

Facultad de Ciencias

Relación entre la estructura cristalina y el orden magnético unidimensional en óxidos de cobre

Relationship between the crystalline structure and the one-dimensional magnetic order in copper oxides

Trabajo de Fin de Grado para acceder al

Grado en Física

Autor: Antonio Cuadrado Cobo

Director: José Antonio Aramburu-Zabala Higuera

Julio 2020

Agradecimientos

En estas líneas quiero mostrar mi completo agradecimiento a mi director de TFG, el Prof. José Antonio Aramburu, no sólo por haberme guiado y ayudado en este trabajo, sino también porque en este último año y medio has sido un gran apoyo en la carrera, prestándome su tiempo para cualquier duda que me surgiera. También quiero agradecerle haberme mostrado lo interesante y complicado a su vez, que puede llegar a ser el mundo de la Física del Estado Sólido, haciendo que para mí sea una de las ramas de la Física más bonitas de la carrera. Por ello, jmuchas gracias Antonio!

Por otro lado quiero agradecer también a tres personas que me han ayudado a lo largo de este trabajo. Al Prof. Pablo García, quien siempre que he necesitado alguna ayuda con el ordenador ha estado disponible; a Inés, quien me ha asistido con cualquier tipo de duda referente al trabajo durante la cuarentena; y a mi compañero Raúl, a quien he podido conocer más a fondo a lo largo de este trabajo y que me ha ayudado enormemente con el uso del sistema operativo *Linux*. ¡Gracias!

Quiero agradecer también a mis compañeros y amigos de clase, Asier, Santi, Aritz e Ixaka, sin los cuales estos 4 años de carrera no hubieran sido lo mismo. Y por último, a mis padres, Antonio y Montse, y mi hermana Montse por haber confiado en mí, dándome siempre apoyo en los momentos buenos y malos. ¡Muchas gracias!

Resumen

Los óxidos de cobre son unos de los materiales más estudiados en física de la materia condensada ya que tienen un gran potencial para el análisis de muchos fenómenos con interés básico y aplicado, como superconductividad, la ferroelectricidad o el magnetismo. En los ultimos años también hay mucho interés en los oxocupratos de baja dimensión (en particular los sistemas que forman cadenas de iones Cu^{2+}) debido a sus peculiares propiedades magnéticas y su relevancia en el estudio de la superconductividad de alta temperatura.

En este trabajo se analizará mediante simulaciones de primeros principios (que no usan parámetros ajustables) la relación entre la estructura cristalina, los constituyentes y el magnetismo quasi-unidimensional (cadenas) en tres de estos oxocupratos, CuAs₂O₄, CuSb₂O₄ y CuSb₂O₆. En primer lugar, se analizará si la estructura de estos tres compuestos (los dos primeros tetragonales, con grupo espacial P4₂/mbc y P4₂bc; el tercero monoclínico, grupo P2₁/n) tiene relación o no con una inestabilidad tipo Jahn-Teller. A continuación, se analizarán las diferencias en el orden magnético unidimensional de CuAs₂O₄, cadenas ferromagnéticas para T < 7.4 K, y de CuSb₂O₄, cadenas antiferromagnéticas para T < 1.8K. En el caso de CuSb₂O₆ se analizará el orden antiferromagnético, que a T = 8.5 K pasa de una fase 3D a otra 1D. Además, en el caso del CuAs₂O₄ se ha realizado un estudio de su estructura electrónica, donde se han obtenido tanto las bandas de energía como la densidad de estados, y se ha estudiado la transición de fase bajo presión a 9.2 GPa la cual cambia el grupo espacial de simetría a $P\bar{4}2_1c$.

Palabras clave: distorsión, simetría, simulación primeros principios, efecto *Jahn-Teller*, bandas de energía, transición de fase.

Abstract

Copper oxides are some of the most studied materials in condensed matter physics that have great potential for the analysis of many phenomena with basic and applied interest, such as superconductivity, ferroelectricity or magnetism. In recent years there is also a lot of interest in low-dimension oxocuprates (in particular the systems that form chains of Cu^{2+} ions) due to their peculiar magnetic properties and their relevance in the study of high-temperature superconductivity.

In this work, the relationship between the crystalline structure, the constituents and the quasi-one-dimensional magnetism (chains) in three of these oxocuprates, $CuAs_2O_4$, $CuSb_2O_4$ and $CuSb_2O_6$, will be analyzed by first principles simulations (which do not use adjustable parameters). First, it will be analyzed if the structure of these three compounds (the first two tetragonal, with spatial grouups P4₂/mbc and P4₂bc; the third monoclinic, group P2₁/n) is related or not to a Jahn-Teller instability. Next, the differences in the one-dimensional magnetic order of CuAs₂O₄, ferromagnetic chains for T < 7.4 K, and of $CuSb_2O_4$, chains antiferromagnetic for T < 1.8 K will be analyzed. In the case of $CuSb_2O_6$ the antiferromagnetic order will be analyzed, which at T = 8.5 K passes from one 3D phase to another 1D. In addition, in the case of $CuAs_2O_4$, a study of its electronic structure has been carried out, where both energy bands and the density of states have been tested, and also an analysis of the phase transition under pressure at 9.2 GPa which changes its space group of symmetry to $P\bar{4}2_1c$.

Key words: distortion, symmetry, first principles simulation, *Jahn-Teller* effect, energy bands, phase transition.

Índice general

1.	Introducción	1
	1.1. Objetivos del trabajo	1
	1.2. Organización del trabajo	2
2.	Métodos Computacionales	3
	2.1. Introducción	3
	2.2. Ecuación de Schrödinger	3
	2.3. Aproximación Adiabática	4
	2.4. Aproximación a un electrón	5
	2.5. Aproximaciones para representar las funciones a un electrón	6
	2.5.1. Aproximación LCAO	6
	2.5.2. Aproximación ondas planas	6
	2.6. Tratamientos de las aproximaciones para representar las funciones a un	
	electrón	6
	2.7. Métodos Post-Hartree-Fock	7
	2.8. Teoría del Funcional de la Densidad (DFT)	7
	2.8.1. Teoremas de Hohenberg v Kohn	8
	2.8.2. Método de Kohn v Sham	9
	2.8.3. Aproximaciones al potencial de intercambio y correlación	9
	2.9. Programas utilizados	10
	2.9.1 Simulaciones de primeros principios	10
	2.9.2 Programa <i>Ewald</i>	11
	2.9.3 Programas de representación de resultados	12
3.	Efecto Jahn-Teller	13
	3.1. Introducción	13
	3.2. Interacciones vibrónicas	14
	3.3. Efecto Jahn-Teller en un complejo CuO_6^{10-}	17
	3.4. Efecto pseudo Jahn-Teller	18
4 .	Estudio computacional del sistema $CuAs_2O_4$	20
	4.1. Datos Experimentales	20
	4.2. Optimización de la geometría	21
	4.3. Origen de la distorsión de los complejos CuO_6^{10-}	23
	4.4. Estructura de bandas electrónicas y Densidad de estados	27
	4.5. Transición de fase bajo presión	30
5.	Estudio computacional del sistema $CuSb_2O_4$	34
	5.1. Datos experimentales	34
	5.2. Optimización de la geometría	35
	5.2.1. Cálculos con <i>Crystal</i>	35
	5.2.2. Cálculos con $VASP$	37

	5.3. Cálculo de frecuencias	 37
6.	Estudio computacional del sistema $CuSb_2O_6$	38
	6.1. Datos experimentales	 38
	6.2. Optimización de la geometría	 40
	6.3. Análisis del posible efecto Jahn-Teller	 41
7.	Conclusiones y futuro trabajo	45
	7.1. Sistema $CuAs_2O_4$	 45
	7.2. Sistema $CuSb_2O_4$	 46
	7.3. Sistema $CuSb_2O_6$	 46
	7.4. Futuro trabajo	 47

Capítulo 1

Introducción

1.1. Objetivos del trabajo

Los óxidos del catión Cu^{2+} son compuestos omnipresentes en la física de materiales y de la materia condensada debido a las especiales características de los iones Cu^{2+} (con 9 electrones *d* interaccionando entre sí fuertemente) y su variedad de enlaces con los aniones O^{2-} (aniones muy cargados que tienden a deslocalizar sus electrones entre los vecinos). Esto da lugar a la aparición en estos compuestos de una multitud de características y fenómenos de gran interés básico y aplicado, como superconductividad, piezoelectricidad, ferroelectricidad, ferromagnetismo, skyrmiones, piezocromismo,...

Dentro de los óxidos de cobre, en los últimos 20 años se ha realizado bastante trabajo sobre familias que contienen elementos del grupo VA de la tabla periódica, como el arsénico As y antimonio Sb, ya que pueden actuar con una diversidad de valencias (principalmente +3 y +5) y así pueden formarse un gran número de compuestos con diferentes propiedades y aplicaciones como herbicidas y pesticidas, conservantes de madera, pigmentos, semiconductores con alta movilidad de electrones, fotocatálisis, diodos, sensores en el infrarrojo, sensores Hall, laseres, etc [1]. Así, muchos de estos materiales han sido sintetizados en los últimos años y el conocimiento básico sobre el origen de las propiedades de estos compuestos es aún escaso.

En este trabajo se van a estudiar tres óxidos de cobre que contienen a los elementos As y Sb y que han sido sintetizados en los últimos años, el arsenito de cobre $CuAs_2O_4$ y el antimonito de cobre $CuSb_2O_4$, donde los elementos As y Sb actúan con valencia +3, y el antimoniato de cobre $CuSb_2O_6$, donde Sb actúa con valencia +5. Sus estructuras cristalinas son distintas, pero tienen importantes elementos en común. Los 3 materiales están formados por capas interconectadas de complejos CuO_6 y AsO_6 o SbO_6 y, además, los iones Cu^{2+} de las sucesivas capas están interconectados a través de aniones O^{2-} , forman cadenas débilmente interconectadas entre sí. Sin embargo, estos 3 materiales, a bajas temperaturas, presentan un orden magnético muy distinto. El objetivo general de este trabajo es contribuir a una mejor comprensión de la complicada relación entre la estructura cristalina, en particular la estructura de iones de cobre, y el orden magnético de estos 3 óxidos de cobre. El estudio del magnetismo de los óxidos de cobre con baja dimensionalidad es un campo en expansión con muchas aplicaciones.

Como objetivo particular, se desea analizar la estructura de los complejos CuO_6 , con una geometría de octaedro distorsionado, y su relación con el magnetismo en estos materiales. Hay que notar que en toda la literatura sobre estos compuestos se atribuye la distorsión de los octaedros CuO_6 a una inestabilidad espontánea conocida como efecto Jahn-Teller [2], relacionada con el tránsito de una geometría de alta simetría a otra de baja simetría a

través del acoplamiento entre los electrones y determinados modos de vibración localizados del material. Sin embargo, como se analizará más adelante, la simple observación de la estructura de estos materiales parece incompatible con la existencia de efecto *Jahn-Teller*. Por tanto, dilucidar esta cuestión será un punto fundamental de este trabajo.

Hay que resaltar que aunque se han analizado los tres sistemas, debido a que en los compuestos de antimonio ($CuSb_2O_4$ y $CuSb_2O_6$) se han econtrado algunas dificultades, se ha realizado un estudio mucho más exhaustivo en el sistema $CuAs_2O_4$ para el que, además de determinar si sufre o no una distorsión *Jahn-Teller*, se ha realizado un estudio de la estructura electrónica y de la transición de fase bajo presión.

La principal herramienta para llevar a cabo este estudio han sido las simulaciones de primeros principios, es decir, la resolución de la ecuación de Schrödinger de los núcleos y electrones que componen una celda de cada material, con condiciones de contorno periódicas, sin hacer uso de datos experimentales, sólo constantes universales. Las simulaciones de primeros principios llevadas a cabo en este trabajo son muy precisas, lo que tiene la desventaja de que el coste en tiempo de los cálculos es elevado.

Hay que notar que, debido al confinamiento por la crisis del *COVID-19* llevado a cabo desde mediados del mes de marzo, el estudio estructural de los compuestos se ha realizado casi completo, mientras que el estudio magnético ha quedado incompleto y se tratará de completarlo más adelante.

1.2. Organización del trabajo

Este trabajo se ha estructurado en 7 capítulos siendo esta introducción, donde se hablan sobre los objetivos y ambiciones de la memoria, el primero de ellos.

A continuación, en el segundo capítulo se explican los conceptos esenciales de los métodos computacionales de primeros principios utilizados en este trabajo. Se comenzará presentando la ecuación de Schrödinger de un sistema multielectrónico, siguiendo con las aproximaciones utilizadas en los cálculos de primeros principios y se culminará con la teoría del Funcional de la Densidad, caso particular de estos métodos.

En el capítulo tercero se introduce la teoría básica de los efectos Jahn-Teller y pseudo Jahn-Teller, que será necesaria para poder discutir la geometría y distorsiones de los complejos CuO_6^{10-} que existen en estos materiales.

El cuarto capítulo trata del análisis computacional del sistema arsenito de cobre (CuAs₂O₄) y será dividido tres bloques. El primero consistirá en el análisis de los datos experimentales del sistema CuAs₂O₄ con el fin de clarificar si los complejos de CuO₆¹⁰⁻ sufren una distorsión por efecto *Jahn-Teller*. A continuación se mostrarán y analizarán los resultados obtenidos en el cálculo de las bandas electrónicas y la densidad de estados proyectadas (PDOS). Por último, se hará un estudio computacional de la transición de fase bajo presión observada experimentalmente.

El quinto y sexto capítulo se centrarán en el estudio estructural del sistema antimonito de cobre $(CuSb_2O_4)$ y el estudio estructural y magnético del sistema antimoniato de cobre $(CuSb_2O_6)$ respectivamente.

Por último, la memoria se concluirá en el séptimo capítulo con las principales conclusiones de este estudio y la dirección que tomará en un futuro.

Capítulo 2

Métodos Computacionales

2.1. Introducción

El enorme desarrollo experimentado durante las últimas décadas por las simulaciones computacionales ha provocado que hoy en día sea considerada como la tercera pata sobre la que se sustenta el método científico, junto con la experimentación y la teoría. En particular, las simulaciones computacionales de primeros principios en átomos, moléculas y sólidos son actualmente una herramienta clave para entender datos experimentales, para contribuir al desarrollo de la teoría e incluso para predecir nuevas propiedades y sistemas.

La herramienta fundamental de este trabajo han sido las simulaciones computacionales de primeros principios, también llamados "*cálculos ab initio*", donde se resuelve computacionalmente la ecuación de Schrödinger del sistema sin introducir datos empíricos y con el mínimo posible de aproximaciones.

2.2. Ecuación de Schrödinger

Para el correcto seguimiento y compresión de esta sección, se establecerá una notación concreta empleando letras mayúsculas y subíndices del alfabeto griego para la descripción de las posiciones de los núcleos atómicos y letras minúsculas y subíndices del alfabeto latino para las posiciones de los electrones. Así para un sistema multielectrónico de M núcleos y N electrones, $\{\vec{R}\} = \{\vec{R}_{\alpha}, \vec{R}_{\beta}, \vec{R}_{\gamma}, \ldots\}$ y $\{\vec{r}\} = \{\vec{r}_{a}, \vec{r}_{b}, \vec{r}_{c}, \ldots\}$. Además, las ecuaciones serán expresadas en unidades atómicas (a.u), es decir, $e = \hbar = m = 1$ siendo estas la carga del electrón, la constante de Planck reducida y la masa del electrón respectivamente.

La ecuación de Schrödinger en situación estacionaria para un sistema de núcleos y electrones viene dada por:

$$H\Psi(\{\overrightarrow{R}\},\{\overrightarrow{r}\}) = E\Psi(\{\overrightarrow{R}\},\{\overrightarrow{r}\})$$
(2.1)

con cuya resolución podrían obtenerse las funciones propias Ψ y valores propios E con los que, en principio, sería posible conocer cualquier propiedad.

Sin embargo, analizando el hamiltoniano no relativista y sin acoplamiento spin-órbita de la Ec (2.1) correspondiente al movimiento conjunto de electrones y núcleos, se observa que no es un problema tan sencillo. Esto se debe a que dicho hamiltoniano contiene la energía cinética de los núcleos (T_n) y electrones (T_e) , y las energías potenciales de las interacciones culombianas entre núcleos (V_{nn}) , electrones (V_{ee}) y núcleos y electrones (V_{en}) como puede verse en la Ec (2.2):

$$H = T_n + T_e + V_{nn} + V_{ee} + V_{en} = -\sum_{\alpha} \frac{1}{2M_{\alpha}} \overrightarrow{\nabla}_{\overrightarrow{R}_{\alpha}}^2 - \sum_i \frac{1}{2} \overrightarrow{\nabla}_{\overrightarrow{r}_i}^2 \qquad (2.2)$$
$$+ \frac{1}{2} \sum_{\alpha,\beta} \frac{Z_{\alpha} Z_{\beta}}{\left|\overrightarrow{R}_{\beta} - \overrightarrow{R}_{\alpha}\right|} + \frac{1}{2} \sum_{i,j} \frac{1}{\left|\overrightarrow{r}_j - \overrightarrow{r}_i\right|} - \frac{1}{2} \sum_{i,\alpha} \frac{Z_{\alpha}}{\left|\overrightarrow{R}_{\alpha} - \overrightarrow{r}_i\right|}$$

donde, debido a la presencia de los términos cruzados de interacción culombiana, es imposible realizar una resolución analítica exacta y por tanto, hay que realizar diferentes aproximaciones.

