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Abstract—Forward error correction (FEC) decoding hardware
modules are challenging to verify at pre-silicon stage, when they
are usually described at register-transfer (RT)/logic level with a
hardware description language (HDL). They tend to hide faults
due to their inherent tendency to correct errors and the required
simulations with a massive insertion of inputs are too slow. In this
work, two verification techniques based on FPGA-prototyping
are applied in order to complement the mentioned simulations:
golden model vs implementation matching with thousands of
random codewords and codeword/bit error rate (CER/BER)
curve computation. For this purpose, a system on chip (SoC)
field-programmable gate array (FPGA) is used, implementing in
the programmable hardware part several replicas of the decoder
(exploiting the parallel capabilities of hardware) and managing
the verification by parallel programming the software part of the
SoC (exploiting the presence of multiple processing cores). The
presented approach allows a seamless integration with high-level
models, does not need expensive testing/emulation platforms and
obtains the results in a reasonable amount of time.

Index Terms—Verification, Platform FPGAs, Prototyping, Em-
ulation, BER/CER testing.

I. INTRODUCTION

HE goal of forward error correction (FEC) components is
T to correct errors introduced in the channel, during trans-
mission, in a communication system. Due to their correcting
nature, FEC decoders are hostile to verify as they tend to hide
errors. Typical values to be tested are the primary outputs,
relevant internal points and performance parameters like the
number of iterations (in iterative decoding algorithms) or the
global bit or codeword error rate (BER/CER). For all of them,
the use of a massive amount of inputs is required. At pre-
silicon stage, when the decoder is typically described with
VHDL or Verilog, all that information can be easily attained
by simulation, but it is too slow.

In order to simulate FEC decoders and, particularly, when
the BER/CER performance is computed, the typical simulation
scheme comprises models for the coding (including random
generation of inputs), modulation, channel (with a concrete
noise model), demodulation and the decoding itself. Error rates
have to be measured, for a range of E;, /Ny values [1], up to
very low values in some cases, which implies long Monte
Carlo simulation times.

As an example, the low-density parity-check (LDPC) de-
coder detailed in the results section of this paper and used

Manuscript received XX; revised XX...This work has been supported by
Project TEC2017-86722-C4-3-R, funded by Spanish MICINN/AEL

The authors are with the Microelectronics Engineering Group,
University of Cantabria, 39005 Santander, Spain (e-mail: vic-
tor,carlosab,alvarez,ugarte,sanchez @teisa.unican.es)

in Tele-Command (TC) space communications is, typically,
analyzed up to CER=107% but lower values can be needed in
other applications.

At algorithmic level, a software simulation with a high-level
language, like C/C++ or Matlab, could be fast enough for
many channel/coding/decoding combinations. When needed
error rates are very low, or the channel models require the
simulation of a big amount of input scenarios, even these
execution/simulation strategies can be excessively slow.

In pre-silicon phases, field programmable gate array (FPGA)
prototyping and emulation are the two main verification alter-
natives to hardware description language (HDL) simulation.

In FPGA prototyping [2], the module under verification
and, usually, the simulation testbed, are integrated into an
FPGA. By using the parallelization potential of programmable
hardware, the verification procedure is highly accelerated.
Some approaches use predefined library components to verify
the performance of a communication system [3]. This is
not useful for new developments which cannot be modeled
with such previous components. Input generation and noise
addition are relevant tasks as the used random values need to
fulfill high quality distributions. Some approaches use simple,
poor accuracy, hardware random generators [4]. Others must
develop complex ad-hoc hardware implementations [5], [6].

Concerning emulation tools like [7], [8], they can provide a
great degree of debugging capabilities for hardware/software
(HW/SW) systems, but they are too slow for our Monte Carlo
simulation goal.

In post-silicon stages, the typical verification metric for a
FEC decoder is restricted to a BER/CER computation. The
error rate measurement can be faced with commercial [9] bit
error ratio testers. They are expensive but ideal for final or
close to final products. There are also alternative arrangements,
based on FPGAs for the generation of inputs and the testing
of outputs [10].

