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Abstract 

This paper presents a novel, exact, semi-analytical solution for the quasi-static 

undrained expansion of a cylindrical cavity in soft soils with fabric anisotropy and 

structure. The assumed constitutive model is the S-CLAY1S model, which is a Cam 

clay type model that considers fabric anisotropy that evolves with plastic strains, 

structure and gradual degradation of bonding (destructuration) due to plastic straining. 

The solution involves the numerical integration of a system of seven first-order ordinary 

differential equations, three of them corresponding to the effective stresses in cylindrical 

coordinates, other three corresponding to the components of the fabric tensor and one 

corresponding to the amount of bonding. The solution is validated against finite element 

analyses and analytical limit asymptotic values of the effective stresses at the cavity 

wall are established. When destructuration is considered, the solution provides lower 

values of the effective radial stresses near the cavity wall, which are partially 

compensated by larger values of the excess pore pressures. Parametric analyses and 

discussion of the influence of soil overconsolidation, initial amount of bonding and rate 

of destructuration are presented. Finally, the theoretical solution is compared with 

experimental data of undrained shear strength variation immediately after pile driving in 

a sensitive clay. 

 

Keywords: Destructuration; bonding; fabric of soils; clays; cavity expansion; 

theoretical analysis. 
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1. Introduction 

The theory of cavity expansion has been widely applied in geomechanical and 

geotechnical problems such as pressuremeter tests (e.g., Gibson and Anderson 1961; 

Palmer 1972), pile and stone column installation (e.g., Randolph et al. 1979; Castro and 

Karstunen 2010), cone penetration tests (e.g., Vesic 1972) and bearing capacity of deep 

foundations (e.g., Coop and Wroth 1989). Over the past decades, development of 

analytical or semi-analytical solutions for clays under undrained condition had mainly 

been focused on reconstituted (isotropic) samples (e.g., Yu 2000), ignoring the natural 

clay behaviour such as anisotropy and structure. More recently, semi-analytical 

solutions for clays using anisotropic critical state plasticity models have been presented 

and it is a subject undergoing intense study (Li et al. 2016; Li et al. 2017; 

Sivasithamparam and Castro 2018; Chen and Liu 2019; Chen et al. 2019; Li et al. in 

press; Liu and Chen in press, Chen et al. in press). On the other hand, solutions for 

cavity expansion in isotropic strain-softening soils using a post-failure strain softening 

(e.g., Prévost and Hoëg 1975) and interpretation of pressuremeter tests in sensitive soils 

(e.g., Ladd et al. 1980; Silvestri 2003; Silvestri and Tabib 2018) have been presented. 

However, to the best of the author's knowledge, an exact analytical or semi-analytical 

solution for anisotropic, structure (inter-particle bonding) and destructuration behaviour 

of plastic nature of clays is not yet available in the literature. Neglecting soil structure 

leads to inaccurate predictions of clay responses under external loading (e.g., Rouainia 

and Muir Wood 2000; Callisto and Rampello 2004; González et al. 2009; Deotti et al. 

2017). 

 

This paper presents a novel, exact and semi-analytical cylindrical cavity expansion 

solution for natural clays, which exhibit fabric anisotropy and structure. The solution is 
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developed using the S-CLAY1S constitutive model (Karstunen et al. 2005), which 

considers fabric anisotropy that evolves with plastic strains, structure and gradual 

degradation of bonding (destructuration) due to plastic straining. In this way, this paper 

extends the previous work by the authors (Sivasithamparam and Castro 2018), which 

considered only anisotropy through the S-CLAY1 model (Wheeler et al. 2003) and was 

based on the semi-analytical approach for cylindrical cavity expansion problems in 

isotropic soils proposed by Chen and Abouisleiman (2012). 

 

The assumptions and mathematical derivation of the semi-analytical solution are 

presented in Section 2. A system of seven first-order ordinary differential equations that 

require numerical integration is obtained. Details of the mathematical formulation are 

included as separate appendixes for simplicity and clarity. Validation of the semi-

analytical solution against finite element analyses, results and parametric analyses are 

portrayed in Section 3. The solution shows that the effective radial stress at the cavity 

wall increases as the cavity is expanded, but it reaches a peak value and progressively 

decreases down to a limit asymptotic value because of the loss of bonding in the soil. 

Comparison with analytical limit values and discussion of the influence of soil 

overconsolidation, initial amount of bonding and rate of destructuration are presented. 

Finally, the theoretical solution is compared with experimental data of in situ vane 

strength variation immediately after pile driving in a sensitive clay (Section 4) and the 

main conclusions are summarized in Section 5. 

 

2. Mathematical formulation and semi-analytical solution 

2.1. Assumptions and basic equations 
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The following assumptions are made to study the quasi-static expansion of a cylindrical 

cavity of initial radius a0 under undrained conditions: 

1.  The axis of the cylindrical cavity is assumed as the vertical axis and the initial 

stress state is homogeneous and consists of a horizontal effective stress and a 

vertical effective stress (σ’H, σ’V). 

2. The initial stress state may be also formulated in terms of total stresses 

considering the initial uniform pore water pressure (u0, σH, σV).  

3. The initial horizontal stress on the cavity is also σH and it increases up to σa, 

upon expanding the cavity to a final radius a (Figure 1). 

4. The symmetry axis of the initial soil cross-anisotropy (transversely isotropic 

material) is the vertical one. 

5. The problem has axial symmetry, thus, shear stresses vanish and, due to the 

infinite extent of the soil, plane strain conditions hold. 

6. Cylindrical coordinates (r,θ,z) are used throughout the paper because they are 

principal directions for this problem. Principal effective stresses are radial 𝜎𝜎𝑟𝑟′, 

tangential 𝜎𝜎𝜃𝜃′  and vertical 𝜎𝜎𝑧𝑧′. 

7. Large-strain deformation is considered in the plastic region using natural (or 

logarithmic) strains, but small-strain deformation is used in the elastic region. 

 

The equilibrium equation in the radial direction for cylindrical coordinates that are 

principal directions using effective stresses may be written as 

0'''
=

−
+

∂
∂+

∂
∂
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u

r
rr θσσσ  (1) 

Under undrained conditions, the current position of an arbitrary point, rx, is directly 

related to the initial position of the point, rx0, and the initial and current radii of the 

cavity, a0 and a, yielding the following equation in dimensionless form as 
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2.2. Constitutive model: S-CLAY1S 

The S-CLAY1S model, developed by Karstunen et al. (2005), is an extension of the S-

CLAY1 model (Wheeler et al. 2003) incorporating the influence of bonding and 

destructuration. In the model, anisotropic plastic behaviour is presented through an 

inclined yield surface and a rotational component of hardening to represent the 

development or erasure of fabric anisotropy during plastic straining. The effect of soil 

structure is introduced using intrinsic and natural yield surfaces (Gens and Nova 1993). 

 

For the simplified conditions of a triaxial stress space and for an initial cross-anisotropy 

fabric with the main axis being the vertical one (e.g. a vertically cut sample), the yield 

function can be expressed as (Wheeler et al. 2003) 

𝑓𝑓𝑦𝑦 = (𝑞𝑞 − 𝛼𝛼𝑝𝑝′)2 − (𝑀𝑀2 − 𝛼𝛼2)(𝑝𝑝𝑚𝑚′ − 𝑝𝑝′)𝑝𝑝  (3) 

where q is the deviatoric stress, p’ is the mean effective stress, M is the critical state 

value of the stress ratio (where η=q/p’) and p’m and α define the size and inclination of 

the natural yield curve, respectively (Figure 2). 

 

The intrinsic yield surface is of smaller size but same orientation as the yield curve of 

the natural soil (Figure 2). The size of the intrinsic yield surface is defied by the state 

variable 𝑝𝑝𝑚𝑚𝑚𝑚′  which is linked to the size of the natural yield surface by 

𝑝𝑝𝑚𝑚′ = (1 + 𝜒𝜒)𝑝𝑝𝑚𝑚𝑚𝑚′  (4) 

where 𝜒𝜒 defines the amount of bonding. 
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S-CLAY1S incorporates three hardening laws. The first describes the change of size of 

the yield curve, which is assumed to be related solely to plastic volumetric strains (as in 

MCC) 

𝑑𝑑𝑝𝑝𝑚𝑚𝑚𝑚′ = 𝜐𝜐𝑝𝑝𝑚𝑚𝑚𝑚
′

𝜆𝜆𝑚𝑚−𝜅𝜅
𝑑𝑑𝜀𝜀𝑣𝑣

𝑝𝑝 (5) 

where 𝜐𝜐 is the specific volume, λi is the slope of the intrinsic post-yield compression 

curve in the 𝜐𝜐-lnp’ plane and κ is the slope of the swelling line in the compression 

plane. 

 

The second hardening law (rotational hardening) describes the change of inclination of 

the yield curve produced by plastic straining, both volumetric and shear strains.  

