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ABSTRACT 

This paper studies the influence of the grain size and the notch effect on the fracture assessment 

of U-shaped notched rock beams through the variation of the apparent fracture toughness. The 

research is based on an exhaustive campaign that comprises numerical simulations of 300 four-

point bending tests, 30 simple compression tests and 60 tensile splitting (Brazilian) tests. Non-

porous, isotropic ideal and equivalent rocks with 5 different uniform grain sizes are modelled 

using the distinct element method, where the rocks are modelled as a discontinuous material, 

defining explicitly the grains and the boundary conditions. Several notch radii are simulated and 

the corresponding variation in the apparent fracture toughness is observed. This notch effect is 

interpreted using the Theory of Critical Distances (TCD), which uses a material intrinsic property 

called the critical distance (𝐿) to evaluate the stress field around the notch tip. The paper shows 

the variation of the fundamental rock properties with the grain size, the applicability of the TCD 

to evaluate the notch effect and the correlation between the critical distance and the grain size. 
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1. INTRODUCTION

Rock fracture is of interest in many engineering fields such as underground engineering (e.g.,

tunnelling, mining) or energy engineering (e.g., gas-oil extractions, geothermal energy). The 

presence of stress risers, such as defects, cracks or notches, plays a key role during the fracture 

initiation process. In many cases, notched elements are studied as cracked components for the 

sake of simplicity (e.g., Whittaker et al. 1992; Jaeger et al. 2007), but this approach may be over-

conservative. A notch affects the rock strength or apparent fracture toughness depending on 

the notch radii. For large radii, almost no stress concentration occurs at the notch tip and, 

therefore, the notch would simply involve a section reduction rather than acting as a stress riser. 

For smaller radii, significant stress concentrations occur at the notch tip and the load-bearing 

capacity is reduced. For very small radii, i.e. “sharp” notches, the load-bearing capacity is no 

longer reduced because of the discontinuous nature of the material at the microscale. Thus, the 

notch effect depends on the material microstructure. 

The study of the notch effect is crucial in many engineering rock fracture mechanics 

problems, since most of the defects that appear in rocks, no matter whether they are naturally 

created or man-made, have a finite radius and can be studied as notch-type defects. The authors 

have previously performed exhaustive laboratory campaigns on the notch effect in several rocks 

(Justo et al. 2017). The results of those laboratory campaigns show a dependence of the notch 

effect on the critical distance of the rocks. The critical distance is an intrinsic property of the 

material, and the larger it is the lower the observed notch effect. Likewise, the critical distance 
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somehow depends on the grain size of the material (Taylor 2017). Thus, the grain size seems to 

have an influence on the notch effect. However, many real rock features make detailed analyses 

difficult, such as inhomogeneities, grain size distribution, grain aspect ratio, porosity, etc. 

Consequently, numerical analyses provide a suitable alternative for investigating the influence 

of grain characteristics on the notch effect of U-shaped rock beams. 

To interpret the notch effect, different fracture mechanical methodologies are available. 

Here, the Theory of Critical Distances (TCD) will be used because it is the same methodology as 

that used by the authors to interpret the notch effect from laboratory tests (Justo et al. 2017). 

The TCD is a stress-based local methodology widely used in the last few decades thanks to its 

potential and capabilities. A complete review of the TCD is given by Taylor (2007). It consists of 

a group of methodologies with some common features, as the use of a material characteristic 

parameter called the critical distance (𝐿) and the use of linear elastic analyses when performing 

fracture assessments. The origins of the TCD can be dated back to the mid-twentieth century 

with the works of Neuber (1958) and Peterson (1959). However, this methodology did not grow 

until some time later with the development of finite element stress analyses, which allowed this 

theory to be scientifically analysed and successfully applied to different materials and failure 

conditions (e.g., Taylor & Wang 2000; Susmel & Taylor 2003; Susmel & Taylor 2010; Cicero et al. 

2012; Cicero et al. 2014; Justo et al. 2017). Once the critical distance (𝐿) is defined for a certain 

material, it is straightforward to assess the load-bearing capacity of any component made of this 

material. The real physical meaning of the critical distance (𝐿) is still under research and 

discussion. However, it is generally related to the microstructural properties and to what is 

broadly referred to as the Fracture Process Zone (FPZ). This process zone is developed in rocks 

as a consequence of the initiation and coalescence of microcracks in front of the defect tip when 

increasing the applied load level. Parisio et al. (2019) studied the characteristics of the FPZ in 

granite both experimentally and using finite element analyses, and highlighted the importance 

of dissipative phenomena related to the microcracking and to the size of the FPZ when analysing 

brittle failure of rocks. This FPZ has been found to be related to the grain size (e.g., Brooks et al. 

2012). Similarly, Taylor (2017) tried to relate 𝐿 with a clearly identifiable microstructural distance 

(𝑑) which, in the case of metals, ceramics and rocks, could be related to the grain size. The 

authors also related 𝐿 with the mean grain size of different rocks using laboratory experiments 

(Justo et al. 2017); and here, this relationship is investigated using numerical analyses of ideal 

rocks. 

Jenabidehkordi (2018) provides a review of the computational methods for fracture in rocks 

and classifies them into three categories: continuum based methods, discrete crack approaches 

and block-based methods. Continuous approaches and discrete crack methods might be suitable 

options when global responses are of interest (e.g., Yingren & Shangyi 2004), but they are less 

appropriate for applications where detailed information around a crack tip is required. By 

contrast, the block-based methods model the rock masses as an assembly of blocks with 

interfaces (or contacts) between them and allow simulations of large displacements, rock 

fracturing, taking into account the interaction of the fractured rock fragments.  

One of the most popular block-based approaches is the Discrete Element Method (DEM), 

which was first proposed by Cundall (Cundall 1971; Cundall 1988). The DEM has been widely 

used to model fractures and fracturing in the field of rock mechanics, as for example in jointed 

rock masses (Huang et al. 2015; Scholtès & Donzé 2012), tunnelling (Kochen & Andrade 1997), 

borehole and well stability (Rawlings et al. 1993) or reservoir simulations (Gutierrez & Makurat 

1997). The Universal Distinct Element Code (UDEC) refers to a particular DEM scheme that uses 

deformable contacts and an explicit, time-domain solution scheme. UDEC has been extensively 
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used by many authors for rock fracture numerical analyses. For example, based on Voronoi 

blocks, Chen & Konietzky (2014) developed and implemented a grain-based heterogeneous 

numerical model to simulate the time-dependent fracturing process of granite, analysing both 

intergranular and intragranular fracturing. Similarly, Nicksiar & Martin (2014) studied the factors 

affecting crack initiation based on a grain-based model, also using the Voronoi tessellation 

scheme to represent low porosity crystalline rocks such as granites. Wong et al. (1996), on the 

other hand, studied the effect of the initial microcrack density and grain size on the uniaxial 

compressive strength of different marbles. All these previous studies, among others, show the 

importance of the microstructure of rocks on their macroscopic behaviour and, in particular, the 

influence of the grain size on the fracture assessment of the rocks. 