Making the decoder testbed in hardware implies some
challenging issues. It has to be a translation of the original
high-level model and such a task cannot always be possible
or leads to a very complex HW (generation of random numbers
with a good Gaussian distribution is an example). Moreover,
any change in specification implies a hardware re-design which
is more time consuming than a software counterpart.

This paper shows a proposal to perform Monte Carlo sim-
ulations of pre-silicon FEC decoders by taking advantage of
the capabilities of system on chip (SoC) FPGAs. The decoder
is synthesized and integrated in the Programmable Logic (PL)
part of a Xilinx SoC FPGA and the input generation and output
checking are managed in the Processing System (PS) part by
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Fig. 1. Global view of the proposed verification flow.

software. By doing this, the verification does not need any
other additional equipment nor any hardware translation of
the decoder testbed allowing for a rapid setup.

The methodology keeps the matching with high-level simu-
lations, allowing to compare the decoder under verification
with a golden model reference. Moreover, by having the
software and hardware parts in the same integrated device,
the communication bandwidth is optimized.

In order to accelerate the computations, several instances
of the decoder will be implemented in the PL and all the
processors of the PS will be involved in a parallel execution
by programming the software with OpenMP. With this, a
BER/CER computation or a matching with a golden model
by using a massive quantity of inputs is feasible in a practical
amount of time.

Next section of the paper shows all the details of the
proposed verification procedure. Section III reports the results
of applying the methodology to a LDPC decoder using a
Zedboard and a ZCU102 board. The conclusions are wrapped
up in Section IV.

II. VERIFICATION APPROACH

The verification procedure proposed (Fig. 1) provides two
types of analysis. First, the approach is applied to check if
the decoder generates the same outputs as a high-level golden
model for a set of thousands of random inputs. Values of
the golden model can be obtained from a software function
(labeled as 1 in Fig. 1) or from a HW intellectual property (IP)
component generated by the designer from high level synthesis
(HLS) of the software function (labeled as 2 in Fig. 1). This
first approach is detailed in Section II.B. Second, the outputs
of the decoder are compared with the ones generated by the
coder in order to compute the CER/BER. This is labeled as 3
in Fig. 1 and detailed in Section II.C.

HW/SW Integration is made with Xilinx SDSoC tool [11].
It provides automatic methods to convert software functions
to hardware (by HLS) and, also, to seamlessly integrate user
predefined components (the HDL FEC decoder in our case)
associating them to software functions. More details of the
initial setup in the following section IL.A.

A. Decoder Integration into the Verification System

The first step in the methodology is to create an Advanced
eXtensible Interface (AXI) IP component from the decoder to
be verified. The decoder has, apart from usual clk, reset and
other control pins, arrays of n elements for the input codeword
and the output corrected word. If the decoding process is soft-
decision, which is the most usual case in current decoders
with high correction capability, the elements of these arrays
are represented by a tuple of bits: m; bits for the input
codeword and mj for the corrected output. As an example,
the decoder used in the results section is a (128,64) LDPC
decoder specified in [12] with 3 bits soft-decision at the input
and hard-decision at the output. Therefore n = 128, m; = 3
and my = 1.

Streaming protocol is added to the HDL code for n transfers
at the input and the output per codeword. With that, Xilinx IP
Integrator tool automatically generates an AXI-Stream IP (IP-
XACT encapsulated) to be added to the IP library.

In SDSoC, a C-Callable library is defined and the previous
HW decoder IP is added to it. The IP is associated to a
function declaration with two arguments: void decoder_hw(int
in_r[n], int out_r[n]). Let’s suppose there is another function
decoder_sw with the same arguments but with the C/C++
golden model definition of the decoder. The m, m, parameters
could be defined by using a bitwise type instead of int
type but we preferred to keep it in this way as it is more
common in the original model. From this point, when the
function decoder_hw is called in the user code, the decoding is,
actually, performed on the programmable PL part of the SoC
FPGA by the HW IP. The necessary HW/SW infrastructure
(software drivers and communication HW) is also inferred.
When decoder_sw is called, the routine is executed by the
general-purpose CPU in the PS part of the SoC.