𝑑𝑑𝛼𝛼 = 𝜔𝜔 ��3𝜂𝜂
4
− 𝛼𝛼� 〈𝑑𝑑𝜀𝜀𝑣𝑣

𝑝𝑝〉 + 𝜔𝜔𝑑𝑑 �
𝜂𝜂
3
− 𝛼𝛼� �𝑑𝑑𝜀𝜀𝑑𝑑

𝑝𝑝��  (6) 

where ω is a material constant that controls the absolute effectiveness of plastic strains 

in rotating the yield surface towards the target value. Similarly, ωd controls the relative 

effectiveness of shear and volumetric strains. 

 

The third destructuration law (Karstunen et al. 2005) describes the degradation of 

bonding with plastic straining by both volumetric and shear strains. 

𝑑𝑑𝜒𝜒 = −𝜉𝜉𝜒𝜒��𝑑𝑑𝜀𝜀𝑣𝑣
𝑝𝑝� + 𝜉𝜉𝑑𝑑�𝑑𝑑𝜀𝜀𝑑𝑑

𝑝𝑝�� (7) 

where 𝜉𝜉 and 𝜉𝜉𝑑𝑑 are two additional model constants controlling the rate of degradation 

(in an analogous manner to ω and ωd in Eq. 6). Full details of the hardening laws and 

determination of the model constants may be found in (Wheeler et al. 2003; Karstunen 

et al. 2005). 
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2.3. Invariants 

The natural yield surface of the model (Figure 2) can be expressed in generalized form 

as 

𝑓𝑓𝑦𝑦 = 3
2

(𝝈𝝈𝒅𝒅′ − 𝜶𝜶𝑑𝑑𝑝𝑝′)𝑇𝑇(𝝈𝝈𝒅𝒅′ − 𝜶𝜶𝑑𝑑𝑝𝑝′) − (𝑀𝑀2 − 𝜶𝜶𝑑𝑑𝑇𝑇𝜶𝜶𝑑𝑑)(𝑝𝑝𝑚𝑚′ − 𝑝𝑝′)𝑝𝑝′  (8) 

where  

𝝈𝝈𝒅𝒅′ = [𝜎𝜎𝑟𝑟′ − 𝑝𝑝′ 𝜎𝜎𝜃𝜃′ − 𝑝𝑝′ 𝜎𝜎𝑧𝑧′ − 𝑝𝑝′]𝑇𝑇 (9) 

and 

𝜶𝜶𝒅𝒅 = [𝛼𝛼𝑟𝑟 − 1 𝛼𝛼𝜃𝜃 − 1 𝛼𝛼𝑧𝑧 − 1]𝑇𝑇 (10) 

𝑝𝑝′ = (𝜎𝜎𝑟𝑟′+𝜎𝜎𝜃𝜃
′+𝜎𝜎𝑧𝑧′)
3

 (11) 

 

Sivasithamparam and Castro (2018) proposed a new invariant for the S-CLAY1 model 

(𝑞𝑞�), which simplifies the development of mathematical solutions for cylindrical cavity 

expansion in plastic anisotropic soils. The same invariant is also adopted for S-CLAY1S 

𝑞𝑞� = �3
2
𝑄𝑄 (12) 

where 

𝑄𝑄 = (𝝈𝝈𝒅𝒅′ − 𝜶𝜶𝑑𝑑𝑝𝑝′)𝑇𝑇(𝝈𝝈𝒅𝒅′ − 𝜶𝜶𝑑𝑑𝑝𝑝′) = 𝑠𝑠𝑟𝑟2 + 𝑠𝑠𝜃𝜃2 + 𝑠𝑠𝑧𝑧2 (13) 

and 𝑠𝑠𝑚𝑚 are the following deviatoric stresses  

𝑠𝑠𝑚𝑚 = 𝜎𝜎𝑚𝑚′𝑑𝑑 − 𝛼𝛼𝑚𝑚𝑑𝑑𝑝𝑝′ = 𝜎𝜎𝑚𝑚′ − �𝛼𝛼𝑚𝑚𝑑𝑑 + 1�𝑝𝑝′          for i=r,θ,z (14) 

and 𝛼𝛼𝑚𝑚𝑑𝑑  are deviatoric components of the fabric tensor. 

 

Using this invariant (𝑞𝑞�), the natural yield surface of the S-CLAY1S model can be 

expressed in a similar form as isotropic Cam-clay models 

𝑓𝑓𝑦𝑦 = 𝑞𝑞�2 − (𝑀𝑀2 − 𝛼𝛼2)(𝑝𝑝𝑚𝑚′ − 𝑝𝑝′)𝑝𝑝′ (15) 
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2.4. Elastoplastic stiffness matrix 

The increments of elastic strains in 𝑟𝑟, 𝜃𝜃 and 𝑧𝑧 directions may be obtained using the 

isotropic linear elastic stress-strain relationship as 

�
𝑑𝑑𝜀𝜀𝑟𝑟𝑒𝑒
𝑑𝑑𝜀𝜀𝜃𝜃𝑒𝑒

𝑑𝑑𝜀𝜀𝑧𝑧𝑒𝑒
� = 1

𝐸𝐸
�

1 −𝜈𝜈 −𝜈𝜈
−𝜈𝜈 1 −𝜈𝜈
−𝜈𝜈 −𝜈𝜈 1

� ⋅ �
𝑑𝑑𝜎𝜎𝑟𝑟′

𝑑𝑑𝜎𝜎𝜃𝜃′

𝑑𝑑𝜎𝜎𝑧𝑧′
� (16) 

where Young's modulus 𝐸𝐸 is defined in terms of shear modulus 𝐺𝐺 and Poisson's ratio 𝜈𝜈 

as 𝐸𝐸 = 𝐺𝐺(1 + 𝜈𝜈). (17) 

 

𝐺𝐺 is calculated in the S-CLAY1S model using the current stress state as 

𝐺𝐺 = 3(1−2𝜈𝜈)𝜐𝜐
2(1+𝜈𝜈)𝜅𝜅

𝑝𝑝′  (18) 

The components of plastic strain increments 𝑑𝑑𝜺𝜺𝑝𝑝 in 𝑟𝑟, 𝜃𝜃 and 𝑧𝑧 directions are calculated 

using the plastic multiplier Λ for the S-CLAY1S model, which considers an associated 

flow rule. 

�
𝑑𝑑𝜀𝜀𝑟𝑟

𝑝𝑝

𝑑𝑑𝜀𝜀𝜃𝜃
𝑝𝑝

𝑑𝑑𝜀𝜀𝑧𝑧
𝑝𝑝
� = Λ ⋅

⎩
⎪
⎨

⎪
⎧
𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝜎𝜎𝑟𝑟′

𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝜎𝜎𝜃𝜃

′

𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝜎𝜎𝑧𝑧′⎭

⎪
⎬

⎪
⎫

  (19) 

 

The plastic multiplier can be written in a matrix form as 

𝛬𝛬 =   ℋ �
𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝜎𝜎𝑟𝑟′

𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝜎𝜎𝜃𝜃

′
𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝜎𝜎𝑧𝑧′
� �
𝑑𝑑𝜎𝜎𝑟𝑟′

𝑑𝑑𝜎𝜎𝜃𝜃′

𝑑𝑑𝜎𝜎𝑧𝑧′
�     (20) 

where  

ℋ = − 1
ℋ0+ℋ𝛼𝛼+ℋ𝜒𝜒

   (21) 

ℋ0 = 𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝑝𝑝𝑚𝑚𝑚𝑚

′
𝜕𝜕𝑝𝑝𝑚𝑚𝑚𝑚

′

𝜕𝜕𝜀𝜀𝑣𝑣
𝑝𝑝
𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝑝𝑝′

  (22) 
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ℋ𝛼𝛼 =  �𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝜶𝜶𝑑𝑑

�
𝑇𝑇
��𝜕𝜕𝜶𝜶

𝑑𝑑

𝜕𝜕𝜀𝜀𝑣𝑣
𝑝𝑝� ⋅ 〈

𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝑝𝑝′
〉 + �𝜕𝜕𝜶𝜶

𝑑𝑑

𝜕𝜕𝜀𝜀𝑑𝑑
𝑝𝑝� ⋅ �

2
3
� 𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝝈𝝈′𝑑𝑑

� ⋅ � 𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝝈𝝈′𝑑𝑑

��  (23) 

ℋ𝜒𝜒 =  𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝜒𝜒
� 𝜕𝜕𝜒𝜒
𝜕𝜕𝜀𝜀𝑣𝑣

𝑝𝑝 �
𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝑝𝑝′
�+ 𝜕𝜕𝜒𝜒

𝜕𝜕𝜀𝜀𝑑𝑑
𝑝𝑝 �

2
3
� 𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝝈𝝈′𝑑𝑑

� ⋅ � 𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝝈𝝈′𝑑𝑑

��  (24) 

All required derivatives and the derivation of the plastic multiplier are presented in 

Appendixes I and II, respectively. 