 Several authors (e.g., Gui et al. 2016; Li et al. 2017; Wang et al. 2019) have studied the 

influence of the grain size on the fundamental rock properties. Gui et al. (2016) investigated the 

grain size effect simulating Brazilian disks and uniaxial compressive tests with different 

polygonal grain assemblages using distinct element analyses. They reported that larger particle 

size produces higher stiffness and strength of the intact rock. The ceramic literature has a 

mature history on the correlation of fracture toughness and grain size. However, some research 

data report results that are ambiguous: Gutshall & Gross (1969) indicated that fracture 

toughness increases with the grain size as a consequence of the preponderance of transgranular 

fracture shown in large grain materials. By contrast, Evans & Davidge (1969) showed a decrease 

of the fracture toughness with the increase of the grain size of a different polycrystalline 

material. 

The problem of the size effect has proven to be of great importance in the branch of 

geotechnical engineering and Bazant (1999) provided a broad review on this issue. The 

development of increasingly realistic models that use a material characteristic length to define 

the size of the FPZ has led in the last decades to several works dedicated to size effects on the 

fracture behaviour of brittle materials. Tarokh & Fakhimi (2014) used a discrete element 

approach with a softening contact bond model to simulate the development of the FPZ in three-

point bending tests of quasi-brittle materials, and reported that the width of the process zone 

is a linear function of particle radius. Similarly, Galouei & Fakhimi (2015) simulated three-point 

bending tests using a bonded particle model to study the effect of specimen size and material 

ductility on the shape of the FPZ of quasi-brittle materials. Tarokh et al. (2017) studied 

experimentally and numerically (using DEM with a tension softening contact bond model in this 

case) the development of the process zone with the specimen size in rocks and showed that 

both, length and width of the process zone increase with the increase of the specimen size. Liu 

et al. (2018) used an exponential softening contact bond model to address the size effects and 

the particle size issue. 

With all this, taking as a basis the extensive literature on the use of DEM to study the 

influence of particle size on fundamental rock properties, this work aims to study the influence 

of the grain size on the fracture behaviour of U-shaped notched rock beams under mode I 

loading conditions. In particular, the focus is placed on the analysis of the notch effect through 

the variation of the apparent fracture toughness and the correlation between the grain size and 

the critical distance of the material, which is a key parameter for fracture assessments according 

to the TCD. Thus, the influence of the grain size on the notch effect is analysed. Additionally, the 

effect of the grain size on several macroscopic properties of the analysed rock is also 

investigated, such as Young’s modulus, Poisson’s ratio, tensile strength and fracture toughness. 

The influence of the grain size in these latter parameters has previously been analysed in the 

literature as mentioned above, but are included here to provide a more complete vision of the 
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studied case and to corroborate previously observed trends, which in some cases are still not 

fully clear (as for example the variation of the fracture toughness with the grain size depending 

on inter- or intragranular fractures). In this work, Voronoi block-based DEM is used to model 

crack initiation in low porosity crystalline rocks. An ideal rock material that resembles the Macael 

marble tested by the authors (Justo et al. 2017) has been studied and 5 different grain sizes are 

considered, namely 1, 1.5, 2, 2.5 and 3 mm. The modelled grains are relatively large (compared 

to those of the Macael marble) due to computational capacity limitations and present a highly 

uniform distribution. However, these considerations facilitate the analyses and the 

interpretation of the results.  

In conclusion, the aim of this paper is to numerically study the notch effect in 5 ideal rocks 

(non-porous, crystalline, uniform and isotropic), with different grain sizes. The interpretation of 

the notch effect is performed using the TCD, specifically the Line Method (LM), which is briefly 

presented in Section 2. The analysis is based on DEM simulations. The numerical model, 

hypotheses and parameters are portrayed in Section 3. The results and their interpretation, both 

in general terms and using the LM, are presented in Section 4. Finally, some conclusions are 

provided. 

 

2. INTERPRETATION OF NOTCH EFFECT THROUGH THE TCD 

In this paper, the assessment of the fracture behaviour of the notched specimens is 

performed using the TCD, and more specifically the LM.  This methodology considers a local 

failure criterion based on the stress field at the notch tip. Basically, the LM states that failure 

occurs when the average stress over a certain distance (𝑑) starting at the notch tip is equal to 

the inherent strength (𝜎0) of the rock: 

1

𝑑
∫ 𝜎(𝑟)𝑑𝑟 = 𝜎0

𝑑

0

                                                                                                                                       (1) 

In the case of quasi-brittle materials such as rocks with nearly linear elastic behaviour, 𝜎0 

can be assumed to roughly coincide with the tensile strength (𝜎𝑢), as claimed by Taylor (2007).  

The LM of the TCD relates the distance 𝑑 over which the stress is averaged with a parameter 

known as the critical distance (𝐿). This parameter is characteristic of the analysed material and 

has length units in the order of a few millimetres in the case of rocks (Cicero et al. 2014; Justo 

et al. 2017). The expression for 𝐿 is as follows: 

𝐿 =
1

𝜋
(

𝐾𝐼𝐶

𝜎0
)

2

                                                                                                                                               (2) 

It can be analytically demonstrated that 𝑑 = 2𝐿, based on the stress field at the crack tip at 

failure provided by Anderson (2004) as a function of distance from the tip (𝑟) and the material 

fracture toughness (𝐾𝐼𝐶): 

𝜎(𝑟) =
𝐾𝐼𝐶

√2𝜋𝑟
                                                                                                                                               (3) 

With this, the failure criterion defined by Equation 1 can be rewritten as: 

1

𝑑
∫

𝐾𝐼𝐶

√2𝜋𝑟
𝑑𝑟 =

𝑑

0

2 · 𝐾𝐼𝐶

√2𝜋𝑑
= 𝜎0                                                                                                                  (4) 
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Isolating 𝑑 from Equation 4 the following expression is obtained: 

𝑑 =
2

𝜋
(

𝐾𝐼𝐶

𝜎0
)

2

                                                                                                                                               (5) 

which is two times the critical distance defined by Equation 2. Thus, the failure criterion of the 

LM can be rewritten as: 

1

2𝐿
∫ 𝜎(𝑟)𝑑𝑟 = 𝜎0

2𝐿

0

                                                                                                                                   (6) 

This research uses the LM for the fracture assessment of U-notched rock specimens. To this 

end, the fracture analysis is equated to a situation in a cracked component where the apparent 

fracture toughness (𝐾𝐼𝑁) is considered instead of the real fracture toughness (𝐾𝐼𝐶). 𝐾𝐼𝐶  

corresponds to a cracked situation in which the notch radius (𝜌) is theoretically equal to zero; 

thus, the notch effect is considered through 𝐾𝐼𝑁.  