2.3. Aproximación Adiabática

Para poder resolver la complicadísima Ec (2.1), en primer lugar se aplica la llamada aproximación adiabática o de de Born-Oppenheimer. Debido a que los núcleos son mucho más pesados que los electrones $(M_{\alpha} \gg m_i)$ su velocidad va a ser bastante inferior a la de los segundos de forma que se puede considerar la aproximación de que los dos movimientos son independientes. Asi, la función de onda total puede aproximarse como el producto de la función de onda electrónica $\psi_e(\{\vec{r}\})$ y nuclear $\psi_n(\{\vec{R}\})$:

$$\Psi(\{\overrightarrow{R}\},\{\overrightarrow{r'}\}) \cong \psi_e(\{\overrightarrow{r'}\})\psi_n(\{\overrightarrow{R}\})$$
(2.3)

Introducida esta función aproximada en la Ec (2.1) se obtienen dos ecuaciones que pueden resolverse en dos pasos sucesivos [3].

El primer paso consiste resolver la ecuación electrónica considerando que los núcleos son infinitamente lentos en comparación a los electrones (dinámica de electrones bajo núcleos fijos) de tal manera las posiciones de los núcleos serán ahora fijas. De esta modo, la ecuación de valores propios correspondiente al hamiltoniano electrónico es:

$$[T_e + V_{nn} + V_{ee} + V_{en}]\psi_e(\{\overrightarrow{r}\}, \{\overrightarrow{R}\}) = E_e(\{\overrightarrow{R}\})\psi_e(\{\overrightarrow{r}\}, \{\overrightarrow{R}\})$$
(2.4)

donde, debido a que los núcleos están fijos, el término de la energía cinética de estos es nulo y cuando se resuelve la ecuación para unas posciones $\{\vec{R}\}$ dadas, el término electrostático V_{nn} es constante y por tanto puede quitarse de la ecuación y añadirse posteriormente a la energía electrónica obtenida.

Como se decía, la Ec (2.4) se resuelve para distintos valores fijos de $\{\vec{R}\}$, obteniendo para los diferentes estados electrónicos por un lado sus correspondientes funciones de onda $\psi_e(\{\vec{r}\})$ que dependen explícitamente de $\{\vec{r}\}$ y paramétricamente de $\{\vec{R}\}$ y por otro sus energías $E_e(\{\vec{R}\})$. Las diferentes energías obtenidas para cada uno de los $\{\vec{R}\}$ forman al final una superficie de energía $E_e(\{\vec{R}\})$ para el estado electrónico correspondiente lo cual se conoce como Adiabatic Potential Energy Surface (APES).

El siguiente paso consiste en obtener la dinámica nuclear bajo el potencial creado por los electrones, que viene descrita por:

$$\left[-\sum_{\alpha} \frac{1}{2M_{\alpha}} \overrightarrow{\nabla}_{\overrightarrow{R}_{\alpha}}^{2} + E_{e}(\{\overrightarrow{R}\})\right] \psi_{n}(\{\overrightarrow{R}\}) = E(\{\overrightarrow{R}\})\psi_{n}(\{\overrightarrow{R}\})$$
(2.5)

En esta aproximación la forma de función de onda total se restringe a una sola superficie electrónica (APES), es decir, se desprecian los términos de acoplamiento entre APES. Esto no es correcto cuando hay dos APES muy próximas en energía pues se mezclarían y habría que tener en cuenta los términos no adiabáticos donde se acoplan diferentes estados electrónicos.

2.4. Aproximación a un electrón

En el hamiltoniano de la Ec (2.2) sigue estando presente el término de la interacción culombiana entre electrones $\frac{1}{2}\sum_{i,j} \frac{1}{|\vec{r}_j - \vec{r}_i|}$ donde sigue habiendo términos cruzados. Esto imposibilita la resolución analítica exacta para sistemas con más de un electrón.

Para solventar este problema se realiza la denominada aproximacion a un electron, donde se construye una función de onda aproximada como si los electrones fuesen independientes entre sí, de forma que sería el producto de las funciones de onda de cada electrón u orbitales a un electrón. En el denominado método de Hartree-Fock, además se considera que la función de onda verifica el principio de exclusión de Pauli y así debe ser antisimétrica ante la permutación de dos electrones, escribiendose como un *determinante de Slater*.

$$\psi_e(\overrightarrow{r_1}, \overrightarrow{r_2}, \dots, \overrightarrow{r_n}) = \frac{1}{\sqrt{N!}} \begin{vmatrix} \phi_1(\overrightarrow{r_1}) & \phi_2(\overrightarrow{r_1}) & \cdots & \phi_n(\overrightarrow{r_1}) \\ \phi_1(\overrightarrow{r_2}) & \phi_2(\overrightarrow{r_2}) & \cdots & \phi_n(\overrightarrow{r_2}) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_1(\overrightarrow{r_n}) & \phi_2(\overrightarrow{r_n}) & \cdots & \phi_n(\overrightarrow{r_n}) \end{vmatrix} = \left| \phi_1 \phi_2 \dots \phi_n \right|$$
(2.6)

Introduciendo la nueva función aproximada de la Ec(2.6) en la Ec(2.4), se obtiene la energía del sistema:

$$E = \sum_{i} h_{i} + \frac{1}{2} \sum_{i,j} (J_{ij} - K_{ij}) + V_{nn}$$
(2.7)

El primer término h_i se corresponde con las energías a un electrón donde se encuentra la energía cinética y la energía de interacción núcleo-electrón:

$$h_{i} = \left\langle \phi_{i}(\overrightarrow{r_{1}}) \left| -\frac{1}{2} \overrightarrow{\nabla}_{\overrightarrow{r_{1}}}^{2} - \sum_{\alpha} \frac{Z_{\alpha}}{|\overrightarrow{R}_{\alpha} - \overrightarrow{r_{1}}|} \right| \phi_{i}(\overrightarrow{r_{1}}) \right\rangle$$
(2.8)

El segundo J_{ij} se trata de las energías de repulsión culombianas entre las densidades electrónicas $i \neq j$:

$$J_{ij} = \int \int |\phi_i(\overrightarrow{r_1})|^2 |\phi_j(\overrightarrow{r_2})|^2 \frac{1}{|\overrightarrow{r_2} - \overrightarrow{r_1}|} d\overrightarrow{r_1}^3 d\overrightarrow{r_2}^3$$
(2.9)

Por último, el término de intercambio o canje K_{ij} que proviene de la antisimetrizacion de la funcion de onda (es decir, del principio de exclusión). Dicho término da cuenta de las interacciones entre dos electrones situados en $\overrightarrow{r_1}$ y $\overrightarrow{r_2}$, que estuviesen intercambiándose o resonando entre los orbitales ϕ_i y ϕ_j .

$$K_{ij} = \int \int \phi_i^*(\overrightarrow{r_1}) \phi_j(\overrightarrow{r_2}) \phi_j(\overrightarrow{r_1})^* \phi_i(\overrightarrow{r_2}) \frac{1}{|\overrightarrow{r_2} - \overrightarrow{r_1}|} d\overrightarrow{r_1}^3 d\overrightarrow{r_2}^3$$
(2.10)

Aplicando el metodo variacional se llega al sistema de N ecuaciones acopladas de Hartree-Fock [3]):

$$F_i \phi_i = \varepsilon_i \phi_i \tag{2.11}$$

donde $F_i = h_i + \frac{1}{2} \sum_j (J_j - K_j) + V_{nn}$ es el operador de Fock y $\varepsilon_i = \langle \phi_i | F_i | \phi_i \rangle$ las energías a un electrón.

Para resolver este sistema de ecuaciones acopladas se utiliza el método autoconsistente (Self Consistent Field, SCF) donde se parte de un grupo de orbitales de prueba $\phi_i^{(0)}$ los

cuales se introducen en la Ec (2.11) y se resuelve. En caso de que los orbitales obtenidos difieran de los iniciales, se repite el proceso. Este método iterativo finalizará cuando la diferencia entre los orbitales de los pasos n-1 y n difieran una cantidad menor al criterio de tolerancia SCF elegido.

En sistemas de capa abierta es muy útil usar el método Hartree-Fock con spin no restringido (*spin unrestricted*) el cual consiste en dar una flexibilidad adicional a los orbitales de forma que sus funciones espaciales sean distintas según sea su función de spin α o β .

2.5. Aproximaciones para representar las funciones a un electrón

2.5.1. Aproximación LCAO

En un principio, se usaron orbitales ϕ_i numéricos, lo que tenía un enorme coste computacional en moléculas y especialmente en sólidos. Posteriormente, se usaron funciones analíticas aproximadas construidas como combinaciones lineales de orbitales atomicos χ_k (LCAO, (*Linear Combination of Atomic Orbitals*))

$$\phi_i = \sum_{k=1}^m c_{ki} \chi_k \qquad m \ge n^\circ \text{ electrones}$$
 (2.12)

Al emplear esta expansión de orbitales, las ecuaciones de Hartree-Fock se transforman en las ecuaciones matriciales de Roothaan-Hartree-Fock:

$$\mathbf{FC} = \mathbf{SC}\varepsilon\tag{2.13}$$

donde ε es una matriz diagonal cuyos elementos corresponden a la energía del orbital molecular, **C** es la matriz cuyas columnas son los coeficientes que definen los orbitales moleculares y **F** y **S** la matriz de Fock, la cual da cuenta del efecto del campo medio de todos los electrones sobre cada orbital y suele escribirse como un producto de una matriz de densidad e integrales de dos electrones, y la matriz de solapamiento cuyos elementos vienen dados por las integrales de solapamiento de las funciones base, respectivamente.

Entre las funciones base para LCAOs se encuentran los orbitales de Slater (STOs) que son exponenciales de tipo hidrogenoide y los orbitales Gaussinaos (GTOs). Los primeros son buenos cerca del origen pero las integrales son muy costosas, mientras que los segundos a pesar de que son peores cerca del origen (se suple combinando varias gaussianas), las integrales son analíticas lo cual facilita bastante los cálculos.

2.5.2. Aproximación ondas planas

Además de la aproximación LCAO, también se han usado en algunos cálculos (VASP) la aproximación de ondas planas. Esta aproximación se trata de la elección natural para sistemas con condiciones de contorno periódicas como los sólidos (ondas deslocalizadas). Permiten pasar de manera sencilla de la representación de espacio real al espacio recíproco (y viceversa) y, además, estas bases generalmente se combinan con orbitales localizados (LCAO) y pseudopotenciales (core).

2.6. Tratamientos de las aproximaciones para representar las funciones a un electrón

Durante el trabajo realizado se han utilizado diferentes bases de funciones χ_k para describir los diversos electrones de cada uno de los átomos que constituyen los sólidos cristalinos. Estas son:

- Bases All-electron: consideran explícitamente todos los electrones de cada átomo, tanto de core como de valencia, dando funciones de base para describirlos.
- **Pseudopotenciales**: dividen los electrones de un átomo entre core y valencia, donde sólo los últimos se describen de forma explícita, mientras que el complicado efecto de los electrones de core se sustituye por un potencial efectivo que tenga aproximadamente los mismos efectos que el potencial real. Esto supone un menor coste de cálculo computacional (menos electrones, base más pequeña) en relación con las bases *All-electron*, lo cual es muy útil para cálculos de sólidos.
- Cores congelados: se trata de una alternativa a los pseudopotenciales donde los coeficientes c_k de las combinaciones de la Ec (2.12) están fijos aunque permiten ortogonalización con orbitales de valencia.

2.7. Métodos Post-Hartree-Fock

El método de Hartree-Fock usa una función de onda multielectrónica aproximada por un solo determinante de Slater construido con los orbitales ocupados, lo que supone que cada electrón se ve sometido a un potencial medio. La forma más inmediata de mejorar esta aproximación consiste en construir una función multielectrónica como combinación de más determinantes, cada uno con un coeficiente de peso que debe calcularse por un el método variacional. De esta forma, se incluyen las diversas interacciones explícitas entre los electrones, dando lugar a las probabilidades de cada una de las configuraciones electrónicas. El principal problema de este método, es que converge muy lentamente, de forma que un cálculo preciso requiere el uso de un enorme número de determinantes de tal manera que los cálculos son muy costosos.

También hay otros métodos alternativos que usan métodos perturbativos, donde la correlación se introduce aplicando teoría de perturbaciones, es decir, como una perturbación de la función de onda. Destaca el modelo de *Moller-Plesset* [4].

La resolución de las ecuaciones correspondientes a estos métodos tienen un alto coste computacional por lo que normalmente se usan para sistemas moleculares y solo de forma muy limitada en algunos cálculos de sólidos. Por ello, surge una alternativa a los métodos ab initio estándar, la teoría del Funcional de la Densidad (DFT).

2.8. Teoría del Funcional de la Densidad (DFT)

En 1964 Hohenberg y Kohn desarrollaron una nueva teoría para los cálculos *ab initio* alternativa a los métodos descritos anteriormente, pues como se dijo, estos eran muy costosos computacionalmente. Dicha teoría se trata de la DFT (*Density Functional Theory*) cuya utilización tuvo un importante auge en la década de los 90 y actualmente se trata de la tecnica de cálculos de primeros principios más utilizada, especialmente en sólidos.

Mientras que los métodos post-HF trabajan con el hamiltoniano exacto y hacen aproximaciones sobre la funcion de onda, la DFT considera la densidad electrónica exacta del problema y hace aproximaciones sobre el hamiltoniano (o la energía). Por tanto, la cantidad relevante es la densidad electronica $\rho(\vec{r})$, la cual viene determinada por la integración con respecto a N - 1 variables electrónicas de la norma cuadrado de la función de onda electrónica. Para una función de onda electrónica normalizada, vendría dada por:

$$\rho(\overrightarrow{r}) = N \int |\psi(\{\overrightarrow{r}\})|^2 d^3 \overrightarrow{r_2} d^3 \overrightarrow{r_3} \dots d^3 \overrightarrow{r_n}$$
(2.14)

Las principales ventajas de trabajar directamente con la densidad electrónica en vez de la función de onda son:[3]

- Al tratarse de un observable, esta puede compararse directamente con datos experimentales
- Es una función real, sólo depende de tres coordenadas y es independiente del número de electrones
- Al igual que la función de onda electrónica, contiene toda la información del sistema.

El planteamiento inicial de la DFT, consistió en definir la energía total correspondiente al Hamiltoniano de la Ec (2.2) de un sistema de N electrones sometidos a un potencial externo $v(\vec{r})$ como:

$$E = \langle T \rangle + \langle V_{ee} \rangle + \langle V_{en} \rangle + V_{nn} = \langle T \rangle + J + \langle V_X \rangle + E_C + \langle V_{en} \rangle + V_{nn}$$
(2.15)

donde J es el término culombiano, $\langle V_X \rangle$ el término de intercambio/canje, E_C la energía de correlación electrónica definida como la energía que le falta a un cálculo Hartree-Fock para que esta sea exacta. En la nomenclatura de la DFT se denomina potencial externo $v(\vec{r})$ al potencial debido a todo lo externo a los electrones, es decir, recoge el potencial de los núcleos y cualquier potencial aplicado sobre el sistema (eléctricos o magnéticos).

El siguiente paso trató de obtener los funcionales para los distintos términos de la Ec (2.15). Aunque había funcionales exactos como $J[\rho(\vec{r})]$ y otros desconocidos como $\langle V_X \rangle + E_C$ que componían una pequeña fracción de la energía total ($\approx 1 \%$), el caso de la energía cinética suponía un gran problema pues este constituía aproximadamente un 50 % de la energía total y los funcionales utilizados eran poco precisos. Por tanto, a partir de aquí se trataron de buscar aproximaciones y métodos para resolver este problema.

2.8.1. Teoremas de Hohenberg y Kohn

Primer Teorema de Hohenberg y Kohn. "Para cualquier sistema electrónico, sometido a un potencial externo $v(\vec{r})$, dicho potencial es determinado univocamente, salvo constante aditiva, por la densidad electrónica del estado fundamental $\rho_0(\vec{r})$ " [3]

Consecuencia de este teorema, es que debido a la correspondencia uno a uno entre la densidad electrónica y el potencial externo, también la hay con el Hamiltoniano, y por tanto con la energía, es decir, la densidad $\rho_0(\vec{r})$ determina la energía y todas las propiedades del estado fundamental, $E_0 = E_0[\rho_0(\vec{r})]$

Si se analiza la Ec (2.15) se observa que tanto $T[\rho]$ como $V_{ee}[\rho]$ son funcionales universales, pues al no depender del potencial externo, son idénticos para todos los sistemas. Así surge el denominado funcional universal de Hohenberg-Kohn $F_{HK}[\rho] = T[\rho] + V_{ee}[\rho]$ de tal manera que la energía puede describirse como:

$$E[\rho] = F_{HK}[\rho] + \int \rho(\vec{r}) v(\vec{r}) d^3 \vec{r}$$
(2.16)

A pesar de que al principio este teorema estaba restringido a estados fundamentales y no degenerados, a día de hoy se conoce que la DFT es válida para cualquier estado fundamental (degenerado o no) y para los estados excitados de menor energía de cada irrep de simetría.

