∈
[
D

dmax
,
D

dmin

]
∩ N, then there is a unique solution for

(P̃N1E).

Proof. The proof of the existence of solution is analogous to the proof of Theorem 3.1.1. The

uniqueness of the solution follows from the fact that f5 is strictly convex.

Theorem 4.1.3. Under the hypotheses of Theorem 4.1.2, the unique solution to the problem (P̃N1E)

is given by:

1. (dmin, . . . , dmin) if N =
D

dmin
∈ N.

2. (dmax, . . . , dmax) if N =
D

dmax
∈ N.

3. (dmax, . . . , dmax, d
∗, dmin, . . . , dmin) if D

dmax
< N < D

dmin
, N ∈ N. with d∗ verifying dmin ≤

d∗ ≤ dmax. The number of dmin and dmax doses can be between 0 and N − 1. If m is the

number of dmin, then d∗ = D + (dmax − dmin)m− (N − 1)dmax.

Proof. Let’s study the different possible cases:

1. If N = D
dmin

∈ N, then d = (dmin, . . . , dmin) is the solution of the problem because it’s the

unique feasible point.

2. If N = D
dmax

∈ N, then d = (dmax, . . . , dmax) is the solution of the problem because it’s the

unique feasible point.
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3. If N ∈
(

D

dmax
,
D

dmin

)
∩ N:

Be j0 = N−m the position of d∗ ∈ [dmin, dmax], then d = (dmax, . . . , dmax︸ ︷︷ ︸
N−m−1

, d∗, dmin, . . . , dmin︸ ︷︷ ︸
m

)

is a Kuhn-Tucker point (see [2]):

1. ∇f5(d) + λ

1
...

1

 +

µ1
...

µN

 -

 µ̂1
...

µ̂N

 =

0
...

0

 .

2. µi(di − dmax) = 0, ∀i ∈ {1, . . . , N}.
µ̂i(−di + dmin) = 0, ∀i ∈ {1, . . . , N}.
µi, µ̂i ≥ 0, ∀i ∈ {1, . . . , N}.

3. The point verifying the two previous conditions must also be feasible.

In this case we can take λ = −(∇f5(d))j0 (λ is positive), and taking in account that

(∇f5(d))i − (∇f5(d))j > 0 if i > j:

– If i < j0, µ̂i = 0 and µi = −(∇f5(d))i − λ > 0.

– If i = j0, µ̂i = 0 and µ̂i = 0.

– If i > j0, µi = 0 and µ̂i = (∇f5(d))i + λ > 0.

Let’s calculate m: Using D = m dmin + (N −m− 1)dmax + d∗, it follows that dmin ≤ d∗ =

D + (dmax − dmin)m− (N − 1)dmax ≤ dmax, then:

Ndmax −D
dmax − dmin

− 1 ≤ m ≤ Ndmax −D
dmax − dmin

(4.7)

Therefore, m is the greater integer which verifies (4.7).

Finally, as f5 is strictly convex and the set of restrictions is convex, then if d is a Kuhn-Tucker

point it is the solution to (P̃N1E) (see [2]).

Let’s see an example in which we solve (P̃N1E) using the previous theorem for different values of N :

Example 4.1.2. Be D = 1050 mg/m2, dmin = 100 mg/m2, dmax = 200 mg/m2. Then, let’s

solve (P̃N1E) for N ∈ [6, 10]:

• If N = 6, m ∈ [0.5, 1.5] and we take m = 1. Then, d = (200, 200, 200, 200, 150, 100).

• If N = 7, m ∈ [2.5, 3.5] and we take m = 3, so d = (200, 200, 200, 150, 100, 100, 100︸ ︷︷ ︸
3

).

• If N = 8, m ∈ [4.5, 5.5] so m = 5, and d = (200, 200, 150, 100, . . . , 100︸ ︷︷ ︸
5

).

• If N = 9, m ∈ [6.5, 7.5] so m = 7, and d = (200, 150, 100, . . . , 100︸ ︷︷ ︸
7

).

• If N = 10, m ∈ [8.5, 9.5] so m = 9, and d = (150, 100, . . . , 100︸ ︷︷ ︸
9

).

Note that in all the previous cases, there is a dose d∗ = 150 mg/m2 in the position N−m. Finally,

in order to solve the problem (P̃1E) we need to know the times (fixed a priori) and the value of k̂2
and keep the tuple (N, d) which minimizes f̃5(N, d).



CHAPTER 4. EMAX MODEL 33

4.2 Minimizing the cumulative dose and keeping the tumor size

below a level

We will start by considering the problem (P̂2) defined in Section 2.3. In this problem we want to

minimize the total dose given but preserving the volume of the tumor at time T not to exceed an

established bound L∗.