 

Using decomposition of the strain vector (𝑑𝑑𝜺𝜺 = 𝑑𝑑𝜺𝜺𝑒𝑒 + 𝑑𝑑𝜺𝜺𝑝𝑝) and Eqs. (16-24), the 

elasto-plastic constitutive equations in the form of compliance and stiffness matrixes 

can be derived as  

�
𝑑𝑑𝜀𝜀𝑟𝑟
𝑑𝑑𝜀𝜀𝜃𝜃
𝑑𝑑𝜀𝜀𝑧𝑧

� =

⎣
⎢
⎢
⎢
⎡

1
𝐸𝐸

+ ℋ𝑛𝑛𝑟𝑟2 − 𝜈𝜈
𝐸𝐸

+ ℋ𝑛𝑛𝑟𝑟𝑛𝑛𝜃𝜃 − 𝜈𝜈
𝐸𝐸

+ ℋ𝑛𝑛𝑟𝑟𝑛𝑛𝑧𝑧
− 𝜈𝜈

𝐸𝐸
+ ℋ𝑛𝑛𝜃𝜃𝑛𝑛𝑟𝑟

1
𝐸𝐸

+ ℋ𝑛𝑛𝜃𝜃2 − 𝜈𝜈
𝐸𝐸

+ ℋ𝑛𝑛𝜃𝜃𝑛𝑛𝑧𝑧
− 𝜈𝜈

𝐸𝐸
+ ℋ𝑛𝑛𝑧𝑧𝑛𝑛𝑟𝑟 − 𝜈𝜈

𝐸𝐸
+ ℋ𝑛𝑛𝑧𝑧𝑛𝑛𝜃𝜃

1
𝐸𝐸

+ ℋ𝑛𝑛𝑧𝑧2 ⎦
⎥
⎥
⎥
⎤
⋅ �
𝑑𝑑𝜎𝜎𝑟𝑟′

𝑑𝑑𝜎𝜎𝜃𝜃′

𝑑𝑑𝜎𝜎𝑧𝑧′
�  (25) 

�
𝑑𝑑𝜎𝜎𝑟𝑟′

𝑑𝑑𝜎𝜎𝜃𝜃′

𝑑𝑑𝜎𝜎𝑧𝑧′
� = 1

𝛤𝛤
�
𝑐𝑐11 𝑐𝑐12 𝑐𝑐13
𝑐𝑐21 𝑐𝑐22 𝑐𝑐23
𝑐𝑐31 𝑐𝑐32 𝑐𝑐33

� ⋅ �
𝑑𝑑𝜀𝜀𝑟𝑟
𝑑𝑑𝜀𝜀𝜃𝜃
𝑑𝑑𝜀𝜀𝑧𝑧

�  (26) 

All terms in Eq. (26) are defined in Appendix III. 

 

2.5. Rotational hardening rule 

As derived by Sivasithamparam and Castro (2018), the changes in the fabric 

components (𝑑𝑑𝛼𝛼𝑟𝑟𝑑𝑑, 𝑑𝑑𝛼𝛼𝜃𝜃𝑑𝑑 and 𝑑𝑑𝛼𝛼𝑧𝑧𝑑𝑑) with the radial direction are 

𝑑𝑑𝛼𝛼𝑚𝑚
𝑑𝑑

𝑑𝑑𝑟𝑟
= Φ𝑚𝑚ℋ �𝑛𝑛𝑟𝑟

𝑑𝑑𝜎𝜎𝑟𝑟′

𝑑𝑑𝑟𝑟
+ 𝑛𝑛𝜃𝜃

𝑑𝑑𝜎𝜎𝜃𝜃
′

𝑑𝑑𝑟𝑟
+ 𝑛𝑛𝑟𝑟

𝑑𝑑𝜎𝜎𝑧𝑧′

𝑑𝑑𝑟𝑟
�      for i=r,θ,z               (27) 

where  

Φ𝑚𝑚 = 𝜔𝜔��3�𝜎𝜎𝑚𝑚
′−𝑝𝑝′�
4𝑝𝑝′

− 𝛼𝛼𝑚𝑚𝑑𝑑� 〈
𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝑝𝑝′

 〉 + 𝜔𝜔𝑑𝑑 �
�𝜎𝜎𝑚𝑚

′−𝑝𝑝′�
3𝑝𝑝′

− 𝛼𝛼𝑚𝑚𝑑𝑑��
2
3
� 𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝝈𝝈′𝑑𝑑

� ⋅ � 𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝝈𝝈′𝑑𝑑

�� for i=r,θ,z  (28) 
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2.6. Bonding and destructuration 

The destructuration hardening law (Eq. 7) relates the degradation of bonding with 

plastic straining. In three-dimensions, the plastic strain increments 𝑑𝑑𝜀𝜀𝑣𝑣
𝑝𝑝 and 𝑑𝑑𝜀𝜀𝑑𝑑

𝑝𝑝 are 

defined as 

𝑑𝑑𝜀𝜀𝑣𝑣
𝑝𝑝 = Λ 𝜕𝜕𝜕𝜕𝑦𝑦

𝜕𝜕𝑝𝑝′
  (29) 

𝑑𝑑𝜀𝜀𝑑𝑑
𝑝𝑝 = Λ�2

3
� 𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝝈𝝈′𝑑𝑑

� ⋅ � 𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝝈𝝈′𝑑𝑑

�  (30) 

 

Degradation of bonding along the radial direction can be obtained by substituting Eqs. 

(29-30) and Eq. (20) into Eq.(7). 

𝑑𝑑𝜒𝜒
𝑑𝑑𝑟𝑟

= Ωℋ �𝑛𝑛𝑟𝑟
𝑑𝑑𝜎𝜎𝑟𝑟′

𝑑𝑑𝑟𝑟
+ 𝑛𝑛𝜃𝜃

𝑑𝑑𝜎𝜎𝜃𝜃
′

𝑑𝑑𝑟𝑟
+ 𝑛𝑛𝑟𝑟

𝑑𝑑𝜎𝜎𝑧𝑧′

𝑑𝑑𝑟𝑟
�       (31) 

where 

Ω = 𝜒𝜒𝜉𝜉 �〈𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝑝𝑝′
〉 + 𝜉𝜉𝑑𝑑�

2
3
� 𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝝈𝝈′𝑑𝑑

� ⋅ � 𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝝈𝝈′𝑑𝑑

��  (32) 

 

2.7. Solution procedure 

The radial and tangential strain increments can be defined in natural strain form as 

𝑑𝑑𝜀𝜀𝑟𝑟 = −𝜕𝜕(𝑑𝑑𝑟𝑟)
𝜕𝜕𝑟𝑟

  and 𝑑𝑑𝜀𝜀𝜃𝜃 = 𝑑𝑑𝑟𝑟
𝑟𝑟

                  (33) 

where 𝑟𝑟 and 𝑑𝑑𝑟𝑟 are position of a material particle in the radial direction and change in 

the position of that particle, respectively. 

 

Under undrained and plane strain conditions, the volumetric and vertical strains are 

zero, i.e. 𝑑𝑑𝜀𝜀𝑣𝑣 = 𝑑𝑑𝜀𝜀𝑧𝑧 = 0. Thus, using Eq. (33), the strain increments are defined as 

𝑑𝑑𝜀𝜀𝑟𝑟 = −𝑑𝑑𝜀𝜀𝜃𝜃 = 𝑑𝑑𝑟𝑟
𝑟𝑟

        (34) 
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By substituting Eq. (34) into Eqs. (26,27,31), and applying plane strain conditions, i.e. 

𝑑𝑑𝜀𝜀𝑧𝑧 = 0, the following seven partial differential equations are found (3 corresponding 

to stress increments, 3 to rotation of the yield surface and 1 to destructuration) 

 

𝑑𝑑𝜎𝜎𝑟𝑟′

𝑑𝑑𝑟𝑟
− 𝑐𝑐11−𝑐𝑐12

Γ
1
𝑟𝑟

= 0  

𝑑𝑑𝜎𝜎𝜃𝜃
′

𝑑𝑑𝑟𝑟
− 𝑐𝑐21−𝑐𝑐22

Γ
1
𝑟𝑟

= 0          (35) 

𝑑𝑑𝜎𝜎𝑧𝑧′

𝑑𝑑𝑟𝑟
− 𝑐𝑐31−𝑐𝑐32

Γ
1
𝑟𝑟

= 0  

𝑑𝑑𝛼𝛼𝑟𝑟𝑑𝑑

𝑑𝑑𝑟𝑟
− Φ𝑟𝑟ℋ

Γ
[𝑛𝑛𝑟𝑟(𝑐𝑐11 − 𝑐𝑐12) + 𝑛𝑛𝜃𝜃(𝑐𝑐21 − 𝑐𝑐22) + 𝑛𝑛𝑟𝑟(𝑐𝑐31 − 𝑐𝑐32)] 1

𝑟𝑟
= 0                 

𝑑𝑑𝛼𝛼𝜃𝜃
𝑑𝑑

𝑑𝑑𝑟𝑟
− Φ𝜃𝜃ℋ

Γ
[𝑛𝑛𝑟𝑟(𝑐𝑐11 − 𝑐𝑐12) + 𝑛𝑛𝜃𝜃(𝑐𝑐21 − 𝑐𝑐22) + 𝑛𝑛𝑟𝑟(𝑐𝑐31 − 𝑐𝑐32)] 1

𝑟𝑟
= 0                 (36) 