Segundo Teorema de Hohenberg y Kohn. El segundo teorema dice que la densidad electrónica exacta ρ_0 , minimiza el funcional $E[\rho_0]$, es decir:

$$\frac{\delta E[\rho]}{\delta \rho} = 0 \tag{2.17}$$

Por tanto, utilizando el principio variacional y distintas densidades de prueba, se llegará a la energía más baja, la más próxima a la correcta.

2.8.2. Método de Kohn y Sham

Como se ha dicho, el gran problema de la DFT era encontrar una expresión para el funcional de la energía cinética que fuese lo suficientemente preciso, y aunque los dos teoremas citados anteriormente establecen importantes pasos en esta teoría, no dan información alguna sobre cómo obtener dicho funcional o elegir las densidades de prueba. Sin embargo, esto fue solucionado por Kohn y Sham en 1964 quienes desarrollaron un procedimiento que permitía aplicar la DFT a costa de introducir orbitales.

El método de Kohn y Sham considera un sistema efectivo de referencia S de N electrones no interaccionantes bajo un potencial externo $v(\overrightarrow{r})$ con la misma densidad que el sistema electrónico real. Debido a ello, responden de forma exacta a las ecuaciones de tipo Hartree sin término culombiano.

$$\left[-\frac{1}{2}\nabla^2 + v(\overrightarrow{r})\right]\phi_i^S(\overrightarrow{r}) = \varepsilon_i^S\phi_i^S(\overrightarrow{r})$$
(2.18)

De esta manera, la función de onda, la densidad y la energía cinética exactas de S son conocidas. La gran ventaja que se consigue con este método, es que la diferencia de energía entre S y el sistema real es pequeña.

Para el sistema real de electrones interaccionantes, la energía total viene dada por:

$$E[\rho] = T_S[\rho] + (T[\rho] - T_S[\rho]) + J[\rho] + (V_{ee}[\rho] - J[\rho]) + \int \rho(\vec{r}) v(\vec{r}) d^3 \vec{r}$$
(2.19)

donde el primer término entre paréntesis, se trata de la energía cinética de correlación y el segundo la energía de intercambio, correlación y corrección de autointeracción. La suma de ambos términos da lugar a la energía de intercambio y correlación $E_{XC}=(T[\rho] - T_S[\rho]) + (V_{ee}[\rho] - J[\rho])$ la cual es muy pequeña frente a la energía total.

Usando el método variacional del segundo teorema de HK se llega a las ecuaciones a un electrón de Kohn-Sham (KS) sustituyendo el potencial $v(\vec{r})$ por un potencial efectivo $v_{ef}(\vec{r})$ [3]:

$$\left[-\frac{1}{2}\nabla^2 + v_{ef}(\overrightarrow{r})\right]\phi_i^{KS}(\overrightarrow{r}) = \varepsilon_i^{KS}\phi_i^S(\overrightarrow{r})$$
(2.20)

donde $v_{ef}(\vec{r}) = v(\vec{r}) + \int \frac{\rho(\vec{r_j})}{|\vec{r_j} - \vec{r_i}|} d^3 \vec{r_j} + \frac{\delta E_{XC}[\rho]}{\delta \rho}$ contiene la interacción electrón-núcleo, la repulsión electrónica de origen coulombiano y el potencial de intercambio-correlación $v_{xc} = \frac{\delta E_{XC}[\rho]}{\delta \rho}$.

Estas ecuaciones son exactas y contienen toda la correlación electrónica pues no se ha hecho ninguna aproximación. Además con este método se reduce el coste computacional (M^3) frente a HF (M^4) debido a que no hay término de intercambio.

2.8.3. Aproximaciones al potencial de intercambio y correlación

En la ecuaciones de KS todo es conocido salvo el potencial de intercambio y correlación, por lo que hay que escribir funciones aproximadas, basadas en argumentos teóricos y datos experimentales.

La aproximación más simple es la llamada *Local Density Approximation* (LDA) donde se calcula el potencial v_{xc} correspondiente a un de gas de electrones de densidad homogénea

y constante. A pesar de la crudeza de esta aproximación, conduce a resultados aceptables en muchas propiedades de sistemas muy diversos, aunque obviamente falla para muchas otras cosas. Una versión alternativa a esta es la LSDA (*Local Spin Density Approximation*) basada en la aproximación de espín no restringido.

El siguiente nivel de aproximación son los potenciales denominados de tipo GGA (*General Gradient Approximation*), aproximación semi-local pues hace que la energía de correlación e intercambio no solo dependa localmente de la densidad electrónica, si no también del gradiente de la misma. En este trabajo se ha usado uno de estos potenciales, el denominado PBEsol que fue construido como una adaptación a sólidos del funcional PBE, conduciendo a resultados razonables para la geometría de muchos sólidos, y algunas otras mejoras respecto a la LDA. Estos funcionales típicamente tienen un coste computacional doble al de la LDA.

Un nivel de teoría superior lo constituyen los funcionales híbridos, los cuales hacen una mezcla del funcional de intercambio exacto de Hartree-Fock E_X con funcionales de correlación $E_c[\rho]$ LDA o GGA. Al incluir parcialmente el intercambio Hartree-Fock, estos funcionales mejoran muchos de los errores de los funcionales LDA y GGA, aunque ello es a costa no cancelar bien la autointeracción de los electrones y de un alto coste computacional (típicamente son 10 veces más costosos que los cálculos GGA y 20 veces que los LDA). Generalmente mejoran resultados como el gap de las bandas en sólidos, pero siguen sin resolver algunos problemas como el mal tratamiento de las interacciones muy débiles (van der Waals, magnéticas...) o la subestimación de barreras de energía pequeñas. En la literatura se puede encontrar un enorme numero de funcionales híbridos, más sencillos o más sofisticados. En este trabajo se han usado fundamentalmente 3 de los más usados y que han sido ampliamente chequeados en la literatura y en el grupo de Física Teórica de la materia Condensada. El funcional B1WC es de tipo GGA mezclado con un 16 % de canje exacto y normalmente conduce a resultados bien balanceados entre todas las propiedades de una amplia variedad de solidos, al igual que el PW1PW que tiene un 20% de canje exacto. En general, los resultados que se obtienen con estos dos funcionales son bastante similares. En los cálculos moleculares en complejos se ha usado el popular funcional B3LYP que tiene un 25 % de canje exacto y contiene 3 parámetros que se han ajustado de forma que conduzcan a los mejores resultados posibles en una larga colección de propiedades de muchas moléculas.

2.9. Programas utilizados

El uso del ordenador en este trabajo ha sido vital debido a que todos los resultados obtenidos han sido a partir de simulaciones computacionales. Estas simulaciones han sido realizadas en *Tejo*, un cluster de computadores formado por 25 nodos de entre 12 y 20 CPUs y que es propiedad del grupo de Física Teórica de la Materia Condensada. Los cálculos se realizaban en paralelo desde el ordenador portátil personal en el que hubo que realizarse una partición Linux para conectarse remotamente a *Tejo*. Merece la pena destacar el aprendizaje que se ha adquirido en este trabajo en cuanto al manejo del sistema operativo Linux, desde su instalación en el ordenador hasta hacer un uso apropiado de la terminal (Bash/Shell).

2.9.1. Simulaciones de primeros principios

Para realizar el estudio computacional de los sistemas $CuAs_2O_4$, $CuSb_2O_4$ y $CuSb_2O_6$ se ha utilizado principalmente el programa *Crystal* versión 17, el cual permite calcular la estructura electrónica de sistemas periódicos mediante métodos HF y DFT con un gran número de funcionales de intercambio-correlación. Se han realizado cálculos con diversos funcionales, desde funcionales LDA y GGA-PBEsol hasta hibridos B1WC y PW1PW, entre otros.

Con este programa se ha realizado optimizaciones de geometría en las estructuras y el cálculo de las bandas electrónicas, la densidad de estados de estos y cálculo de frecuencias.

Para el cálculo de las bandas hay que especificar las direcciones de la primera zona de Brillouin del espacio recíproco (definida unívocamente por la red directa del sistema) donde se quieran calcular estas así como el número de bandas que se quieran representar y el número de puntos k en los que serán calculadas. Para el cálculo de las densidad de estados se necesita especificar el número de densidades de estados proyectadas que se calcularán, pudiendo elegir entre átomos y, siendo más específico, orbitales atómicos.

Entre las principales ventajas de *Crystal*, destaca el uso completo de las simetrías del grupo espacial del sistema, de manera que a mayor simetría menor coste computacional lo cual hace que sea mucho más rápido frente a otros programas para cálculos DFT. Otra gran ventaja, es la mejor implementación de funcionales híbridos con respecto a otros programas como *VASP* lo cual disminuye el tiempo computacional de los cálculos Esto se debe a que inicialmente *Crystal* fue un programa diseñado para realizar cálculos Hartree-Fock en sistemas periódicos. Ahora bien, este programa también presenta algunas limitaciones, siendo la principal el uso de bases de orbitales atómicos de tipo localizado, lo cual provoca falta de precisión a la hora de calcular sistemas con enlaces muy deslocalizados como es el caso de metales o sistemas con enlace de Van der Waals.

En algunos casos problemáticos, se ha usado también el programa de simulaciones de primeros principios VASP (Viena Ab initio Simulation Package) con el fin de comparar sus resultados con los obtenidos con Crystal. A diferencia de Crystal, en VASP se describen los electrones de Bloch mediante combinaciones de ondas planas deslocalizadas. Este paquete utiliza pseudopotenciales para describir los orbitales de core y el método de ondas planas aumentadas por funciones proyector (projector augmented wave, PAW) para los orbitales de valencia [5]. Este programa ha sido utilizado para realizar cálculos en los sistemas CuSb₂O₄ y CuSb₂O₆ y así comprobar si el cambio de bases y algoritmos lleva a resultados diferentes a los de Crystal.

El último programa de primeros principios empleado en este trabajo ha sido ADF (*Amsterdam Density Functional*), el cual es un programa de simulación molecular y que trabaja exclusivamente con métodos DFT [6]. Con este programa se han realizado simulaciones del complejo CuO_6^{10-} aislado (*in vacuo*) de los tres sistemas estudiados y también añadiendo el campo eléctrico del resto de iones de la red.

2.9.2. Programa Ewald

Una importante herramienta para el estudio de la geometría y propiedades electrónicas de los complejos CuO_6^{10-} es el programa *Ewald*. Se trata de un programa desarrollado en el grupo de Física Teórica de la Materia Condensada, que permite calcular la energía de interacción $-eV_R(r)$ entre un electrón (carga -e) situado en un punto r del interior de un complejo (en este caso un complejo CuO_6^{10-} de cualquiera de los materiales estudiados) y el potencial electrostático $V_R(r)$ creado por los restantes iones del material, considerados como cargas puntuales.

Este potencial electrostático no es considerado por la mayoría de los autores, pese a que se ha demostrado que su efecto resulta fundamental para entender numerosas propiedades ópticas (como la diferencia de color entre dos de las piedras preciosas más famosas, el rubí y la esmeralda [7], o el color azul del primer pigmento artificial sintetizado por el hombre, el Azul Egipcio [8]), estructurales y magnéticas, y determina el estado fundamental de numerosos compuestos.

El programa está basado en un algoritmo mixto Ewald-Ewjen de sumas de potenciales de infinitas cargas, que consiste en dividir el potencial de interacción en dos contribuciones, una de corto alcance que converge facilmente en el espacio real, y otra de largo alcance que lo hace en el espacio recíproco o de Fourier.[9]

En este trabajo se ha usado este programa para calcular y dibujar la energía de interacción $-eV_R(r)$ a lo largo de diferentes direcciones de los complejos CuO_6^{10-} en los materiales estudiados, poniendo de relieve la anisotropía de dicho potencial para visualizar la carencia de una fase de alta simetría relacionada con un efecto *Jahn-Teller*.

2.9.3. Programas de representación de resultados

Para la representación gráfica de las geometrías de las estructuras se han empleado los programas CrystalMaker Software, VESTA (Visualization for Electronic and STructural Analysis) y MOLDRAW.

CrystalMaker se trata de un software potente para materiales cristalinos y moleculares que permite crear gráficos interactivos de la estructura cristalina y sus propiedades. Se ha utilizado para dibujar la mayor parte de la estructuras cristalinas presentes en este trabajo.

VESTA es sistema de visualización 3D para modelos estructurales, datos volumétricos y morfologías de cristales [10]. Las representaciones realizadas con este programa han permitido medir distancias y ángulos entre átomos de los sistemas estudiados, así como la representación de algunas de las estructuras disponibles en este trabajo.

MOLDRAW es un programa similar al anterior, pero que está desarrollado específicamene para la entrada/salida del programa *Crystal* para mostrar y manipular estructuras moleculares y cristalinas. Este programa también se ha utilizado para medir distancias y ángulos entre los átomos de los complejos, y ha sido esencial en los cálculos realizados sobre los sistemas estudiados con estructuras antiferromagnéticas, para poder seleccionar la posición correcta de los espines en los átomos correspondientes.

En cuanto a la representación de las gráficas de este trabajo, se ha utilizado principalmente el software libre *Gnuplot*. También se ha usado el programa de representación online *Crysplot* para dibujar las bandas electrónicas a partir de los resultados obtenidos con el programa *Crystal*.

Capítulo 3

Efecto Jahn-Teller

3.1. Introducción

El efecto Jahn-Teller es una inestabilidad estructural que se produce en muchas moléculas y sólidos, alterando sus propiedades espectroscópicas, magnéticas y estructurales. Este efecto ha sido invocado, por ejemplo, para poder explicar la superconductividad de alta temperatura en los óxidos de cobre, la magnetorresistencia colosal en las manganitas, así como en el origen de muchas reacciones químicas. [2]

Este efecto fue propuesto por primera vez en 1934 por los físicos L. Landau y E. Teller pero no fue hasta 1937 cuando los físicos H. Jahn y E. Teller realizaron la demostración rigurosa mediante teoría de grupos del famoso teorema que cita de la siguiente manera [11]:

Teorema de Jahn-Teller. "Un sistema poliatómico no lineal en un estado electrónico espacialmente degenerado se distorsiona espontáneamente de tal manera que se elimina la degeneración y se alcanza una nueva estructura de equilibrio de menor simetría"

Hay que notar que el teorema de Jahn-Teller es un caso particular de un efecto más general: en cualquier sistema donde los niveles electrónicos no están igualmente ocupados un descenso de la simetría dá lugar a una ganancia de energía. Además, la degeneración del estado electrónico es una condición necesaria para que se produzca la distorsión Jahn-Teller, pero no se trata de una condición suficiente, sino que existen otras posibilidades de distorsión espontánea de un sistema con degeneración electrónica que compiten con esta, e.g el efecto pseudo Jahn-Teller donde un estado degenerado o no, se acopla con un estado excitado separado por un gap de energía mediante un modo vibracional como se discutirá después.

Aunque el efecto Jahn-Teller fue descubierto teóricamente en 1937, la primera evidencia experimental no fue encontrada hasta 1950 por Bleaney y Bowers, mediante la realización de medidas de resonancia paramagnética electrónica en $\text{ZnSiF}_{6}\cdot\text{GH}_2\text{O}:\text{Cu}^{2+}$ a T = 20 K. Estos detectaron una anisotropía en el espectro correspondiente a la distorsión de los complejos $\text{Cu}(\text{H}_2\text{O})_6^{2+}$ debido a este efecto.[12]

Desde entonces, fueron acumulándose las propiedades y sistemas donde se detectaba el efecto, de forma que hoy en día es un efecto ubicuo en la literatura científica de sistemas moleculares y sólidos. Sin embargo, varios trabajos publicados en las dos últimas décadas han mostrado que el efecto es frecuentemente malinterpretado, ya que está basado en un riguroso teorema matemático que, para ser válido, precisa de la existencia de una alta simetría madre donde el estado tenga degeneración espacial. Así, numerosos autores (entre ellos todos los autores de los trabajos relativos a los sistemas estudiados aquí) no son conscientes de esta limitación y conjeturan la existencia de este efecto en sistemas cuya simetría no resulta compatible con la existencia de una fase madre con degeneración espacial.

Un punto fundamental de este trabajo consistirá en dilucidar si en los complejos CuO_6^{10-} que existen en los materiales analizados la geometría final tiene su origen en un efecto *Jahn-Teller* o no.

3.2. Interacciones vibrónicas

El efecto *Jahn-Teller* se debe al acoplamiento entre el estado electrónico y determinados modos de vibración de los átomos del sistema, de forma que la comprensión rigurosa del efecto precisa del estudio de dicho acoplamiento (denominado vibrónico, contracción de vibracional y electrónico).

El acoplamiento vibrónico, suele modelizarse en el marco de la aproximación adiabática mediante teoría perturbativa. El primer paso consiste en resolver la ecuación electrónica para una geometría fija y una vez resuelta, se introduce de forma perturbativa el hamiltoniano de acoplamiento vibrónico el cual es diagonalizado en la base congelada de las funciones de onda electrónicas previamente obtenidas.

El hamiltoniano de la Ec (2.2) puede dividirse en tres partes:

$$H = H_r + H_Q + V(\overrightarrow{r}, Q) \tag{3.1}$$

donde H_r el representa el término electrónico, H_Q la energía cinética de los núcleos y $V(\overrightarrow{r}, Q)$ la energía de interacción electrón-núcleo y núcleo-núcleo. Aquí las coordenadas Q representan todas las coordenadas nucleares correspondientes a los modos normales de vibración y son combinaciones lineales de las posiciones nucleares \overrightarrow{R} ponderadas por las masas.