As we are studying the Emax model,

∫ T

0
ρ̃(t)dt = k1F (N, d), with F given in (4.1). Then, we

have to preserve the following lower bound:

log

(
(d1 + k̂2) · · · (d1eλ(t1−tN ) + · · ·+ dN−1e

λ(tN−1−tN ) + dN + k̂2)

(d1eλ(t1−t2) + k̂2) · · · (d1eλ(t1−T ) + · · ·+ dN−1eλ(tN−1−T ) + dNeλ(tN−T ) + k̂2)

)
≥ γ, (4.8)

with γ =
λ

k1
(T + γ̃), γ̃ defined in Section 2.3. Therefore let’s consider the following optimization

problem:

(P2E)



Min f̃(N, d) =
N∑
i=1

di

N ∈ N, d ∈ RN

subject to
(d1 + k̂2) · · · (d1eλ(t1−tN ) + · · ·+ dN + k̂2)

(d1eλ(t1−t2) + k̂2) · · · (d1eλ(t1−T ) + · · ·+ dNeλ(tN−T ) + k̂2)
≥ eγ ,

dmin ≤ di ≤ dmax, ∀i ∈ {1, . . . , N}.

.

with γ as defined above. Again, in this problem both N and each di are variables. As in Section

4.1, we are going to distinguish 2 cases to study this problem: λ >> 0 and λ ≈ 0.

4.2.1 Case 1: λ >> 0

Let’s start by studying the case in which λ >> 0. Then, as T > ti, ∀i ∈ {1, . . . , N}, eλ(ti−T ) ≈ 0

and eλ(ti−tj) ≈ 0, ∀i, j ∈ {1, . . . , N}, j > i. Be γ =
λ

k1
(T + γ̃), therefore, we get:

L(T ) ≤ L∗ ⇐⇒
(d1 + k̂2) · · · (dN−1 + k̂2)(dN + k̂2)

k̂N2
≥ eγ .

Then the problem (P2E) is formulated as follows:

(P 2E)



Min f̃(N, d) =
N∑
i=1

di

N ∈ N, d ∈ RN

subject to

N∏
i=1

(di + k̂2) ≥ eγ k̂N2

dmin ≤ di ≤ dmax, ∀i ∈ {1, . . . , N}.

.

First, note that the set of feasible N values is infinite, but only a finite number of N have practical

interest: There is a value N̂ ∈ N large enough so that (dmin + k̂2)
N̂ ≥ eγ k̂N̂2 . Of course, there

is no point in considering larger values, since if N > N̂ , then f̃(N̂ , d̂) = N̂dmin < f̃(N, d) for

d̂ = (dmin, . . . , dmin) and for all (N, d) feasible for (P 2E). Using di ≤ dmax, ∀i ∈ {1, . . . , N}, we

get the following lower bound for N :

N∏
i=1

(dmax + k̂2) ≥
N∏
i=1

(di + k̂2) ≥ eγ k̂N2 ⇐⇒

(
dmax + k̂2

k̂2

)N
≥ eγ ⇐⇒ N ≥ γ

log
(
dmax+k̂2

k̂2

) .
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Using the inequality between the arithmetic and geometric means (see Proposition 4.1.1), we get:

1

N

N∑
i=1

(di + k̂2) = k̂2 +
1

N

N∑
i=1

di ≥

(
N∏
i=1

(di + k̂2)

)1/N

≥ eγ/N k̂2 ⇐⇒
N∑
i=1

di ≥ Nk̂2(eγ/N − 1) .

Then, the minimum of (P 2E) is reached when
N∑
i=1

di = Nk̂2(e
γ/N − 1) and di = dj , ∀i, j ∈

{1, . . . , N}, i 6= j, by Proposition 4.1.1, and d̄i = k̂2(e
γ/N − 1), ∀i ∈ {1, . . . , N}, when this point is

feasible.

Imposing that d̄i ≥ dmin, ∀i ∈ {1, . . . , N}, then eγ/N ≥ dmin + k̂2

k̂2
and N ≤ γ

log
(
dmin+k̂2

k̂2

) .

Therefore, let’s consider the following optimization problem in one variable in order to estimate

the optimum value of N . We will write x instead of N for simplicity, but we are only interested

in the values of x ∈ N. Also, be N1 =
γ

log
(
dmax+k̂2

k̂2

) and N2 =
γ

log
(
dmin+k̂2

k̂2

) :

(P6)

{
Min f6(x) = xk̂2(e

γ/x − 1)

subject to x ∈ [N1, N2] ∩ N.
.

The function f6(x) is strictly decreasing for x > 0, let’s see its graphic for γ = 5 > 1, γ = 0.5 < 1

and in both cases k̂2 = 100:

Figure 4.4: Graphic of f6(x) for k̂2 = 100 and γ = 5 (left), γ = 0.5 (right).