𝑑𝑑𝛼𝛼𝑧𝑧𝑑𝑑

𝑑𝑑𝑟𝑟
− Φ𝑧𝑧ℋ

Γ
[𝑛𝑛𝑟𝑟(𝑐𝑐11 − 𝑐𝑐12) + 𝑛𝑛𝜃𝜃(𝑐𝑐21 − 𝑐𝑐22) + 𝑛𝑛𝑟𝑟(𝑐𝑐31 − 𝑐𝑐32)] 1

𝑟𝑟
= 0  

𝑑𝑑𝜒𝜒
𝑑𝑑𝑟𝑟
− Ωℋ

Γ
[𝑛𝑛𝑟𝑟(𝑐𝑐11 − 𝑐𝑐12) + 𝑛𝑛𝜃𝜃(𝑐𝑐21 − 𝑐𝑐22) + 𝑛𝑛𝑟𝑟(𝑐𝑐31 − 𝑐𝑐32)] 1

𝑟𝑟
= 0       (37) 

 

The system of seven first-order ordinary differential equations (ODE) governs the 

expansion of the cylindrical cavity in the plastic region. Boundary conditions for the 

elasto/plastic boundary and the elastic solution (Appendix IV) are required for the 

complete mathematical formulation of the problem. As presented by Chen and 

Abousleiman (2012), the position of the material particle at the instant when the particle 

becomes plastic, 𝑟𝑟𝑥𝑥𝑝𝑝, can be obtained as 

𝑟𝑟𝑥𝑥𝑝𝑝
𝑎𝑎

= 2𝐺𝐺0
2𝐺𝐺0−�𝜎𝜎𝑟𝑟𝑝𝑝 

′ −𝜎𝜎𝑟𝑟0 
′ �

��𝑟𝑟𝑥𝑥
𝑎𝑎
�
2

+ �𝑎𝑎0
𝑎𝑎
�
2
− 1         (38) 
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The location of the current elastic/plastic interface 𝑟𝑟𝑝𝑝 is the same as that for the S-

CLAY1 model (Sivasithamparam and Castro 2018) because the natural yield surface is 

the same (Figure 2). 

𝑟𝑟𝑝𝑝
𝑎𝑎

= �1 − �𝑎𝑎0
𝑎𝑎
�
2

�𝜎𝜎𝑟𝑟𝑝𝑝 
′ −𝜎𝜎𝑟𝑟0 

′

𝐺𝐺0
− �

𝜎𝜎𝑟𝑟𝑝𝑝 
′ −𝜎𝜎𝑟𝑟0 

′

2𝐺𝐺0
�
2

 �           (39) 

 

where  

𝜎𝜎𝑧𝑧𝑝𝑝 
′ = 3

1+2𝐾𝐾0
𝑝𝑝0′              

𝜎𝜎𝑟𝑟𝑝𝑝 
′ = 𝜎𝜎𝑟𝑟0 

′ + �1
3

(𝑞𝑞2 − (𝜎𝜎𝑧𝑧0 
′ − 𝐾𝐾0𝜎𝜎𝑧𝑧0 

′ )2)                     (40) 

𝜎𝜎𝜃𝜃𝑝𝑝′ = 𝜎𝜎𝜃𝜃0′ − �1
3

(𝑞𝑞2 − (𝜎𝜎𝑧𝑧0 
′ − 𝐾𝐾0𝜎𝜎𝑧𝑧0 

′ )2)  

where 

𝜎𝜎𝑟𝑟0 
′ = 𝜎𝜎𝜃𝜃0 

′ = 3𝐾𝐾0
1+2𝐾𝐾0

𝑝𝑝0′   and 𝜎𝜎𝑧𝑧0 
′ = 3

1+2𝐾𝐾0
𝑝𝑝0′   (41) 

and 

𝑞𝑞 = �𝑞𝑞02 + (𝑞𝑞�2 − (𝑞𝑞0 − 𝛼𝛼𝑝𝑝0′ )2)     (42) 

where 

𝑞𝑞0 =  �3
2
�(𝜎𝜎𝑟𝑟0 

′ − 𝑝𝑝0′ )2 + �𝜎𝜎𝜃𝜃0 
′ − 𝑝𝑝0′ �

2
+ (𝜎𝜎𝑧𝑧0 

′ − 𝑝𝑝0′ )2�     (43) 

and 

𝑞𝑞� = �(𝑀𝑀2 − 𝛼𝛼02)(𝑝𝑝𝑚𝑚′ − 𝑝𝑝0′ )𝑝𝑝′    (44) 

 

The system of equations (Eqs. 35-37), imposing the boundary conditions (Eqs. 38-40), 

can be solved numerically; here, the standard differential solver 'lsode' available in 

GNU Octave v4.0 was used. Figure 3 summarizes the solution procedure. 
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The pore pressure distribution can be calculated by integration from the elastic/plastic 

interface up to the point 𝑟𝑟𝑥𝑥. 

∆𝑢𝑢 = 𝑢𝑢(𝑟𝑟𝑥𝑥) − 𝑢𝑢0 = 𝜎𝜎𝑟𝑟𝑝𝑝 
′ − 𝜎𝜎𝑟𝑟 

′ (𝑟𝑟𝑥𝑥) − ∫ 𝜎𝜎𝑟𝑟′−𝜎𝜎𝜃𝜃
′

𝑟𝑟
𝑟𝑟𝑥𝑥
𝑟𝑟𝑝𝑝

 𝑑𝑑𝑟𝑟            (45) 

 

3. Results and Discussion 

3.1. Validation 

Validation of the proposed semi-analytical solution has been performed by comparison 

of its results with finite element simulations using the commercial code Plaxis 2D 2017 

(Brinkgreve et al. 2017). The S-CLAY1S model has been implemented as User-defined 

soil model in Plaxis, using an automatic substepping in combination with a modified 

Newton-Raphson integration scheme (Sivasithamparam 2012; Sivasithamparam and 

Castro 2016.) 

 

The geometrical model (Figure 4) is based on that used by González et al. (2009) for 

plane strain cylindrical cavity expansion. The boundary condition at the outer boundary 

is a fixed radial stress (equal to the initial value) and free radial displacements to deal 

with the material incompressibility (undrained conditions) in a model of finite 

dimensions. This geometrical model has proven to be more computationally efficient 

than the geometrical model used in Sivasithamparam and Castro (2018), which was 

based on that proposed by Burd and Houlsby (1990) using a correcting layer. Sensitivity 

analyses of mesh refinement, load step size and water bulk modulus were performed to 

confirm their small influence. 

 

To account for large displacements, the numerical code uses an updated Lagrangian 

formulation (McMeeking and Rice 1975) and adopts the co-rotational rate of Kirchhoff 
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stress (also known as Hill stress rate). The details of the implementation can be found in 

Van Langen (1991). 

 

For the sake of comparison with previous studies, Boston blue clay (BBC) is considered 

and its Modified Cam clay (MCC) parameters are taken from Chen and Abousleiman 

(2012) and additional anisotropic parameters from Sivasithamparam and Castro 2018 

(S-CLAY1) (see Table 1). Additional parameters for intrinsic compressibility, bonding 

and destructuration have been taken from the literature, just for illustrative purposes, 

without aiming to reach a detailed calibration of the parameters using experimental 

tests. 

 

BBC is a moderately sensitive marine clay and, for example, Whittle et al. (1994) use a 

value of St=4.5. For the S-CLAY1S model, that implies χ0=3.5 (Table 1). For parametric 

analyses, four times this value has also been used (χ0=14). Cerato and Lutenegger 

(2004) obtained an intrinsic compressibility of BBC remoulded at 1.25 times the liquid 

limit of λi=0.12, which is slightly lower than the natural compressibility used in 

previous cavity expansion papers (λ=0.15) (e.g., Chen and Abousleiman 2012; 

Sivasithamparam and Castro 2018) and, thus, in agreement with the moderate 

sensitivity of BBC. Finally, the parameters of the destructuration hardening law (Eq. 7) 

are set equal to their default values (ξ=9 and ξd=0.2) (e.g., Karstunen et al. 2006) 

 

The overconsolidation ratio (OCR) of BBC varies with depth. To provide a broad 

representation of different depths, several OCR values are considered, namely 1, 1.5, 3 

and 5. Their corresponding initial state parameters are shown in Table 2 and are the 

same as in Sivasithamparam and Castro (2018) for the sake of comparison. 
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Values of undrained shear strength for plane strain conditions (Table 2) were 

numerically simulated. For cases without destructuration (χ0=0) and triaxial 

compression conditions or normally consolidated conditions, the analytical expression 

may be found in Sivasithamparam and Castro (2018). When destructuration is 

considered, the undrained shear strength reduces towards a residual value that was 

analytically deduced here following a similar procedure as that used by Potts and 

Zdravkovic (1999) for MCC: 

𝑐𝑐𝑢𝑢 = 𝑐𝑐𝑢𝑢(𝜒𝜒0=0)
(1+𝜒𝜒0)1−𝜅𝜅 𝜆𝜆⁄  (46) 

 

Nevertheless, the residual value of the undrained shear strength is not commonly 

reached for usual ranges of strain. Therefore, it is not useful for practical purposes to 

normalize the results by the undrained shear strength as commonly done for models that 

do not considered destructuration (e.g., Randolph et al. 1979; Chen and Abousleiman 

2012; Sivasithamparam and Castro 2018). Thus, results will be generally normalized by 

the initial vertical effective stress in this paper. In some special cases, values are 

normalized by the undrained shear strength (Table 2) to compare with analytical values. 

