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Abstract

Heterogeneous systems have become one of the most common architectures today, thanks to their excellent performance
and energy consumption. However, due to their heterogeneity they are very complex to program and even more to achieve
performance portability on different devices. This paper presents EngineCL, a new OpenCL-based runtime system that
outstandingly simplifies the co-execution of a single massive data-parallel kernel on all the devices of a heterogeneous
system. It performs a set of low level tasks regarding the management of devices, their disjoint memory spaces and
scheduling the workload between the system devices while providing a layered API. EngineCL has been validated in
two compute nodes (HPC and commodity system), that combine six devices with different architectures. Experimental
results show that it has excellent usability compared with OpenCL; a maximum 2.8% of overhead compared to the native
version under loads of less than a second of execution and a tendency towards zero for longer execution times; and it
can reach an average efficiency of 0.89 when balancing the load.
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1. Introduction

The emergence of heterogeneous systems is one of the
most important milestones in parallel computing in recent
years [1]. A heterogeneous system is composed of general
purpose CPUs and specific purpose hardware accelerators,
such as GPUs, Xeon Phi, FPGAs or TPUs. Under this
concept, a wide range of systems are included, from pow-
erful computing nodes capable of executing teraflops [2],
to integrated CPU and GPU chips [3]. This architecture
allows, not only to significantly increase the computing
power, but also to improve their energy efficiency.

However, this architecture also presents a series of chal-
lenges, among which the complexity of its programming
and the performance portability stand out. In this sense,
the Open Computing Language (OpenCL) has been de-
veloped as an API that extends the C/C++ programming
languages for heterogeneous systems [12]. OpenCL pro-
vides low abstraction level that forces the programmer to
know the system in detail, determining the architecture
of the devices, managing the host-device communication,
understanding the distributed address memory space and
explicitly partitioning the data among the devices, trans-
ferring the input data and collecting the results generated
in each device. The management of these aspects greatly
complicates programming, which turns into an error-prone
process, significantly reducing the productivity [20].

*Corresponding author
Email addresses: raul .nozalQunican.es (Raul Nozal),
joseluis.bosque@unican.es (Jose Luis Bosque),
ramon.beivideQunican.es (Ramon Beivide )

Preprint submitted to Elsevier

On the other hand, OpenCL follows the Host-Device
programming model. Usually the host (CPU) offloads a
very time-consuming function (kernel) to execute in one
of the devices. If there is only one function that can be
executed at any given time, both the CPU and the rest
of the devices are idle waiting for completion, consuming
energy and wasting their computing capacity. To over-
come this problem, it is necessary to propose a paradigm
change in the programming model and to encourage data-
parallelism. This is achieved through co-execution, defined
as the collaboration of all the devices in the system (in-
cluding the CPU) to execute a single massive data-parallel
kernel [4, 5, 6]. However, it is a hard task for the program-
mer and needs to be done effortless in order to be widely
used. In this context, this paper presents EngineCL, a new
OpenCL-based C++ runtime API that significantly im-
proves the usability of the heterogeneous systems without
any loss of performance®. It accomplishes complex opera-
tions transparently for the programmer, such as discovery
of platforms and devices, data management, load balanc-
ing and robustness throughout a set of efficient techniques.
EngineCL follows Architectural Principles with known De-
sign Patterns to strengthen the flexibility in the face of
changes. The runtime manages a single data-parallel ker-
nel among all the devices in the heterogeneous system. Its
modular architecture allows to easily incorporate differ-
ent schedulers to distribute the workload, such as those
included in this work: static, dynamic and HGuided.

IThe EngineCL code is available at:
EngineCL/EngineCL

https://github.com/
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EngineCL has been validated both in terms of usability
and performance, using two very different heterogeneous
systems. The first one resembles a High Performance Com-
puting node and it is composed of three different architec-
tures: multi-core CPU, GPU and Xeon Phi. The second
one is an example of a desktop computing node and it is
made up of a multi-core CPU with an integrated GPU
(iGPU) and one commodity GPU. Regarding usability,
eight metrics have been used, achieving excellent results
in all of them. In terms of performance, the runtime over-
head compared with OpenCL is on average around 1%
when using a single device. Finally, co-execution when
using the HGuided scheduler yields average efficiencies of
0.89 for the HPC node and 0.82 for the Desktop node,
using regular and irregular applications.

The main contributions of this paper are the following;:

e Presents EngineCL, a runtime that simplifies the
programming of data-parallel application on a het-
erogeneous system.

e Proposes a high-level layered API, focusing on main-
tainability, ease of use and flexibility.

o EngineCL allows effortless co-execution, squeezing
the performance out of all the devices in the system
and ensuring performance portability.

The rest of this paper is organized as follows. Section
2 explains the basic concepts of OpenCL programming for
heterogeneous systems, useful for the rest of the paper.
Next, Section 3 shows the most relevant challenges of the
heterogeneous co-execution. Then 4 and 5 describe the de-
sign and implementation of EngineCL, respectively. Sec-
tion 6 presents two examples of how to use the API. The
methodology used for the validation is in Section 7, while
the experimental results are shown in Section 8. Finally,
Section 9 explains similar works while Section 10, the most
important conclusions and future work are presented.

2. Programming Heterogeneous Systems

A heterogeneous system is made up of a multi-core
CPU, and one or more hardware accelerators, such as
GPGPUs, FPGAs or Tensor Processing Units (TPUs).
Each of these devices are developed to optimize a par-
ticular type of application, so they have a very different
architecture, computing capacity, and therefore, APIs.

In this context, OpenCL entails an effort to improve
programmability and code portability between different
heterogeneous systems [12]. Roughly put, it consists of
an extension to C/C++ that allows programmers to shift
parts of their code to the accelerators, introducing the
Host-Device programming model, usually computing one
device at a given time (eg. GPU). OpenCL supports all
of the above devices, if the vendor provides the appropri-
ate driver. Since EngineCL is based on OpenCL, a rough
description of the framework is necessary.

To enable the execution of code in such a variety of ar-
chitectures, OpenCL defines the notion of contexrt. Which
is a set of OpenCL-capable devices from the same manu-
facturer that are allowed a certain degree of data sharing.
Each device comprises a set of compute units, which are
an abstraction of the minimum element of the device that
can execute work. The mapping of compute units to ac-
tual hardware components varies between architectures.
The code executed on the devices is encapsulated in data-
parallel functions which are known as kernels. When one is
offloaded to a device, OpenCL launches multiple instances
of the kernel, each with a different portion of the data, un-
der the SIMT paradigm. Each instance is called a work-
item. The programmer can decide how many items are
launched by setting a parameter called global work size.
Work-items are launched in teams so they can cooperate
and synchronize with each other. OpenCL ensures that
the work-items of each team, or work-group, are launched
simultaneously in the same compute unit. Work-group size
can be defined through the local work size parameter.

Accelerators usually have a differentiated memory ad-
dress space on which they can perform their computations.
For this reason, kernel launches must be preceded by an in-
put data copy phase, from the main memory to the device
memory, and followed by another in the opposite direc-
tion for the results. For these operations OpenCL uses the
concept of buffers, which are a host representation of the
memory of the devices in a context. These copy phases
must be explicitly instructed by the programmer, which
constitutes a tedious and error-prone task.

Therefore, programming a heterogeneous system can
be an arduous task. Despite the increased portability
OpenCL offers, the programmers still must know the archi-
tecture of the system in detail and are responsible for the
time-consuming task of adapting system management and
load balancing to the actual underlying system. Therefore,
if optimum performance or energy efficiency is sought then
the effort required is significantly higher.

3. Challenges of Heterogeneous Co-execution

The main objective of this paper is to simplify heteroge-
neous co-execution, the co-execution of the a single massive
data-parallel kernel, in a set of devices with different ar-
chitecture and computing capacity. This objective plans
a series of challenges that will be addressed and solved,
which can be grouped under three fundamental concepts:
abstraction, performance portability and usability.