Note that f ′6(x) =
k̂2
x

(eγ/x(x− γ)− x) has no real roots for x > 0, and f ′6(x) < 0, ∀x > 0:

f ′6(x) = 0⇐⇒ x = eγ/x(x− γ)⇐⇒ 1 =
(

1− γ

x

)
eγ/x ⇐⇒ −1

e
=
(γ
x
− 1
)
eγ/x−1

⇐⇒ γ

x
− 1 = W

(
−1

e

)
,

where W is the Lambert function (see Appendix C). However, W

(
−1

e

)
= −1 (see Appendix C),

so it must be
γ

x
= 0, and we get a contradiction because γ > 0. Then, as f ′6(x) has no real roots
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for x > 0, and f ′6(1) < 0, we get that f ′6(x) < 0, ∀x > 0. Therefore, f6(x) is strictly decreasing for

all x > 0, so the solution to (P6) will be x = bN2c.

Coming back to problem (P 2E), as we want to minimize the cumulative dose, we will take

d = (k̂2(e
γ/N − 1), . . . , k̂2(e

γ/N − 1︸ ︷︷ ︸
N

)) with N =

 γ

log

(
dmin+k̂2

k̂2

)
.

Let’s look at an example where we check that the expected result is obtained:

Example 4.2.1. Be γ = 6, k̂2 = 100, dmin = 75 mg/m2 and dmax = 200 mg/m2. Let’s solve

(P 2E).

In this conditions, 3N ≥ e6, so N ≥ 5.46. Also, N ≤ γ

log

(
dmin+k̂2

k̂2

) = 6
log(1.75) = 10.72. Note that

there are 5 possible values of N : 6, 7, 8, 9, 10:

• If N = 6, d
(6)

= (171.83, . . . , 171.83︸ ︷︷ ︸
6

) and f̃(6, d
(6)

) = 1030.98.

• If N = 7, d
(7)

= (135.64, . . . , 135.64︸ ︷︷ ︸
7

) and f̃(7, d
(7)

) = 949.48.

• If N = 8, d
(8)

= (111, 70, . . . , 111, 70︸ ︷︷ ︸
8

) and f̃(8, d
(8)

) = 893.60.

• If N = 9, d
(9)

= (94.77, . . . , 94.77︸ ︷︷ ︸
9

) and f̃(9, d
(9)

) = 852.93.

• If N = 10, d
(10)

= (82.21, . . . , 82.21︸ ︷︷ ︸
10

) and f̃(10, d
(10)

) = 822.11.

As we already knew, the solution of (P 2E) is reached when N =

 γ

log

(
dmin+k̂2

k̂2

)
 =

⌊
6

log(1.75)

⌋
= 10

and di = k̂2(e
γ/N − 1) = 100(e6/10 − 1) = 82.21, ∀i ∈ {1, . . . , 10}.

4.2.2 Case 2: λ ≈ 0

Now let’s consider the case in which λ ≈ 0. Then, eλ(ti−T ) ≈ 1 and eλ(ti−tj) ≈ 1, ∀i, j ∈
{1, . . . , N}, j > i. We are going to consider the same function h(λ) as in subsection 4.1.2. Again:

lim
λ→0

F (N, d) = lim
λ→0

h(λ)

λ
=

0

0
, and applying L’Hopital’s rule we know that:

lim
λ→0

h′(λ) = (t2 − t1)
d1

d1 + k̂2
+ (t3 − t2)

d1 + d2

d1 + d2 + k̂2
+ · · ·+ (T − tN )

d1 + · · ·+ dN

d1 + · · ·+ dN + k̂2
.

Therefore, combining (2.12) and (4.8) we get

L(T ) ≤ L∗ ⇐⇒
(t2 − t1)d1
d1 + k̂2

+
(t3 − t2)(d1 + d2)

d1 + d2 + k̂2
+ · · ·+ (T − tN )(d1 + · · ·+ dN )

d1 + · · ·+ dN + k̂2
≥ γ, (4.9)

with γ =
1

k1

(
T +

1

ξ
log

(
log
(
L∗
θ

)
log
(
L0
θ

))).
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In this case the problem (P2E) is formulated as follows for N fixed:

(P̃N2E)



Min fN2 (d) =

N∑
i=1

di

d ∈ RN

subject to
(t2 − t1)d1
d1 + k̂2

+
(t3 − t2)(d1 + d2)

d1 + d2 + k̂2
+ · · ·+ (T − tN )(d1 + · · ·+ dN )

d1 + · · ·+ dN + k̂2
≥ γ

dmin ≤ di ≤ dmax, ∀i ∈ {1, . . . , N}.