An analytical expression for the calculation of 𝐾𝐼𝑁 may be obtained using the LM and the 

stress distribution at the notch tip. The stress distribution normal to the notch plane (𝜎(𝑟)) has 

been studied by many authors in the past (e.g., Timoshenko & Goodier 1951; Weiss 1962; 

Creager & Paris 1967). For example, the stress along the bisector of the notch is given by Creager 

and Paris (1967) as:  

𝜎(𝑟) =
𝐾𝐼

√𝜋

2(𝑟 + 𝜌)

(2𝑟 + 𝜌)3/2
                                                                                                                             (7) 

where 𝑟 is the distance from the tip, 𝜌 is the notch radius and 𝐾𝐼 is the stress intensity factor for 

a crack with the same length as the notch. Integrating Equation 7 in the domain defined by 

Equation 6 and considering that failure will occur when 𝐾𝐼 is equal to 𝐾𝐼𝑁, the following result is 

obtained: 

𝜎0 =
2 · 𝐾𝐼𝑁

√𝜋
·

1

√
𝜌
2 + 2𝐿

                                                                                                                             (8) 

By definition, 𝐾𝐼𝑁 is equal to 𝐾𝐼𝐶  when the notch radius is equal to zero. Thus, the previous 

expression can be rewritten for 𝜌 = 0 as follows: 

𝐾𝐼𝐶 = 𝜎0√
𝜋

2
· 𝐿                                                                                                                                            (9) 

 With all this, developing Equation 8 and considering the definition of 𝐾𝐼𝐶  in Equation 9, the 

following analytical solution is obtained for the LM of the TCD: 

𝐾𝐼𝑁 = 𝐾𝐼𝐶√
𝜌

4𝐿
+ 1                                                                                                                                   (10) 

With this expression, the notch effect (i.e. the variation of 𝐾𝐼𝑁 with 𝜌) and the influence of 

the grain size on it will be analysed. In particular, the variation with the grain size of both 𝐿 and 

𝐾𝐼𝐶, which are key parameters for the determination of the fracture initiation, is considered. To 

this end, several numerical analyses are performed. 

This approach is strictly only valid within the framework of Linear Elastic Fracture Mechanics 

(LEFM), assuming a negligible plastic process zone. This hypothesis has already been validated 

by the authors in previous works for a group of rocks, where successful load fracture predictions 



6 
 

were performed using the same geometry and notches studied in this work and applying the 

TCD (Justo et al., 2017) and the Strain Energy Density criterion (Justo et al., 2018), both of them 

based on LEFM. This approach provided relatively accurate results even when analysing the 

rocks at high temperatures up to 250ºC (Justo et al., 2020). The applicability of LEFM was 

discussed more in detail in this last work. 

 

3. NUMERICAL MODELS 

3.1. Methodology 

Among the existing block-based approaches for the fracture analyses of rocks the DEM is 

used in this work. The DEM is a numerical technique to simulate the behaviour of a population 

of independent particles (Cundall and Strack, 1979). Each particle is represented numerically 

and is identified with its specific properties (e.g., shape, size, material properties, initial velocity). 

The DEM allows finite displacements and rotations of these discrete particles as a consequence 

of the interaction through their contacts, including complete detachment, and recognizes new 

contacts automatically as the calculation progresses. In this work, UDEC v6.00 (Itasca 2010) is 

used for the construction and analyses of the different numerical models.  

The grains are represented by deformable blocks that are subdivided into finite-difference 

elements (zones), and each element responds according to a prescribed stress-strain law that 

will be defined in the following subsections. Likewise, the discontinuities stand for the 

boundaries (joints) between the grains (blocks), and their relative motion is governed by force-

displacement relations for movement both in the normal and shear directions. 

3.2. Model geometries 

In order to represent the grains of the rocks in the numerical models, Voronoi tessellation is 

used to create randomly sized polygonal blocks. These Voronoi polygons are defined by an 

average edge length (𝑙), which is varied in this work to analyse the effect of the grain size on the 

fracture of the rocks. On the other hand, the size homogeneity of the Voronoi polygons is 

defined by the number of iterations (𝑛) in the relaxation process during the generation of the 

mesh. The more iterations, the more homogeneous the polygons will be in terms of size. In this 

work, the number of iterations (𝑛) has been set to 30 in all the simulations, which has been 

considered as an appropriate value for a uniform distribution of the grain size. The considered 

values for 𝑙 are 1, 1.5, 2, 2.5 and 3 mm, as depicted in Figure 1. 

Fig. 1.- Representation of the Voronoi tessellations with different average edge length (𝑙). 

Figure 2 provides the size distribution curves of modelled grains. Both, frequency and 

cumulative frequency are represented in percentage. Grain diameter corresponds to the 

diameter of ideally circular grains with the same area as the actual modelled grains. 
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Fig. 2.- Size distribution curves of the modelled grains defined by an average length 𝑙 of (a) 1 mm, (b) 1.5 mm, (c) 2 
mm, (d) 2.5 mm and (e) 3 mm. 

The observed outlier values below the average grain diameter correspond to grains located 

at the outer boundaries of the region defined by the Voronoi tessellation and, therefore, do not 

affect the crack propagation zone. Table 1 gathers some statistical values of the grains, namely 

the mean grain diameters, the standard deviations and the sorting coefficients defined as the 

ratio between the first and third quartiles (Q1 and Q3, respectively). This latter parameter 

indicates that the size distribution is relatively uniform as the coefficient is close to 1 in all the 

cases. 

Table 1.- Statistical parameters of the modelled grain sizes. 

 l=1mm l=1.5mm l=2mm l=2.5mm l=3mm 

Mean grain diameter (mm) 1.109 1.659 2.213 2.829 3.187 
Standard deviation (mm) 0.132 0.194 0.290 0.505 0.631 
Sorting coef. (Q1/Q3) 1.110 1.092 1.083 1.096 1.095 

 

The blocks are discretized into constant-strain finite-difference triangular zones, as shown 

in Figure 3. The zones are defined by the maximum edge length (𝑒) of the triangles composing 

the mesh, which has been set to the same value as the average block edge length. In this way, 

the proportion of zones within the blocks remains roughly constant.  
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Different numerical models have been constructed. These models consist of tensile splitting 

(Brazilian) tests (Figure 4a), simple compression tests (Figure 4b) and four-point bending tests 