Challenge 1: Abstraction. OpenCL leaves to the program-
mer many low-level operations that require a thorough
knowledge of the underlying architecture of the hetero-
geneous system. Thus, the programmer is burdened with
discovering the available platforms and devices, defining
buffers and distributing data among all devices, launching
the execution of kernels, as well as collecting partial results
and organizing them properly. All this greatly complicates



the programming of heterogeneous systems, reducing pro-
ductivity and making it very prone to errors. Specifically,
data management is a very complex aspect, since in gen-
eral the devices have separate memories. Therefore, the
programmer must create and manage buffers for each de-
vice, assign a portion of the data, retrieve and organize the
partial results to obtain the final result of the application.

To minimize the co-execution effort, it is necessary that
the programmer is not aware of many of these details of the
underlying architecture in the heterogeneous system. The
solution to these problems is to offer tools that provide a
higher level of abstraction and take care of all these tasks.

Challenge 2: Performance Portability. OpenCL solves code
portability, i.e. the same kernel can run on different het-
erogeneous systems. However, performance portability goes
further, by exploiting with the same code the processing
resources of different heterogeneous systems. For this, two
key problems have been identified: load balancing and dif-
ferences in the architecture of accelerators.

The objective of load balancing is to distribute the
workload among all the devices in the system proportion-
ally to their computing power. It is necessary to consider
both the heterogeneity of the system (different devices
with different computing capacity) and the behavior of
kernels that can be regular or irregular. In the former,
two workloads of the same size always spend the same
time on the same device. However, in irregular kernels
it is necessary to have a dynamic and adaptive algorithm
that distributes the workload at runtime and can adapt to
the behavior of the application.

Accelerators are hardware devices specifically designed
to accelerate the execution of applications with specific
properties. For instance, GPUs favor the execution of mas-
sively data-parallel kernels through using multi-threading,
while FPGAs favor the execution of kernels with deeply
segmented implementations. Therefore, it is often neces-
sary to adapt the kernel to a particular device to achieve its
maximum performance. On the other hand, compiling for
some devices is time consuming, therefore it is necessary
to provide the binary code. However, in others, on-line
compilation can provide advantages, such as parameter
tunning. Therefore, it is important to offer the possibil-
ity of managing kernels specific to each of the devices and
providing binary or source code kernels.

Challenge 3: Usability. OpenCL is a programming lan-
guage for programming applications that run on any hard-
ware accelerator, if the vendor provides the appropriate
driver. This makes it very powerful, since it allows a
portable code between very different devices. However,
this power is not without complexity. Thus, the cur-
rent API of OpenCL is very complex and presents a wide
variety of functions with multiple and complex parame-
ters. For example, the following functions create a mem-
ory buffer on a device and make it accessible from the host
(pinned memory; error control omitted).

buffs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY
| CL_MEM_ALLOC_HOST_PTR, sizeof(float)*nEntries,
buffHostPtr, &err);

buffsMap[0] = clEnqueueMapBuffer (cmdQueue, buffs[0],
false, CL_MAP_READ, offset, sizeof(float)*nEntries,
nEventList, eventList, &event, &err);

On the other hand, there are currently several OpenCL
specifications available (1.0, 1.1, 1.2, 2.0, 2.1, 2.2) and dif-
ferent devices support one or the other. The differences
between these specifications are noteworthy, so that an
application programmed to run on an OpenCL 2.0 cannot
run in devices for previous versions. For instance, func-
tions like enqueueNDRangeKernel, has a different number
of parameters in OpenCL 1.0 and 2.0. Another example
is the support of mechanisms for the synchronization be-
tween host and device, since some specifications support
asynchronous callbacks, while others force the use of block-
ing communication mechanisms.

Taking into account the challenges, Table 1 shows an
analytical model showing the growth of the density and
complexity of the code in typical data-parallel OpenCL
C++ programs, in relation to the number of devices, ker-
nels and buffers used, among others. For example, if a sys-
tem has three devices and the problem requires two input
and one output buffers, the number of tokens to manage
OpenCL buffers will increase around 135, and the lines
of code to manage the OpenCL program to 18. For this
reason, large redundancy problems are detected, poten-
tial sources of errors and possibilities of simplification and
optimization when working with OpenCL applications. In
addition, when designing and implementing load balancing
algorithms, due to the complexity in handling primitives,
callbacks, data partitioning, synchronization patterns and
efficient multi-threading designs, a solution that facilitates
the management of the heterogeneous system is necessary.

For all these reasons, it is necessary to provide pro-
grammers of heterogeneous systems with an API that will
be simpler and more intuitive to use, simplifying the set
of functions and their parameters. It is also necessary to
have a runtime that internally manages the possible dif-
ferences in configuration and functionality of the devices,
regarding their OpenCL support.

Table 1: Analytical model that relates the lines of code (LOC) and
tokens (constants, ¢) needed in a typical data-parallel OpenCL C++
program, depending on platforms (PI), devices (D), programs (P),
program kernels (Pgernels), program arguments (Pargs), and pro-
gram buffers (Ppyffers)-

OpenCL Primitives LOC Tokens Model
Device 3 9 c Pl
Context 1 3 cD
CommandQueue 2 9 cD

Bulffer 3 15 cD Pyyffers
Program 6 21 cDP
Kernel 2 8 ¢ D Prernels
Arg 2 7 cD Pargs Prernets



To overcome these challenges, this paper proposes En-
gineCL, a new runtime and API based on OpenCL that
notably simplifies the programming of heterogeneous sys-
tems. The abstraction level is increased because it frees the
programmer from tasks that require a specific knowledge of
the underlying architecture, and that are very error prone.
It ensures performance portability thanks to the integra-
tion of schedulers that successfully distribute the workload
among the devices, adapting both to the heterogeneity of
the system and to the behavior of the applications. And fi-
nally, the simplified and extensible API has a great impact
on their usability, productivity and maintainability.

4. Principles of Design

EngineCL is designed with many principles in mind,
all around three pillars: OpenCL, Usability and Perfor-
mance. The latter two are the main building blocks of the
runtime. Therefore, the trade-offs have been permanently
considered and analyzed when designing the runtime and
its architectural principles.

4.1. OpenCL

EngineCL is tightly coupled to OpenCL and how it
works. Therefore, it is not intended to replace it, but to
act as a wrapper over it. The system modules and their
relationships have been defined according to the most effi-
cient and stable patterns. Every major design decision has
been benchmarked and profiled to achieve the most opti-
mal solution in every of its parts, but mainly promoting
the modules related with the data management, synchro-
nization and API abstraction.

Based on previous knowledge when porting and using
OpenCL libraries and programs, core functionalities have
been designed from scratch, implementing different ideas
of OpenCL workflows and comparing them with profil-
ing tools under different architectures. Tools like CodeXL
and VTune have been studied and used to do profiling,
but the lack of support for multiple devices (anything
but AMD CPU/GPU or Intel GPU) and non-proprietary
drivers make them neither suitable nor flexible. During the
development of EngineCL custom profiling mechanisms
have been used as an alternative to tools from vendors
to be independent of them, and they are finally integrated
into the inspector module of EngineCL.

Two main decisions have been applied since the very
beginning: OpenCL should be isolated to improve the
compatibility of the runtime and it should be managed
to be easily extensible while providing the best average
performance between all the available devices. The former
allows high adaptation to new technologies while preserv-
ing the runtime API and its main schedulers, being slightly
independent to OpenCL, but still promoting it since it is
the best technology to support heterogeneous devices, as it
is depicted in Figure 2. The latter ensures the best perfor-
mance and efficiency independently of the new devices to

Runtime
Create Devices ¢ ¢
Device 0 Device 1
\ 4 (CPU) (GPU)
Setup I I
Scheduling Policy

Scheduling
. [ split Work and
Distribution

Synchronization

Tear Down and
Collect

Figure 1: Scheduling view of the scheduling and work distribution.
The low-level OpenCL API is encapsulated within the concept of
Device, managed by a thread, being one of the core design decisions.

be incorporated, solving many issues found when adapt-
ing new architectures to runtime systems. One of the core
aspects to boost the performance of the system, while be-
ing able to improve the expressiveness of the schedulers, is
the usage of callback mechanisms mixed with events. By
doing this, it helps the drivers of the devices to optimize
the enqueued operations when applicable. Although this
strategy hardly complicates the internal implementation
of the runtime, it allows any type of scheduling algorithm
and provides asynchronous operations that boost the gen-
eral efficiency for every program used with EngineCL. This
is highlighted when using multiple devices. Although the
APT is synchronous to facilitate its operation for common
use cases, it can easily be extended to expose asynchronous
behaviors to the programmer. Therefore, EngineCL has
been developed along with a wide range of different archi-
tectures, always evaluating the average and peak ratios of
the devices that were accessible during the development.