.

In general, we think that this problem is very complex to be solved explicitly; however, the fact of

having it formulated helps us to be able to compare several treatments: check if they are admissible

under the conditions of the problem, and which would produce better results. Let’s look at an

example:

Example 4.2.2. Be N = 10, γ = 25, k̂2 = 5, T = 28. Be g(t, d) =
(t2 − t1)d1
d1 + k̂2

+
(t3 − t2)(d1 + d2)

d1 + d2 + k̂2
+

· · ·+ (T − tN )(d1 + · · ·+ dN )

d1 + · · ·+ dN + k̂2
. We want to study the following three treatments:

• Treatment 1: t̃ = (0, 1, 2, . . . , 9) and d̃ = (10, 10, 10, . . . , 10). We can check that g(t̃, d̃) =

25.96 ≥ γ, and fN2 (d̃) = 100.

• Treatment 2: t̂ = (0, 1, 2, . . . , 9) and d̂ = (7, 7, 7, . . . , 7). We can check that g(t̂, d̂) =

25.23 ≥ γ, and fN2 (d̂) = 70.

• Treatment 3: t = (10, 11, . . . , 19, 20) and d = (10, 10, 10, . . . , 10). We can check that

g(t, d) = 16.44 < γ, so this treatment is not feasible under the conditions of the statement

and the problem (P̃N2E).

In view of Example 4.2.2 we can see all the useful practical information that we can obtain just

from the formulation of the problem. Among the admissible treatments, we can observe which

one minimizes the total dose given (in this case, the second one) verifying the conditions of the

problem. In addition, we can discard those treatments that do not verify the desired conditions

(in this case, treatment 3), without the need for clinical or experimental verification.

4.3 Temozolomide

As we know, Temozolomide is a drug with short half-life, equivalently λ >> 0. Therefore, we are

going to use this drug to check what has been studied in the problems (P 1E) and (P 2E). That

is, we are going to study the problems (P̂1) and (P̂2) in the case of the Emax model and λ >> 0.

Also, we will study the evolution of the tumor volume with the 5 treatments of Temozolomide

exposed in Section 3.3. In order to perform these tasks let’s begin by estimating the value of the

parameters k1 and k2 for this model:

• Note that lim
c→∞

k1c

k2 + c
= k1, so we can define the parameter k1 as the maximum effect of the

drug on the body.

• Regarding the constant k2, it can be viewed as the concentration that produces 50% of the

maximum effect of the drug. Let’s check it out:

k1ĉ

k2 + ĉ
=
k1
2

=⇒ 2ĉ = k2 + ĉ =⇒ ĉ = k2.

It is usually noted k2 = EC50 (see, for instance [10]).
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In order to contrast previous results, let’s consider the theoretical values k1 = 45 and k2 = 9. In

Figure 4.5 we can see the graphical comparison between 3c (see Section 3.3) and
45c

9 + c
.

Figure 4.5: Graphical comparison between 3c and
45c

9 + c
.

Let’s start studying the different value of L(T ) obtained with each treatment. As an example, we

consider that the patient is a woman, L0 = 0.03, N = 28, T = 29, k1 = 9, k2 = 45 and ξ = 0.00551

(the last value is the same as in Section 3.3). In Table 4.1 we can see the results obtained with

each treatment (note that the total dose is multiplied by 1.6 when the patient is a woman), and

in Figure 4.6 the graphic representation of the evolution of the tumor.

L(T) Total dose

Treatment 1 0.0342 1000 mg/m2

Treatment 2 0.0191 2100 mg/m2

Treatment 3 0.0168 2100 mg/m2

Treatment 4 0.0216 1575 mg/m2

Treatment 5 0.0227 1400 mg/m2

Table 4.1: Results obtained for each treatment with Temozolomide.

Figure 4.6: Tumor’s size evolution with the five treatments of Temozolomide.
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Now to study the problem (P̂1) in the case of the Emax model and λ >> 0, we take D = 600

mg/m2, dmin = 50 mg/m2 and dmax = 200 mg/m2 (as these values are the maximum and

minimum dose that are administered in the treatments exposed above). We will also consider

T = 25 and that the study period consists on 24 days. We are going to study different types of

treatments with the 5 most common doses, that is, di can be 50, 75, 100, 150 or 200 mg/m2, and

di = dj , ∀i, j ∈ {1, . . . , N}, i 6= j. As an example we have assumed again that the patient is a

woman, L0 = 0.03, k1 = 45 and k2 = 9. In Table 4.2 we can see the results obtained: the total

number of doses given, and the frequency with which each dose is given:

Dose Frecuency Number of doses L(T)

200 mg/m2 Every 8 days 3 0.0374

150 mg/m2 Every 6 days 4 0.0365

100 mg/m2 Every 4 days 6 0.0354

75 mg/m2 Every 3 days 8 0.0348

50 mg/m2 Every 2 days 12 0.0340

Table 4.2: Results obtained for each treatment with Temozolomide.