Para desplazamientos nucleares cercanos al origen $(Q = 0), V(\vec{r}, Q)$ puede desarrollarse en serie de Taylor de tal manera que puede definirse el operador acoplamiento vibrónico como $W(\vec{r}, Q) = V(\vec{r}, Q) - V(\vec{r}, 0)$ [2].

El siguiente paso será obtener las funciones de onda electrónicas en la geometría de referencia, es decir, para núcleos fijos (Q = 0). A continuación, para considerar la perturbación del hamiltoniano vibrónico, se tiene que diagonalizar la matriz acoplamiento vibrónico $W(\vec{r}, Q)$ en la base de funciones obtenidas al resolver la ecuación electrónica en la geometría de referencia. De esta manera se llega a que la energía de la superficie electrónica (APES) tras el acoplamiento vibrónico, viene dada por:

$$E_{e,n}(Q) = E_{e,n}(0) + E_n^{\nu}(Q) \tag{3.2}$$

donde $E_n^{\nu}(Q)$ son los valores propios de la diagonalización de la matriz acoplamiento vibrónico y representan la contribución vibrónica a la energía de la APES en el estado electrónico n.

El efecto Jahn-Teller se produce como consecuencia del acoplamiento vibrónico entre estados que están degenerados orbitalmente. En este trabajo se consideran complejos CuO_6^{10-} que sufren un efecto Jahn-Teller de tipo $E_g \otimes e_g$, es decir, donde la fase madre inicial es octaédrica con un estado fundamental electrónico doblete espacial E_g que es inestable al acoplarse con un modo vibracional doblete e_g que produce una geometría final tetragonal. Las dos vibraciones e_g degeneradas en energía poseen coordenadas Q_{θ} (modo tetragonal) y Q_{ε} (modo ortorrómbico). La componente de simetría tetragonal hace que el estado electrónico sea inestable, por lo que el estado fundamental ²E_g de simetría octaédrica es inestable y se distorsiona de manera espontánea según el modo tetragonal Q_{θ} hasta llegar al mínimo de energía. Dicho mínimo surge de la expresión, en coordenadas polares $(Q_{\theta} = \rho \cos \phi \ y \ Q_{\varepsilon} = \rho \sin \phi)$, para la energía, la cual ha sido obtenida en [2]:

$$E_{\pm}(\rho) = \frac{1}{2} K_e \rho^2 \pm F_e \rho$$
 (3.3)

donde F_e es la constante vibrónica lineal para la coordenada normal Q_{θ} y K_e la constante de fuerza.

Como se ve en la Ec (3.3) el mínimo de la curva se debe a la suma de dos contribuciones, el acoplamiento electrón-fonón que baja la energía, y la energía elástica que la sube. Además también se ve que, en esta aproximación lineal, la APES es independiente del ángulo ϕ y que tiene forma de superficie de revolución denominada "sombrero mexicano". Por otro lado, es posible obtener el valor de la energía de estabilización Jahn-Teller, E_{JT}^E aplicando la condición de mínimo en la Ec (3.3):

$$\frac{\partial E}{\partial \rho} = 0 \Rightarrow \rho_0 = \frac{F_e}{K_e} \Longrightarrow E_{JT}^E = E_-(\rho_0) = \frac{-F_e^2}{2K_e}$$
(3.4)

De esta manera se comprueba que la constante vibrónica lineal F_e representa la intensidad del acoplamiento vibrónico lineal, ya que a medida que esta aumenta, la profundidad del pozo E_{JT}^E también.

Realmente, a pesar de que se está hablando de un mínimo, existen dos mínimos simétricos debido a que el modo de vibración tetragonal Q_{θ} puede alargar el complejo según su eje local z ($Q_{\theta} > 0$) o comprimirlo ($Q_{\theta} < 0$) como se ve en la Figura (3.1). En el primer caso (geometría alargada), los dos átomos según z, se alargan el doble que los otros cuatro correspondientes al plano ecuatorial, mientras que en la geometría comprimida los dos átomos axiales , se encogen el doble que los otros cuatro.

Figura 3.1: Distorsiones tetragonales en un complejo octaédrico por efecto Jahn-Teller $E_g \otimes e_g$. Se muestran los desplazamientos de los átomos ecuatoriales y axiales tanto en la geometría alargada como comprimida.

En la Figura (3.2) se ha realizado un corte transversal con el plano $Q_{\varepsilon} = 0$ del "sombrero mexicano" para poder observar los mínimos de energía en $Q_{\theta} > 0$ y $Q_{\theta} < 0$ formados debido a las contribuciones de la Ec (3.3). También se muestra la posición de ρ_0 y la energía de estabilización de Jahn-Teller.

Figura 3.2: Corte transversal del sombrero mexicano con el plano $Q_{\varepsilon} = 0$. Se representan la geometría octaédrica (curva verde), las geometrías tetragonales alargada y comprimida (curvas rosa) y las contribuciones (tanto para $Q_{\theta} < 0$ como para $Q_{\theta} > 0$) del acoplamiento electrón-fonón que baja la energía, y la energía elástica que la sube (curvas azul y rojo). También se muestra la posición de ρ_0 y la energía de estabilización de Jahn-Teller.

A pesar de que en la Figura (3.2) los dos mínimos son equivalentes, en la realidad el mínimo de la geometría alargada ($Q_{\theta} > 0$) es un poco más profundo que el de la geometría comprimida ($Q_{\theta} < 0$). La causa principal de esta asimetría suele ser la anarmonicidad de las curvas de energía potencial (Figura (3.3)) aunque también contribuye el acoplamiento con estados excitados.

Figura 3.3: Curvas de energía de las geometrías alargada y comprimida. Puede verse que debido a la anarmonicidad, es más estable la geometría alargada (menor energía), existiendo una pequeña barrera de energía B del orden de 30 meV entre ambos estados. Además, las constantes de fuerza de los dos estados, K_{ala} y K_{com} , son distintas.

Esto hace que sea un poco más favorable encoger los cuatro átomos ecuatoriales una distancia d y alargar los dos axiales el doble 2d, que alargar los cuatro átomos ecuatoriales y que los dos axiales se encojan el doble. Por tanto, hay una pequeña barrera de energía B entre el estado alargado y el comprimido cuya magnitud suele ser del orden de solo 20-30 meV [13], lo que resulta fundamental para entender el efecto. Así, cualquier tensión,

interna o aplicada sobre el cristal, que implique una energía de valor superior a esta pequeña barrera implicará la destrucción del efecto, algo que no ocurre con las tensiones aleatorias (random strains) producidas por los defectos e impurezas que siempre existen en un cristal ya que sus energías suelen ser del orden del meV.

3.3. Effecto Jahn-Teller en un complejo CuO_6^{10-}

Para explicar las causas y consecuencias de esta distorsión, se va a considerar un ión libre de cobre Cu^{2+} el cual será introducido dentro de un complejo $\operatorname{CuO}_6^{10-}$ que incialmente tiene una simetría octaédrica (grupo puntual O_h). El efecto Jahn-Teller $E_g \otimes e_g$ ocurrirá como se observa en la Figura (3.4).

Figura 3.4: Desdoblamiento de los estados electrónicos del ión libre de Cu^{2+} a causa del campo cristalino presente en el complejo octaédrico $\operatorname{CuO}_6^{10-}$ y posteriormente al efecto *Jahn-Teller* $E_g \otimes e_g$. Se ha representado la ocupación de los niveles a un electrón y se ha indicado el multiplete fundamental del Cu^{2+} en cada uno de los casos. A la derecha de la figura se muestran los orbitales atómicos d del cobre.

En la Figura (3.4) se han representado los desdoblamientos de los estados eléctrónicos del ión libre Cu^{2+} en las distintas geometrías. Inicialmente, este ión de cobre libre con configuración electrónica $3d^9$, simetría esférica y estado fundamental ²D, sufre un desdoblamiento de sus cinco orbitales *d* degenerados al pasar al entorno octaédrico (grupo puntual O_h) del complejo $\operatorname{CuO}_6^{10-}$. Dicho desdoblamiento a causa del campo cristalino del resto de iones del cristal, hace que los cinco niveles a un electrón degenerados en el ión Cu^{2+} , se desdoblan en un triplete t_{2g} (orbitales d_{xy} , d_{xz} y d_{yz}) y un doblete e_g (orbitales $d_{x^2-y^2}$ y $d_{3z^2-r^2}$). Por tanto, el multiplete fundamental en la nueva configuración es ²E_g, que tiene degeneración orbital 2. Sin embargo, como se dijo más arriba este estado con degeneración orbital no es estable, por lo que según el teorema de *Jahn-Teller* se distorsionará espontáneamente bajando la simetría, levantando la degeneración orbital produciendo una ganancia de energía.

La principal consecuencia de este efecto es que el complejo CuO_6^{10-} sufre una distorsión tetragonal alargada bajando su simetría desde O_h a D_{4h} . De esta manera, el triplete del

multiplete fundamental ²E_g se desdobla en un singlete b_{2g} (orbitales d_{xy}) y un doblete e_g (orbitales d_{xz} y d_{yz}), mientras que el doblete se desdobla en dos singletes a_{1g} (orbitales $d_{3z^2-r^2}$) y b_{1g} (orbitales $d_{x^2-y^2}$). Debido a que el efecto Jahn-Teller es una perturbación lineal con la distorsión, en los desdoblamientos se mantiene el centro de gravedad de los niveles desdoblados. Por tanto, el nivel singlete b_{2g} , con 2 electrones, sube el doble de lo que baja el doblete e_g con 4 electrones, por lo que no hay ganancia neta de energía, mientras que el nivel singlete a_{1g} , con 2 electrones, baja lo mismo que lo que sube el singlete b_{1g} , con 1 electrón, de manera que la distorsión produce una ganancia neta de energía. Finalmente, el estado fundamental, es el ²B_{1q}, singlete orbital.

Si se diese el caso de que se produjése un efecto Jahn-Teller con geometría comprimida, entonces el orbital $d_{3z^2-r^2}$ estaría por encima del $d_{x^2-y^2}$ en el doblete e_g y el estado fundamental sería ${}^2A_{1g}$.

Otra forma de entender el efecto Jahn-Teller en un complejo como el $\operatorname{Cu0}_6^{10-}$, es a través de la densidad electrónica. Considerar un complejo $\operatorname{Zn0}_6^{10-}$ octaédrico con el ion Zn^{2+} , que tiene una configuración $3d^{10}$ (capa cerrada) y radio iónico muy similar a Cu^{2+} . La densidad electrónica del Zn^{2+} es isótropa y empuja por igual a los iones ligandos O^{2-} . En el caso del complejo $\operatorname{Cu0}_6^{10-}$ octaédrico con el ion Cu^{2+} , tiene una configuración $3d^9$ (capa abierta) y así su densidad electrónica es anisótropa y, en un entorno octaédrico, ejerce distinta fuerza sobre los ligandos O^{2-} axiales y ecuatoriales, dando lugar a una distorsión tetragonal alargada según el eje z como se observa en la Figura (3.5).

Figura 3.5: Densidades electrónicas de los complejos $\operatorname{Zn0}_6^{10-}$ y $\operatorname{Cu0}_6^{10-}$.

3.4. Efecto pseudo Jahn-Teller

Para finalizar este tema vamos a describir brevemente el llamado efecto pseudo Jahn-Teller (también llamado efecto Jahn-Teller de segundo orden), que ya se ha citado anteriormente y aparecerá en los análisis de los complejos CuO_6^{10-} de los materiales estudiados. Además de explicar sus características básicas, se desea clarificar algunos frecuentes malentendidos sobre este efecto.

El efecto *pseudo Jahn-Teller* consiste en el acoplamiento a través de un modo de vibración entre el estado fundamental (degenerado o no) y otro excitado, separado del fundamental por un gap que da lugar lugar a una inestabilidad estructural que, dependiendo de la magnitud del acoplamiento, puede producir una ruptura de la simetría. El nombre de efecto pseudo Jahn-Teller es poco afortunado ya que induce erróneamente a pensar que se trata de una mera extensión del efecto Jahn-Teller (acoplamiento vibrónico entre estados degenerados) al caso en que los estados están cuasi-degenerados o pseudo-degenerados (aunque nadie cuantifica lo que esto significa). Por contra, el acoplamiento vibrónico pseudo Jahn-Teller puede dar lugar a inestabilidades incluso en casos en que la separación entre los dos estados sea enorme, como ocurre en el caso de la distorsión trigonal C_{3v} de la molécula NH_3 [2] [14]. Si bien los efectos Jahn-Teller y pseudo Jahn-Teller tienen en común que su origen se debe a un acoplamiento vibrónico entre dos estados electrónicos, su física es bien distinta. El efecto Jahn-Teller se produce únicamente en sistemas en los que el estado electrónico tenga degeneración espacial y siempre da lugar a una inestabilidad de tipo *on-center*, es decir, el centro de gravedad del sistema no se desplaza. Además, la constante de fuerza de los estados es siempre positiva. Por contra, el efecto pseudo Jahn-Teller se produce en todos los sistemas, sin ninguna restricción de degeneraciónn o cuasi-degeneración, y puede dar lugar a inestabilidades on-center (constante de fuerza positiva, PJT débil) u off-center (constante de fuerza negativa, PJT fuerte) como se ve en la Figura (3.6).

Figura 3.6: APES correspondiente al acoplamiento vibrónico *pseudo Jahn-Teller* entre dos estados Γ y Γ' separados por un gap 2 Δ . Se muestran las consecuencias de un efecto *pseudo Jahn-Teller* fuerte (derecha) y débil (izquierda). V_1 es la constante de acoplamiento lineal entre los estados Γ y Γ' .

En la Figura (3.6) se muestra el acoplamiento del estado fundamental Γ (con constante de fuerza $K_0 > 0$) con un estado excitado Γ' (separado de Γ por un gap de energía 2Δ) a través de un modo vibracional de coordenada Q, que produce una subida del estado Γ' y una bajada del estado Γ . Se ha distinguido entre el resultado que produciría un efecto *pseudo Jahn-Teller* fuerte y débil.

En el caso débil (K>0), el valor de la constante K disminuye de tal manera que la curvatura de la APES se reduce pero sigue manteniendo el mínimo en Q = 0 por lo que no se reduce la simetría. En cambio, el caso fuerte hace que el mínimo en Q = 0 se convierta en un máximo y así aparece una inestabilidad provocando la bajada espontánea de la simetría del sistema.[2]

Capítulo 4

Estudio computacional del sistema $CuAs_2O_4$

4.1. Datos Experimentales

La estructura cristalina del arsenito de cobre fue medida por difracción de rayos X por Caslin et al [15][16] (Figura (4.1)). Este sistema posee una estructura cristalina tetragonal tipo P (grupo espacial de simetría $P4_2/mbc$) con parámetros de malla a = 8.591 Å y c = 5.544 Å, 4 fórmulas por malla y cargas iónicas nominales Cu²⁺, As³⁺ y O²⁻. Se observa una estructura en capas alternas de As y Cu perpendiculares al eje c, y las capas de Cu están formadas por complejos CuO₆¹⁰⁻ formando cadenas de iones Cu²⁺ (con dos iones O²⁻ entre cada dos iones Cu²⁺) paralelas al eje c. La distancia entre los iones Cu²⁺ primeros vecinos a lo largo de las cadenas es de 2.786 Å, mucho más corta que entre primeros vecinos en la capa, 6.075 Å. En la Figura (4.1) se muestran también los ejes locales (X, Y, Z) de un complejo CuO₆¹⁰⁻ que no coinciden con los cristalográficos (a, b, c). Los complejos tienen una geometría de octaedro alargado según el eje Z (simetría local tetragonal, grupo D_{4h}) con 4 ligandos O²⁻ en el plano ecuatorial a distancia del ión central Cu²⁺ $R_{eq} = R_X = R_Y = 1.945$ Å y 2 ligandos axiales a distancia $R_{ax} = R_Z = 2.471$ Å. A la vista de esta geometría todos los autores que han estudiado este material conjeturan que los complejos tetragonales son el resultado de un efecto Jahn-Teller [15]. Sin embargo, después se mostrará que los cálculos y análisis realizados desmienten que la geometría de este material sea debida al efecto Jahn-Teller.

Figura 4.1: Celda unidad prolongada de manera que se incluye la representación de un complejo ${\rm CuO}_6^{10-}$ completo.

En cuanto a su magnetismo, medidas de susceptibilidad magnética relaizadas por Caslin et al [15] [16] [17] muestran un orden ferromagnético (FM) de los spines S = 1/2 de los iones Cu²⁺ por debajo de T = 7.4 K. Además, cálculos DFT realizados por los mismos autores parecen indicar que las interacciones magnéticas son muy dominantemente a lo largo de las cadenas de iones Cu²⁺ y que el orden FM se debe a un balance entre fuertes interacciones FM a primeros vecinos en las cadenas, un débil antiferromagnetismo (AFM) en la cadena a segundos vecinos y con interacciones despreciables entre cadenas.