OpenCL presents scalability issues regarding programma-
bility and performance when the number of devices to be
used increase. Thus, it is complex to manage efficiently
data structures, OpenCL primitives and call operations,
as can be seen in Section 8. Figure 2 depicts a generic
OpenCL program, conceptually and in density of code,
compared with the EngineCL version. As the number
of devices, operations and data management processes in-
creases, the code grows quickly with OpenCL, decreasing
the productivity and increasing the maintainability effort.
EngineCL solves these issues by providing a runtime with
a high-level API that efficiently manages all the resources
of the underlying system, as will be seen in Section 6.

4.2. Architectural Principles: usability and performance

EngineCL redefines the concept of program to facilitate
its usage and the understanding of a kernel execution. Be-



cause a program is associated with the application domain,
it has data inputs and outputs, a kernel and an output pat-
tern. The data is materialized as C++ containers (like vec-
tor), memory regions (C pointers) and kernel arguments
(POD-like types, pointers or custom types). The kernel
accepts directly an OpenCL-kernel string, and the output
pattern is the relation between the global work size and the
size of the output buffer written by the kernel. The default
value is 1 : 1, because every work-item (thread) writes to
a single position in the output buffers (%, e.g.
the third work-item writes to the third index of every out-
put buffer). The programmer guides with this relation to
avoid incurring in performance-penalties trying to guess
or analyzing the kernel at runtime. The programmer can
easily analyze the kernel to provide the output pattern.
It is designed to support massive data-parallel ker-
nels, but thanks to the program abstraction the runtime
will be able to orchestrate multi-kernel executions (task-
parallelism), prefetching of data inputs, optimal data trans-
fer distribution, iterative kernels and track kernel depen-
dencies and act accordingly. Therefore, the architecture
of the runtime is not constrained to a single program.
The runtime follows Architectural Principles with well-
known Design Patterns to strengthen the flexibility in the
face of changes. As it is depicted in Figure 3, the runtime
is layered in three tiers, and its implementation serves the
following purposes: Tier-1 and Tier-2 are accessible by
the programmer. The lower the Tier, the more function-
alities and advanced features can be manipulated. Most
programs can be implemented in EngineCL with just the
Tier-1, by using the EngineCL and Program classes. The

OpenCL EngineCL

Discovery ——
gne onl, stom
Device Selection — By A
heduler
= each Wr Buffer
each Rd Buffer
Buffer
Management E
each Buffer
each Wr Buffer
only if Error
Control
Program

and Kernel
Configuration

only if Program
Binary

Kernel

Execution and
Results Reading

Repeat for each X

each Rd Buffer Optional

Figure 2: Overview of a generic OpenCL program and its translation
to EngineCL. The height of every rectangle has the same proportions
in lines of code as the real program. OpenCL involves more code
density and repeats almost all phases per device used.

Tier-2 should be accessed if the programmer wants to se-
lect a specific Device and provide a specialized kernel, use
the Configurator to obtain statistics and optimize the in-
ternal behavior of the runtime or set options for the Sched-
uler. Tier-3 contains the hidden inner parts of the runtime
that allows a flexible system regarding memory manage-
ment, pluggable schedulers, work distribution, high con-
currency and OpenCL encapsulation.

Figure 4 depicts how the Tier-1 API has been provided
mainly as a Facade Pattern, facilitating the use and read-
ability of the Tier-2 modules, reducing the signature of the
higher-level API with the most common usage patterns.
The Buffer is implemented as a Proxy Pattern to provide
extra management features and a common interface for dif-
ferent type of containers, independently of the nature (C
pointers, C++ countainers) and its locality (host or device
memory). Finally, the Strategy Pattern has been used in
the pluggable scheduling system, where each scheduler is
encapsulated as a strategy that can be easily interchange-
able within the family of algorithms. Due to its common
interface, new schedulers can be provided to the runtime.

In summary, EngineCL is designed following an API
and feature-driven development to achieve high external
usability (APT design) and internal adaptability to support
new runtime features when the performance is not penal-
ized. This is accomplished through a layered architecture
and a set of core modules well profiled and encapsulated.

5. EngineCL Implementation

5.1. Multi- Threaded Architecture

EngineCL has been developed in C++, mostly using
C++11 modern features to reduce the overhead and code
size introduced by providing a higher abstraction level.
Many modern features such as rvalue references, initial-
izer lists or variadic templates have been used to provide
a better and simpler API while preserving efficient mana-
gement operations internally.

When there is a trade-off between internal maintain-
ability of the runtime and a performance penalty seen by
profiling, it has been chosen an implementation with the
minimal overhead in performance. As an example, when
using shared_ptr could induce unknown performance penal-
ties internally, they have been discarded in favor of raw
pointers. Also, other Design Patterns, such as the Chain of
Responsibility, could be applied to the architecture to in-
crease the maintainability, but they introduce higher over-
heads. Therefore, the pattern was not applied to preserve
the maximum performance.

EngineCL has a multi-threaded architecture that com-
bines the best measured techniques regarding OpenCL ma-
nagement of queues, devices and buffers. Some of the
decisions involve atomic queues, parallel operations, cus-
tom buffer implementations, reusability of costly OpenCL
functions, efficient asynchronous enqueueing of operations
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Figure 3: EngineCL building blocks: tiers, contexts and modules (main are highlighted). Figure 4: Design Patterns of the main modules.

The lower the tier, the more advanced the features (fine-grained management). Each
module belongs to a conceptual context (eg. HGuided to Scheduling).

based on callbacks and event chaining. These mechanisms
are used internally by the runtime and hidden from the
programmer to achieve efficient executions and transpar-
ent management of devices and data.

5.2. Optimizations

The implementation follows feature-driven development
to allow incremental features based on requested needs
when integrating new vendors, devices, type of devices
and benchmarks. Implementation techniques are profiled
with a variety of OpenCL drivers from the major vendors
(AMD, Intel, Nvidia and ARM) and versions (1.0, 1.1,
1.2, 2.0), but also in devices of different nature, such as
integrated and discrete GPUs, CPUs, accelerators such as
Xeon Phi and even FPGAs (complex architecture that has
been incorporated in EngineCL [18]).

As examples of optimizations, two implementations have
been incorporated to reduce overheads produced both in
the initialization and closing stages of the program, mainly
due to the use of OpenCL drivers in the analyzed infras-
tructures. These modifications are tagged as initialization
and buffer optimizations.

The first optimization focuses on taking advantage of
the discovery, listing and initialization of platforms and
devices by the same thread (Runtime). In parallel, both
the thread in charge of load balancing (Scheduler) and
the threads associated with devices (Device) take advan-
tage of this time interval to start configuring and prepar-
ing their resources as part of the execution environment.
These threads will wait only if they have finished their
tasks independent of the OpenCL primitives, instantiated
by the Runtime. The runtime takes advantage of the same
discovery and initialization structures to configure the de-
vices before delegating them to the Scheduler and Device
threads, which will be able to continue with the follow-
ing stages. These optimizations reduce the execution time
affecting the beginning and end of the program, due to
the increase of the parallel fraction of the program as well
as the reuse of the structures in memory, liberating the
redundant OpenCL primitives.

The modules of the upper layers abstract and
facilitate the use of the lower ones.