(Figure 4c), all of them under plane strain conditions. Compression models are not strictly 

necessary for the performed fracture analyses, but they are also studied for a better 

characterisation of the simulated materials through the Young’s modulus. In these models the 

crack initiation is not necessarily associated with failure (e.g., Nicksiar & Martin 2014), since 

scattered microcracks may arise before reaching the compression strength of the material. In 

any case, the obtained stress-strain curves are linear from the onset of loading and the 

estimated Young’s modulus values correspond to the secant modulus at 50% of the peak 

strength (𝐸50). In the case of uniaxial compression, crack initiation and peak load are very 

different (e.g., Yue et al. 2017). This is due to the fact that, at low load level, a lot of microcracks 

start to develop in a diffuse manner, but later coalescence takes place and leads to a 

macroscopic crack and final failure. However, this is different when dominant tensile failure is 

analysed. Whenever a tensile crack of a certain size has been created, critical crack growth starts 

and failure follows immediately. Under these circumstances crack initiation and peak loads are 

very close. This statement is relative to the analysed scale, since when moving deeper into the 

microscale (e.g., μm, nm, etc.) the difference between crack initiation and peak load will 

increase. Here, considering the scale of the modelled grains (i.e., of the order of millimetres), 

the crack initiation load can be - in a first approximation - set equal to the tensile strength (𝜎𝑢) 

obtained from Brazilian test models (Figure 4a) and to analyse the notch effect from the four-

point bending models (Figure 4c). Different authors (e.g., Dan & Konietzky 2014) have shown 

Brazilian test simulations where crack initiation and peak strength are very close to each other. 

Hoek & Martin (2014) assume that when dominant tensile failure occurs, as in the case of 

Brazilian and four-point bending tests, crack initiation and peak strength are very close. 

 

Fig. 3.- Representation of the zones within the Voronoi polygons. 
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Fig. 4.- Representation of the simulated numerical models corresponding to tensile splitting (Brazilian) tests (a), simple 
compression tests (b) and four-point bending tests (c). 

3.3. Material parameters 

For the intact blocks, a linearly elastic isotropic behaviour has been assumed in this work, 

which only requires two parameters: the bulk modulus (𝐾) and the shear modulus (𝐺). This 

means that the grains are supposed to be homogeneous, isotropic and exhibit a linear stress-

strain behaviour with no hysteresis on unloading. The rock is idealized as an assembly of 

unbreakable grains. Thus, cracks can only propagate along the boundaries. 

  The Coulomb slip model with residual strength is considered to model the interaction 

between grains. This model provides a linear representation of joint stiffness and yield limit, and 

is based upon elastic stiffness, frictional, cohesive and tensile strength properties, and dilation 

characteristics common to rock joints (Itasca 2010). Here, the term joint refers to the contact 

between grains. The residual strength simulates displacement-weakening of the joint by loss of 

frictional, cohesive and/or tensile strength at the onset of shear or tensile failure. That is, an 

internal fracture flag is set for each joint segment when the tensile or shear strength is exceeded. 

Thus, when a joint is fractured, the joint tensile strength, the joint friction angle and the joint 

cohesion are set to residual values. 

In order to make the models more computationally efficient and less time-consuming, the 

Voronoi tessellation has only been generated in the vicinity of the notch (as shown in Figure 4) 

where the fracture is starting. The remaining parts of the model are also composed by 

deformable blocks with the same constitutive model as the intact blocks but different internal 

meshing. To ensure that no sliding or opening is occurring in the contact between these blocks 

and the region with Voronoi polygons, these contacts are defined as “joined” contacts with high 

values of the joint cohesion and tensile strength.  

The calibration process of the required parameters is based on the experimental results 

obtained by the authors in previous works (Justo et al. 2017; Justo et al. 2018), particularly on 

the results of the Macael marble due to the low porosity, isotropic, uniform and relatively 
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homogeneous distribution of grain size, with a crystalline structure and no matrix around it. 

Table 2 gathers the mechanical properties of the Macael marble that were obtained in the 

laboratory. However, it is not the purpose of this research to simulate the exact behaviour of 

this marble because of its smaller grain size, but to model rock-like materials with comparable 

properties and within a realistic order of magnitude. Indeed, the main objective of this work is 

to analyse the effect of the grain size of a geomaterial like a rock on the crack initiation. In order 

to obtain conclusions as clear as possible and to avoid the influence of other possible factors 

other than grain size, the performed analyses have been simplified by modelling ideal rock 

materials with non-porous crystalline structure (only grains, without matrix), similar to the 

metamorphic marbles analysed by the authors (Justo et al. 2017). In addition, relatively large 

grain sizes with mean edge lengths from 1 to 3 mm have been studied due to computational 

capacity reasons. 

Table 2.- Mechanical properties of the Macael marble. 

Parameter Value 

Bulk density (kg/m3) 2715 
Young’s modulus, 𝐸50 (GPa) 73.4 
Poisson’s ratio, 𝑣 0.28 
Tensile strength, 𝜎𝑢 (MPa) 9.97 
Fracture toughness, 𝐾𝐼𝐶  (MPa·m1/2) 1.14 

 

All the parameters in Table 2 correspond to the rock behaviour at the macro-scale. The 

properties of the individual grains do not have to be strictly the same, but in this case, 

considering the homogeneity of the studied rock, the values in Table 2 have been taken as the 

basis for the calculation of the bulk (𝐾) and shear (𝐺) modulus of the grains:  

𝐾 =
𝐸

3(1 − 2𝑣)
                                                                                                                                         (11) 

𝐺 =
𝐸

2(1 + 𝑣)
                                                                                                                                            (12) 

Table 3 gathers the parameters of the material constitutive model used for the definition of 

the linearly elastic isotropic behaviour of the rock grains, derived from the values in Table 2.  

Table 3.- Parameters for the linearly elastic isotropic constitutive model of 
the grains. 

Parameter Value 

Bulk density (Kg/m3) 2715 
Bulk modulus, 𝐾 (GPa) 56 

Shear modulus, 𝐺 (GPa) 29 

 

These parameters define the behaviour of the grains. However, their contact conditions 

have to be adjusted in order to obtain the desired behaviour at macro-scale. As a result of the 

calibration process, the parameters of the considered joint constitutive model, namely the 

Coulomb slip model with residual strength, are summarised both in Table 4 and 5. The former 

includes the joint cohesion, dilatation, friction and tensile properties and their residual values, 

while the latter gathers the zone size dependent parameters, that is, the normal and shear 

stiffness of the joints.  
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Table 4.- Parameters for the Coulomb slip constitutive model with residual 
strength. 

Parameter Value 

Joint cohesion, 𝑗𝑐 (MPa) 24.5 
Joint dilatation angle, 𝑗𝑑 (º) 5 

Joint friction angle, 𝑗𝑓 (º) 35 
Joint tensile strength, 𝑗𝑡 (MPa) 49.0 

Joint residual cohesion, 𝑗𝑟𝑒𝑠𝑐 (MPa) 0 
Joint residual friction angle, 𝑗𝑟𝑓 (º) 25 
Joint residual tensile strength, 𝑗𝑟𝑡 (MPa) 0 

 

Table 5.- Zone size dependent stiffnesses for the Coulomb slip constitutive model with 
residual strength.  