Se ha econtrado mediante espectroscopía Raman y difracción de Rayos X que este sistema sufre una transición de fase bajo presión a P = 9.2 GPa [17] en donde la estructura se distorsiona ligeramente pasando del grupo espacial de simetría $P4_2/mbc$ al $P\bar{4}2_1c$. Las principales diferencias estructurales entre la *fase I* y *fase II* se encuentran en las distorsiones que sufren los oxígenos del complejo CuO₆¹⁰⁻, concretamente en los dos que pertenecen al plano axial pues el ángulo O-Cu-O es distinto de 180° (169.5° a 9.2 GPa). A P = 11.5 GPa, los parámetros de malla de la *fase II* de alta presión son a = 7.995 Å y c = 5.349 Å y hay un notable cambio de las propiedades magnéticas, hay un orden FM debido tanto a las interacciones con los primeros vecinos como con los segundos vecinos, junto a una importante reducción de la *temperatura de Curie* (T_C).

Figura 4.2: Celda unidad prolongada de la *fase II* de manera que se incluye la representación de un complejo CuO_6^{10-} completo.

4.2. Optimización de la geometría

La primera parte del estudio consistió en optimizar la geometría del sistema CuAs₂O₄, es decir, partiendo de la geometría experimental se realizan cálculos DFT de primeros principios para encontrar la geometría que tiene la mínima energía a T = 0 K. Para ello se utilizó el programa *Crystal* empleando dos funcionales híbridos distintos *B1WC* (16% de canje exacto) y *PW1PW* (20% de canje) y diferentes bases, tanto *All-electron* como bases con pseudopotenciales. Se realizaron cálculos tanto en el estado FM (experimental) como en el estado AFM (Figura (4.3)). Los principales resultados de las optimizaciones de geometría obtenidos, se presentan en la Tabla (4.1) donde son comparados con los datos experimentales.

Figura 4.3: Estructuras magnéticas del compuesto CuAs₂O₄ optimizadas con Crystal.

Fase	basis (Cu, O, As)	Functional	$a/{ m \AA}$	$c/{ m \AA}$	$R_{eq}/{ m \AA}$	$R_{ax}/{ m \AA}$	$\Delta E/\mathrm{meV}$
Exp	-	-	8.591	5.544	1.945	2.471	-
FM	doll, bredow, causa	B1WC	8.458	5.471	1.943	2.364	-
\mathbf{FM}	doll, bredow, pob_TZVP	B1WC	8.513	5.516	1.942	2.402	-
\mathbf{FM}	pob_TZVP	B1WC	8.420	5.534	1.930	2.354	-
\mathbf{FM}	pob_TZVP	PW1PW	8.598	5.582	1.937	2.460	0
AFM	pob_TZVP	PW1PW	8.599	5.587	1.936	2.463	+ 33

Tabla 4.1: Resultados de los parametros de malla $a \ y \ c \ y$ las distancias Cu-O, $R_{eq} \ y R_{ax}$, obtenidos en las optimizaciones de geometría realizadas en CuAs₂O₄ en la *fase I*, comparados con los valores experimentales. Para cada cálculo se muestra el estado magnético impuesto, las bases de funciones y los funcionales híbridos usados. Para las bases se han usado las nomenclaturas doll-bredow-causa para unas bases *All-electron* Cu_86-4111(41D)G_doll_2000 y O_8-411d1_bredow_2006, y el pseudopotencial _DURAND-21d1G_causa_1991.

En la Tabla (4.1) puede verse que los resultados obtenidos mediante la optimización de geometría con Crystal poseen una discrepancia menor al 1 % con los valores medidos experimentalmente. Como se dijo previamente, el funcional PW1PW y las bases pob_TZVP conducen a los mejores resultados ya que las bases pob_TZVP utilizadas, han sido optimizadas para dicho funcional. Por último, hay que notar que la diferencia entre la fase FM y la AFM es de tan sólo 33 meV, lo que muestra la sutileza del orden magnético y así la necesidad de utilizar simulaciones de primeros principios de gran precisión como las que se han llevado a cabo usando DFT con funcionales híbridos ampliamente testados en sólidos.

Con el fin de dar una idea de la gran reducción de tiempo de computación que implica el uso completo de la simetría en el programa *Crystal*, se hizo una prueba sustituyendo el verdadero grupo espacial $P4_2/mbc$ por su subgrupo $P4_2bc$, comprobando que los resultados son iguales, pero el tiempo de computación fue aproximadamente el doble.

4.3. Origen de la distorsión de los complejos CuO_6^{10-}

Una simple inspección de la estructura del sistema $CuAs_2O_4$ muestra que la geometría de los complejos CuO_6^{10-} no parece compatible con una distorsión de tipo Jahn-Teller.

En primer lugar, se trata de un sistema en capas perpendiculares al eje c, de forma que la estructura es claramente anisótropa, es decir, las propiedades deben ser diferentes en los planos y entre los planos y así no parece lógico que provenga de una fase madre de alta simetría en que los complejos CuO_6^{10-} tengan simetría octaédrica. Por otra parte, en la Figura (4.4) ya puede verse que los ángulos que forman los diferentes oxígenos con el cobre del complejo CuO_6^{10-} en los planos ecuatoriales y axiales, no son propios de una distorsión provocada por este efecto donde la geometría tetragonal da lugar a ángulos de 90°.

Figura 4.4: Ángulos formados por dos oxígenos y el cobre del complejo CuO_6^{10-} en los planos ecuatoriales y axiales.

Asimismo, los complejos CuO_6^{10-} son intrínsecamente anisótropos ya que cada oxígeno en la dirección local axial Z está unido a dos arsénicos, mientras que los oxígenos ecuatoriales en las direcciones locales X, Y están unidos a un cobre y un arsénico.

Con el fin de obtener la fase madre de alta simetría, se ha realizado una optimización de geometría de un hipotético material como CuAs_2O_4 en la *fase I* ($P4_2/mbc$) pero sustituyendo todos los iones Cu^{2+} (capa abierta $3d^9$) por iones Zn^{2+} (capa cerrada, $3d^{10}$), donde no puede haber distorsiones *Jahn-Teller*. Además, el radio iónico de estos dos iones es muy similar (radio iónico es $R_{Zn^{2+}}=0.89$ Å, casi igual al de Cu^{2+} $R_{Cu^{2+}}=0.87$ Å), lo que descarta la existencia de importantes relajaciones estructurales debidas a diferencias de tamaño. Aunque este compuesto ZnAs_2O_4 en *fase I* no existe, su geometría optimizada corresponde a la fase madre buscada.

En la Figura (4.5) se muestra la representación de la estructura del ZnAs_2O_4 optimizada y en la Tabla (4.2) los resultados obtenidos en dicha optimización, los cuales serán comparados con los obtenidos experimentalmente en el sistema CuAs $_2\text{O}_4$. Todos los cálculos se han realizado con el funcional PW1PW y las bases All-electron pob_TZVP para los tres iones.

Figura 4.5: Celda unidad prolongada de manera que se incluya la representación de un complejo tetragonal ZnO_6^{10-} completo.

$\mathbf{Sistema}$	$a/{ m \AA}$	$c/{ m \AA}$	$R_{eq}/{ m \AA}$	$R_{ax}/{ m \AA}$	$R_{ax} - R_{eq}/\text{\AA}$
$CuAs_2O_4$ Experimental	8.591	5.544	1.945	2.471	0.526
$CuAs_2O_4$ optimizada FM	8.598	5.582	1.937	2.460	0.529
$ZnAs_2O_4$ optimizada	8.368	5.695	2.033	2.202	0.169

Tabla 4.2: Geometrías de equilibrio obtenidas para CuAs₂O₄ (estado FM) y ZnAs₂O₄ en simetría $P4_2/mbc$. *a* y *c* son los parámetros de malla y R_{eq} y R_{ax} las distancias interatómicas en los complejos CuO₆¹⁰⁻. Los cálculos se han realizado con el funcional PW1PW y las bases *All-electron* de alta calidad pob_TZVP. Por comparación, se muestran los datos experimentales de CuAs₂O₄.

Con los datos que recoge la anterior tabla, se puede ver como los complejos $\operatorname{ZnO}_6^{10-}$ de la fase madre no son octaédricos sino que tienen una fuerte distorsión tetragonal, con un valor calculado de $R_{ax} - R_{eq} = 0.169$ Å, lo que descarta la posibilidad de un efecto Jahn-Teller como origen de la distorsión de los complejos $\operatorname{CuO}_6^{10-}$. En efecto, si se parte de la fase madre $\operatorname{ZnAs}_2\operatorname{O}_4$ y se sustituyen todos los iones Zn^{2+} por Cu^{2+} , cada complejo $\operatorname{CuO}_6^{10-}$ ya tiene una importante distorsión tetragonal alargada, el electrón desapareado se coloca en el orbital $b_{1g}(x^2 \cdot y^2)$ y el estado fundamental es ${}^2B_{1g}$, sin degeneración orbital. La sustitución del Zn^{2+} (capa cerrada) por Cu^{2+} (capa abierta) da lugar a un efecto pseudo Jahn-Teller sin ruptura de la simetría, es decir, hay un acoplamiento vibrónico con estados excitados que provoca una relajación de los complejos $\operatorname{CuO}_6^{10-}$ pero se mantiene la simetría tetragonal alargada de los complejos $\operatorname{ZnO}_6^{10-}$ de la fase madre. Pero en ningún caso se puede hablar de un efecto Jahn-Teller ya que esto implica la existencia de una degeneración espacial en la fase madre (algo que no ocurre en este caso) que se levanta mediante el acoplamiento con un modo de vibración e_q .

Por otra parte, se han analizado las constantes de fuerza de los enlaces $Zn^{2+}-O^{2-}$. Para ello, se han realizado cálculos *single point* en *Crystal* en los que se calcula la energía del sistema cristalino para una geometría fija. Para este caso, se partió de la geometría de equilibrio obtenida previamente en la optimización y se fueron desplazando ligeramente los iones O^{2-} de sus posiciones de equilibrio en el complejo. Esto se realizó para uno de los oxígenos ecuatoriales (X o Y) y para otro de los axiales (Z) y en cada caso se obtuvo la nueva energía de equilibrio del sistema. En la Figura (4.6) se representa la variación de la energía ΔE al desplazar una distancia d un ion oxígeno ecuatorial o axial de sus posiciones de equilibrio. Se ha representado también el ajuste polinómico de grado 3 de tipo $\Delta E = K_1 d^2 + K_2 d^3$ realizado en ambos casos.

Figura 4.6: Representación de la energía relativa del sistema cristalino ΔE frente al desplazamiento de los iones O²⁺ de sus posiciones de equilibrio. Se muestra tanto los resultados obtenidos con *Crystal* correspondientes a los oxígenos ecuatoriales (rombo negro,línea verde) como a los axiales (círculos rojos, línea azul). Se representa también el ajuste polinómico de grado 3 realizado en ambos casos (curva azul/verde).

Los valores obtenidos para K_1 y K_2 mediante el ajuste polinómico de grado tres (ver Figura (4.6)), se resumen en la Tabla (4.3):

Curva	$K_1/\text{eV}\text{\AA}^{-2}$	$K_2/\text{eV}\text{\AA}^{-3}$
$E_{X,Y}$ (verde)	7.284	-1.459
E_Z (azul)	6.479	-0.555

Tabla 4.3: Constantes de fuerza K_1 y K_2 obtenidas para los desplazamientos ecuatoriales y axiales de los oxígenos en el complejo mediante un ajuste polinómico a los resultados obtenidos con el programa *Crystal*.

La constante K_1 se relaciona con la constante de fuerza del enlace $\operatorname{Zn}^{2+}-\operatorname{O}^{2-}$ mientras que la constante K_2 se relaciona con la anarmonicidad. Como se observa en la Tabla (4.3) las constantes de fuerza de las direcciones ecuatoriales y axiales son distintas, es decir, $K_1(X,Y) \neq K_1(Z)$. Esto añade otro argumento más a que no se trata de un efecto Jahn-Teller pues muestra claramente una anisotropía en ambas direcciones.

También se ha calculado con el programa *Ewald* la energía de interacción $-eV_R(r)$ entre un electrón colocado a lo largo de dos direcciones del complejo $\operatorname{CuO}_6^{10-}$ (una ecuatorial X o Y y otra axial Z) y el potencial electrostático creado por el resto de iones del cristal de $ZnAs_2O_4$. Los resultados se muestran en la Figura (4.7).

Figura 4.7: Variación a lo largo de las direcciones ecuatorial (X,Y) y axial (Z) de un complejo CuO_6^{10-} en ZnAs₂O₄ de la energía potencial de interacción entre un electrón del complejo y el potencial $V_R(r)$ creado por el resto de iones del cristal.

Puede observarse en la Figura (4.7) que la energía potencial es muy distinta en una dirección del plano ecuatorial (X, Y) de los complejos o en la axial (Z). Sin embargo, esta anisotropía es muy peculiar, bastante diferente a la encontrada en otros materiales en capas. Aquí puede verse que la anisotropía es pequeña en la región interna de los complejos y hay un cruzamiento a partir del cual la energía potencial es muy diferente en las dos direcciones. Se va a ver que esta peculiar conducta que tiene consecuencias a la hora de determinar el gap de energía que introduce entre los orbitales de $\operatorname{CuO}_6^{10-} a_{1g}(3z^2 - r^2)$ y $b_{1g}(x^2 - y^2)$. Este resultado muestra de nuevo que los complejos $\operatorname{CuO}_6^{10-}$ de la fase madre ZnAs₂O₄ son muy anisótropos así hay que descartar que en CuAs₂O₄ se pueda producir una distorsión de tipo Jahn-Teller.

Finalmente, se han llevado a cabo mediante el programa molecular ADF cálculos en complejos ZnO_6^{10-} en ZnAs_2O_4 , usando la geometría de equilibrio optimizada con *Crystal*, es decir, con $R_{eq} = 1.937$ Å y $R_{ax} = 2.460$ Å. Todos los cálculos muestran que la covalencia es demasiado grande (carga sobre los orbitales $3z^2 - r^2$ y $x^2 - y^2$ del cobre inferior al 40%), debido a que los muchos electrones de los dianiones O^{2-} tienden a irse hacia la parte exterior del complejo donde no hay electrones de otros átomos.

Primero se consideró un complejo ZnO_6^{10-} aislado (configuración de capa cerrada, todos los orbitales ocupados están totalmente llenos), obteniendo un gap entre los orbitales $a_{1g}(3z^2 - r^2)$ y $b_{1g}(x^2 - y^2)$ de 0.41 eV. Después se consideró el efecto sobre un electrón en el complejo del potencial $V_R(r)$ de las infinitas cargas puntuales del resto de iones de ZnAs₂O₆, y el gap se incrementó hasta 0.74 eV, es decir, el potencial interno del resto de la red cristalina aumenta el gap en 0.33 eV. Sin embargo, se sospecha que este efecto está sobrevalorado ya que al ser la covalencia excesiva los electrones del complejo se mueven por la zona exterior del complejo más tiempo del que debería corresponder a un complejo real en el cristal, y en esa zona, como se ve en la Figura (4.7), el potencial es muy anisótropo. A continuación se sustituyó en el complejo el ión Zn^{2+} por un Cu^{2+} , manteniendo la geometría del complejo y se repitieron los dos cálculos anteriores. Dado que el ión Cu^{2+} tiene una configuración de capa abierta $3d^9$, con el fin de no primar a ninguno de los dos orbitales a_{1g} y b_{1g} , los cálculos se han realizado con una configuración artificial $a_{1g}^{1,5}b_{1g}^{1,5}$. Primero se consideró un complejo $\operatorname{CuO}_6^{10-}$ aislado, obteniendo un gap entre los orbitales $a_{1g}(3z^2 - r^2)$ y $b_{1g}(x^2 - y^2)$ de 0.64 eV. Después se consideró el efecto sobre un electrón en el complejo del potencial $V_R(r)$ de las infinitas cargas puntuales del resto de iones de ZnAs₂O₆, y el gap se mantuvo en 0.64 eV, es decir, el potencial interno del resto de la red cristalina no cambió el gap, algo muy distinto de lo que ocurría en ZnO₆¹⁰⁻ donde el gap se incrementó en 0.33 eV. Sin duda, esto se debe a que en CuO₆¹⁰⁻ se encuentra una covalencia muy pequeña (los electrones pasan en torno al 70 % de su tiempo sobre los orbitales $3z^2 - r^2$ y $x^2 - y^2$ y así se mueven por la parte interna del complejo, donde los potenciales en las direcciones ecuatoriales y axial son bastante parecidos (Figura (4.7)). La covalencia tan distinta calculada para los complejos ZnO₆¹⁰⁻ y CuO₆¹⁰⁻ puede ser debida a las diferencias de electronegatividad entre los átomos de Zn y Cu, aunque el efecto parece estar potenciado por las características de estos complejos muy cargados negativamente.

En definitiva, los cálculos realizados con el programa ADF sobre complejos ZnO_6^{10-} y CuO_6^{10-} no dan mucha información sobre el efecto de la anisotropía del potencial del resto de la red, aunque los diversos resultados obtenidos pueden entenderse en base a los potenciales de la Figura (4.7).

4.4. Estructura de bandas electrónicas y Densidad de estados

En esta sección se mostrarán los resultados obtenidos con *Crystal* para el cálculo de las bandas electrónicas y la densidad de estados del sistema $CuAs_2O_4$, cuya primera zona de *Brillouin* (celda primitiva en el espacio recíproco que tiene todas las simetrías puntuales de la red de Bravais) se muestra en la Figura (4.8) junto con los puntos de alta simetría que son de interés.