On the other hand, some modifications have been made
when instantiating and using both input and output buffers
(Buffer). The variety of architectures as well as the impor-
tance of sharing memory strategies save costs when doing
transfers and unnecessary complete bulk copies of memory
regions, usually between main memory and device mem-
ory, but also between reserved parts of the same main
memory (CPU - integrated GPU). By tweaking OpenCL
buffer flags that set the direction and use of the memory
block with respect to the device and program, OpenCL
drivers are able, if possible, to apply underlying optimiza-
tions to the memory management.

5.3. Schedulers

The EngineCL architecture allows to easily incorpo-
rate a set of schedulers, as it is shown in Figure 4. In
this paper, three well-known schedulers are implemented
in EngineCL [20, 18]. The programmer can select one
scheduler per kernel execution, depending on the charac-
teristics and knowledge he has of the problem, data com-
munication and architecture. Figure 5 and 6 depict the
three load balancing algorithms in terms of chunk compu-
tation (chunk size and time) and visual representation of
the computation (portion of the problem size computed
per device), for Gaussian (regular) and Mandelbrot (irreg-
ular problem), respectively. The algorithms used in this
article are briefly described:

Static. This algorithm works before the kernel is executed
by dividing the dataset in as many packages as devices
are in the system. The division relies on knowing the per-
centage of workload assigned to each device, in advance.
Then the execution time of each device can be equalized
by proportionally dividing the dataset among the devices.
It minimizes the number of synchronization points; there-
fore, it performs well when facing regular loads with known
computing powers that are stable throughout the dataset.
However, it is not adaptable, so its performance might not
be as good with irregular loads. This can be seen in the
bottom left image: if the CPU receives the last part of the
image, it will be highly imbalanced.
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execution is done from top to bottom in each image. To help understanding, colored horizontal sections overlap the mandelbrot fractal (real

computation), representing the chunk sizes computed by each device.

Dynamic. It divides the dataset in a given number of
equal-sized packages. The number of packages is well
above the number of devices in the heterogeneous system.
During the execution of the kernel, a master thread in the
host assigning packages to the different devices, including
the CPU. This algorithm adapts to the irregular behavior
of some applications, like it is depicted in bottom center
Mandelbrot computation. However, each completed pack-
age represents a synchronization point between the device
and the host, where data is exchanged, and a new pack-
age is launched. This overhead has a noticeable impact on
performance if the number of packages is high.

HGuided. HGuided offers a variation over the Dynamic
algorithm by establishing how the dataset is divided. The
algorithm makes larger packages at the beginning and re-
duces the size of the subsequent ones as the execution pro-
gresses, as it is shown in the right side of both figures.
Thus, the number of synchronization points and the cor-
responding overhead is reduced, while retaining a small

package granularity towards the end of the execution to
allow all devices to finish simultaneously.

Since it is an algorithm for heterogeneous systems the
size of the packets is also dependent on the computing
power of the devices. The size of the package for device i

is calculated as follows:
)

where k; is an arbitrary constant. The smaller the k£ con-
stant, the faster decreases the packet size. Tweaking this
constant prevents too large packet sizes when there are
only a few devices, unbalancing the load. G,. is the number
of pending work-groups and is updated with every package
launch. The parameters of the HGuided are the comput-
ing powers and the minimum package size of the devices
to be used. The minimum package size is the lower bound
of the packet_size;, and it is dependent on the comput-
ing power of the devices, giving bigger package sizes in the
most powerful devices.

packet__size; =



6. API Utilization

This section describes two use cases of the EngineCL
API. As the Section 4 describes, the runtime has been
thought from the beginning to provide a straightforward
and flexible API from the point of view of the programmer.
Both examples are real use cases, but they have been mod-
ified intentionally to show different API calls for demon-
stration purposes. As an example, the programmer will
usually prefer a single call to work_items than two consec-
utive calls to global_work_items and local_work_items.

The programmer starts by initializing the EngineCL
and Program. The engine is the main element of the sys-
tem because it manages devices, the application domain
and extended features such as schedulers and introspec-
tion data (statistics of the execution). The engine han-
dles well-known OpenCL concepts, such as the number of
global and local work items.

The engine allows setting the devices to be used by
masks (CPUs, GPUs, Accelerators, All devices in the sys-
tem, any mixed combination, etc) or explicitly setting the
platform and device. The latter mode is commonly used
not only under development but also in production systems
with many driver implementations (Pocl, Beignet, vendor
specific, etc.) and when the programmer needs custom
sets of devices or kernel specializations.

The concept of Program is decoupled from the runtime
to help the programmer to understand it as an independent
entity to be modified and to be easily extended to support
multi-kernel executions. Therefore, it will allow establish-
ing new parameters such as the concurrency of execution
(many kernels at the same time) or linked buffers between
programs (shared).

The API can be extended to support new features or to
expose Tier-3 functionality to the above tiers, being able to
use them directly without the need to access the EngineCL
internal code. Finally, the API? is evolving as EngineCL
integrates or supports new problems, data types, OpenCL
features or devices, such as FPGAs, but the current exam-
ples show the core of its expressiveness and functionality.

6.1. Case 1: Using only one device

Listing 1 shows how EngineCL is used to compute the
benchmark Binomial Options with only a single device,
the CPU. This example shows the explicit versions of some
calls, such as global and local work items and a mixture
of positional and aggregate kernel arguments. This is usu-
ally the first step to port OpenCL programs to EngineCL.

It starts reading the kernel, defining variables, con-
tainers (C++ wvectors) and OpenCL values like local and
global work size (lws, gws). Then, the program is initial-
ized based on the benchmark (init_setup), in line 9 (L9).
The rest of the program is where EngineCL is instantiated,
used and released.

2 API documentation available online at the URL address: https:
//github.com/EngineCL/EngineCL (API section to be updated soon)

The engine uses the first CPU in the system by using
a DeviceMask (L12). Then, the gws and lws are given by
explicit methods (L14,15). The application domain starts
by creating the program and setting the input and out-
put containers with methods in and out (L17-19). With
these statements the runtime manages and synchronizes
the input and output data before and after the computa-
tion. The out_pattern is set because the implementation
of the Binomial OpenCL kernel uses a writing pattern of
geaout inder (7,27, that is, 255 work-items compute a
single out index. Then, the kernel is configured by setting
its source code string, name and arguments. Assignments
are highly flexible, supporting aggregate and positional
forms, and above all, it is possible to transparently use the
variables and native containers (L23-29). The enumerated
LocalAlloc is used to determine that the value represents
the bytes of local memory that will be reserved, reduc-
ing the complexity of the API. Finally, the runtime con-
sumes the program and all the computation is performed
(L32,34). When the run method finishes, the output val-
ues are in the containers. Optionally, errors can be checked
and processed easily.

auto kernel = file_read("binomial.cl");
auto samples = 16777216; auto steps = 254;
auto stepsl = steps + 1; auto lws = stepsl;
auto samplesBy4 = samples / 4;

auto gws = lws * samplesBy4;
vector<cl_float4> in(samplesBy4);
vector<cl_float4> out (samplesBy4) ;

~N O O

9 Dbinomial_init_setup(samplesBy4, in, out);
10

11 ecl::EngineCL engine;

12 engine.use(ecl::DeviceMask::CPU); // 1 Chip
13

14 engine.global_work_items(gws) ;

15 engine.local_work_items(lws);

16

17 ecl::Program program;

18 program.in(in);

19 program.out (out) ;

20

21 program.out_pattern(l, lws);

22

23 program.kernel (kernel, "binomial_opts");

24 program.arg(0, steps); // positional by indez
25 program.arg(in); // aggregate

26 program.arg(out) ;

27 program.arg(stepsl * sizeof(cl_float4),

28 ecl::Arg::LocalAlloc);
29 program.arg(4, steps * sizeof(cl_float4),
30 ecl::Arg::LocalAlloc);

31

32 engine.use(std::move(program));

33

34 engine.run();

35

36 // if (engine.has_errors()) // [Optional lines]
37 //  for (autoé err : engine.get_errors())

38 // show or process errors

Listing 1: EngineCL API used in Binomial benchmark.