 

Comparison between finite element simulations and the semi-analytical solution gives 

minor differences as may be observed in Figure 5 for the stresses around the cavity as 

an example. 

 

3.2. Internal cavity pressure 

To expand the cavity, an internal pressure (radial stress), σa, must be applied. Its value 

must monotonically increase to continue with the expansion of the cavity. When the 
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cavity has been notably expanded (around a/a0>2), σa approaches an asymptotic limit 

value, sometimes called pressuremeter limit pressure. Figure 6 shows its variation with 

the normalized cavity radius for different OCR and χ0 values. Ambient pore pressures 

are not included because they are not relevant and could mask the results. 

 

Excess pore pressures at the cavity wall (Δua) are depicted in Figure 7. For high OCR 

values, slight negative excess pore pressures could be generated at the beginning of the 

cavity expansion (small a/a0 values). 

 

González et al. (2009) pointed out that mechanical overconsolidation and initial 

bonding have similar effects on the load-displacement curve (Figure 6). Here, the same 

trends are found but the influence of the initial bonding is limited beyond values around 

χ0>3.5. That is because the smaller values of the effective radial stresses, when 

considering higher values of initial bonding, are nearly compensated by larger excess 

pore pressures (Figure 7). González et al. (2009) proposed to use unloading-reloading 

cycles or strain holding phases to try to distinguish between the effects of mechanical 

overconsolidation and initial bonding. If pore water pressures are measured at the cavity 

wall (e.g., when using the Cambridge self-boring pressuremeter), effective radial stress 

at the cavity wall (Figure 8) may be used to estimate the initial degree of bonding from 

the softening part. Nevertheless, field measurements may not clearly show the softening 

part (e.g., Hamouche et al. 1995). 

 

When destructuration is not considered, the effective radial stress (Figure 8) quickly 

reaches a constant ultimate value (for a/a0>1.3). For cases with destructuration, the 

effective radial stress continues decreasing for large cavity expansions, but also tends 
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towards a constant ultimate value. In both cases and for any value of OCR and χ0, there 

exists an analytical solution for the ultimate value of the effective radial stress 

(σ’r=(√3/M+1)cu). 

 

3.3. Stresses around the cavity 

Figure 9 shows the stresses and excess pore pressures around the cavity when the cavity 

radius is twice the initial one (a/a0=2). For the sake of comparison, results for the case 

without destructuration (S-CLAY1, i.e. λ=0.15) (Sivasithamparam and Castro 2018) are 

also included in Figure 9. The extension of the plastic annulus depends on the OCR. For 

normally consolidated conditions, all the material points yield just when the cavity 

expansion begins, but plastic strains are not very important beyond r>10a.  

 

Sivasithamparam and Castro (2018) showed that near the cavity the stresses are 

constant because the points are at critical state (CS) and the value of the stresses may be 

analytically obtained 

σ’r = (√3/M+1)cu    ;  σ’z = (√3/M)cu   ;   σ’θ = (√3/M-1)cu (47) 

 

Now, when destructuration is considered, Eq. (47) also holds, but CS is not usually 

reached for common expansions of the cavity (e.g., a/a0=2) and common rates of 

destructuration (e.g., ξ=9 and ξd=0.2), because very large strains are necessary for a 

complete loss of structure (fully remoulded state). Thus, the values near the cavity are in 

a range between values given by Eq. (47) and (1 + 𝜒𝜒0)1−𝜅𝜅 𝜆𝜆⁄  times those values (Eq. 

46). 
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3.4. Stress paths 

For a better understanding of the problem, it is useful to observe the effective stress 

paths (ESP) followed by a point at the cavity wall during cavity expansion. Figures 10 

and 11 show the stress paths for different OCR values in p’-q stress plane and π-plane, 

respectively. The stress paths illustrate the stress state of a point at the cavity wall from 

the beginning of the expansion (initial K0 state) (a/a0=1) until a final cavity expansion 

of a/a0=2. Destructuration, i.e. loss of bonding, causes a gradual reduction of the yield 

surface towards the intrinsic yield surface. Destructuration is more important when the 

stress path has reached the critical state line (CSL) and plastic strains are larger. Then, 

the stress paths decrease along the CSL for plane strain conditions (Figures 10-12). 

 

The initial yield surface (YS0) plotted in Figure 10 corresponds to the triaxial plane, 

while yielding is here reached for a different value of the Lode’s angle (Figure 11) (for 

further details, please refer to Sivasithamparam and Castro (2018) and Chen et al. in 

press). 

 

Figure 12 depicts the influence of the initial amount of bonding (χ0) on the stress paths. 

Higher values of χ0 cause larger destructurations (Eq. 7), and consequently, lower final 

stresses and slightly faster changes of direction of the stress path. 

 

Figure 11 also shows the path followed by the α·p’ vector, which depicts the centre of 

the anisotropic yield surface. It shows how the yield surface rotates from triaxial 

compression conditions towards plane strain conditions. Destructuration causes a 

reduction of effective stresses (p’), but evolution of fabric anisotropy (α) is not 

influenced by destructuration, as it will be presented in the next section. 
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3.5. Fabric anisotropy 

An interesting feature of this cavity expansion problem (incompressible material and 

plane strain conditions) is that the strain field may be first obtained, and then, the 

constitutive law is used to derive stresses. On the other hand, the evolution of fabric 

anisotropy is controlled by the corresponding hardening law (Eq. 6), which is the same 

for S-CLAY1 (model without destructuration) and S-CLAY1S (model with 

destructuration). Thus, the evolution of fabric anisotropy is exactly the same for both 

models. 

 

Near the cavity, the fabric tensor reaches a constant value that may be analytically 

obtained as [ ] [ ]19/319/31 MMzr −+=ααα θ  (refer to Sivasithamparam 

and Castro (2018) for further details). Please, note that when destructuration is 

considered, large strains are necessary to reach CS, i.e. constant effective stresses and 

full loss of bonding, but the fabric tensor reaches much earlier a constant value that is 

the same as that at CS conditions. 

 

3.6. Influence of structure and destructuration 

Cavity expansion usually generates plastic strains, which in turn cause a loss of bonding 

of the structured clay (Figure 13) as per the assumed destructuration hardening law (Eq. 

7). The loss of bonding (destructuration) is proportional to the current bonding 

parameter (Eq. 7). Consequently, the loss of bonding may be normalized by the initial 

amount of bonding in Figure 13. 

 

Figure 13a shows the influence of OCR on the loss of bonding. It may be observed, that 

the loss of bonding at the cavity wall is independent of OCR, and only the extension of 
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the plastic zone and, consequently, the extension of the zone where the amount of 

bonding decreases are influenced by OCR. 

 

Larger radial expansions of the cavity generate larger soil distortions and larger 

destructuration of the soil, both in terms of extension and amount of destructuration 

(Figure 13b). The radial extension of destructuration is equal to the plastic annulus 

surrounding the cavity. Beyond a/a0=10, the increase of rp/a is negligible (Eq. 39). 

Results in Figure 13b for a/a0=10 are nearly the same as for any other larger value. 

Please, note that this is for normalized values of the radius, r/a. 

 

Figure 13c shows the influence of the rate of destructuration (ξ). Extreme values are 

chosen in Figure 13c to amply cover the range of possible values. ξ does not influence 

the plastic radius (rp/a), but higher values of ξ obviously result in faster destructuration 

processes and lower final values of the bonding parameter. 

 

The values of destructuration commented above are reflected on the stress distribution 

around the cavity. Thus, larger values of the imposed radial displacement generate 

larger extensions of the plastic annulus (rp), higher excess pore pressures (Δu) and 

higher effective radial stresses (σ’r) in the far field but lower values of σ’r close to the 

cavity (Figure 14a). On the other hand, a faster rate of destructuration does not influence 

rp, but leads to lower values of σ’r near the cavity (Figure 14b). If the rate of 

destructuration is large enough (e.g., ξ=100 in this case), the points near the cavity wall 

reach CS and the effective stresses are constant in that CS annulus. 
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4. Comparison with experimental data 

This section aims to highlight the capabilities of the proposed solution, but it does not 

consider a detailed example of practical application, which requires further 

investigation. A comparison is shown with data presented by Roy et al. (1981), who 

measured the variation of the undrained shear strength immediately after pile driving in 

a soft sensitive marine silty clay, namely Saint-Alban clay. 

 

Saint-Alban clay has a critical state friction angle of 27º (e.g., Tavenas and Leroueil 

1977). Following the approach proposed by Wheeler et al. (2003), anisotropic 

parameters were calculated (Table 3). Those anisotropic parameters agree with those 

used by Rezania et al. (2016), and some basic parameters, such as λi, e0 and OCR, were 

taken from this reference. To illustrate the constitutive model capabilities and calibrate 

destructuration parameters, isotropically consolidated undrained (CIU) triaxial tests 

were simulated using S-CLAY1S (Figure 15) and compared with laboratory data 

(Tavenas and Leroueil 1977). A depth of circa 6 m was considered as representative and 

the corresponding initial state parameters (e.g., Roy et al. 1981; Rezania et al. 2016) are 

portrayed in Table 4. 