Figura 4.8: Primera zona de *Brillouin* correspondiente al sistema CuAs₂O₄. a_1^* , a_2^* y a_3^* son los vectores primitivos de la red recíproca tetragonal *P*. La zona enmarcada en rojo es la región distinta por simetría y por tanto, sólo es preciso estudiar los estados contenidos en su interior, aunque realmente basta con dibujar las bandas de energía para los estados que van según las direcciones entre los estados que bordean la zona roja.[18]

Antes de mostrar los resultados de los cálculos, se recuerda que las configuraciones de los iones aislados son Cu²⁺: $1s^22s^22p^63s^23p^63d^94s^0$, As³⁺: $1s^22s^22p^63s^23p^63d^{10}4s^24p^3$ y O²⁻: $1s^22s^22p^6$. Con esas configuraciones y teniendo en cuenta que hay 4 fórmulas por malla, se obtienen 284 bandas, aunque no se representarán las primeras 180 bandas de core.

En la Figura (4.9) se muestra la estructura de bandas del CuAs₂O₄ en el estado FM. Para ello, a partir de los datos obtenidos en la optimización de geometría dados en la Tabla (4.1), se ha realizado un cálculo con el programa *Crystal* para siete direcciones k diferentes, $\Gamma \to X \to R \to Z \to \Gamma \to M \to A \to Z$.

Por otro lado, en la Figura (4.10) se representa la contribución de los átomos de cobre, arsénico y oxígeno a la densidad de estados total y en la Figura (4.11) se muestran las contribuciones a las densidades de estados proyectadas (PDOS) de los cinco orbitales atómicos d del cobre, es decir, $d_{xz}, d_{yz}, d_{xy}, d_{z^2}$ y $d_{x^2-y^2}$ (notar que aquí las direcciones x, y, z corresponden a las cristalográficas a, b, c, no a las locales de los complejos).

BAND STRUCTURE - OPEN SHELL CASE

Figura 4.9: Estructura de bandas del CuAs₂O₄ para 7 direcciones k de la primera zona de *Brillouin* mostrando el nivel de *Fermi* (línea roja). Debido a que se ha hecho el cálculo con *spin-unrestricted* se dibujan las bandas en el caso de *spin-up* (líneas continuas) y *spin-down* (líneas punteadas). También se muestra la dirección del gap indirecto (línea azul).

Figura 4.10: DOS total junto las PDOS de los diferentes átomos, Cu^{2+} (azul), As³⁺ (verde) y O²⁻ (rojo). Se han calculado para *spin-up* y *spin-down* y se muestra el nivel de Fermi (línea vertical negra).

Figura 4.11: Contribuciones a las PDOS de los orbitales atómicos d del cobre según los ejes cristalográficos del sistema CuAs₂O₄ para los casos de *spin-up* y *spin-down* y se muestra el nivel de Fermi (línea vertical negra).

Las Figuras (4.9, 4.10, 4.11) muestran que el estado magnético corresponde a un FM, con una imanación espontánea no nula, ya que las bandas y DOS up y down no son iguales.

Puede observarse que hay una banda muy estrecha con caracter dominante d_{xz} y d_{yz} (degenerados) de Cu y *spin down* que está desocupado (marcado en las 3 figuras), lo que llevado a ejes locales del complejo CuO_6^{10-} corresponde a un hueco en el orbital $d_{x^2-y^2}$, que es lo esperable para un complejo con geometría tetragonal alargada.

También se observa que los estados de la BV tienen una gran mezcla de los orbitales 3d de Cu y 2p de O, con mezclas muy pequeñas de As. Los pronunciados picos de la densidad de estados en la BV se deben a que las bandas con caracter d de Cu son bastante estrechas ya que los electrones se localizan bastante alrededor del Cu, produciendo singularidades de *van Hove*. En cambio, la parte inferior de la BC tiene un carácter muy dominante 4s de As, con pequeñas mezclas de O y mínimas de Cu. El gap entre la BV y la BC es indirecto de valor 3.5 eV, de forma que este sistema es aislante, pero de gap pequeño. Este resultado no se puede comparar con datos experimentales ya que no ha sido medido dicho gap.

Tras este análisis se puede concluir que el sistema se trata de un aislante muy covalente (cobres y oxígenos muy mezclados) con gap indirecto de valor 3.5 eV

4.5. Transición de fase bajo presión

En este sistema se ha estudiado también la transición de fase que sufre el sistema arsenito de cobre a 9.2 GPa medida por Caslin et al [17]. Para ello se han realizado cálculos de optimización de geometría tanto en la estructura de *fase I* ($P4_2/mbc$) como de la *fase II* ($P\bar{4}2_1c$) bajo presiones externas comprendidas entre los 0 y 12 GPa.

En un primer momento se representó la variación de energía que sufría el sistema al ir aumentando la presión en ambas fases con el fin de observar un punto de corte entre ambas curvas y así determinar el punto donde se produce dicha transición. Sin embargo, en este caso no es posible estabilizar la transición ya que se produce de manera progresiva y no por vencimiento de una barrera (como por ejemplo en la transición de fase bajo presión de grafito a diamante), por lo que al hacer la representación se observa que ambas curvas prácticamente se superponen haciendo imposible observar dicho punto de corte.

Esto se debe a que la optimización de geometría conduce a la geometría de menor energía y por tanto la *fase I* al aplicar presión conduce a la *fase II* y viceversa. En el caso de la *fase II*, el tener un grupo de menor simetría es equivalente a tener un "grado de libertad" más que la *fase I* con lo que conduce a resultados prácticamente idénticos a esta al someterla a bajas presiones. No obstante, esto no es del todo posible en la *fase I* al poseer un grupo espacial de mayor simetría, lo que hace que, a pesar de seguir obteniendo resultados similares, sean lo suficientemente distintos para poder estudiar la transición de fase mediante la variación de los parámetros de malla, las distancias interatómicas, los ángulos...

En la Figura (4.12) y Figura (4.13) se muestra la variación de los parámetros de malla $a \ge c \ge d$ las distancias interatómicas de Cu-O ecuatoriales y axiales en el complejo de CuO₆¹⁰⁻ $R_{ax} \ge R_{eq}$ en función de la presión externa P tanto en la *fase I* como en la *fase II*.

Figura 4.12: Variación de los parámetros de malla $a \ge c$ en función de la presión externa P para ambas fases. Se ha dibujado una línea negra discontinua para P = 9.2 GPa.

Figura 4.13: Variación de las distancias interatómicas de Cu-O ecuatoriales y axiales en el complejo de CuO₆¹⁰⁻ R_{ax} y R_{eq} en función de la presión externa P para ambas fases. Se ha dibujado una línea negra discontinua para P = 9.2 GPa.

Se observa una disminución tanto de los parámetros de malla como las distancias interatómicas en ambas fases al ir aumentando la presión externa. Al comparar con los resultados experimentales de Caslin et al [17] (Figura (4.14)), se comprueba que se obtienen los mismos resultados. Por un lado la compresión del parámetros de malla a es bastante mayor que en c, y por otro, en las distancias interatómicas R_{ax} tiene un decrecimiento no lineal hasta disminuir un 10 %, mientras que en R_{eq} apenas decrece hasta un 1 %. Esto es coherente con las constantes de fuerza obtenidas en la Tabla (4.3) y Figura (4.6) pues como es lógico cuesta mucho más contraer los enlaces cortos del complejo (ecuatoriales) que los largos (axiales). También hay que destacar en el caso de la *fase II*, el cambio brusco en las cuatro curvas producido alrededor de los 9.2 GPa (hasta el momento las curvas de ambas fases iban prácticamente superpuestas) como obtuvieron experimentalmente Caslin et al[17].

Figura 4.14: Resultados experimentales de las distancias interatómicas y el cociente entre los parámetros de malla c y a obtenidos por Caslin et al [17].

Otra manera de ver mucho más clara la transición de fase en lo que respecta a los parámetros de malla, es mediante la representación del cociente entre c y a frente a la presión P como se muestra en la Figura (4.15).

Figura 4.15: Cociente de los parámetros de malla c/a para distintos valores de la presión P. Se utilizan círculos rojos para los puntos pertenecientes a la *fase I* y cuadrados azules para los puntos pertenecientes a la *fase II*. Se dibuja una línea negra discontinua a P = 9.2 GPa.

Tal como se ve en la figura anterior, a medida que se va aumentando la presión el ratio entre los parámetros de malla c y a de la celda unidad tetragonal también lo hace siguiendo el mismo comportamiento que en la Figura (4.14) de [17]. Sin embargo, está cantidad llega a saturar cuando se produce la transición de fase en torno a un valor 0.68. Esto da una prueba bastante visual de a partir de que valor de la presión externa se produce la transición de fase.

Por último se realizará la representación del ángulo que forman los cobres con el oxígeno en la dirección axial del complejo (Cu-O-Cu) en ambas fases para distintas presiones. En la *fase I* el ángulo formado por estos tres átomos es de 180°, sin embargo en la *fase II* este disminuye hasta casi 165°. Esto permite hallar el valor de la presión externa para el cual se produce la transición de fase pues, la *fase I* al tener un grupo espacial de simetría alto no permite que los cálculos de optimización se "salgan" de ese grupo y por tanto varíen el ángulo que se va a estudiar. Por esta razón, a bajas presiones ambas curvas son prácticamente iguales, pero en un determinado valor de *P* para la *fase II* existe un cambio brusco que permite visualizar la transición como se ve en la Figura (4.16).

Figura 4.16: Representación del ángulo θ formado por los cobres y oxígeno en la dirección axial del complejo CuO₆¹⁰⁻ (Cu-O-Cu) para distintos valores de *P* tanto en la *fase I* como en la *fase II*. Se dibuja una línea negra discontinua a P = 9.2 GPa.

Con los resultados presentados a lo largo de esta sección sobre la transición de fase del sistema $CuAs_2O_4$, se ha comprobado que la transición de fase se produce en torno a los 9.2 GPa como predicen Caslin et al en [17].

Capítulo 5

Estudio computacional del sistema $CuSb_2O_4$

5.1. Datos experimentales

El antimonito de cobre CuSb₂O₄ posee una estructura cristalina (Figura (5.1)) caracterizada por una red tetragonal tipo P con grupo espacial de simetría es $P4_2bc$, 4 fórmulas por malla y cargas iónicas nominales Cu²⁺, Sb³⁺ y O²⁻. Sus parámetros de malla son a = 8.760 Å y c = 5.798 Å [19]. La estructura de CuSb₂O₄ es muy similar a la de CuAs₂O₄, ambas están formadas por capas de complejos CuO₆¹⁰⁻ separadas por otra capa, en este caso de iones Sb³⁺ en lugar de As³⁺, y los iones Cu²⁺ forman cadenas según el eje c compartiendo dos O²⁻ entre cada dos Cu²⁺. La distancia entre primeros vecinos Cu²⁺ en las cadenas es de 2.899 Å, mientras que entre primeros vecinos en una capa es de 6.194 Å. Sin embargo, con respecto a CuAs₂O₄, en CuSb₂O₄ se ha producido una distorsión adicional de los complejos CuO₆¹⁰⁻, perdiendo su plano especular m, de forma que los 4 ligandos O²⁻ ya no están a la misma distancia del Cu²⁺, sino que hay dos distancias ecuatoriales distintas $R_{eq(1)} = 1.879$ Å y $R_{eq(2)} = 2.071$ Å, cuya media es $R_{eq} = 1.975$ Å solo 3 pm mayor que $R_{eq} = 1.945$ Å en CuAs₂O₄, mientras que la distancia axial es $R_{ax} = 2.447$ Å sólo 2.4 pm menor que $R_{ax} = 2.471$ Å en CuAs₂O₄ a 172° en CuSb₂O₄ así como a los ángulos entre los 4 O²⁻ ecuatoriales que valen 80° entre ligandos equivalentes y 95° entre no equivalentes.

Figura 5.1: Celda unidad prolongada del antimonita de cobre de manera que se incluya la representación de un complejo CuO_6^{10-} completo. Como una referencia, se muestran los ejes locales del complejo, aunque no forman 90° entre sí.

Para estudiar el orden magnético, Atanasova et al [19] hicieron medidas de susceptibilidad magnetica y calor específico hasta 700 mK que apuntan a que, a diferencia del orden FM en CuAs₂O₄, en CuSb₂O₄ a T < 1.8 K el orden en las cadenas es AFM. Poco después, Caslin et al. [16] llevaron a cabo nuevas medidas de susceptibilidad magnética y calor específico por debajo de 700 mK, así como medidas de difracción de neutrones y cálculos DFT+U concluyendo que el orden AFM es más complicado de lo supuesto por Atanasova et al, con una estructura magnetica helicoidal inconmensurable con el parámetro c y altamente frustada (Figura (5.2)), debida a interacciones FM a primeros vecinos y sólo un poco menores interacciones AFM a segundos vecinos. Caslin [16] indica que las diferencias entre las estructuras magneticas de CuAs₂O₄ y CuSb₂O₄ pueden ser debidas a los diferentes superintercambios por los diferentes ángulos Cu-O-Cu a lo largo de la cadena, provocados por la distorsión adicional de los complejos CuO₆¹⁰⁻ en CuSb₂O₄.

El objetivo en este material consistía en analizar el origen de la distorsión de los complejos CuO_6^{10-} para tratar de correlacionarlo con los cambios en la estructura magnética observados experimentalmente. Sin embargo, primero la inesperada dificultad y elevado coste computacional de los cálculos y después el confinamiento por la pandemia *COVID-19* ha hecho que no se haya avanzado mucho en el estudio de este sistema.

Figura 5.2: Estructura AFM helicoidal inconmensurable del sistema CuSb₂O₄ a T = 432 mK. [16]

5.2. Optimización de la geometría

5.2.1. Cálculos con Crystal

Se han realizado cálculos de optimización de geometría con el funcional PW1PW (con 20% de intercambio exacto) y donde los orbitales de oxígenos y cobres se han representado con bases pob_TZVP y los de los antimonios con la base que incluye un *pseudopotencial*. Con el programa *Crystal* no se puede realizar cálculos con estructuras magnéticas no colineales, por lo que no se puede considerar la estructura helicoidal experimental de este material a bajas temperaturas. Para hacer algunas pruebas, se han hecho simulaciones con 3 estructuras sencillas, la FM más simple y dos AFM relativamente sencillas correspondientes a las configuraciones AFM (1) up-down-up-down y la AFM (2) up-up-down-down a través de las cadenas (Figura (5.3)). Para el estado AFM (2) se usó una supercelda 1x1x2

con 56 átomos, lo que aumentó notablemente el tiempo de computación.

Figura 5.3: Estructuras magnéticas del compuesto CuSb₂O₄ optimizadas con *Crystal*.

En la Tabla (5.1) se exponen los resultados más significativos obtenidos en los cálculos de optimización para las tres estructuras magnéticas de la Figura (5.3).

Caso	$a/{ m \AA}$	$c/{ m \AA}$	$R_{eq(1)}/\text{\AA}$	$R_{eq(2)}/\text{\AA}$	$R_{ax}/\text{\AA}$	$\Delta E/\mathrm{meV}$
Experimental	8.760	5.798	1.877	2.073	2.447	-
FM	8.779	5.822	1.972	1.972	2.421	0
AFM(1)	8.784	5.829	1.971	1.971	2.426	+ 34
AFM(2)	8.783	5.824	1.973	1.970	2.423	+ 57

Tabla 5.1: Geometrías de equilibrio correspondientes a las optimizaciones de geometría realizadas en CuSb₂O₄ en los estados magnéticos indicados y usando el funcional híbrido PW1PW, comparadas con los valores experimentales. $a \ y \ c$ son los parámetros de malla y $R_{eq(1)}$, $R_{eq(2)}$ y R_{ax} las distancias entre el Cu²⁺ y los ligandos O²⁻ ecuatoriales y axiales en los complejos CuO₆¹⁰⁻.

En la Tabla (5.1) entre las 3 fases magnéticas estudiadas (ninguna de las cuales es la experimental), la más estable es la FM. En cuanto a las geometrías de equilibrio, son completamente similares en los 3 estados y están en un buen acuerdo con los valores experimentales de a, c, R_{ax} y la media de las dos distancias ecuatoriales $R_{eq(1)}$ y $R_{eq(2)}$ (1.975 Å). Sin embargo, ninguna de las optimizaciones realizadas ha conseguido encontrar la distorsión ortorrómbica de los complejos CuO_6^{10-} , lo que indica que dicha distorsión debe ser muy sutil, implicando un mínimo cambio de energía y, probablemente, relacionada con el orden magnético helicoidal complejo de CuSb₂O₄.