6.2. Case 2: Using several devices

NBody program shows a more advanced example where
EngineCL really excels. Listing 2 depicts EngineCL com-
puting the NBody benchmark using three devices of the
system: CPU, GPU and Xeon Phi. Because of that, the
engine is configured to use one of the provided schedulers:
the static approach. It will automatically balance the load
based on the proportions given to the devices used. More-
over, it uses kernel specialization for different devices, get-
ting the maximum performance per device, but also using
the generic kernel for maximum compatibility.

Like in the previous use case, the benchmark is initial-
ized up to line 13 (reading kernels, using C++ containers,
etc.). Then, three kernels are used: a common version,
a specific implementation for GPUs and a binary kernel
built for the Xeon Phi (L1-8). The Device class from the
Tier-2 allows more features like platform and device selec-
tion by index (platform, device) and specialization of
kernels and building options. Three specific devices are
instantiated, two of them with special kernels (source and
binary) by just giving to them the file contents (L17). Af-
ter setting the work-items in a single method, the runtime
is configured to use the Static scheduler with different
work distributions for the CPU, Phi and GPU (L23,24).
Finally, the program is instantiated without any out pat-
tern, because every work-item computes a single output
value, and the seven arguments are set in a single method,
increasing the productivity even more (L35).

As it is shown, EngineCL manages both programs with
an easy and similar API, but completely changes the way
it behaves: Binomial is executed completely in the CPU,
while NBody is computed using the CPU, Xeon Phi and
GPU with different kernel specializations and workloads.
Platform and device discovery, data management, com-
pilation and specialization, synchronization and computa-
tion are performed transparently for the programmer in a
few lines. As it was depicted in Section 4 in Figure 2 and
later exposed in Section 8, EngineCL saves hundreds to
thousands of lines of code to manage (efficiently) all the
operations here exposed to compute each program, but
even more when using all the available resources of the
heterogeneous system. EngineCL only needs a single line
to incorporate a new device to the co-execution.

7. Methodology

EngineCL has been validated both in terms of usability
and performance.

7.1. System Setup

The experiments have been carried out using two dif-
ferent machines to validate both code portability and per-
formance of EngineCL.

1 auto kernel = file_read("nbody.cl");

2 auto gpu_kernel = file_read("nbody.gpu.cl");
3 auto phi_kernel_bin =

4 file_read_binary("nbody.phi.cl.bin");

5 auto bodies = 512000; auto del_t = 0.005f;

6 auto esp_sqr = 500.0f; auto lws = 64;

7 auto gws = bodies;

8 vector<cl_float4> in_pos(bodies);

9 vector<cl_float4> in_vel(bodies);

10 vector<cl_float4> out_pos(bodies);

11 vector<cl_float4> out_vel(bodies);

12

13 nbody_init_setup(bodies, del_t, esp_sqr, in_pos,
14 in_vel, out_pos, out_vel);
15

16 ecl::EngineCL engine;

17 engine.use(ecl: :Device(0, 0),

18 ecl::Device(0, 1, phi_kernel_bin),
19 ecl::Device(l, 0, gpu_kernel));

20

21 engine.work_items(gws, 1lws);

22

23 auto props = { 0.08, 0.3 };

24 engine.scheduler(ecl::Scheduler: :Static(props));

NN
o o,

ecl::Program program;
program.in(in_pos);
program.in(in_vel);
program.out (out_pos) ;
program.out (out_vel) ;

> W N NN
> © 00 N

32 program.kernel (kernel, "nbody");

33 program.args(in_pos, in_vel, bodies, del_t,
34 esp_sqr, out_pos, out_vel);

35

36 engine.program(std: :move(program)) ;

38 engine.run();

Listing 2: EngineCL API used in NBody benchmark.

Batel. is a heterogeneous system composed of two Intel
Xeon E5-2620 CPUs with six cores that can run two threads
each at 2.0 GHz and 16 GBs of DDR3 memory. The
CPUs are connected via QPI, which allows OpenCL to
detect them as a single device. Therefore, throughout the
remainder of this document, any reference to the CPU in-
cludes both processors. Moreover, it has one NVIDIA Ke-
pler K20m GPU with 13 SIMD lanes (or SMs in NVIDIA
terminology) and 5 GBytes of VRAM. And an Intel Xeon
Phi KNC 7120P, with 61 cores and 244 threads. These are
connected to the system using independent PCI 2.0 slots.

Remo. is a machine composed of an AMD A10-7850K
APU and Nvidia GeForce GTX 950 GPU. The CPU has
2 cores and 2 threads per core at 3142 Mhz with only
two cache levels, exposing 4 OpenCL compute units. The
APU’s on-chip GPU is a GCN 2.0 Kaveri R7 DDR3 with
512 cores at 720 Mhz with 8 compute units. Finally,
the Nvidia discrete GPU has 768 cores at 1240 Mhz with
GDDRS5, providing 6 compute units.

It is interesting to emphasize that with these two nodes
it is possible to test the versatility of EngineCL for 6 differ-



ent types of devices: Intel CPU, AMD CPU, commodity
GPU, HPC GPU, integrated GPU and Intel Xeon Phi.
EngineCL has also been tested with FPGAs, with good
results that can be seen in [18].

7.2. Benchmarks

Five benchmarks have been used to show a variety
of scenarios regarding the ease of use, overheads com-
pared with a native version in OpenCL C++ and per-
formance gains when multiple heterogeneous devices are
co-executed. Table 2 shows the properties of every bench-
mark. Gaussian, Binomial, Mandelbrot and NBody are
part of the AMD APP SDK, while Ray is an open source
Raytracer implementation[8]. Three different raytracing
scenes (lights and objects) with different complexities are
provided to be benchmarked when load balancing.

These five benchmarks are selected because they pro-
vide enough variety in terms of OpenCL development is-
sues, regarding many parameter types, local and global
memory usage, custom structs and types, number of buffers
and arguments, different local work sizes and output pat-
terns. The amount of properties, computing patterns and
use cases are relevant because they provide enough diver-
sity to compare EngineCL with OpenCL both in terms of
overheads and usability. Moreover, the worst-case scenario
is applied to EngineCL: a single device is used. All bench-
marks are fair, executing the same kernels and using the
OpenCL primitives efficiently. When load balancing, ev-
ery device executes the same kernel, far from the best pos-
sible co-execution result, but strict with the bench-suite.

7.8. Metrics

The validation of usability is performed with eight met-
rics based on a set of studies ([10], [7], [21], [23]). These
metrics determine the usability of a system and the pro-
grammer productivity, because the more complex the API
is, the harder it is to use and maintain the program.

The McCabe’s cyclomatic complexity (CC) measures
the number of linearly independent paths. It is the only
metric that is better the closer it gets to 1, whereas for the
rest a greater value supposes a greater complexity. The
number of C++ tokens (TOK) and lines of code (LOC,
via tokei) determine the amount of code. The Operation
Argument Complezity (OAC) gives a summation of the
complexity of all the parameters types of a method, while
Interface Size (IS) measures the complexity of a method
based on a combination of the types and number of pa-
rameters. The maintainability worsens the more param-
eters and more complex data types are manipulated. On
the other side, INST and MET measure the number of
Structs/Classes instantiated and methods used, respec-
tively. Finally, the error control sections (ERRC) mea-
sures the amount of sections involved with error checking.