 

To simulate the driving of piles in Saint-Alban clay, the radial expansion of a very small 

cylindrical cavity was considered using the proposed theoretical solution. Although a 

ratio a/a0≥2 may be enough in non-structured soils (e.g., Randolph et al. 1979), here a 

value of a/a0≥10 is necessary (e.g., Figure 8). The specific value of a does not influence 

the results, but in this case, it was 2a=219 mm (Roy et al. 1981). The reduction of the 

normalized in situ vane strength immediately after pile driving measured by Roy et al. 

(1981) is shown in Figure 16. Estimations using the proposed theoretical solution are 
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also included for comparison; cu/cu0 was assumed as either proportional to p’/p’0 or 

p’m/p’m0. The latter ratio is very similar to (1+χ)/(1+ χ0). 

 

For the comparison (Figure 16), several zones may be distinguished. At the pile shaft, 

the theoretical solution predicts a dramatic reduction of cu, which is not measured in the 

field. Partial drainage may affect the measured value in the field at the pile shaft. At a 

distance between two and three pile radii, field measurements agree well with the 

theoretical solution. The reduction of cu is between 10 and 40% and it is mainly caused 

by the loss of bonding. Other authors (e.g., Fellenius and Samson 1976; Bozozuk et al 

1978) reported similar reductions of the in situ vane strength (around 15%) in the 

middles of pile groups. For r=4-7a, the theoretical values are slightly higher than those 

measured in the field and are influenced by the reduction of the mean effective stress 

(Figure 16). On the whole, the theoretical solution is able to predict the reduction of cu 

immediately after pile driving. 

 

5. Conclusions 

A novel, exact and semi-analytical cylindrical cavity expansion solution for natural 

clays has been rigorously developed using the S-CLAY1S constitutive model, which is 

a Cam clay type of model that considers fabric anisotropy that evolves with plastic 

strains, structure and gradual degradation of bonding (destructuration) due to plastic 

straining. The solution involves the numerical integration of a system of seven first-

order ordinary differential equations, three of them corresponding to the effective 

stresses in cylindrical coordinates, other three corresponding to the components of the 

fabric tensor and one corresponding to the amount of bonding. 
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The semi-analytical solution has been validated against finite element analyses, using 

Boston blue clay as the reference natural clay. 

 

When destructuration is considered, i.e. using the S-CLAY1S model, the solution 

provides lower values of the effective radial stresses near the cavity wall than those 

obtained when destructuration is not considered (S-CLAY1). The lower values of the 

effective radial stresses are partially compensated by larger values of the excess pore 

pressures. The limit asymptotic value of the effective stresses at the cavity wall may be 

analytically obtained as a function of the undrained shear strength. However, very large 

strains are required to reach the analytical limit values. 

 

Interestingly, evolution of fabric anisotropy does not depend on the initial amount of 

bonding and the rate of destructuration and the same values of fabric anisotropy are 

obtained with both S-CLAY1 and S-CLAY1S soil models. The initial vertical cross 

anisotropy caused by the soil deposition changes towards a radial cross anisotropy after 

cavity expansion. 

 

For common values, the soil near the cavity does reach the CSL, but does not reach CS, 

i.e. full remoulding and a constant stress state. The loss of bonding extends along the 

plastic annulus surrounding the cavity (larger for larger OCR and imposed radial 

displacements), being the largest at the cavity wall and progressively decreasing until a 

null loss of bonding in the elastic zone. The loss of bonding simulated by the theoretical 

solution is able to reproduce approximately the reduction of cu immediately after pile 

driving in sensitive clays, as illustrated for a case in Saint-Alban clay. 
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APPENDIX I: Derivatives 

The partial derivatives used in the analytical solution are 

𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝜎𝜎𝑚𝑚

′ =  𝑝𝑝
′�𝑀𝑀2−𝛼𝛼2−𝜂𝜂�2�

3
+ �3𝑠𝑠𝑚𝑚 − 𝑠𝑠𝑟𝑟𝛼𝛼𝑟𝑟𝑑𝑑 − 𝑠𝑠𝜃𝜃𝛼𝛼𝜃𝜃𝑑𝑑 − 𝑠𝑠𝑧𝑧𝛼𝛼𝑧𝑧𝑑𝑑� for  i=r,θ,z          

where 

�̅�𝜂 = 𝑞𝑞�
𝑝𝑝′

                                                                                              

𝑞𝑞� = �3
2
𝑄𝑄                                                                                      

and 

𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝑝𝑝𝑚𝑚𝑚𝑚

′ =  −𝑝𝑝′(𝑀𝑀2 − 𝛼𝛼2)(1 + 𝜒𝜒)                                              

𝜕𝜕𝑝𝑝𝑚𝑚𝑚𝑚
′

𝜕𝜕𝜀𝜀𝑣𝑣
𝑝𝑝 =  𝜐𝜐𝑝𝑝′

(𝜆𝜆𝑚𝑚−𝜅𝜅)(1+𝜒𝜒)(𝑀𝑀2−𝛼𝛼2)
(𝑀𝑀2 − 𝛼𝛼2 + �̅�𝜂2 )                

𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝑝𝑝′

= 𝑝𝑝′(𝑀𝑀2 − 𝛼𝛼2 − �̅�𝜂2) − 3(𝑠𝑠𝑟𝑟𝛼𝛼𝑟𝑟𝑑𝑑 + 𝑠𝑠𝜃𝜃𝛼𝛼𝜃𝜃𝑑𝑑 + 𝑠𝑠𝑧𝑧𝛼𝛼𝑧𝑧𝑑𝑑)               

𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝛼𝛼𝑚𝑚

𝑑𝑑 = −3𝑠𝑠𝑚𝑚𝑝𝑝′ + 3𝛼𝛼𝑚𝑚𝑑𝑑
𝑞𝑞�2

𝑀𝑀2−𝛼𝛼2
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𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝜎𝜎𝑚𝑚
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4𝑝𝑝′
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𝜕𝜕𝜀𝜀𝑣𝑣
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APPENDIX II: Derivation of the plastic multiplier 
 
The consistency condition (𝑓𝑓�̇�𝑦 = 0) is developed as: 

𝑓𝑓�̇�𝑦 = 𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝜎𝜎𝑚𝑚

′ 𝑑𝑑𝜎𝜎𝑚𝑚′ + 𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝑝𝑝𝑚𝑚𝑚𝑚

′ 𝑑𝑑𝑝𝑝𝑚𝑚𝑚𝑚′ + 𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝜶𝜶𝒅𝒅

𝑑𝑑𝜶𝜶𝒅𝒅 + 𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕χ
𝑑𝑑χ = 0   for i=r,θ,z                           

 
and in terms of plastic strains, it is: 

𝑓𝑓�̇�𝑦 = 𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝜎𝜎𝑚𝑚
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Thus, the plastic multiplier is 
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APPENDIX III: Elasto-plastic solution 

𝑐𝑐11 =  1
𝐸𝐸2
�1 − 𝜈𝜈2 + 𝐸𝐸ℋ𝑛𝑛𝜃𝜃2 + 2𝐸𝐸𝜈𝜈ℋ𝑛𝑛𝜃𝜃𝑛𝑛𝑧𝑧 + 𝐸𝐸ℋ𝑛𝑛𝑧𝑧2�  

𝑐𝑐12 = 𝑐𝑐21 =  1
𝐸𝐸2

[−𝐸𝐸ℋ(𝑛𝑛𝜃𝜃 + 𝜈𝜈𝑛𝑛𝑧𝑧) + 𝜈𝜈(1 + 𝜈𝜈 − 𝐸𝐸ℋ𝑛𝑛𝜃𝜃𝑛𝑛𝑧𝑧 + 𝐸𝐸ℋ𝑛𝑛𝑧𝑧2)]  

𝑐𝑐13 = 𝑐𝑐31 =  1
𝐸𝐸2

[−𝐸𝐸ℋ𝑛𝑛𝑟𝑟(𝜈𝜈𝑛𝑛𝜃𝜃 + 𝑛𝑛𝑧𝑧) + 𝜈𝜈(1 + 𝜈𝜈 − 𝐸𝐸ℋ𝑛𝑛𝜃𝜃2 + 𝐸𝐸ℋ𝑛𝑛𝜃𝜃𝑛𝑛𝑧𝑧)]  

𝑐𝑐22 =  1
𝐸𝐸2

(1 − 𝜈𝜈2 + 𝐸𝐸ℋ𝑛𝑛𝑟𝑟2 + 2𝐸𝐸𝜈𝜈ℋ𝑛𝑛𝑟𝑟𝑛𝑛𝑧𝑧 + 𝐸𝐸ℋ𝑛𝑛𝑧𝑧2)  

𝑐𝑐23 = 𝑐𝑐32 =  1
𝐸𝐸2

[𝜈𝜈 + 𝜈𝜈2 + 𝐸𝐸ℋ𝜈𝜈𝑛𝑛𝑟𝑟2 − 𝐸𝐸ℋ𝑛𝑛𝜃𝜃𝑛𝑛𝑧𝑧 − 𝐸𝐸ℋ𝜈𝜈𝑛𝑛𝑟𝑟(𝑛𝑛𝜃𝜃 + 𝑛𝑛𝑧𝑧)]   