As we saw when we studied the problem (P 1E), in this case as λ >> 0 and k2 > 1, the best results

are obtained using metronomic chemotherapy (lower doses with less spacing), see the last row of

Table 4.2.

In order to study problem (P̂2), let’s use the theoretical results obtained for problem (P 2E). As is

Section 3.3, for these experiments we’re going to consider that the patient is a woman, L0 = 0.3,

L∗ = 0.5, a period of a year and T = 365. Again we get that γ̃ = −100.2068, and then, using

k1 = 45, γ = 54.3826. As the patient is woman, and considering k2 = 9 we get k̂2 = 135. For

the 5 usual treatments, we are going to study how many doses should be given and what’s the

cumulative dose in each case. For example, for the case in which doses of 50 mg/m2 are given,(
50 + 135

135

)N
≥ eγ , so N ≥ 172.60. Then, 173 doses of 50 mg/m2 should be given during 365

days. Proceeding in the same way with the other treatments we get the following results:

Dose Number of doses given Cumulative dose

200 mg/m2 60 12000 mg/m2

150 mg/m2 73 10950 mg/m2

100 mg/m2 99 9900 mg/m2

75 mg/m2 124 9300 mg/m2

50 mg/m2 173 8650 mg/m2

Table 4.3: Possible treatments of Temozolomide to get L(T ) ≤ L∗.

Again, we can note here that the treatment which minimize the cumulative dose is the one in

which the minimum dose is given (metronomic chemotherapy). The time at which the doses will

be given, which should be fixed, will vary the value of L(T ) obtained, but it will be in any case

less than L∗ as seen in Subsection 4.2.1.

From a different point of view, for the five usual treatments of Temozolomide, we have developed

a program in MATLAB that allows us to know the minimum number of complete cycles that must
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be carried out to get L(T ) < L∗, and the value of L(T ) obtained for each case. In Table 4.4 we

can see the results obtained, and we can note that, once more, the treatment which minimize the

dose given is that in which lower doses are given (metronomic chemotherapy), as we have proved

in Subsection 4.2.1.

Number of cycles Cumulative dose L(T)

Treatment 1 12 12000 mg/m2 0.4987

Treatment 2 6 12600 mg/m2 0.4198

Treatment 3 5 12600 mg/m2 0.4640

Treatment 4 6 11025 mg/m2 0.4880

Treatment 5 7 9800 mg/m2 0.4297

Table 4.4: Usual treatments of Temozolomide and number of cycles to get L(T ) ≤ L∗.

4.4 Cabazitaxel

To illustrate the theoretical results obtained with respect to drugs with a long half-life, as in the

case of the Skipper model, we will analyze the case of Cabazitaxel. Along this study we have to

consider that the patient is a male.

First of all, we are going to study the 4 treatments which we studied in Section 3.4. To do this,

we have taken a period under study of 4 weeks, with T = 29, k1 = 16, k2 = 8, L0 = 0.03, and that

the patient is a male, so the total dose given will be multiplied by 1.9. In Figure 4.7 we show the

tumor evolution with each treatment and in Table 4.5 the results obtained.

Figure 4.7: Tumor volume evolution with the four treatments of Cabazitaxel with Emax model.
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Dose Frecuency Total dose L(T)

25 mg/m2 Every 3 weeks 50 mg/m2 0.0031

20 mg/m2 Every 3 weeks 40 mg/m2 0.0051

15 mg/m2 Every 3 weeks 30 mg/m2 0.0086

10 mg/m2 Once a week 40 mg/m2 0.0033

Table 4.5: Results obtained for each treatment of Cabazitaxel with the Emax model.

Here, we can appreciate that the best results are obtained the higher the total dose administered.

However, in treatments 2 and 4, the same total dose is given (see rows 2 and 4 of Table 4.5), but

the best results are obtained for the treatment where the doses are given less spaced, that is, a

metronomic treatment.

Now, let’s study some examples as an illustration in order to see what kind of therapy produces

the best results (the lowest value for L(T )) when the same total dose is given (problem (P̃1E)).

First of all, we have taken the same parameters as in the previous example: k1 = 16, k2 = 8,

L0 = 0.03 but with a period of time of 6 weeks and T = 43. In this case, we consider 3 types of

treatments, where in all of them the total dose administered is 50 mg/m2. In the first one, 2 doses

of 25 mg/m2 are given, in the second one 3 doses of 16.67 mg/m2 and in the third one 4 doses of

12.5 mg/m2. We want to estimate what the optimal dose spacing would be for this example.