Parameter Value 

Joint normal stiffness, 𝑗𝑘𝑛 (GPa/mm) - 𝑙 = 1 mm 1880 
Joint shear stiffness, 𝑗𝑘𝑠 (GPa/mm) - 𝑙 = 1 mm 938 

Joint normal stiffness, 𝑗𝑘𝑛 (GPa/mm) - 𝑙 = 1.5 mm 1250 
Joint shear stiffness, 𝑗𝑘𝑠 (GPa/mm) - 𝑙 = 1.5 mm 626 

Joint normal stiffness, 𝑗𝑘𝑛 (GPa/mm) - 𝑙 = 2 mm 938 
Joint shear stiffness, 𝑗𝑘𝑠 (GPa/mm) - 𝑙 = 2 mm 469 

Joint normal stiffness, 𝑗𝑘𝑛 (GPa/mm)  𝑙 = 2.5 mm 751 
Joint shear stiffness, 𝑗𝑘𝑠 (GPa/mm) - 𝑙 = 2.5 mm 375 

Joint normal stiffness, 𝑗𝑘𝑛 (GPa/mm) - 𝑙 = 3 mm 626 
Joint shear stiffness, 𝑗𝑘𝑠 (GPa/mm) - 𝑙 = 3 mm 313 

 

Very high values for the joint stiffnesses lead to a slow response and a slow solution 

convergence of the models without a significant change in the behaviour of the system, as the 

timestep calculation is based upon stiffnesses. For this reason, both the joint normal stiffness 

(𝑗𝑘𝑛) and the shear stiffness (𝑗𝑘𝑠) should be kept smaller than a factor times (usually 10) the 

equivalent stiffness of the stiffest neighbouring zone in blocks adjoining the joint (Itasca 2010): 

𝑗𝑘𝑛 & 𝑗𝑘𝑠 ≤ 10 [𝑚𝑎𝑥 [
𝐾 +

4
3 𝐺

∆𝑧𝑚𝑖𝑛
]]                                                                                                      (13) 

where 𝐾 and 𝐺 are those of the block material, and ∆𝑧𝑚𝑖𝑛 is the smallest width of the zone 

adjacent to the joint in the normal direction. As a general criterion in the performed simulations, 

∆𝑧𝑚𝑖𝑛 has been set to half of the maximum edge length established for the zones. There may 

also be problems with block interpenetration if the normal stiffness is very low, as the contact 

overlap between blocks can be excessively large. On this basis, the normal stiffness (𝑗𝑘𝑛) has 

been set to the limit value defined by Equation 13. 

Furthermore, the ratio of the normal to shear stiffness (𝑗𝑘𝑛/𝑗𝑘𝑠) dramatically affects the 

Poisson response of a rock mass (Itasca 2010). When the shear stiffness is equal to the normal 

stiffness (𝑗𝑘𝑛 = 𝑗𝑘𝑠) the Poisson effect is zero. Thus, for a more realistic representation of the 

Poisson effect, the ratio 𝑗𝑘𝑛/𝑗𝑘𝑠 must be larger than unity. Several articles can be found in the 

literature dealing with this topic (e.g., Asadi & Barla 2012; Nassir et al. 2013). Here, 𝑗𝑘𝑛/𝑗𝑘𝑠 =

2 has been adopted, which is assumed to be a reasonable ratio (see Table 5). 

Anticipating to the results obtained in Section 4, the parameters used in the numerical 

models (Tables 3, 4 and 5) lead to a relatively similar macro-scale response as that obtained 
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experimentally for the Macael marble (Justo et al., 2018) in terms of tensile strength and 

deformational parameters such as the Young’s modulus and the Poisson’s ratio (Table 2 

represents the macroscopic parameters of the Macael marble). In general, the numerically 

obtained macroscopic parameters are slightly higher (around 20% in the case of the tensile 

strength and the Poisson’s ratio). The obtained macroscopic properties are summarised in 

Section 4.  

3.4. Boundary conditions 

With regards to the model boundary conditions, a constant loading velocity has been 

applied in all the cases (Figure 4) to simulate the real laboratory test conditions that are 

performed under displacement control. The applied velocity is sufficiently small to ensure quasi-

static responses of the numerical models.  

The user-specified velocity is input to the model as an exterior boundary condition and 

viscous damping is specified for the blocks to avoid dynamic effects. The specified damping 

conditions cause the vibrational energy to be absorbed in proportion to the rate of change of 

the kinetic energy. Here, the ratio of damping dissipation to kinetic energy change has been set 

equal to 0.5, which gives a relatively fast convergence and ensures that no dynamic effects will 

affect the results. 

3.5. Repetitiveness 

Using a discrete numerical model, the results will depend on the specific distribution of the 

Voronoi blocks representing the grains. For this reason, the meshes have been randomly 

generated and a minimum repetitiveness of 6 Voronoi tessellations have been used for each 

case. Besides, the symmetry with respect to the bisector plane of the notches (Figure 4) has not 

been considered when constructing the four-point bending test models because the distribution 

of the Voronoi blocks (grains) is not symmetric, as in reality. 

The actual arrangement of the Voronoi polygons (or grains) produces a scatter of the results 

even when keeping the average grain size constant. For the particular case of the Brazilian tests 

and the four-point bending tests, the results show a visible scatter (mesh dependency) because 

the orientation of the grain contacts at the zone where the fracture starts notably influences the 

results. 

 

4. RESULTS AND DISCUSSION 

First, the results corresponding to the influence of the grain size on the elastic macroscopic 

properties (i.e., Young’s modulus and Poisson’s ratio) are presented. These results have no 

specific relation to the subsequent discussion of the fracture behaviour of the notched 

specimens but do provide important information on the characterization of the analysed rock. 

The obtained elastic macroscopic properties are compared to those obtained in a previous 

experimental campaign (Justo et al. 2017) for Macael marble. The objective of these first results 

is to define and delimit the characteristics of the rock-like material being analysed, in order to 

know to which real cases (equivalent to the model) the results could be related. Subsequently, 

the influence of the grain size on the fracture properties (i.e., tensile strength, apparent fracture 

toughness and fracture toughness) is analysed in more detail. In this case, in addition to 

comparing these properties with those of the Macael marble, their study is of special interest 

for the analysis of the notch effect through the TCD, which is the main objective of this work. 

According to the definition of the critical distance provided by Equation 2, the grain size 
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dependence of both, tensile strength (𝜎𝑢) and fracture toughness (𝐾𝐼𝐶), will define the variation 

of 𝐿 with the grain size. Besides, the failure criterion defined by the LM of the TCD (Equation 6) 

limits the average stress over a distance 2𝐿 from the notch tip to 𝜎𝑢. Thus, the interpretation of 

the notch effect that, based on the TCD, arises from this failure criterion, is influenced by the 

proper characterization of these properties and, consequently, by the grain size. 