A ratio of % is calculated to show the impact
in usability per benchmark and metric, except for CC be-
cause it is a qualitative metric with zero as best value.
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Table 2: Benchmarks and variety of properties used in the validation.
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Local Work Size 128 128 255 256 64
Read:Write buffers 2:1 1:1 y:1 0:1 2:2
Out pattern 1:1 1:1 15255 4:1 1:1
Number of kernel args 6 11 5 8 7
Use local memory no yes yes no no
Use custom types no yes no no no

Regarding the performance evaluation two types of ex-
periments are presented. The first measures the overhead
of EngineCL compared with OpenCL C++ when using
a single device, increasing the problem size. Due to the
small overhead between EngineCL and OpenCL, a single
background process can interfere with the results. There-
fore, the experiments have been carried out removing every
non-necessary process of the system (journal and periodic
tasks), establishing user-defined CPU governors (fixed fre-
quencies) and increasing the batch of executions to reduce
the noise of the system. The analysis focuses on small
problem sizes, because it is where the relevant overheads
appear. The minimum problem sizes are selected based on
the computing power of every device, being reasonable for
each benchmark and usually around the second of execu-
tion, including initialization, management and releasing.
Then, the size increases per device and benchmark until
the overheads are stabilized or when the execution time is
prohibitive, such as CPU reaching more than 100 seconds
of execution or GPU being memory-bounded. As a result,
it shows the overall trend.

The time overhead, expressed as percentage, is com-
puted as the ratio between the difference of the response
times in the execution of the same kernel for both En-
gineCL (Tgcr) and the native version (Tocyr), as follows:
Overhead = W - 100.

The second analyses the co-execution performance when
using different scheduling configurations in a heterogeneous
system composed of three different devices. Each program
uses a single problem size, given by the completion time of
around 10 seconds in the fastest device (GPU) for Batel,
and 7 seconds in the fastest device (GPU) for Remo.

To evaluate the performance of EngineCL the total re-
sponse time and the time per device are measured, includ-
ing the device initialization and management, input data
and results communications. Then three metrics are com-
puted: balance, speedup and efficiency.

To measure the effectiveness of load balancing, we cal-
culate the balance as qT:Z—g, where Trp and Trp are the
execution time of the device that finish at first and last,
respectively. Thus, it is 1 if all finish at the same time.

For the latter two metrics, the baseline is always the
fastest device running a single invocation of the kernel
(GPU in both nodes). Due to the heterogeneity of the



system and the different behavior of the benchmarks, the
maximum achievable speedups depend on each program.
These values derive from the response time T; of each de-
vice:

S, = T;
mas mmy mawi_, {1} & Z

Additionally, the efficiency of the heterogeneous system
has been computed as the ratio between the maximum

achievable speedup and the empirically obtained speedup
for each benchmark. Eff =

7eal

Smax

The scheduling configurations are grouped by algorithm.

The first two bars represent the Static algorithm varying
the order of delivering the packages to the devices. The
one labelled Static delivers the first chunk to the CPU, the
second to the iGPU/PHI (depending on the node) and the
last one to the GPU, while in the Static rev the order is
GPU-iGPU/PHI-CPU. The next two show the Dynamic
scheduler configured to run with 50 and 150 chunks. Fi-
nally, the latter presents the HGuided algorithm.

To guarantee integrity of the results when doing the
load balancing experiments, 60 executions are performed
per case, divided in 3 sets of no consecutive executions.
Every set of executions performs 20 iterations contiguously
without a wait period, discarding an initial execution to
avoid warm-up penalties in some OpenCL drivers and de-
vices. When measuring the overheads, the experiments are
modified to 300 executions, 2 sets and 100 iterations.

8. Validation

We perform the necessary experimentation to try to an-
swer four questions. First, how easy and maintainable it
is to program heterogeneous systems with EngineCL com-
pared to OpenCL, thanks to the use of a set of metrics that
are the state of the art in research in Software Engineer-
ing. Second, considering one of the worst scenarios for En-
gineCL, how much overhead EngineCL has over OpenCL

when only one device is used to offload the computation.
Third, considering the co-execution of all devices in a sys-
tem, how good EngineCL is balancing the load between
them. And finally, taking into account the EngineCL run-
time, its design decisions and load balancing algorithms,
how much performance and efficiency is obtained when all
the devices in the heterogeneous system are fully exploited.

8.1. Usability

This section shows the experiments performed to eval-
uate the usability introduced by EngineCL when a sin-
gle device is used. Table 3 presents the values obtained
for every benchmark (rows) in every of the eight metrics
(columns). Also, the typical (average) ratio per metric for
the set of programs is presented as a chart.

For every program, the maintainability and testing ef-
fort is reduced drastically, as can be seen with CC, reach-
ing the ideal cyclomatic complexity, or ERRC. The savings
in error checking are on average 21 times less by using En-
gineCL, reducing the visual complexity of alternate paths
for error control.

The code density and complexity of the operations are
reduced between 7.3 to 8.5 times compared with OpenCL,
as it is shown with TOK, OAC and IS. In programs like
Ray the OAC ratio is greater than in TOK, because the
number of parameters grows in both implementations, but
managing complex types is harder in OpenCL.

The number of classes instantiated and used methods
are around 5 and 2 times less than in the OpenCL imple-
mentation, mainly because it has been deliberately instan-
tiated Tier-2 classes.

As a summary, EngineCL has excellent results in main-
tainability, implying less development effort. Thanks to
its API usability, the programmer is able to focus on the
application domain, and its productivity is boosted by
hiding complex decisions, operations and checks related
with OpenCL. These excellent results take into account
the worst-case for EngineCL: using a single device.

Table 3: Comparison of Usability Metrics for a set of programs implemented in OpenCL and EngineCL (left). The figure shows the typical
ratios found between both implementations (right). The programs have been selected based on the amount of properties, computing patterns
and use cases to compare both implementations with enough diversity and using the worst-case scenario for EngineCL: using a single device.

Ccc

Program Runtime CC TOK OAC IS LOC INST MET ERRC
Gaussian OpenCL 4 585 312 433 87 17 28 22 |~ OpencCL
EngineCL 1 60 33 53 15 3 13 1 ERRC TOK
ratio 4 9.8 9.5 8.2 5.8 5.7 2.9 22.0
Ray OpenCL 4 618 307 424 89 17 27 21
EngineCL 1 191 40 65 24 3 17 1
ratio 4 3.2 7.7 6.5 3.7 5.7 1.6 21.0
Binomial OpenCL 4 522 255 355 7 16 24 18
EnglneC'L 1 81 28 48 18 3 11 1 MET Q oAC
ratio 4 6.4 9.1 7.4 4.3 5.3 2.2 18.0
Mandelbrot ~ OpenCL 4 473 222 313 74 15 24 18
EngineCL 1 65 35 55 15 3 13 1
ratio 4 7.3 6.3 5.7 4.9 5 1.8 18.0
NBody OpenCL 4 658 373 517 96 18 32 26
EngineCL 1 66 38 60 16 3 15 1
ratio 4 10.0 9.8 8.6 6.0 6.0 2.1 26.0 INST 1S
ratio  4:1 7.3 8.5 7.3 4.9 5.5 2.0 21.0
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Figure 7: Overheads of EngineCL compared with OpenCL for each device in the system. Worst overhead results are found when computing
Binomial Options in Batel for the CPU (top) and Raytracing in Remo for the CPU and GPU (bottom).

] Overhead
S 5%
4%
3%
2% —
1%
0%
-1% -
2%

*I I 1 -fl.-l-.-a.- .

POt

Worst overhead per dev

T T
Remo CPU (Ray) Remo iGPU (Gaussian)

T
Remo GPU (Ray)

T T T
Batel CPU (Binomial)  Batel PHI (Gaussian) Batel GPU (Ray)

|'_ +0s 74 +5s

B +10s

B +15s

Il +20s |

Problem times and Benchmarks

Figure 8: Worst overheads per device. The overheads decrease with longer execution times. As it is said in Section 7, every device and
benchmark has its minimum problem size. Every bar represents the overheads for specific execution times added to the execution time for
each minimum problem size (i.e. Remo CPU for Ray are 0.8, 5.8, 10.8, 15.8 and 20.8, while Batel CPU for Binomial are 1.2, 6.2, ... and 21.2).

8.2. Overhead of EngineCL

This section presents results of experiments performed
to evaluate the overhead introduced by EngineCL when a
single kernel is executed in a single device.