B. Golden Model Matching

The verification process is made by comparing the outputs
of the HW IP decoder with the ones generated by a C/C++
golden model reference description (decoder_sw function).
This can be done with HDL simulations, but the advantage
of our approach is that thousands of random inputs can be
applied in a reasonable amount of time. Usually, outputs to
compare are the primary ones (decoded word for a decoder),
but the extraction and comparison of other internal nodes can
also be addressed.

Fig. 2 shows a Computation Unit that is managed by each
processor of the PS. It is in charge of making the decoding of
one codeword (one per decoder, actually) each time it is exe-
cuted. The software part oversees the generation of the inputs
for the decoders. It is executed by a software thread controlled
by OpenMP as detailed below. The connection between the PS
and the PL part is formed by a HP_PORT/DMA_DataMover
combo which works optimally with AXI-Stream IPs. This
communication infrastructure is automatically generated by
SDSoC via designation with specific pragmas.

In order to increase the number of codewords decoded by
unit of time, more decoders are added to the PL part to work
in parallel. The number of possible decoders is limited by its
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Fig. 2. Computation Unit.

size and the capacity of the PL. In the PS part, the generation
section must provide a codeword for each decoder.

The number of High-Performance (HP) ports is limited in
the Xilinx SoC FPGAs and in order to optimize the HW/SW
communication speed, the inputs and outputs, typically a few
bits wide, are grouped into a single word before they are
transferred from HW to SW and vice versa. This is represented
by the mux symbols in Fig. 2. In the PS part, the mux is, in
fact, a simple function which works bitwise. On the PL part,
the necessary mux-demux functionality can also be described
as C/C++ functions and converted to HW automatically with
SDSoC, which eventually calls the Xilinx Vivado HLS tool.
This mux-demux communication procedure is limited by the
number of bits of the inputs/outputs and the number of bits of
the HP port (32/64 bits typically).

Concerning the control of the execution, C and the OpenMP
programing interface are used with directives for the parallel
execution management. At the start, it executes a sequential
section where the random input generation is configured. There
are two points where random values are needed: generation
of information words and addition of noise. Input coder
values (information words) are generated following random
distribution defined by the SFMT method [13] which is
a speed-up variety of the original Mersene-Twister 19937
random generator with a period of 21937 — 1 values [14].
In addition, the noise model applied to the channel is the
classic Additive White Gaussian Noise (AWGN). To include
it, random normalized values are generated based on Ziggurat
method, following [15]. Values from both random sources
are consumed in parallel by several decoders. In order to
avoid correlated sequences, seeds are generated by using the
shr3_seeded function.

It is not the purpose of this paper to fix a way to generate
random values but to provide a simple method to apply
such values to the system. As it is managed in software, an
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Fig. 3. Matching of the HW IP outputs with the ones generated by a HLS
HW IP module synthesized from the C/C++ golden model.

alternative input generation procedure or noise model can be
integrated without any change in the methodology.

After the initial phase, the execution follows with a double
nested loop. The outer one iterates on the values of Ej/Nj.
The inner one iterates on codewords. This inner loop is
parallelized with the #pragma omp for directive. Inside the
loop, the generation of codewords, the decoding and the output
comparison are discriminated for each thread. The number of
used threads is equal to the number of available processors in
the SoC FPGA. As an example, 2 processors in a Zedboard
platform and 4 processors in a ZCU102 board. There are p
threads and each of them works with r decoders. Therefore,
the number of codeword loop iterations is divided by p and r
(which is the overall degree of parallelism).