4.1. Influence of grain size on elastic properties 

Firstly, 6 compression test models were carried out for each of the considered grain sizes 

(Figure 4b), only varying the distribution of the grains. The performed models correspond to 

plane strain conditions. Thus, the obtained moduli stand for the plane strain situation (𝐸50,𝑃𝑆𝑀), 

different from those obtained in the laboratory for cylindrical specimens (𝐸50). Both moduli are 

related through the Poisson’s ratio (𝑣) with the following expression: 

 𝐸50,𝑃𝑆𝑀 =
𝐸50

1−𝑣2                                                                                                                                         (14) 

As a result, Figure 5 gathers 3 different curves. The plane strain modulus (𝐸50,𝑃𝑆𝑀) and the 

Poisson’s ratio (𝑣) are obtained directly from the compression test models for each of the grain 

sizes, considering the deformations within a 25x25mm square in the middle of the specimens. 

The obtained results are slightly sensitive to the size of this area (Ghazvinian et al. 2014). The 

numerically obtained 𝐸50,𝑃𝑆𝑀 values are corrected with Equation 14 to get 𝐸50. The latter values 

of 𝐸50 are comparable to those obtained in the laboratory and correspond, as mentioned above, 

to the secant Young’s modulus at 50% of the peak strength. The open symbols represent the 

individual values and the full symbols and solid lines represent mean values of the Young’s 

moduli (𝐸50,𝑃𝑆𝑀 & 𝐸50) and Poisson’s ratio (𝑣). Comparing the emergent macroscopic values of 

𝐸50 and 𝑣 with those of the Macael marble (Table 2), slightly lower values of the Young’s 

modulus and higher values of the Poisson’s ratio are obtained. 

 

 

 

 

 

 

 

 

 

 

According to Figure 5, in general terms, an increasing tendency with the grain size is 

observed in the case of the Poisson’s ratio, which depends on the 𝑗𝑘𝑛/𝑗𝑘𝑠 relation (Ghazvinian 

et al. 2014). Gui et al. (2016) reported a similar increase in the Poisson’s ratio with the grain size. 

By contrast, 𝐸50,𝑃𝑆𝑀 seems roughly constant with the grain size, which might be attributed to 

the variation of 𝑗𝑘𝑛 for each of the grain sizes in accordance with Equation 13. Gui et al. (2016), 

for example, reported an increase of the Young’s modulus with the grain size but they kept 𝑗𝑘𝑛 

constant in their simulations.  

4.2. Influence of grain size on tensile strength 

12 Brazilian test models have been run in this case for each of the analysed grain sizes. As 

an example, Figure 6 shows the obtained horizontal stresses (𝜎𝑥𝑥) in a Brazilian test model at 

Fig. 5.- Variation of the Young’s modulus (𝐸50,𝑃𝑆𝑀 & 𝐸50) and 

Poisson’s ratio (𝑣) with the grain size. 
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the onset of cracking, from which the tensile strength of the material (𝜎𝑢) has been derived as 

mentioned above, and a picture of the generation of the first cracks.  

 

Fig. 6.- Example (𝑙 = 2 mm) of the horizontal stresses of a Brazilian test model at the onset of cracking (𝐹 = 11.37 
kN/mm) and generated cracks once the strength is exceeded. Tensile stresses are positive. 

The variation of the tensile strength with grain size is represented in Figure 7. A continuous 

increment of tensile strength is observed, which is in accordance with the results obtained by 

other authors. More specifically, a proportional variation of 𝜎𝑢 with the square root of the edge 

length (𝑙) is observed, which has been adjusted by a linear law (grey solid line) that roughly 

coincides with the average values (black dashed line). Gui et al. (2016), for example, simulated 

six different Brazilian tests with Voronoi tessellation grains ranging from 1 to 6 mm and 

concluded that the tensile strength increases with the grain size used in the models. They stated 

that this could be caused by the fact that with an increase in the grain size, less potential 

fractures are included in the numerical models and, therefore, the characteristics of the models 

will be closer to intact rock.  

 

 

 

 

 

 

 

 

4.3. Influence of grain size on notch effect 

300 four-point bending tests have been modelled in total with a repetitiveness of 6 models 

per notch radius and grain size combination, only varying the randomly generated Voronoi 

mesh. In order to consider the notch effect, several notch radii have been incorporated in the 

four-point bending models, with radii (𝜌) ranging from 1 mm to 15 mm. In this analysis, only 

intergranular failure is being considered. Thus, the cracks can only propagate along the 

boundaries of the grains. Consequently, the minimum radius of the aforementioned notches has 

been limited to the grain size in each case (𝜌 ≥ 𝑙). This restriction intends to avoid the possibility 

of a notch not having at least one grain boundary at the tip, which could cause the breakdown 

of the calculation model due to the intergranular failure assumption. 

Fig. 7.- Variation of the tensile strength 𝜎𝑢 with the grain size. 
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For each of the individual numerical models of the four-point bending tests, the crack 

initiation load (𝐹) has been calculated at the onset of failure, just at the moment prior to the 

appearance of the first crack. As shown in Figure 8, the bending moment between the loading 

points is constant in a four-point bending configuration (𝑀 = 𝐹 · 𝐿/6). At the same time, the 

horizontal stress (𝜎𝑥𝑥) at the bisector of the notch can be equated to a bending moment (𝑀) 

defined by a pair of forces (𝑃) with a lever arm (𝑧), where 𝑀 = 𝑃 · 𝑧. Thus, the crack initiation 

load 𝐹 (with force/depth length units) can be obtained comparing both expressions: 

𝐹 =
6 · 𝑃 · 𝑧

𝐿
                                                                                                                                              (15) 

where 𝐿 is defined in Figure 4c (150 mm) and 𝑃 and 𝑧 are derived from the stress field obtained 

along the bisector of the notch just in the calculation step prior to development of the first crack.  

Once the crack initiation load (𝐹) is obtained, 𝐾𝐼𝑁 may be determined using the formulation 

proposed by Srawley & Gross (1976) for Single Edge Notched Bend (SENB) specimens as those 

simulated in this work (Figure 4c): 

𝐾𝐼𝑁 =
𝐹 · 𝑌

ℎ1/2
                                                                                                                                                (16) 

where ℎ is the specimen height, while 𝑌 stands for a compliance factor given by the following 

expression: 

𝑌 =
3 · (𝐿𝑜 − 𝐿𝑖) · 𝛼0

1/2
· 𝑋

2ℎ · (1 − 𝛼0)3/2
                                                                                                                   (17) 

with 

𝑋 = 1.9887 − [
(3.49 − 0.68𝛼0 − 1.35𝛼0

2) · 𝛼0 · (1 − 𝛼0)

(1 + 𝛼0)2
] − 1.32𝛼0                                      (18) 

𝐿𝑜 and 𝐿𝑖 represent the spans between the outer supporting rollers and the inner loading 

points, respectively, and 𝛼0 is the relative crack length defined as the ratio between the initial 

notch length (15 mm) and the total height (30 mm) of the specimen (𝛼0 = 0.5) (Figure 4c). 