Figure 7 shows the execution times measured for both
OpenCL and EngineCL completion time for different prob-
lem sizes. Only the worst EngineCL over OpenCL over-
heads per node are shown, one is regular (Binomial) and
other is irregular (Ray). The maximum overhead value is
produced with the CPU in the Remo node, with very small

problem sizes. The maximum overhead measured is 2.8%,
while the average value obtained for the minimum prob-
lem size for all benchmarks is 1.3%. The overall trend
view shows the problem scalability along with the over-
head introduced by EngineCL, that it is minimized with
larger problem sizes. The figure highlights the execution
times for the smallest problem sizes, showing the slightly
differences between runtimes.

On the other side, Figure 8 depicts the worst over-
heads per device and benchmark, including the variabil-
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Figure 9: Balancing of the system per benchmark and scheduling configuration.

ity (errors, standard deviation). Analyzing each device
separately, it can be observed that the worst results are
obtained in the Remo CPU. This is reasonable since En-
gineCL also runs on the CPU, that has only 2 cores and
4 threads. Therefore, its multi-threaded architecture in-
terferes with the execution of benchmarks, stealing them
computing capacity. This behavior is highly mitigated in
the Batel CPU, where the threads used by the runtime
does not interfere with the 24 computing threads of the
CPU. Regarding the discrete devices, the differences be-
tween devices are mainly dependent on the driver imple-
mentation and how it is affected by the multi-threaded
and optimized architecture of EngineCL. The commodity
Remo GPU has the highest overhead between the discrete
devices, up to 1.59%, but quickly reducing it with larger
problem sizes. There are cases, like the Xeon Phi, in which
the driver and device produces high variability in the re-
sults, probably produced by the amount of host threads
that are spawned (up to 24).

Two conclusions can be drawn from the results as a
whole. On the one hand, the overhead introduced by the
EngineCL runtime is 1.3% on average for all evaluated de-
vices. On the other hand, that EngineCL scales very well
with the execution time, so that the overhead decreases
significantly as the execution time of the application in-
creases.

8.3. Load Balancing

The next question to be analyzed is whether EngineCL
successfully distributes the workload among the devices of
the heterogeneous system. To this end, Figure 9 presents
the Load Balance, defined as the ratio of the response times
of the first and last devices to conclude its work. The
ideal value for this metric is one, meaning that all devices
finished simultaneously and the maximum utilization of
the machine was attained.

Based on these results, three general conclusions can
be outlined. Firstly, EngineCL successfully balances the
workload in the two systems analyzed. The mean value
of the balance is 0.96, very close to 1.0, with maximum
values of 0.98, for example in Gaussian (Batel) and Rayl
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(Remo). Secondly, HGuided is the algorithm that offers
the best results in all the scenarios studied, in both Batel
and Remo, and for both regular and irregular applications.
Finally, it can also be seen the great relevance of selecting
a suitable load balancing algorithm, since otherwise very
large imbalances can occur as shown in the cases of static
algorithms in Mandelbrot or dynamic approaches with a
few packages for Binomial.

Regarding the rest of the algorithms, it can be ob-
served that both static algorithms have a very similar be-
havior in regular applications, as expected. Nevertheless,
they present important differences in the irregular ones,
for instance Mandelbrot in Remo. Besides, their behavior
depends completely on each case, as can be seen in the
cases of Rayl (static is better) and Ray2, where the re-
verse gets better results. Finally, the dynamic algorithm
always achieves the best-balanced results with the greatest
number of packets. However, as it can be seen below, this
does not always mean the best performance.

8.4. Performance

The performance results achieved in the heterogeneous
systems (Batel left and Remo right) with different load bal-
ancing algorithms are shown in Figure 10 and 11, where
the speedups and efficiency are depicted, respectively. The
speedups are due to the co-execution of the benchmarks
simultaneously on all the devices of the heterogeneous sys-
tem, compared with only using the fastest device in each
node, that is the GPU on both nodes. The efficiency gives
an idea of how the system is utilized. A value of 1.0 repre-
sents that all the devices have been working all the time.

The main conclusion that can be drawn is that, for all
benchmarks and both nodes, co-execution provides perfor-
mance improvements over the baseline. The magnitude of
the improvements will depend on the computing power of
the devices of the system. On the other hand, efficiency
figures show that EngineCL can exploit co-execution very
efficiently. This is an excellent result, taking into account
the great difference in computing power that exists be-
tween the devices of the nodes employed.
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Figure 11: Efficiency of the system when adding the CPU and Xeon Phi.

But to achieve these improvements, it is necessary to
select an appropriate load balancing algorithm. As can
be seen in the figures, HGuided achieves the best results
for all the scenarios analyzed, with an average efficiency
of 0.89 in Batel and 0.82 in Remo. Therefore, EngineCL
can adapt to different kinds of loads and computing nodes,
obtaining outstanding performance.

Analyzing the speedups and efficiencies in detail, Static
delivers good results in regular applications, with consis-
tent efficiencies between 0.73 and 0.87, regardless of the
order of the devices. Binomial in Batel is an exception
that will be explained later, due to the Xeon Phi. How-
ever, in irregular applications the results are much more
erratic, because it does not adapt to these irregularities,
such as Rayl (0.76) and Ray2 (0.92). Furthermore, the
order in which the devices are considered also has a sig-
nificant impact on efficiency, as it is shown in Ray2, Ray3
and Mandelbrot. When the slowest device processes the
empty regions of these problems, its speedup is increased
compared with other regions, unbalancing the execution.

The Dynamic algorithm has good results in most irreg-
ular applications when every device can provide enough
computing capacity (Batel), achieving a geometric mean
efficiency of 0.81, but suffers in benchmarks like NBody
and Gaussian. They are sensitive to the number of chunks
and their size, increasing the overhead of communication
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and usage of slow devices, respectively. Therefore, it is
important to accurately determine the number of pack-
ages to get the best results in each benchmark. In Remo,
the Dynamic algorithm suffers the penalization because of
its weak CPU, which imbalances the co-execution when a
wrong package size is giving to the slowest device.

Figure 12 depicts the work size distribution between
the devices for every scheduler configuration and bench-
mark. Each bar has three rectangles with the work size
given to each device. Every scheduling configuration dis-
tributes a similar workload for each device, except NBody
and Mandelbrot, in Batel. The CPU takes more workload
as the number of packages increases in NBody, introduc-
ing smaller synchronization overheads when using fewer
packages. Also, Mandelbrot shows how the Phi processed
too much amount of work for the part of the image given
in the Static, being more complex to calculate than the ex-
pected when computing the complete image. Also, Remo
work distribution shows how the CPU penalized the whole
execution in Dynamic due to large work sizes.

As it was introduced, the GPU in Binomial outper-
forms the CPU and Xeon Phi, as can be seen in the Static
work size distributions. Therefore, a slightly variation in
the completion time for any of these devices will imbalance
the execution. Another important point is introduced to
the analysis: the Xeon Phi’s OpenCL driver needs and uses
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Figure 13: Binomial timings before the computation phase.

the CPU for its management. When using the CPU in co-
execution, the Xeon Phi driver needs to share the CPU
to build and manage the device with the CPU OpenCL
driver, introducing time variations during the initializa-
tion and new overheads in the final completion times. This
behavior is depicted in Figure 13, on the left side, showing
the average times from initialization for all the executions
in Binomial, where the abscissa axis shows the base case
(single device) and each scheduling configuration, with a
bar showing the behavior for each device. The ordinate
axis shows the time since EngineCL started. Using only
the Phi needs around 1800 ms. to initialize and start com-
puting, while it is up to 2700 ms. when using in Static.
This variation combined with the small amount of work
given to the CPU and Phi produces enough imbalance to
not achieve the goal. On the other side, the Dynamic ap-
proach it is much worth for two reasons: it allows small pe-
riods of CPU time without computation (between chunks)
to the Phi driver and thanks to its adaptability solves the
initialization variations giving more chunks to the GPU,
as it is shown. The drivers and its management are rele-
vant to compute using OpenCL and produce an efficient
co-execution, as can be seen on the right side of the fig-
ure, where Remo drivers and devices are completely stable
compared with the Xeon Phi (Batel).