𝑐𝑐33 =  1
𝐸𝐸2
�1 − 𝜈𝜈2 + 𝐸𝐸ℋ𝑛𝑛𝑟𝑟2 + 2𝐸𝐸𝜈𝜈ℋ𝑛𝑛𝑟𝑟𝑛𝑛𝜃𝜃 + 𝐸𝐸ℋ𝑛𝑛𝜃𝜃2�   

𝛤𝛤 =  −  1+𝜈𝜈
𝐸𝐸3

�
(−1 + 𝜈𝜈 + 2𝜈𝜈2) + 𝐸𝐸ℋ(−1 + 𝜈𝜈)𝑛𝑛𝑟𝑟2 + 𝐸𝐸ℋ(−1 + 𝜈𝜈)𝑛𝑛𝜃𝜃2 −

          −2𝐸𝐸ℋ𝜈𝜈𝑛𝑛𝜃𝜃𝑛𝑛𝑧𝑧 − 𝐸𝐸ℋ𝑛𝑛𝑧𝑧2 + 𝐸𝐸ℋ𝜈𝜈𝑛𝑛𝑧𝑧2 − 2𝐸𝐸ℋ𝜈𝜈𝑛𝑛𝑟𝑟(𝑛𝑛𝜃𝜃 + 𝑛𝑛𝑧𝑧)
�  

where 

𝑛𝑛𝑚𝑚 = 𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝜎𝜎𝑚𝑚

′   for i=r,θ,z 
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APPENDIX IV: Elastic solution 

The solution for the elastic total stresses (𝜎𝜎𝑟𝑟, 𝜎𝜎𝜃𝜃, 𝜎𝜎𝑧𝑧) and the radial displacement (𝑢𝑢𝑟𝑟) 

can be obtained imposing the assumption of null volumetric and vertical strains (for 

details see, for example, Yu 2000) 

𝜎𝜎𝑟𝑟 = 𝜎𝜎𝐻𝐻 + �𝜎𝜎𝑝𝑝 − 𝜎𝜎𝐻𝐻� �
𝑟𝑟𝑝𝑝
𝑟𝑟
�
2
                                                          (IV.1) 

𝜎𝜎𝜃𝜃 = 𝜎𝜎𝐻𝐻 + �𝜎𝜎𝑝𝑝 − 𝜎𝜎𝐻𝐻� �
𝑟𝑟𝑝𝑝
𝑟𝑟
�
2
                                                                       (IV.2) 

𝜎𝜎𝑧𝑧 = 𝜎𝜎𝑉𝑉                                                       (IV.3) 

𝑢𝑢𝑟𝑟 = 𝜎𝜎𝑝𝑝−𝜎𝜎𝐻𝐻
2𝐺𝐺0

𝑟𝑟𝑝𝑝2

𝑟𝑟
                                                              (IV.4) 

where 𝜎𝜎𝑝𝑝 is the total radial stress at the elasto/plastic boundary, 𝜎𝜎𝐻𝐻 and 𝜎𝜎𝑉𝑉 are the total 

horizontal and vertical stresses, respectively.  
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List of symbols 

 

a Radius of the cylindrical cavity 

uc  Undrained shear strength 

PSuc ,  Undrained shear strength for plane strain conditions 

D Elastic stiffness matrix 

e Void ratio 

fy Function of the yield surface 

G Shear modulus 

K0NC Coefficient of lateral earth pressure at rest in normally consolidated conditions 

K0 Coefficient of lateral earth pressure 

M  Slope of the critical state line 

'p  Mean effective stress: 𝑝𝑝′ = (𝜎𝜎𝑟𝑟′+𝜎𝜎𝜃𝜃
′+𝜎𝜎𝑧𝑧′)
3

 

mp'  Size of the yield surface 

mip'  Size of the intrinsic yield surface 

q  Deviatoric stress: 𝑞𝑞 = �1
2
��𝜎𝜎𝑟𝑟′ − 𝜎𝜎𝜃𝜃′ �

2
+ (𝜎𝜎𝑟𝑟′ − 𝜎𝜎𝑧𝑧′)2 + �𝜎𝜎𝜃𝜃′ − 𝜎𝜎𝑧𝑧′�

2
� 

q  Invariant for anisotropic models. Radius of the yield surface in π-plane 

Q Invariant for anisotropic models: 𝑄𝑄 = 2
3
𝑞𝑞�2 

St Sensitivity 

s Deviatoric stress 

𝑢𝑢𝑟𝑟 Radial displacement 
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α  Fabric tensor 

α  Inclination of the yield surface 

dα  Deviatoric fabric tensor 

Δ Incremental operator 

ΔΛ Plastic multiplier 

ε Strain 

η Stress ratio: η=q/p' or p′= /dση  (tensor) 

κ  Slope of swelling line from 'ln p−ν  space 

λ  Slope of the natural post yield compression line from 'ln p−ν  space 

λ i Slope of the intrinsic yield compression line from 'ln p−ν  space 

ν  Poisson’s ratio 

ξ, ξd Absolute and relative effectiveness of plastic strains in destructuration 

σ , 'σ  Total and effective stresses 

aσ  Internal cavity pressure 

pσ  Total radial stress at the elastic/plastic boundary 

𝜐𝜐 Specific volume 

χ Bonding parameter 

ω, ωd Absolute and relative effectiveness of rotational hardening 

 

CS Critical state 

CSL Critical state line 

ESP Effective stress path 

FEM Finite element method 

OCR Overconsolidation ratio 
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YS Yield surface 

 

Subscripts/superscripts: 

0  Initial 

d,v  deviatoric, volumetric 

H,V  horizontal, vertical 

i  any of the axis components r, θ, z 

p  plastic 

r, θ, z  cylindrical coordinates 

 

Bold notation is used for tensors. 

Compressive stresses and strains are assumed as positive because it is the conventional 

sign notation in geotechnical engineering. 
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Table captions 

Table 1. Soil properties, Boston blue clay. 

Table 2. Soil state parameters and undrained shear strength, Boston blue clay. 

Table 3. Soil properties, Saint-Alban clay. 

Table 4. Soil state parameters and undrained shear strength, Saint-Alban clay. 
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Figure captions 

Figure 1. Geometry of cylindrical cavity expansion: (a) cylindrical cavity; (b) horizontal 

cross section. 

Figure 2. The S-CLAY1S natural and intrinsic yield surfaces in triaxial stress space and 

visualization of invariant q . 

Figure 3. Solution procedure for solving ordinary differential equations of cylindrical 

cavity expansion in GNU Octave. 

Figure 4. Finite element model for cylindrical cavity expansion. 

Figure 5. Validation of the theoretical solution against finite element analyses. 

Figure 6. Radial stress at cavity wall during cavity expansion: (a) Influence of 

overconsolidation; (b) Influence of initial bonding. 

Figure 7. Excess pore pressure at cavity wall during cavity expansion: (a) Influence of 

overconsolidation; (b) Influence of initial bonding. 

Figure 8. Effective radial pressure at cavity wall during cavity expansion: (a) 

Normalized by the initial vertical effective stress; (b) Normalized by the 

undrained shear strength. 

Figure 9. Influence of destructuration on stress distributions around the cavity: (a) 

OCR=1; (b) OCR=1.5; (c) OCR=5. 

Figure 10. p’-q stress paths at cavity wall until a/a0=2: (a) OCR=1; (b) OCR=1.5; (c) 

OCR=5. 

Figure 11. Stress paths at cavity wall in π-plane until a/a0=2: (a) OCR=1; (b) OCR=1.5; 

(c) OCR=5. 

Figure 12. Influence of initial bonding on stress paths (until a/a0=2). (a) p’-q plane; (b) 

π-plane. 
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Figure 13. Loss of bonding caused by cavity expansion: (a) Influence of OCR; (b) 

Influence of radial displacement; (c) Influence of rate of debonding. 

Figure 14. Stress distributions around the cavity: (a) Influence of radial displacement; 

(b) Influence of rate of debonding. 

Figure 15. Calibration of Saint-Alban clay parameters for S-CLAY1S using triaxial 

tests. 

Figure 16. Variation of undrained shear strength immediately after pile driving in Saint-

Alban clay. Comparison between field data and estimations using the 

theoretical solution. 



  T.1 

Table 1. Soil properties, Boston blue clay. 

Basic parameters  Anisotropy*  Destructuration 
κ  'ν  λ  M   0α  ω  dω   χ0 λi ξ ξd 
0.03 0.278 0.15 1.2  0.46 80 0.76  3.5 0.12 9 0.2 

*Following Wheeler et al. (2003) 

 

Table 2. Soil state parameters and undrained shear strength, Boston blue clay. 

OCR 0' zσ  (kPa) 0K  0e  G0 (kPa) PSuc ,  (kPa) PSuc ,  (kPa) PSuc ,  (kPa)  
     λ=0.15 λ=0.12 λ=0.12  
     χ0=0 χ0=0 χ0=3.5  
1 160 0.5 1.09 3873  56.4  57.4 18.6  
1.5 160 0.55 1.04 3969  78.7  78.7 25.5  
3 120 0.71 1.00 3363 105.5 102.9 33.3  
5 100 0.92 0.96 3223 137.0 130.9 42.4  

 
 
 
Table 3. Soil properties, Saint-Alban clay. 