Figure 9 represents the stresses in the surrounding of the notch at the onset of cracking, from 

which the crack initiation load (𝐹) is derived in each case. 

Fig. 8.- Scheme to illustrate bending moment in rock beam and stress field in the bisector of the notch.  
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With all this, Appendix A gathers the individual 𝐾𝐼𝑁 results of the four-point bending test 

models for each notch radii (𝜌) and Voronoi edge lengths (𝑙) that define the grain sizes (Figure 

1).  

To portray the notch effect, the results of the four-point bending models are graphically 

depicted in Figure 10. The individual results of the apparent fracture toughness summarised in 

Appendix A are represented by dots in Figure 10. 𝐾𝐼𝑁 increases gradually with the notch radius, 

so the notch effect is clear. The solid lines of the plots represent the best-fit curves according to 

Equation 10, leaving 𝐾𝐼𝐶  and 𝐿 as free variables for the adjustment. By contrast, the dashed lines 

stand for the calculated curves, based once again on Equation 10 but using 𝐾𝐼𝐶  from the best-fit 

solution and 𝐿 from Equation 2. A good agreement between both curves is observed in general 

terms. However, in the case of 𝑙 = 3𝑚𝑚 the adjustment between the two curves is slightly 

worse (Figure 10e), which could be caused by the relatively large grain size with respect to the 

specimen geometry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9.- Example (𝑙 = 1 mm; 𝜌 = 4 mm) of the horizontal stresses, 𝜎𝑋𝑋, of the four-point bending test 
models at the onset of cracking. Tensile stresses are positive. 

a) b) 

c) d) 

e) 

Fig. 10.- Variation of the apparent fracture toughness 𝐾𝐼𝑁  with the notch radius for each Voronoi edge length (𝑙). 
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Figure 11 summarises in a single plot the best-fit curves represented in Figure 10. It is 

observed that, in general terms, the curves flatten and move upwards as the grain size increases. 

This means, respectively, a decrease in the notch effect and an increase in the fracture 

toughness with the grain size. 

 

 

 

 

 

 

 

 

 

4.4. Influence of grain size on fracture toughness 

As mentioned above, the observed translation of the curves in Figure 11 indicate an 

increment of the fracture toughness of the rock specimens with the grain size. This effect was 

first discussed by Potyondy & Cundall (2004) and by many other authors since then (e.g., 

Moosavi et al. 2018). The fracture toughness reflects the residual strength of a component to 

crack propagation, or in other words, the fracture energy consumption rate required to generate 

new surfaces. Considering the intergranular failure assumption, the larger the grains the less 

potential grain boundaries for crack propagation and, therefore, 𝐾𝐼𝐶  will increase because 

higher fracture energy is required to generate new cracking surfaces. Figure 12 represents the 

variation of the fracture toughness with the grain size. The represented values are obtained from 

the best-fit curve adjustment of Equation 10 for each grain size.  

 

 

 

 

 

 

 

 

 

 

It is clearly observed that 𝐾𝐼𝐶  depends on the size of the grains. This is not surprising, as the 

concept of fracture toughness implies an internal length scale, whereby the ratio of fracture 

toughness to material strength has the dimensions of square root of length (Potyondy & Cundall 

2004). In fact, Figure 12 shows that 𝐾𝐼𝐶  is proportional to the square root of the edge length (𝑙) 

of the grain, which has also been suggested in previous studies (e.g., Duriez et al. 2016; Moosavi 

et al. 2018). Comparing these results with those depicted in Figure 7, the proportional increase 

of 𝐾𝐼𝐶  with 𝑙 is notably larger than that of 𝜎𝑢. Thus, according to Equation 2 that defines the 

critical distance as a function of the ratio 𝐾𝐼𝐶/𝜎𝑢, certain dependency of 𝐿 on the grain size is 

expected.  

 

Fig. 11.- Summary of the best-fit curves of Figure 9. 

 

Fig. 12.- Variation of the fracture toughness 𝐾𝐼𝐶  with the grain 
size. 
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4.5. Influence of grain size on critical distance 

Proceeding in a similar way, the critical distance can also be derived from the adjustment of 

the best-fit curves according to Equation 10 of the LM. These best-fit results are compared in 

Figure 13 to those calculated from Equation 2. The latter are calculated using the mean tensile 

strength obtained from the numerical models (Figure 7) and the fracture toughness from the 

best-fit curves (Figure 12). A good agreement is observed between the best-fit and the 

calculated results of 𝐿 in all the cases except for the largest grain size. However, the 

consequences of this difference when performing failure load predictions are rather limited as 

shown by the authors (Justo et al. 2017; Justo et al. 2020), since 𝐿 is squared in Equation 10.  

 

 

 

 

 

 

 

 

 

 

 

All in all, a 1:1 linear relation is observed between the critical distance 𝐿 and the grain size, 

𝐿 being of the order of the average edge length of the Voronoi polygons (𝐿 ≈ 𝑙). This linear 

relation makes sense according to the definition of 𝐿 provided by Equation 2 and considering 

the dependency of both 𝐾𝐼𝐶  and 𝜎𝑢 to grain size. As mentioned above, plane strain conditions 

are being considered, therefore, 3D effects are neglected here. Taylor (2017) analysed the 

relation of the critical distance (𝐿) with clearly identifiable microstructural distances (𝑑) such as 

the grain size of different materials, and concluded that in most of the cases, 𝐿 is found to lie 

between 𝑑 and 10𝑑. Thus, the obtained results in this work are located towards the bottom of 

the scatter band defined by Taylor (2017). 

Finally, Table 6 summarises the parameters derived from the performed numerical analyses 

for each of the considered grain sizes, including the mean tensile strength, the fracture 

toughness and the critical distance from the best-fit and from the calculated case, all of them 

being key parameters for the fracture assessment according to the TCD. 