Se han realizado más cálculos de optimización de geometría variando las bases del antimonio entre *all-electron* y *pseudopotenciales* o el muestreo de puntos k (k-sampling) de la

5.2.2. Cálculos con VASP

Dado que en todos los cálculos realizados con el programa Crystal (que describe los orbitales de Bloch de los electrones como combinaciones lineales de orbitales atómicos localizados) no han permitido obtener la inestabilidad estructural observada experimentalmente para los 4 iones O^{2-} del plano ecuatorial de los complejos CuO_6^{10-} , se han probado otros cálculos con el programa VASP (electrones de Bloch descritos mediante combinaciones de ondas planas deslocalizadas) usando los mismos 3 estados magnéticos anteriores, pero con otros pseudopotenciales y otros funcionales híbridos. Sin embargo, todas las optimizaciones de geometría realizadas con este programa han conducido, con mínimas diferencias, a la misma geometría de equilibrio que las obtenidas con Crystal, es decir, con complejos CuO_6^{10-} tetragonales, sin encontrar la inestabilidad experimental en los iones oxígeno del plano ecuatorial.

En vista de esto, cabe la posibilidad de que dicha inestabilidad esté relacionada con la estructura magnética helicoidal que posee este material a bajas temperaturas, lo que sería un muy interesante fenómeno de correlación inestabilidad estructural-orden magnético no colineal. Con el fin de testear esta posible correlación, se han lanzado algunas simulaciones con VASP de optimizaciones conjuntas de la geometría cristalina y el orden magnético helicoidal, algo que no es posible realizar con el programa *Crystal*.

Sin embargo, estas optimizaciones son muy complejas. Por un lado, hay que fijar una estructura magnética de partida que sea razonablemente cercana a la final. Se ha elegido una estructura FM. Por otra parte, la implementacion de esta opcion en el programa VASP es muy reciente y aún está en pruebas, de forma que no está garantizado que el programa converja a algo con sentido físico. Estos cálculos requieren incluir el acoplamiento spinórbita de forma que los spines electrónicos puedan colocarse de forma no colineal. Además, se necesita usar superceldas muy grandes. Finalmente, los tiempos de computación de estas dobles optimizaciones son muchísimo mayores que los de las optimizaciones normales. Por ello, estos cálculos lanzados hace algún tiempo, aún tardaran semanas (o meses) en estar finalizados.

5.3. Cálculo de frecuencias

Para comprobar si el sistema contenía algún modo inestable que pudiera dar lugar a la distorsión en los oxígenos ecuatoriales del complejo CuO_6^{10-} , se han calculado los modos vibracionales a partir de la geometría de equilibrio obtenida para ver si existía algún modo de vibración con frecuencia imaginaria (lo que significa una constante de fuerza negativa y así una inestabilidad) o al menos una frecuencia real pero muy baja. Sin embargo, los cálculos realizados tanto para la fase ferromagnética como antiferromagnética up-down-up-down no han reflejado ningún caso de frecuencias imaginarias, por lo que no ha podido determinarse el origen de la inestabilidad entre los oxígenos del plano ecuatorial.

Capítulo 6

Estudio computacional del sistema $CuSb_2O_6$

6.1. Datos experimentales

 $CuSb_2O_6$ es un material aislante de color verde con cargas iónicas nominales Cu^{2+} , Sb^{5+} y O^{2-} que posee una transición de fase estructural a una temperatura crítica $T_c = 380$ K.

Figura 6.1: Celda unidad del CuSb₂O₆ para la fase tetragonal α a T > 380 K (izquierda) y la fase monoclínica β a T < 380 K (derecha).

A $T > T_c$ presenta una fase α , tetragonal con grupo $P4_2/mnm$ y parámetros de malla a = 4.629 Å y c = 9.288 Å [20], conocida como estructura trirutilo ya que la celda consiste en 3 celdas tipo rutilo TiO₂ colocadas segun el eje c, aunque en este caso entre cada dos capas con iones magnéticos Cu²⁺ se insertan dos capas de iones diamagnéticos Sb⁵⁺. Las capas de cobre consisten en dos subredes de complejos CuO₆¹⁰⁻ con geometría de octaedros comprimidos, con $R_{eq} = 2.066$ Å (4x) y $R_{ax} = 2.026$ Å (2x), bien separados entre sí y rotados 90° entre las dos subredes. (ver Figura (6.1) izquierda)

A $T < T_c$, pasa a la fase β , monoclínica $P2_1/n$ (grupo no estándar) y con parámetros de malla con a = 4.635 Å, b = 4.637 Å, c = 9.293 Å y ángulo $\beta = 91.124^{\circ}$ de forma que

corresponde a una pequeña distorsión monoclínica de la fase α . También puede describirse por el grupo estándar P2₁/c con a = 4.635 Å, b = 4.637 Å, c = 10.305 Å, $\beta = 115.601^{\circ}$ [21]. El grupo no estándar tiene la ventaja de que la celda es aproximadamente tetragonal y así es muy visual. Este sistema posee dos subredes de complejos CuO₆¹⁰⁻ con R = 2.004 Å, 2.012 Å y 2.120 Å (2x, 2x, 2x). Giere et al. consideran que la geometría de estos complejos es aproximadamente alargada debida a un efecto Jahn-Teller, con 4 ligandos ecuatoriales sobre los ejes locales Y y Z con distancias que sólo difieren en 0.008 Å y 2 ligandos axiales en el eje X. (ver Figura (6.1) derecha)

Además, Giere et al. también reportaron experimentos de difracción de neutrones y resonancia paramagnética electrónica a temperatura ambiente en una serie de materiales $Zn_{1-x}Cu_xSb_2O_6$ encontrando que cuando la cantidad de Cu es mayor que la de Zn (x > 0.5) los complejos CuO_6^{10-} tenían geometría similar a la de la fase β (de octaedro alargado, según su modelización), mientras que al disminuir la cantidad de cobre por debajo de x = 0.5 los complejos CuO_6^{10-} pasaban a ser comprimidos según el eje local Z, con $R_{eq} = 2.085$ Å y $R_{ax} = 1.97$ Å, es decir, reportaban un cambio en el eje principal de los complejos. Para explicarlo, estos autores desarrollaron un modelo parametrizado de efecto Jahn-Teller bajo una tensión interna del cristal, que más adelante será criticado.

A la vista de la gran similitud de las estructuras de las dos fases α y β , Giere et al. propusieron que la fase alfa de alta temperatura es un promedio dinámico de la fase β . Sin embargo, este promedio no parece compatible con el modelo de efecto *Jahn-Teller* que proponen, donde los complejos CuO₆¹⁰⁻ no sólo cambian de alargados (fase β) a comprimidos (fase α) sino que también cambiaría la dirección del eje principal del efecto.

En cuanto a la estructura magnética [21] [22], la fase β de baja temperatura presenta una transición de fase a temperatura T = 8.5 K tal que a T > 8.5 K hay cadenas AFM entre cobres en diagonal en un plano ab con muy débil interacción entre cadenas, mientras que a T < 8.5 K pasa a una fase AFM 3D (Figura (6.2)) con interacciones AFM entre cadenas, AFM según a, FM según b y AFM según c [23]. Finalmente, hay una ordenación de los orbitales (orbital ordering) $3d_{3z^2-r^2}$ de los iones.

Figura 6.2: Estructura AFM 3D de la fase β -CuSb₂O₆ para T < 8.5 K. La línea punteada indica la menor supercelda periódica, de tamaño de tamaño $\sqrt{2} \ge 1 \ge \sqrt{2}$, para describir este estado magnético.

6.2. Optimización de la geometría

Se han intentado numerosas optimizaciones de geometria de las dos fases, cambiando las bases de funciones LCAO, los pseudopotenciales, los funcionales, la estructura magnética, etc. y la mayoría de ellas no han convergido a una geometría de equilibrio, además de ser muy costosas en tiempo de computación. Cabe notar que el uso de funcionales híbridos en este sistema conduce a numerosos problemas y tiempos de computación desmesurados.

Funcional	Magnetismo	$a/{ m \AA}$	$c/{ m \AA}$	$R_{eq}/{ m \AA}$	$R_{ax}/{ m \AA}$	$\Delta E/\mathrm{meV}$
Experimental	cadenas AFM	4.629	9.288	2.066	2.026	-
LDA	FM	4.612	9.257	2.038	2.011	-
GGA-PBEsol	FM	4.652	9.295	2.058	2.037	+ 22
B1WC~(5%)	FM	4.592	9.382	2.079	1.999	-
GGA-PBEsol	cadenas AFM	4.645	9.318	2.062	2.034	0
GGA-PBEsol	AFM 3D	4.645/4.647	9.316	2.033/2.137	1.933	- 27

Tabla 6.1: Resultados de los parámetros de malla $a \ y \ c \ y$ las distancias entre $Cu^{2+} \ y$ los ligandos ecuatoriales y axiales, $R_{eq} \ y \ R_{ax}$, obtenidos en las optimizaciones de geometría que han podido ser convergidas para la fase tetragonal $P4_2/mnm$ de α -CuSb₂O₆. ΔE es la energía por formula unidad obtenida en los cálculos GGA-PBEsol relativas a la energía calculada usando el estado magnético experimental de cadenas AFM. Por comparación se incluyen los valores experimentales de la geometría de equilibrio.

En la Tabla (6.1) se muestran resultados obtenidos para la fase de alta temperatura α -CuSb₂O₆ en los cálculos para los que se ha conseguido obtener la convergencia. Primero, se intentaron cálculos en el estado FM y pudieron converger los cálculos con los funcionales LDA y GGA-PBEsol, pero no con funcionales híbridos convencionales como B1WC $(16\% \text{ de intercambio Hartree-Fock}) \circ PW1PW (20\%)$. Puede verse en la Tabla (6.1) que los resultados obtenidos en todos esos cálculos para la geometría de equilibrio difieren muy poco de los experimentales. Con respecto al uso de funcionales híbridos, unicamente se consigió converger un cálculo con el funcional B1WC pero bajando la cantidad de intercambio exacto desde el 16% hasta un 5% y los resultados son ligeramente peores que los obtenidos para el cálculos GGA-PBEsol. Posteriormente, se hicieron cálculos con el funcional GGA-PBEsol para el estado magnético experimental de cadenas AFM y los resultados son casi coincidentes con el correspondiente cálculo en el estado FM, aunque la energía obtenida es 22 meV/fórmula unidad menor, de acuerdo con la evidencia experimental de que el orden magnético de la fase α es AFM en las cadenas. Finalmente, se ha hecho una prueba partiendo de la fase α pero en el estado AFM 3D experimental de la fase β y la correspondiente optimización de geometría llevó a una geometría de equilibrio que concuerda con el de la fase β y que tiene una energía 27 meV menor que la del estado AFM en cadenas. Esta geometría de equilibrio es una pequeña distorsión monoclínica de la fase tetragonal α y los complejos CuO₆¹⁰⁻ tienen una pequeña distorsión ortorrómbica, de forma que se alargan ligeramente dos ligandos opuestos en el plano ecuatorial con distancia $R_{eq(1)} = 2.137$ Å y se encojen los otros dos con $R_{eq(2)} = 2.033$ Å, mientras que los dos ligandos axiales están a distancia $R_{ax} = 1.993$ Å. Este resultado prueba la relación entre la inestabilidad ortorrómbica de los complejos CuO_6^{10-} y el cambio de estado magnético desde cadenas AFM a un AFM 3D.

El hecho que se observe a altas temperaturas la fase α de mayor energía que la β se explica mediante la curva de la energía E en función de la coordenada de distorsión monoclínica Q que se muestra en la Figura (6.3). A bajas temperaturas se estabiliza la fase β de menor

energía (con dos distorsiones equivalentes alargando dos de los 4 ligandos ecuatoriales), mientras que al subir la temperatura el sistema pasa a niveles vibracionales más altos hasta que llega al punto medio entre los dos pozos, cuya energía está a 27 meV por encima de los dos mínimos de la fase β , lo que corresponde a 313 K, valor no muy lejano a la temperatura crítica experimental de 380 K. Por tanto, la fase α es un promedio dinámico de la fase β . El origen de esta superficie de energía potencial E(Q) dibujada en la Figura (6.3) con constante de fuerza negativa en Q = 0 se debe necesariamente al acoplamiento del estado fundamental Γ (con constante de fuerza $K_0 > 0$) con un estado excitado Γ' a través de un modo vibracional de coordenada Q (ver Figura (3.6)), es decir, a un efecto *pseudo Jahn-Teller* fuerte como se explicó en la sección (3.4).

Figura 6.3: Forma de la superficie de energía potencial adiabática (APES) en función de la coordenada de distorsión Q correspondiente a las fases $\alpha \neq \beta$ de CuSb₂O₆.

Las optimizaciones de la fase β -CuSb₂O₆ apenas se habían iniciado en el momento del confinamiento por la pandemia. Sólo se había completado un cálculo LDA y otro GGA en el estado FM, que se muestra en la Tabla (6.2). El resto de los cálculos previstos no se ha llevado a cabo. Se trata de cálculos muy costosos debido al tamaño de las superceldas a usar. En cualquier caso, los resultados explicados anteriormente parecen suficientes como para entender el origen de la transición de fase $\beta \rightarrow \alpha$ al aumentar la temperatura.

Fase	Functional	$a/{ m \AA}$	$b{ m \AA}$	$c/{ m \AA}$	$\beta/^{\circ}$	$R_{eq(1)}/\text{\AA}$	$R_{eq(2)}/\text{\AA}$	$R_{ax}/{ m \AA}$
Exp	-	4.635	4.637	10.305	115.6	2.012	2.120	2.004
FM	LDA	4.612	4.612	10.343	116.5	2.038	2.038	2.011
FM	GGA	4.640	4.640	10.389	116.5	2.046	2.046	2.021

Tabla 6.2: Resultados de los parámetros de malla y las distancias entre Cu²⁺ y los ligandos ecuatoriales y axiales obtenidos en las optimizaciones de geometría que han podido ser convergidas para la fase tetragonal $P4_2/mnm$ de β -CuSb₂O₆. Por comparación se incluyen los datos de la geometría experimental.

6.3. Análisis del posible efecto Jahn-Teller

Tal como se indicó anteriormente, Giere et al observaron que en CuSb₂O₆ al aumentar la temperatura por encima de 380 K se produce una transición desde la fase monoclínica β a la tetragonal α con cambios en la geometría de los complejos CuO₆¹⁰⁻. Dado que en la fase β los complejos CuO₆¹⁰⁻ tienen una distancia más larga de 2.120 Å y dos distancias muy parecidas de 2.012 Å y 2.004 Å, estos autores consideraron que su geometría es

aproximadamente tetragonal de tipo octaedro alargado debido a un efecto Jahn-Teller, con $R_{ax} = 2.120$ Å según los ejes locales X (o Y) y $R_{eq} = 2.008$ Å, obviando que el ángulo entre los ejes X e Y es de sólo 77.7° y no los 90° que debería corresponder a un complejo tetragonal producido por un efecto Jahn-Teller. Además, consideraron que en la fase α el efecto Jahn-Teller produce un cambio a complejos tetragonales de tipo octaedro comprimido, con el eje principal según Z y $R_{ax} = 2.026$ Å y $R_{eq} = 2.066$ Å, obviando también que el ángulo entre los ejes X e Y no es de 90° sino de sólo 78.0°. Estos autores desarrollaron un modelo parametrizado (de tipo Angular Overlap Model, AOM) de efecto Jahn-Teller perturbado por alguna (desconocida) tensión interna del cristal, y que al aumentar la temperatura se produce un cambio en dicha tensión que cambia el eje principal de distorsión de los complejos. Los valores de los parámetros del modelo los obtuvieron ajustando las expresiones de su modelo a los valores experimentales de las transiciones ópticas d-d medidas experimentalmente [20]. Sin embargo, estos autores no explican el origen ni la magnitud de la supuesta tensión de la red que perturba el efecto Jahn-Teller, ni por qué podría producirse un cambio de la tensión en la transición de fase, ni cuál sería la fase madre de alta simetría del efecto Jahn-Teller en las estructuras $\alpha \neq \beta$, ni prueban que la tensión sea una pequeña perturbación que altere mínimamente la fase madre del efecto Jahn-Teller de forma que el teorema de Jahn-Teller siga siendo válido.

Heinrich et al. [24] realizaron medidas de resonancia paramagnética electrónica en las dos fases para estudiar el cambio de estado AFM y desarrollan un modelo de efecto *Jahn-Teller* básicamente similar al de Giese et al. Estos modelos de efecto *Jahn-Teller* perturbado han sido asumidos posteriormente por diversos autores que han estudiado este sistema. De forma similar a lo que se hizo en el sistema $CuAs_2O_4$ y se hará en un futuro en $CuSb_2O_4$, aquí se va a mostrar que este modelo es incorrecto.

En primer lugar, se han calculado las energías potenciales correspondientes a los potenciales del resto del cristal sobre un electrón colocado dentro de los complejos CuO_6^{10-} en las fases α y β y los resultados se muestran en la Figura (6.4). Puede verse que dichos potenciales son prácticamente iguales, con un mínimo desdoblamiento en la fase monoclínica (fase β). Por tanto, este resultado parece incompatible con un cambio del eje de la distorsión de los complejos bajo un efecto Jahn-Teller en la transición de fase $\alpha \to \beta$.

Figura 6.4: Variación a lo largo de las direcciones ecuatorial (X, Y) y axial (Z) de un complejo CuO₆¹⁰⁻ en las fases α (izquierda) y β (derecha) de CuSb₂O₆ de la energía potencial de interacción entre un electrón del complejo y el potencial $V_R(r)$ creado por el resto de iones del cristal.