In order to compare the outputs of the HW IP with the
ones of the software model two options are considered: the
first one is to run the C/C++ reference function on the PS
part of the SoC FPGA and compare the output with the one
generated by the HW IP. This approach can be seen in Fig. 2.
r instances of the decoder_sw function are launched in order
to compare with the r outputs of the HW IPs. If any output
differs, the mismatch global variable is increased (protected
with a #pragma omp atomic clause, as the variable is shared
between threads). If the decoder works properly, such variable
should remain at zero. The second option is to generate a HW
IP from the C/C++ software function, by HLS, and compare
its outputs with HW IP under verification. This can be seen
in Fig. 3.

The generation of a HW IP from the original C/C++
reference model may be challenging. Not all C/C++ code is
synthesizable, and some transformations could be necessary.
The elimination of dynamic memory or the global variables
are two examples. In addition, the circuit resultant from HLS
is very dependent on synthesis pragmas.
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As can be seen in Fig. 3, the PS part generates, for this
matching option, r/2 codeword inputs, as they are injected to
both types of HW IPs. In the PL part, there are r/2 HW IPs
and /2 HW HLS IPs. They generate r outputs in total that
will be compared in the PS part.

C. BER/CER Computation

Another way to complement the verification process is by
computing the CER/BER of the decoder. To do this, the
configuration of the PS part can be seen in Fig. 4. The PL
part is equal than the one shown in Fig. 2.

Regarding the control software, the inner loop iterates on
codewords, injecting an amount of them that produces around
100 errors (classic value in the field which gives enough
confidence in the value of error rate obtained) in the decoding
results. Inside each thread, whenever the output (any bit for
BER and the complete codeword for CER) of the decoder is
different than the output of the coder, for a given codeword, the
global variable error is incremented. When the output of the
decoder is soft-decision, a simple conversion to hard-decision
is performed before comparison. For each E; /Ny value, after
the codeword loop, the BER/CER value is recorded.

III. RESULTS

The proposed verification methods have been applied to
a (128,64) binary LDPC decoder specified in [12] by the
Consultative Committee for Space Data Systems (CCSDS)
for Tele-Command (TC) space communications. The HDL
description to be verified has been recently designed for
a project by the European Space Agency (ESA) following
a common partial parallel architecture [16]. The trade-off
between resources and throughput was focused to fulfill the
project requirements. The algorithm used for decoding was
the Normalized Min Sum. The methodology can be applied to
other types of decoders (Reed Solomon, BCH, Polar, etc.) in
the same way.

Before showing verification results, it is opportune to char-
acterize our decoder in the three versions that are going to
be implemented: software golden model (next labeled as SW
and named as generic decoder_sw in the methodology), HW
IP obtained from the HDL description (labeled as HW IP),
which is, in fact, what we want to verify and HW IP obtained
with HLS from the software version (labeled as HW HLS IP).

36,8

#SW #zHWHLSIP =HW IP

Latency (ms/codeword)

SN 18,9

02
02
02
HHH 3,4
NN 6
02
#0,8

~ W15
02
105
N1
0.2
103
§08
02

N 31,6

~
w
«
o

Ey/No (dB)

Fig. 5. Latency comparison for three implementations of the decoder.

The characterization was performed in a Xilinx ZCU102
platform, featuring a Zynq UltraScale MPSoC with 1.2 GHz
4-core ARM Cortex-AS53 integrated with FPGA logic. In terms
of used resources, both HW versions are not remarkably
different. In terms of latency, results are shown in Fig. 5.

To get latency data, a basic arrangement made up of input
generation, one decoder and output checking was defined. For
the software version, no decoder was implemented in the PL
part. For the other two cases, the decoder was implemented in
the PL part. The latency was obtained by getting execution
time before and after the decoding execution and comput-
ing the difference. For HW versions, the latency measured
includes the delay of HW/SW communication.