Table 6.- Summary of the emergent macroscopic properties derived from the numerical analyses of each grain 
size. 

 l=1mm l=1.5mm l=2mm l=2.5mm l=3mm 

Young’s modulus, 𝐸50 (GPa) 66.8 65.7 64.8 64.8 64.0 
Poisson’s ratio, 𝑣 0.34 0.36 0.37 0.37 0.39 
Tensile strength, 𝜎𝑢 (MPa) 11.29 11.59 11.79 12.20 12.74 

Fracture toughness, 𝐾𝐼𝐶  (𝑀𝑃𝑎 · 𝑚1/2) 0.76 0.86 1.00 1.04 1.26 

Critical distance, 𝐿 (mm) – Best-fit 1.33 1.63 2.41 2.29 4.37 
Critical distance, 𝐿 (mm) – Calculated 1.43 1.76 2.27 2.30 3.13 

 

 

 

 

Fig. 13.- Variation of the critical distance 𝐿 with the grain size. 
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5. CONCLUSIONS 

DEM simulations have been performed to evaluate the influence of the grain size on the 

apparent fracture toughness of SENB specimens with U-shaped notches and with radii ranging 

from 1 up to 15 mm. As expected from the LEFM theory and from experimental results (Justo et 

al. 2017), the simulated apparent fracture toughness increases with the notch radius, which 

reveals the notch effect. A comprehensive understanding of this effect is of special interest to 

perform accurate rock fracture assessments, since most defects in rock masses have finite radii 

and should be studied like notch-type defects rather than over-conservative crack-type defects. 

The TCD has proven to be an appropriate tool for the fracture assessment of notched rocks, 

considering the notch effect through the apparent fracture toughness. The observed variation 

of the apparent fracture toughness with the notch radii slightly decreases when the rock grain 

size increases, which seems to indicate that the notch effect softens with the increase of the 

grain size. This variation also implies an increase of the critical distance with the grain size, which 

can be derived both from the best-fit adjustment of the apparent fracture toughness results and 

from the analytical calculation of 𝐿 using the numerically obtained values of the tensile strength 

and the fracture toughness. 

The interpretation of the four-point bending tests using the TCD provided satisfactory 

results and values of the critical distance that corresponded to the grain size in a nearly 1:1 linear 

proportion. This correlation between the critical distance and the grain size must be understood 

only in qualitative terms because the numerical simulations are simply an idealization of the real 

problem (2D grains, only intergranular fractures) of an already highly idealised rock (non-porous, 

isotropic, very uniform grains with 1:1 aspect ratio) and due to the formulation of the model 

that is local. 

To allow for an interpretation of the notch effect with the TCD, splitting (Brazilian) tests were 

also numerically simulated to obtain the tensile strength. It is observed that the tensile strength 

increases with the grain size but, proportionally, less than the fracture toughness. Additionally, 

simple compression tests were numerically simulated and an increase in the Young’s moduli and 

Poisson’s ratio with the grain size was found. 

To conclude, this paper has shown the clear influence of the grain size on the notch effect 

in rocks and has gone deeper into the study of the physical meaning of the critical distance, 

which is a key parameter in the fracture assessment according to the TCD.  
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APPENDIX A 

Table 7 gathers the individual apparent fracture toughness results obtained from the four-

point bending test numerical models for each notch radii and grain size. 
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Table 7.- Summary of the results of the apparent fracture toughness. 

𝜌 (mm) 
l = 1 mm            

KIN (MPa·m1/2) 
l = 1.5 mm            

KIN (MPa·m1/2) 
l = 2 mm            

KIN (MPa·m1/2) 
l = 2.5 mm            

KIN (MPa·m1/2) 
l = 3 mm            

KIN (MPa·m1/2) 

1 0,85     
1 0,79     
1 0,59     
1 0,76     
1 0,88     
1 0,70     

1,5 0,93 0,88    
1,5 0,72 0,77    
1,5 0,78 0,81    
1,5 0,63 0,94    
1,5 0,62 0,94    
1,5 0,83 0,88    
2 0,87 0,92 0,99   
2 0,97 0,96 0,86   
2 0,85 0,93 1,01   
2 0,97 0,89 0,96   
2 0,99 0,81 1,09   
2 0,74 0,84 0,81   

2,5 0,87 1,08 1,16 1,03  

2,5 0,96 1,07 1,03 1,09  

2,5 0,99 1,01 0,93 1,00  

2,5 0,89 1,10 1,04 1,19  

2,5 0,99 0,99 1,12 1,02  

2,5 0,89 0,85 1,37 1,30  

3 0,92 1,06 1,02 1,05 1,54 
3 0,79 0,99 0,93 0,95 1,07 
3 1,23 1,09 1,35 0,95 1,35 
3 0,91 1,16 1,08 1,26 1,28 
3 0,94 1,18 1,19 1,24 1,17 
3 1,01 1,10 1,09 1,35 1,38 

4 1,04 1,42 1,23 1,29 1,22 
4 1,18 1,22 1,26 1,28 1,59 
4 1,04 1,02 1,21 1,20 1,14 
4 1,10 1,15 1,42 1,40 1,36 
4 1,00 1,23 1,12 1,28 1,41 
4 1,06 1,20 1,34 1,37 1,45 

5,5 1,10 1,14 1,34 1,22 1,47 
5,5 1,35 1,29 1,37 1,48 1,59 
5,5 1,01 1,27 1,27 1,59 1,44 
5,5 1,35 0,95 1,35 1,15 1,47 
5,5 1,09 1,29 1,28 1,18 1,35 
5,5 1,04 1,09 1,49 1,73 1,87 

7 1,22 1,10 1,41 1,49 1,55 
7 1,32 1,19 1,49 1,48 1,37 
7 1,22 1,40 1,33 1,49 1,61 
7 1,06 1,40 1,41 1,60 1,57 
7 1,13 1,16 1,40 1,23 1,53 
7 1,37 1,25 1,33 1,31 1,26 

8,5 1,34 1,57 1,39 1,17 1,82 
8,5 1,11 1,49 1,18 1,46 1,45 
8,5 1,17 1,18 1,64 1,66 1,57 
8,5 1,37 1,51 1,26 1,40 1,57 
8,5 1,29 1,21 1,34 1,37 1,54 
8,5 1,33 1,38 1,36 1,27 1,96 

10 1,06 1,56 1,45 1,60 1,49 
10 1,37 1,44 1,50 1,54 1,47 
10 1,22 1,43 1,67 1,59 1,63 
10 1,19 1,31 1,49 1,52 1,80 
10 1,43 1,50 1,33 1,52 1,75 
10 1,32 1,30 1,42 1,45 1,40 

12,5 1,22 1,32 1,51 1,58 1,24 
12,5 1,46 1,36 1,42 1,46 1,71 
12,5 1,42 1,66 1,63 1,66 1,74 
12,5 1,37 1,54 1,60 1,52 1,58 
12,5 1,12 1,48 1,37 1,76 1,76 
12,5 1,35 1,27 1,42 1,62 1,56 

15 1,40 1,54 1,61 1,54 1,48 
15 1,44 1,46 1,44 1,65 1,76 
15 1,37 1,54 1,42 1,66 1,58 
15 1,49 1,44 1,57 1,48 1,83 
15 1,36 1,41 1,50 1,65 1,73 
15 1,40 1,42 1,37 1,80 1,78 
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