In Figure 4.8 we can see the graphic representation of the value of L(T ) according to the time

spacing between each given dose. We know that under these conditions the minimum value for

L(T ) is reached when all doses are equal, and furthermore we expect that as k2 > 1, the best

result will be obtained for the lowest dose and with the shortest time spacing (as it can be seen in

Figure 4.8).

Figure 4.8: Tumor’s size at T according to the time spacing between each given dose.

Now, let’s consider that doses of 25 mg/m2 are given during 6 weeks (42 days), every 21 days.

Then, 1 mg/m2 is given every 0.84 days. As the most common doses are 25, 20 and 15 mg/m2,

we are going to study the following cases:

• Treatment 1: 25 mg/m2 every 21 days.

• Treatment 2: 20.24 mg/m2 every 17 days.

• Treatment 3: 15.48 mg/m2 every 13 days.



CHAPTER 4. EMAX MODEL 41

In Figure 4.9 we can observe the graphical comparison of these three treatments, and in table 4.6

each value of L(T ).

Figure 4.9: Graphic comparison of Cabazitaxel treatments 1,2,3.

Treatment L(T)

25 mg/m2 every 21 days 0.0023

20.24 mg/m2 every 17 days 0.0011

15.48 mg/m2 every 13 days 0.0012

Table 4.6: Results obtained for each treatment with Cabazitaxel.

The treatments in which lower doses are given, produce the best results (see rows 2 and 3 of Table

4.6).

We are going to end up looking at the problem (P̂2). We know 3 types of treatments (see Section

3.4), so we are going to study how many doses should be given in each case so that after one year

of treatment, if L0 = 0.3, the tumor size does not exceed L∗ = 0.5. In the 3 treatments exposed

in Section 3.4, the spacing between doses is 21 days. In addition, the same dose is given in each

of them during the whole cycle. Let’s take ti+1 − ti = 21, ∀i ∈ {1, . . . , N − 1}. Using MATLAB,

we are going to check what is the minimum number of doses that should be given in order to have

L(T ) < L∗. In Figure 4.10 we can see the graphic representation of the tumor evolution with

N = 1, 2, . . . to the minimum N verifying the previous condition.

Figure 4.10: Tumor size evolution with N doses of 25 mg/m2 given every 21 days.
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It is noted that the lowest value of N so that L(T ) < L∗ is 4. That is, 4 doses of 25 mg/m2 should

be given every 21 days. In total, 100 mg/m2 are given and L(T ) = 0.4566.

If the doses are of 20 mg/m2, then the lowest feasible N is 5 and L(T ) = 0.4168, again the

cumulative dose is 100 mg/m2. If the dose is 15 mg/m2, N = 6, L(T ) = 0.4351 and the total dose

given is 90 mg/m2. Figure 4.11 shows the graphic representation of the volume of the tumor for

these two cases:

Figure 4.11: Tumor size evolution with N doses of 20 mg/m2 given every 21 days (left) and doses

of 15 mg/m2 (right).

In Table 4.7 we can see a summary of the results obtained in this case for each usual treatment.

Treatment L(T) Total dose

25 mg/m2 every 21 days 0.4566 100 mg/m2

20 mg/m2 every 21 days 0.4170 100 mg/m2

15 mg/m2 every 21 days 0.4354 90 mg/m2

Table 4.7: Results obtained for problem (P̂2) with Cabazitaxel.

In this case, the third treatment seems to be the best in relation to the problem we want to solve,

as it minimizes the total dose. On the other hand, we can observe that in those treatments where

the same accumulated dose is given (rows 2 and 3 of Table 4.7), the best results are obtained when

lower doses are given but a greater number of them. Finally, let us note that it is more effective

to give many smaller doses, but a greater number of them, than few larger doses. This is observed

in rows 1 and 3 of Table 4.7, where results are better when 6 doses of 15 mg/m2 are given than

when 4 doses of 25 mg/m2 are given, although in the second case the total dose is higher than in

the first one.
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Conclusions

To conclude this study, let’s go back to the two optimization problems we have analyzed: (P1) and

(P2), which we introduced in Chapter 2. We have studied them for the two most common models

in pharmacodynamics: Emax and Skipper. Also. we have observed that the optimal treatment

depends on the type of drug administered, mainly if it has a long or short half-life.