In summary, we can conclude that EngineCL can ex-
ecute a single massive data-parallel kernel simultaneously
on all devices in a heterogeneous system with a maximum
overhead of 2.8% and a tendency towards zero with bigger
problem sizes. In addition, thanks to the load balancing
algorithms, it yields excellent efficiencies, with different
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types of benchmarks. Therefore, this work has a multi-
objective approach: offering high usability thanks to its
API, while it has a flexible architecture that allows to ex-
tend its functionalities, offering low overheads in the worst
case scenario, and is able to exploit all the devices of the
heterogeneous system with high efficiency.

9. Related Work

There are projects aiming at high-level parallel pro-
gramming in C++, but most of them provide an API sim-
ilar to the Standard Template Library (STL) to ease the
parallel programming, like Boost.Compute [25], HPX [14],
Thrust [15], SYCL [13] and the C++ Extensions for Paral-
lelism TS [16]. Thrust, tied to CUDA devices, HPX, which
extends the C++ Parallel and Concurrency TS with asyn-
chronous algorithm and additional future types for dis-
tributed computing, or C++ TS are not OpenCL-centered.
Projects like HPX.Compute [9] and SYCLParallelSTL [22]
provide backends for OpenCL via SYCL. SYCLParallel-
STL exposes ParallelSTL on CPU and GPU. Proposals
like SkelCL [24] and SkePU [11] provide data manage-
ment and composable primitives and skeletons to build
parallel applications, but the programmer is responsible
of using their own data containers. EngineCL offers a
high-level layered API with better usability than the pre-
vious C++ proposals, generally provide constructs based
on STL. Also, there are C-programmed libraries with sim-
ilar objectives, but they provide low-level APIs where the
programmer needs to specify many parameters and the
density of the code is considerable. While Maat [20] uses



OpenCL to achieve the code portability, Multi-Controllers
[17] is CUDA and OpenMP-centered, but allows kernel
specialization. On the other side, EngineCL targets a flex-
ible API with an application domain as execution unit, in-
creasing significantly the productivity. It provides differ-
ent API layers, allows kernel specialization, direct usage of
C++ containers, manages the data and work distribution
transparently between devices and has smaller overheads
compared with the previous projects.

On the other hand, there is a considerable amount of
bibliography relating to task parallelism. In this case the
workload is independent tasks belonging to the same ap-
plication, which are distributed to different devices. For
instance, [26], proposes a lightweight runtime based on
QUARK, that uses a greedy heuristic. The authors of
[27] apply fuzzy neural networks to the task distribution
problem. MultiCL [28] is an OpenCL runtime based on
storing execution information for each kernel-device pair
for future kernel launches. VirtCL is a framework based
on OpenCL [29] which constructs regression models to pre-
dict task turnaround times. SPARTA [30] analyzes tasks
at runtime and uses the obtained information to schedule
the next tasks maximizing energy-efficiency. Finally, Uni-
corn [31] and Xkaapi[32] are parallel programming models
based on a work-stealing task scheduler.

Regarding load balancing algorithms some approaches
use a static algorithm, like the implemented in EngineCL.
As instance, Kim et al. [33] implements an OpenCL frame-
work that provides the programmer with a view of a single
compute, but only consider systems with several identical
GPUs and ignore the CPUs, so their proposal is not suit-
able for truly heterogeneous systems. Lee et al.[34] propose
the automatic modification of OpenCL code that executes
on a single device, so the load is balanced among several
ones. De la Lama et al. [35] propose a library that encap-
sulates standard OpenCL calls. The works presented in
[36] and [37] use machine learning and performance mod-
els respectively, to come up with an offline model that pre-
dicts an ideal static load partitioning, but it does not con-
sider irregularity. [38] modifies the code to get a static dis-
tribution of a single kernel to the available devices. Other
authors have proposed training-based methods to the load
balancing problem, like Qilin [39] and Maestro [40].

Finally, there are several works that uses dynamic load
balancing algorithms. FluidicCL [41] implements an adap-
tive dynamic scheduler, but only focuses on systems with
one CPU and one GPU. SnuCL [42] is an OpenCL frame-
work for heterogeneous CPU/GPU clusters. However, it
does not support the cooperative execution of a kernel us-
ing all the available devices. Kaleem et al. in [43] and
Boyer et al. in [44] propose adaptive methods that use
the execution time of the first packages to distribute the
remaining load. However, they focus on a CPU/GPU sce-
nario and do not scale well to configurations with more
devices. Similarly, HDSS [45] dynamically learns the com-
putational speed of each device during an adaptive phase
and then schedules the remainder of the workload using
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a weighted self-scheduling scheme during the completion
phase. However, this algorithm assumes lineal speed with
the package size, which might not be true for irregular
kernels. Similarly, a dynamic and adaptive algorithm for
TBB is proposed in [46, 47]. This is also based on us-
ing small initial packages to identify a package size that
obtains near optimal performance. Finally, Finepar [48]
builds a performance model to come up with the ideal work
partition for an irregular application. For this approach,
the performance model calculation needs to be performed
every time the input data changes, which is costly.

10. Conclusions and Future Work

Over the last decade heterogeneous systems have be-
come ubiquitous in a wide family of computing devices,
from high performance computing nodes, to desktop com-
puters and smartphones, thanks to their excellent perfor-
mance, power consumption and energy efficiency. But this
heterogeneity and diversity of devices pose major chal-
lenges to the community. This paper addresses some of
these challenges, such as the complexity of programming
and performance portability, and it proposes effortless co-
execution as one of the key concepts to overcome them.

For this purpose, EngineCL is presented, a powerful
OpenClL-based tool that greatly simplifies the program-
ming of applications for heterogeneous systems. This run-
time frees the programmer from tasks that require a spe-
cific knowledge of the underlying architecture, and that are
very error prone, with a great impact on their productivity.
Moreover, the runtime is designed and profiled to provide
internal flexibility to support new features, high perfor-
mance to avoid any overheads compared with OpenCL
and a pluggable scheduling system to efficiently use all
the available resources with custom load balancers. The
API provided to the programmer is very simple, thus im-
proving the usability of heterogeneous systems. Besides, it
also ensures performance portability thanks to the integra-
tion of schedulers that successfully distribute the workload
among the devices, adapting both to the heterogeneity of
the system and to the behavior of the applications.

These statements are corroborated by the exhaustive
validation that is presented, both in usability and perfor-
mance. Regarding usability, a large variety of well-known
and widely used Software Engineering metrics has been
analyzed, achieving excellent results in all of them. The
performance has been validated in two different nodes, one
HPC and one commodity system, with six different archi-
tectures to show the compatibility and efficiency of En-
gineCL. Three important conclusions can be drawn. First,
the careful design and implementation of EngineCL allows
small overheads with respect to the native OpenCL ver-
sion, always below 2.8% in all the cases studied and with an
average overhead of 1.3% considering the worst-case sce-
nario. Furthermore, EngineCL scales very well with the
size of the problem, so overheads vanish for large prob-
lem sizes. Second, it is critical to select the right sched-



uler, especially for irregular applications, where it needs to
be dynamic and adaptive. Among the schedulers imple-
mented and integrated in EngineCL, HGuided provides
the best results, being able to balance both regular and
irregular applications, with an average efficiency of 0.89
and 0.82 for the HPC and desktop system, respectively.
Finally, thanks to all the above, EngineCL is able to pro-
vide the programmer with effortless co-execution, thus en-
suring performance portability between very different het-
erogeneous systems.

In the future, it is intended to extend the API to sup-
port iterative and multi-kernel executions. Also, new load
balancing algorithms will be provided and studied as part
of the scheduling system, focusing on performance and en-
ergy efficiency.
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Highlights

* Performance portability is hard to maintain between heterogeneous devices.

* EngineCL is an OpenCL-based runtime system to manage heterogeneous systems.

* EngineCL simplifies and load balances a massive data-parallel kernel execution.

* OpenCL drivers and architectures have complexities to be abstracted and optimized.
* EngineCL is validated with high usability and low performance overhead.
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