Basic parameters**  Anisotropy***  Destructuration* 
κ * 'ν  λi M   0α  ω  dω   χ0 ξ ξd 
0.04 0.3 0.25 1.07  0.41 40 0.6  9 15 0.3 

* Calibration using triaxial data (Figure 15) 
** Based on Rezania et al. (2016) 
***Following Wheeler et al. (2003) 
 

Table 4. Soil state parameters and undrained shear strength, Saint-Alban clay. 

Depth (m) OCR 0' zσ  (kPa) NCK ,0  0K  0e  
TXuc ,  (kPa) PSuc ,  (kPa) 

ca. 6  2 35 0.55 0.75 1.8 22.3 25.7 
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                       (a)                                   (b) 

Figure 1. Geometry of cylindrical cavity expansion: (a) cylindrical cavity; (b) horizontal 

cross section.   

  

Figure 2. The S-CLAY1S natural and intrinsic yield surfaces in triaxial stress space and 

visualization of invariant q . 



  F.2 

1. 
 

Data: initial stress state, model parameters and 𝑎𝑎/𝑎𝑎0 
2. Set initial anisotropic components (𝛼𝛼𝑟𝑟 ,𝛼𝛼𝜃𝜃 and 𝛼𝛼𝑧𝑧) 

 3. Set initial bonding (𝜒𝜒 = 𝜒𝜒0) 
4. Determine stresses at initial yield (𝜎𝜎𝑟𝑟𝑟𝑟 

′ , 𝜎𝜎𝜃𝜃𝑟𝑟′  , and 𝜎𝜎𝑧𝑧𝑟𝑟 
′ ) 

5.  Determine elasto/plastic boundary (𝑟𝑟𝑟𝑟) 
6. Set initial 𝑟𝑟𝑥𝑥 𝑎𝑎� = 1 
  

7. While (𝑖𝑖 ≤ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) 
  

 
Solve 𝑟𝑟𝑥𝑥𝑟𝑟 𝑎𝑎�  for given 𝑎𝑎/𝑎𝑎0, 𝑟𝑟𝑥𝑥 𝑎𝑎� , 𝜎𝜎𝑟𝑟𝑟𝑟 

′ , 𝜎𝜎𝜃𝜃𝑟𝑟′  , 𝜎𝜎𝑧𝑧𝑟𝑟 
′ and 𝐺𝐺0 

 
 
 

  Set interval �𝑅𝑅𝑥𝑥 𝑎𝑎� � = 𝑙𝑙𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑎𝑎𝑙𝑙𝑛𝑛 �𝑟𝑟𝑥𝑥𝑟𝑟 𝑎𝑎� , 𝑟𝑟𝑥𝑥 𝑎𝑎� , 𝑖𝑖𝑛𝑛𝑙𝑙. � 

  Solve partial differential equation: 
𝑌𝑌(𝜎𝜎,𝛼𝛼)= lsode�"ODE", �𝜎𝜎𝑟𝑟𝑟𝑟 

′ ,𝜎𝜎𝜃𝜃𝑟𝑟′ ,𝜎𝜎𝑧𝑧𝑟𝑟 
′ ,  𝛼𝛼𝑟𝑟 ,𝛼𝛼𝜃𝜃 and 𝛼𝛼𝑧𝑧�, �𝑅𝑅𝑥𝑥 𝑎𝑎� �  � 

 
 

  
  lsode: 
8.   function 𝑦𝑦𝑦𝑦𝑦𝑦𝑛𝑛 = 𝑂𝑂𝑂𝑂𝑂𝑂 (𝑌𝑌, {𝑅𝑅𝑥𝑥 𝑎𝑎⁄ }) 
   7.1.  Obtain: 

 [𝜎𝜎𝑟𝑟 
′   𝜎𝜎𝜃𝜃′   𝜎𝜎𝑧𝑧 

′   𝛼𝛼𝑟𝑟  𝛼𝛼𝜃𝜃  𝛼𝛼𝑧𝑧] = 𝑌𝑌   
  

    
       7.2. Calculate: 

𝛼𝛼𝑖𝑖𝑑𝑑 for i=r,θ,z and 𝛼𝛼 
𝑛𝑛′,𝐺𝐺,𝑂𝑂′  
𝜕𝜕𝜕𝜕𝑦𝑦
𝜕𝜕𝜎𝜎𝑖𝑖

′ for i=r,θ,z and hardening modulus ℋ 
𝑙𝑙11, 𝑙𝑙12, 𝑙𝑙13, 𝑙𝑙22, 𝑙𝑙23, 𝑙𝑙33 and 𝛤𝛤  
Φi for i=r,θ,z   
Ω degradation of bonding 
 
   
     

    
    
    
    
    
    
   7.3 Compute: 

𝑦𝑦𝜎𝜎𝑟𝑟′
𝑦𝑦𝑟𝑟�  𝑦𝑦𝜎𝜎𝜃𝜃

′

𝑦𝑦𝑟𝑟�  𝑎𝑎𝑛𝑛𝑦𝑦 𝑦𝑦𝜎𝜎𝑧𝑧
′

𝑦𝑦𝑟𝑟�   
𝑦𝑦𝛼𝛼𝑟𝑟𝑑𝑑

𝑦𝑦𝑟𝑟�  𝑦𝑦𝛼𝛼𝜃𝜃
𝑑𝑑

𝑦𝑦𝑟𝑟�  𝑎𝑎𝑛𝑛𝑦𝑦 𝑦𝑦𝛼𝛼𝑧𝑧
𝑑𝑑

𝑦𝑦𝑟𝑟�   
 
 

    
    
    
    𝑑𝑑𝑑𝑑

𝑑𝑑𝑟𝑟
  

    
   endfunction 

9. 
 Update   𝑟𝑟𝑥𝑥 𝑎𝑎�  ← 𝑟𝑟𝑥𝑥 𝑎𝑎� + ∆𝑟𝑟 𝑎𝑎�   �∆𝑟𝑟 𝑎𝑎� = �𝑟𝑟𝑟𝑟 𝑎𝑎� − 1� 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛� � 

              𝑖𝑖 ← 𝑖𝑖 + 1     

10.  Get 𝜎𝜎𝑟𝑟 
′ ,𝜎𝜎𝜃𝜃′ ,𝜎𝜎𝑧𝑧 

′ ,  𝛼𝛼𝑟𝑟 ,𝛼𝛼𝜃𝜃 and 𝛼𝛼𝑧𝑧 from 𝑌𝑌(𝜎𝜎,𝛼𝛼) 

 End  
11. Calculate excess pore pressure ∆𝑢𝑢 
11. If (OCR > 1) Calculate elastic stresses 
End  

 

Figure 3. Solution procedure for solving ordinary differential equations of cylindrical 
cavity expansion in GNU Octave.  
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Figure 4. Finite element model for cylindrical cavity expansion. 

 

  



  F.4 

 

Figure 5. Validation of the theoretical solution against finite element analyses. 
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(a) 

 

(b) 

Figure 6. Radial stress at cavity wall during cavity expansion: (a) Influence of 

overconsolidation; (b) Influence of initial bonding.  
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(a) 

 

(b) 

Figure 7. Excess pore pressure at cavity wall during cavity expansion: (a) Influence of 

overconsolidation; (b) Influence of initial bonding. 
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(a) 

 

(b) 

Figure 8. Effective radial pressure at cavity wall during cavity expansion: (a) 

Normalized by the initial vertical effective stress; (b) Normalized by the undrained 

shear strength.  
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(a) 

 

(b) 
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(c) 

Figure 9. Influence of destructuration on stress distributions around the cavity: (a) 

OCR=1; (b) OCR=1.5; (c) OCR=5. 
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(a) 

 

(b) 
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(c) 

 

ESP: Effective stress path 
CSL: Critical state line 
YS0: Initial Yield Surface in triaxial plane 

 

Figure 10. p’-q stress paths at cavity wall until a/a0=2: (a) OCR=1; (b) OCR=1.5; (c) 

OCR=5. 
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(a) 

 

 

(b) 
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(c) 

ESP: Effective stress path 
CSLf: Critical State Surface at failure 
YS0: Initial Yield Surface 
YSf: Final Yield Surface 

 

Figure 11. Stress paths at cavity wall in π-plane until a/a0=2: (a) OCR=1; (b) OCR=1.5; 

(c) OCR=5. 
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(a) 

 

(b) 

Figure 12. Influence of initial bonding on stress paths (until a/a0=2). (a) p’-q plane; (b) 

π-plane.  
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(a) 

 

(b) 
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(c) 

Figure 13. Loss of bonding caused by cavity expansion: (a) Influence of OCR; (b) 

Influence of radial displacement; (c) Influence of rate of debonding. 
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(a) 

 

(b) 

Figure 14. Stress distributions around the cavity: (a) Influence of radial displacement; 

(b) Influence of rate of debonding. 
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Figure 15. Calibration of Saint-Alban clay parameters for S-CLAY1S using triaxial tests. 

 

Figure 16. Variation of undrained shear strength immediately after pile driving in Saint-Alban 

clay. Comparison between field data and estimations using the theoretical solution. 
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