With the Skipper model, for both problems and both types of drugs, the optimal treatment

consists of doses administrated following the scheme: (dmax, . . . , dmax, d
∗, dmin, . . . , dmin), with

dmin ≤ d∗ ≤ dmax, as we explained in Theorems 3.1.2 and 3.2.2. However, we have noted that for

the problem (P1), if the drug is short-lived, only the total sum of the doses administered influences

the value of L(T ) (this doesn’t happen if it’s a long-life drug). In Table 5.1 we show a summary

of the most recommendable treatments for each case and each type of drug, which in this case is

always the same.

Problems (P1) and (P2), Skipper model

Type of drug Optimal treatment

Short-life (dmax, . . . , dmax, d
∗, dmin, . . . , dmin)

Long-life (dmax, . . . , dmax, d
∗, dmin, . . . , dmin)

Table 5.1: Summary of the results obtained for problems (P1) and (P2) with the Skipper model.

For the usual treatments of the drugs under study, the same dose is always given throughout the

cycle. For this reason, we have contrasted the results of Table 5.1 using the Examples 3.1.1 and

3.1.2 for the problem (P1) and the Example 3.2.1 for the problem (P2).

On the other hand, for the Emax model, to study the problem (P1), both the type of drug and

the value of the constant k̂2 has influence. In Table 5.2 we can see the optimal treatment for the

problem (P1) depending on the type of drug and the value of k̂2.

Problem (P1), Emax model

Type of drug k̂2 Optimal treatment

Short-life
k̂2 ∈ (0, 1) Depends on the value of dmin and dmax
k̂2 ≥ 1 Metronomic chemotherapy

Long-life k̂2 > 0 (dmax, . . . , dmax, d
∗, dmin, . . . , dmin)

Table 5.2: Summary of the results obtained for problem (P1) and Emax model.

43
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In the case of drugs with short-life and k̂2 ∈ (0, 1), the optimal treatment depends on the value of

dmin and dmax, and can be MTD therapy, metronomic chemotherapy, or another type of treatment

as explained in Subsection 4.1.1, but all of them verifying that all the doses administered are

equal (still, remember that in most cases k̂2 > 1). As in the Skipper case, for short half-life

drugs, we obtain again that the optimal treatment is: (dmax, . . . , dmax, d
∗, dmin, . . . , dmin), with

dmin ≤ d∗ ≤ dmax.

Regarding the problem (P2) for the Emax case, if the drug has a short half-life, we have obtained

that the most recommendable treatment is the metronomic one, with all doses being equal.

However, the resolution of this problem for long half-life drugs is more complex. Although we

have not explicitly solved it for that case, as we have formulated (P̃N2E), we can compare several

treatments that are reasonable (exposed by specialists), and decide which one will give better

results in theory. The fact that we have formulated the problem allows us to reduce the number

of treatments to be studied, since those that are not feasible can quickly be discarded. This can

greatly facilitate clinical practice by reducing it to those treatments that have been proven to give

the best results.

To support these theoretical results, we have performed numerical simulations for both models and

both problems for a short half-life drug, Temozolomide, and for a long half-life one, Cabazitaxel.

With the numerical experiments carried out for these drugs we have also found that, in many

cases, the treatment which gives the best results is metronomic chemotherapy.

There are certain biological processes that make metronomic chemotherapy work better than MTD

therapy, such as angiogenesis. However, we have not taken into account this type of process (as

we have always considered θ fixed, while if we consider angiogenesis this parameter should grow

with the tumor size). We want to emphasize that even so, following mathematical reasoning,

there are many cases in which we obtain that metronomic chemotherapy gives better results than

MTD therapy. Differentiating the advantages of these two therapies is a frequent discussion in the

oncological field (see, for instance [5]), and with this study we want to provide a mathematical view

of the problem, which in most cases leads us to choose as the best option metronomic chemotherapy.

As for future lines of research, it may be interesting to study these problems by leaving the times

at which doses are administered as variables. We have tried to carry out this study but it is really

complex because clinical knowledge is needed to know how much time should pass between one

dose and another, both for reasons of effectiveness and toxicity of the treatment. In addition, it is

also pending to study the characteristics of the problem (P2E) for the case λ ≈ 0.
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Appendix A

Weierstrass extreme value theorem

Be K ⊂ RN , K 6= ∅, f : K −→ R, and the problem (P ):

(P )

{
Min f(x)

subject to x ∈ K
.

Theorem A.0.1. ([2]). If f is a continuous function and K is a compact set, then exists at least

a global solution for (P ) .

Proof. Be µ = inf{f(x) : x ∈ K}. We know that there is a minimizing sequence (x(k))k∈N such as{
(x(k))k∈N ⊂ K
f(x(k)) −→ µ, when k → +∞

. (A.1)

As K is compact, it’s bounded in RN , so there is a convergent subsequence (x(k
′))k′∈N ⊂ (x(k))k∈N

such as x(k
′) −→ x ∈ K (K is closed) when k′ → +∞. As f is continuous, f(x(k

′)) −→ f(x) when

k′ → +∞. Also, by (A.1), f(x(k
′)) −→ µ, when k′ → +∞. Therefore, because of the uniqueness

of the limit in R, f(x) = µ.