Latency data of Fig. 5 are represented for the values of
E, /Ny used in this section, that is, from 0 dB to 6 dB. As
this parameter grows, the latency decreases. This is because
the LDPC decoding algorithm is iterative and it needs less
iterations to get a solution as the signal to noise ratio increases.
The HW IP manually designed at RT level outperforms by far
the others. The HW IP obtained by HLS is much slower. It is
even slower than the pure SW decoder.

When applying the approach presented in Section IL.B,
results can be seen in Table . 10° codewords per Ep /Ny (from
0 dB to 6 dB) were injected. No mismatches were detected
between the HW IP and the references. For the used decoder,
the matching with the HW IP obtained with HLS is slower.
This is because this HW HLS IP introduces a very slow path
as it was anticipated with latency results shown in Fig. 5.

The speed of the HLS IP could be improved by struggling
with HLS pragmas, but that task is out of the scope of the
presented approach, which is limited by providing a way to
use the IP generated by HLS.

The application of the method explained in Section II.C to
the (128,64) CCSDS LDPC decoder was used to get a CER
to Ep/No curve which is the usual plot in this field (rather
than BER). The execution times needed to get the results are
reported in Table II. In the ZCU102 platform 16 replicas of
the HW IP were used in parallel to get the complete plot in
around 1 hour. To get the same plot by HDL simulation of the
RT level description, around 80 days are necessary (obtained
by extrapolating the time needed for a fraction of the inputs).

Fig. 6 shows the obtained CER curve. The values acquired
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TABLE I
GOLDEN MODEL MATCHING FOR 105 MATCHES AT EACH Ej, /N,
No
N N
HW
Ne | HW losoftt s | Exee
Platform 1Ps ware .
Thr. 1Ps time
per de- -
Thread | coders Thread
ZCU102 (Zynq 4 4 0 20 min
Ultrascale+ 4
XCZU9EG MPSoC) 2 0 2 22 min
Zedboard 4 4 0 93 min
(Zyng-7000 2
XC77020 SoC) 2 0 2 102 min
PC (Intel i7 @2.6 ~7
GHz. Xilinx Vivado - - - - (;1 .
HDL Simulator) ¥
TABLE 11
CER COMPUTATION RESULTS FOR Ej, /Ny IN [0,6] DB WITH 1 DB STEP
N° N° HW IPs per .
Platform Threads Thread Exec. time
ZCU102 4 4 67 min
Zedboard 2 4 229 min
PC - HDL Simulation - - ~ 80 days

match perfectly with those obtained by the golden C/C++
software model. This is because the software model used
had all the hardware details, like quantization or saturation
policies. If the software model is not so refined, a similar curve
has to be obtained. In the same way, such kind of model could
not be considered as a precise golden model and, therefore, it
cannot be used in the approach described in Section IL.B.

IV. CONCLUSION

This paper presents an approach for verifying pre-silicon
FEC decoders by using SoC FPGAs. These devices are the
only ones needed to perform the verification, keeping cost
moderate and simple to set up. The PS part of the SoC is in
charge of generating the massive and well distributed random
inputs. Being software, the same models used in the high-
level C/C++/Matlab simulations can be replicated. In addition,
these high-level models can be used to match the outputs of

10°

10—2 L

CER

0 1 2 3 4 5 6
E,/N, [dB]

Fig. 6. CER curve obtained by applying the proposed approach.

the HW IP module under verification in two ways: by directly
comparing software and hardware outputs and by comparing
the hardware under verification with a hardware obtained by
HLS of the software function which models the decoder.
Another complementary way to verify the HW module is via
generation of a BER/CER plot of the decoder. SoC resources
are used extensively: ARM cores all work in parallel, and
several copies of the HW IP are integrated in the PL part and
perform codeword decoding in parallel as well. Results show
that the time needed for verification is in the order of minutes,
with the time required for HDL simulation in the order of days.

As a future work, we expect to apply the methodology to
bigger codes. The use of HW memory buffers for execution in
batches will be assessed to reduce idle periods during HW/SW
transfers.
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