Más aún, el origen de las distorsiones de complejos ${\rm CuO}_6^{10-}$ en ${\rm CuSb_2O_6}$ es completamente similar a la distorsión de los complejos ${\rm CuF}_6^{4-}$ que se forman en el material ${\rm CuF}_2$ (grupo espacial monoclínico $P2_1/n$), que tienen 3 distancias Cu-F distintas $R_X=2.298$ Å, $R_Y=1.932$ Å y $R_Z=1.917$ Å (Figura (6.5)). Un reciente trabajo [25] ha mostrado inequívocamente que la estructura de ${\rm CuF}_2$ proviene de la estructura tipo rutilo de ${\rm ZnF}_2$, donde los complejos ${\rm ZnF}_6^{4-}$ tienen una geometría de octaedro ligeramente comprimido, con $R_{eq}=R_X=R_Y=2.040$ Å y $R_{ax}=R_Z=2.019$ Å, que, al sustituir los ${\rm Zn}^{2+}$ por ${\rm Cu}^{2+}$, sufren una inestabilidad ortorrómbica que alarga las distancias R_X y acorta las R_Y , mientras que la R_Z queda casi igual , de forma completamente similar a lo que ocurre a los complejos ${\rm CuO}_6^{10-}$ en la transición $\alpha \to \beta$ en ${\rm CuSb}_2{\rm O}_6$.

Figura 6.5: Izquierda: Estructura cristalina tipo rutilo de CuF₂, con grupo espacial monoclínico $P2_1/n$ (no estándar), donde los complejos CuF₆⁴⁻ tienen 3 distancias Cu-F distintas $R_X = 2.298$ Å, $R_Y = 1.932$ Å y $R_Z = 1.917$ Å. Derecha: Estructura cristalina de ZnF₂, madre de CuF₂, con grupo espacial tetragonal $P4_2/mnm$, donde los complejos ZnF₆⁴⁻ tienen geometría de octaedro ligeramente comprimido con $R_{eq} = R_X = R_Y = 2.040$ Å y $R_{ax} = R_Z = 2.019$ Å.

En segundo lugar, se ha analizado el material ZnSb₂O₆, que es la fase madre de CuSb₂O₆. ZnSb₂O₆ cristaliza en una estructura trirutilo con grupo espacial tetragonal $P4_2/mnm$ y los complejos ZnO₆¹⁰⁻ son tetragonales tipo octaedro ligerísimamente comprimido con distancias Zn-O $R_{eq} = 2.078$ Å y $R_{ax} = 2.073$ Å (Figura (6.6)). Se han llevado a cabo optimizaciones de geometría de esta estructura con el programa *Crystal*. Los cálculos realizados con funcionales híbridos no convergen y sólo se ha podido finalizar un cálculo con el funcional GGA-PBEsol, obteniendo una geometría en razonable acuerdo con los datos experimentales (Tabla (6.3)).

Funcional	$a/{ m \AA}$	$c/{ m \AA}$	$R_{eq}/{ m \AA}$	$R_{ax}/{ m \AA}$
Experimental	4.664	9.263	2.078	2.074
GGA-PBEsol	4.666	9.291	2.064	2.048

Tabla 6.3: Geometría optimizada para ZnSb2O_6 usando un funcional GGA-PBEsol, comparada con los valores experimentales.

Figura 6.6: Izquierda: Estructura cristalina de ZnSb_2O_6 con grupo espacial tetragonal $P4_2/mnm$. Derecha: Energía potencial de interacción entre el potencial $V_R(r)$ creado por todos los iones externos a un complejo ZnO_6^{10-} y un electrón situado a lo largo de las direcciones X, Y o Z del complejo.

Con el programa ADF, se han realizado cálculos en complejos $\operatorname{ZnO}_6^{10-}$ con la geometría experimental con los ejes locales X, Y, Z colocados como se muestra en la Figura (6.6). Para un complejo aislado se obtuvo que el orbital más alto ocupado es $a_{1g}(3z^2 - r^2)$ con un mínimo gap de 0.012 eV con respecto al $b_{1g}(x^2 - y^2)$, como corresponde a la pequeñísima compresión axial de los complejos. Al considerar el potencial del resto de la red (figura 6.6) el gap crece un poco hasta 0.027 eV. Al sustituir el ión Zn^{2+} por Cu^{2+} debido a que el nivel a_{1g} está 0.027 eV por encima del b_{1g} , el estado fundamental de los complejos $\operatorname{CuO}_6^{10-}$ es A_{1g} lo cual es consecuencia directa de la anisotropía tetragonal que tiene ya la fase madre y no de un imposible efecto Jahn-Teller.

Capítulo 7

Conclusiones y futuro trabajo

En este trabajo se han llevado a cabo simulaciones computacionales de primeros principios sobre 3 compuestos oxocupratos que contienen los iones del grupo VA As y Sb, CuAs₂O₄, CuSb₂O₄ y CuSb₂O₆, dando pasos hacia una mejor comprensión de las correlaciones entre sus estructuras cristalinas y magnéticas.

Los 3 materiales tienen estructuras cristalinas con muchas similitudes: contienen complejos CuO_6^{10-} , con geometrías de octaedros distorsionados, formando capas separadas por capas de iones As o Sb, y los complejos están alineados en cadenas muy separadas entre sí. Sin embargo, sus estructuras magnéticas a bajas temperaturas difieren apreciablemente: CuAs₂O₄ tiene un orden helicoidal FM a lo largo de las cadenas, CuSb₂O₄ un orden AFM en las cadenas y CuSb₂O₆ pasa a T = 1.8 K de un orden AFM en las cadenas a un orden AFM 3D.

Todos los trabajos publicados sobre estos oxocupratos conjeturan que la distorsión de los complejos CuO_6^{10-} contenidos en estos materiales se debe a la acción de un acoplamiento vibrónico tipo Jahn-Teller perturbado por alguna tensión interna del cristal. Sin embargo, los cálculos cuantitativos realizados muestran inequívocamente que esta conjetura es incorrecta y que el origen de las distorsiones de los complejos y su estado fundamental está relacionado con la anisotropía intrínseca a los compuestos en capas, donde las direcciones dentro de una capa son muy distintas a las direcciones entre capas, así como a efectos cooperativos entre los iones Cu^{2+} que producen inestabilidades de origen vibrónico pseudo Jahn-Teller. También, se ha discutido las analogías y las importantes diferencias entre los efectos Jahn-Teller.

Para realizar las simulaciones computacionales se han adquirido conocimientos acerca de programación en Linux, la teoría de los cálculos de primeros principios (Hartree-Fock y DFT), el uso de los programas de primeros principios periódicos *Crystal* y *VASP* y el programa molecular *ADF*, así como el programa auxiliar *Ewald* para el cálculo de los potenciales electrostáticos que producen los restantes iones del cristal sobre los electrones de un complejo CuO_6^{10-} . También, se ha aprendido el manejo de los programas de representación gráfica *Crystalmaker*, *VESTA* y *MOLDRAW*.

7.1. Sistema $CuAs_2O_4$

En el compuesto CuAs_2O_4 (con iones As^{3+}), se han realizado diversas optimizaciones de la geometría, obteniendo geometrías de equilibrio en buen acuerdo con los datos experimentales, así como que la fase FM es más estable que la AFM por 33 meV. Se ha analizado el origen de la geometría de octaedro alargado de los complejos CuO_6^{10-} , para lo que se ha estudiado la anisotropía de la fase madre ZnAs_2O_4 mostrando mediante 3 cálculos

distintos (optimización de la geometría de ZnAs₂O₄, análisis de las constantes de fuerza y análisis del potencial del resto de iones del cristal) que el origen no puede deberse a un efecto Jahn-Teller (que necesita que el estado inicial tenga degeneración orbital). Se ha simulado y discutido la estructura de bandas y la densidad de estados, así como la transición de fase observada experimentalmente a presión de 9.2 GPa, que conlleva una distorsión adicional de los complejos CuO_6^{10-} , obteniendo resultados muy similares a los medidos experimentalmente.

7.2. Sistema $CuSb_2O_4$

El compuesto CuSb_2O_4 (con iones Sb^{3+}) tiene una estructura cristalina muy similar a la de CuAs_2O_4 , pero los complejos CuO_6^{10-} tienen una pequeña distorsión ortorrómica adicional, con dos parejas de ligandos ecuatoriales situadas a distintas distancias del ión Cu^{2+} . Sin embargo, la estructura magnética es complicada, es fundamentalmente AFM en las cadenas, pero con rotaciones de tipo helimagnético. Usando los programas *Crystal* (orbitales de Bloch descritos mediante LCAOs) y *VASP* (bases de ondas planas), se han realizado optimizaciones de geometría preliminares usando estructuras magnéticas de tipo FM y AFM pero simplificadas respecto a la experimental. Todas las geometrías de equilibrio obtenidas difieren poco de la experimental, pero no se ha obtenido en ningún caso la distorsión ortorrómbica de los complejos. Probablemente, esto se debe a que dicha distorsión está ligada al orden helimagnético de este material. Para verificar esto, se han lanzado optimizaciones con el programa *VASP* en la última versión (aún en pruebas), que incluye el acoplamiento spin-órbita y así permite que los momentos magnéticos puedan girar colocándose de forma no colineal. No obstante, estos cálculos son enormemente costosos y aún tardarán en estar terminados (y sus resultados no están garantizados por la implementación de *VASP*).

7.3. Sistema $CuSb_2O_6$

El compuesto CuSb_2O_6 (con iones Sb^{5+}) tiene una estructura cristalina tipo trirutilo y presenta una transición de fase estructural a T = 380 K. A T < 380 K la fase β est monoclínica con complejos CuO_6^{10-} con 3 distancias distintas y a T > 380 K se observa una fase α que es un promedio dinámico tetragonal con complejos CuO_6^{10-} de tipo octaedro comprimido. Además, la estructura magnética de este compuesto en la fase monoclínica de baja temperatura es muy interesante: para T > 8.5 K presenta una fase AFM en cadenas según direcciones [110], mientras que para T < 8.5 K pasa a una fase AFM 3D.

Tratando de entender el origen de las distorsiones en los complejos CuO_6^{10-} de CuSb_2O_6 , en la literatura se han publicado anteriormente algunos modelos parametrizados que consideran un efecto Jahn-Teller perturbado por una tensión del cristal que, por alguna razón no explicada, provocaría en la transición de fase un giro en la dirección del eje principal de distorsión más un cambio de complejos comprimidos en la fase β a alargados en la fase α . Sin embargo, el análisis llevado a cabo en la fase madre ZnSb₂O₆ ha mostrado que, al igual que en los dos compuestos anteriores, el origen de las distorsiones se relaciona con la anisotropía en capas de la fase madre que conduce a una distorsión de tipo octaedro comprimido, con el eje principal siempre dentro de una capa. Adicionalmente, mediante un mecanismo completamente similar al recientemente publicado por Aramburu y Moreno en CuF₂ [25], la cooperación entre los iones Cu²⁺ dá lugar a un modo de vibración ortorrómbico de frecuencia imaginaria que produce una inestabilidad ortorrómbica de tipo *pseudo Jahn-Teller* fuerte (con constante de fuerza negativa) en los complejos. Las optimizaciones de geometría realizadas en la fase tetragonal α de CuSb₂O₆ han mostrado que, cuando el orden magnético es AFM en cadenas, no se produce inestabilidad ortorrómbica, mientras que al cambiar el orden magnético a AFM 3D se produce una inestabilidad ortorrómbica que baja la energía 27 meV, un valor en razonable acuerdo con el valor experimental de la temperatura de la transición de fase estructural.

7.4. Futuro trabajo

Aunque los resultados obtenidos en este trabajo muestran que hay interesantes correlaciones entre la estructura cristalina y el magnetismo de estos sistemas, queda mucho trabajo por hacer para poder comprender adecuadamente dicha correlación. Parte de este trabajo quedó interrumpido por el confinamiento debido a la pandemia. En particular, hay que completar las simulaciones actualmente lanzadas y hacer nuevas simulaciones con estados magnéticos más próximos a la fase helimagnética experimental en $CuSb_2O_4$, aunque estas son muy costosas y sus resultados no están garantizados.

Bibliografía

- ¹S. Bahfenne y R. Frost, «A Review of the Vibrational Spectroscopic Studies of Arsenite, Antimonite, and Antimonate Minerals», Applied Spectroscopy Reviews: an international journal of principles, methods, and applications, 45, 101-129 (2010).
- ²I. Bersuker, *The Jahn-Teller Effect* (Cambridge University Press, Cambridge, 2006).
- ³F. Jensen, Introduction to computational chemistry (Ed Wiley, Odense, 2007).
- ⁴E. A. Carter, «Challenges in modelling materials properties without experimental input», Science, 321, 800-803. (2008).
- ⁵K. Georg, M. Marsman y J. Furthmüller, *VASP the GUIDE* (Computational Materials Physics, Faculty of Physics, Universität Wien, 2018).
- ⁶G. te Velde, F. M. Bickelhaupt, E. J. Baerends, C. Fonseca Guerra, S. J. A. van Gisbergen, J. G. Snijders y T. Ziegler, «Chemistry with ADF», Journal of Computational Chemistry, 22, 931 (2001).
- ⁷J. García-Lastra, M. Barriuso, J. Aramburu y M. Moreno, «Origin of the different color of ruby and emerald», Phys. Rev. B 71, 113104 (2005).
- ⁸J. García-Lastra, M. Barriuso, J. Aramburu y M. Moreno, «Origin of the exotic blue color of copper-containing historical pigments», Inor. Chem. B 54, 1, 192-199 (2015).
- ⁹W. van Gool y A. Piken, «Lattice Self-Potentials and Madelung Constants for Some Compounds», Journal of Materials of Science, 95–104 (1969).
- ¹⁰K. Momma y F. Izumi, VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data, vol. 44 (2011).
- ¹¹C. Housecroft y A. G Sharpe, «Inorganic Chemistry», Prentice Hall, 3rd Ed., 562 (2008).
- ¹²B. Bleaney y K. D. Bowers, «Anomalous paramagnetism of copper acetate», Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 214, 451-465 (1952).
- ¹³J. Aramburu, P. García, J. García-Lastra y M. M., «A genuine Jahn-Teller system with compressed geometry and quantum effects originating from zero-Point motion», Chemphyschem, 17, 2146-2156. (2016).
- ¹⁴P. García, J. Aramburu, M. Moreno, M. Zlatar y M. Gruden-Pavlovic, «Supporting information for: A practical computational approach to study molecular instability using the pseudo Jahn-Teller effect», J. Chem. Theory Comput, 10, 1824-1833 (2014).
- ¹⁵K. Caslin, R. K. Kremer, F. S. Razavi, A. Schulz, A. Muñoz, F. Pertlik, J. Liu, M.-H. Whangbo y J. M. Law, «Characterization of the spin-12 linear-chain ferromagnet CuAs₂O₄», Physical Review B, 89, 014412 (2014).
- ¹⁶K. Caslin, «Investigation of Frustrated Quasi-One-Dimensional Quantum Spin-Chain Materials», PhD Thesis, Brock University (2015).

- ¹⁷K. Caslin, R. K. Kremer, F. S. Razavi, M. Hanfland, K. Syassen, E. E. Gordon y M.-H. Whangbo, «Competing Jahn-Teller distortions and hydrostatic pressure effects in the quasione-dimensional quantum ferromagnet CuAs₂O₄», Phys. Rev. B, 93, 022301 (2016).
- ¹⁸S. Wahyu y S. Curtarolo, «High-throughput electronic band structure calculations: Challenges and tools», Computational Materials Science, 49, 299-312 (2010).
- ¹⁹M. Atanasova, A. Strydom, C. Schutte, L. Prinsloo y W. Focke, «Crystal structure and magnetic properties of CuSb₂O₄», Journal of Materials Science, 49, 3497-3510 (2014).
- ²⁰E.-O. Giere, A. Brahimi, H. Deiseroth y D. Reinen, «The Geometry and Electronic Structure of the Cu²⁺ Polyhedra in Trirutile-Type Compounds $\text{Zn}(\text{Mg})_{1-x}\text{Cu}_x\text{Sb}_2\text{O}_6$ and the Dimorphism of CuSb₂O₆: A Solid State and EPR Study», Journal of Solid State Chemistry, 131, 263 (1997).
- ²¹W. Gong, J. Greedan, G. Liu y M. Bjorgvinsson, «Crystal structure and magnetic properties of orthorhombic Sr₂VO₄ with tetrahedral vanadium(IV)», Journal of Solid State Chemistry, 95, 213-219 (1991).
- ²²A. V. Prokofiev, F. Ritter, W. Assmus, B. J. Gibson y R. K. Kremer, «Crystal growth and characterization of the magnetic properties of CuSb₂O₆», Journal of Crystal Growth, 247, 457 (2003).
- ²³E. M. S. Wheeler, «Thesis: Neutron Scattering from low-dimensional quantum magnets», Oxford (2007).
- ²⁴M. Heinrich, H.-A. Krug von Nidda, A. Krimmel, A. Loidl, R. M. Eremina, B. I Ineev A. D.and Kochelaev, A. V. Prokofiev y W. Assmus, «Structural and magnetic properties of CuSb₂O₆ probed by ESR», Phys. Rev. B 67, 224418 (2003).
- ²⁵J. Aramburu y M. Moreno, «Understanding the Structure and Ground State of the Prototype CuF₂ Compound Not Due to the Jahn–Teller Effect», Inorg. Chem. 58, 4609-4618 (2019).