Finally, as µ = inf{f(x) : x ∈ K}, x ∈ K and f(x) = µ, then x is a global solution of (P ).

I





Appendix B

Inequality of arithmetic and

geometric means

Definition B.0.1. a) The arithmetic mean of the positive numbers di ∈ R+, i ∈ {1, . . . , N}

is defined as
1

N

N∑
i=1

di.

b) The geometric mean of the positive numbers di ∈ R+, i ∈ {1, . . . , N} is defined as N

√√√√ N∏
i=1

di.

Proposition B.0.1. ([21]). The arithmetic mean of a set of positive numbers (di ∈ R+, i ∈
{1, . . . , N}) is always equal to or greater than the geometric mean. Therefore, the following

inequality is verified:

N

√√√√ N∏
i=1

di ≤
1

N

N∑
i=1

di. (B.1)

Moreover, the equality is only obtained when di = dj, ∀i, j ∈ {1, . . . , N}.

Proof. First of all, it’s trivial that if di = dj , ∀i, j ∈ {1, . . . , N}, then N

√
dN1 =

d1N

N
and we get

the equality in the equation (B.1). Now, let’s prove (B.1) by induction:

• If N = 2:
d1 + d2

2
≥
√
d1d2 =⇒ d21 + d22 − 2d1d2 = (d1 − d2)2 ≥ 0.

Here we can note that we get the equality if and only if d1 = d2.

• Now let’s suppose that (B.1) holds for k ∈ N (and the equality is only obtained for d1 =

. . . = dk), and let’s prove it for 2k.

d1 + . . .+ d2k
2k

=
1

2

(
d1 + . . .+ dk

k
+
dk+1 + . . .+ d2k

k

)
.

Knowing that (B.1) is verified for N = 2 and for k:

1

2

(
d1 + . . .+ dk

k
+
dk+1 + . . .+ d2k

k

)
≥ 2

√
k
√
d1 . . . dk

k
√
dk+1 . . . d2k = 2k

√
d1 . . . d2k. (B.2)

Note that the equality is only given if d1 = . . . = dk and dk+1 . . . = d2k (by the hypothesis

about k). In this case we get:

d1 + dk+1

2
≥ 2

√
k

√
dk1

k

√
dkk+1 =

√
d1dk+1,

III
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and by the case N = 2, the equality is only fulfilled if d1 = dk+1, and then in (B.2) we get

the equality if and only if d1 = . . . = d2k.

• We assume (B.1) for k (inductive hypothesis), and let’s prove it for k − 1:

We’re going to apply the inductive hypothesis to d1, d2, . . . , dk−1 and its arithmetic mean:

d1 + . . .+ dk−1
k − 1

=
d1 + . . . dk−1 +

d1+...+dk−1

k−1
k

≥ k

√
d1 . . . dk−1

(
d1 + . . .+ dk−1

k − 1

)
=⇒

=⇒ d1 + . . .+ dk−1
k − 1

≥ (d1 . . . dk−1)
1
k

(
d1 + . . .+ dk−1

k − 1

) 1
k

=⇒

=⇒
(
d1 + . . .+ dk−1

k − 1

) k−1
k

≥ (d1 . . . dk−1)
1
k =⇒ d1 + . . .+ dk−1

k − 1
≥ k−1

√
d1 . . . dk−1.

By the inductive hypothesis, in the first inequality we only get the equality if d1 = . . . =

dk−1 =
d1 + . . .+ dk−1

k − 1
, so the last equality is only fulfilled if d1 = . . . = dk−1.



Appendix C

Lambert W function

Lambert W function (omega function or product logarithm) is defined as the inverse of the

function f(w) = wew, with w ∈ R (see [23]). This function is usually represented by W . In Figure

C.1 we show the graphic representation of the function f(w) = wew for w ∈ [−5, 2]:

Figure C.1: f(w) = wew.

Note that this function is not injective. If the argument is real, Lambert W function is only defined

for z ≥ −1/e, and also for z ∈ (−1/e, 0), because there are two branches. The principal branch is

known as W0, for which we know some values: W0(−1/e) = −1, W0(0) = 0, W0(e) = 1...

Each function Wk(z) is injective, and all of then have disjointed ranges. For example, in Figure

C.2 we see the graphic of the branch W0(z) for z ∈ [−1/e, 10], and in Figure C.3, that of the

branch W−1(z) for z ∈ [−1/e, 1].

Figure C.2: W0(z) Figure C.3: W−1(z)
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