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SPARSE OPTIMAL CONTROL FOR A SEMILINEAR HEAT

EQUATION WITH MIXED CONTROL-STATE CONSTRAINTS –

REGULARITY OF LAGRANGE MULTIPLIERS∗,∗∗

Eduardo Casas1 and Fredi Tröltzsch2,***

Abstract. An optimal control problem for a semilinear heat equation with distributed control is
discussed, where two-sided pointwise box constraints on the control and two-sided pointwise mixed
control-state constraints are given. The objective functional is the sum of a standard quadratic track-
ing type part and a multiple of the L1-norm of the control that accounts for sparsity. Under a certain
structural condition on almost active sets of the optimal solution, the existence of integrable Lagrange
multipliers is proved for all inequality constraints. For this purpose, a theorem by Yosida and Hewitt
is used. It is shown that the structural condition is fulfilled for all sufficiently large sparsity param-
eters. The sparsity of the optimal control is investigated. Eventually, higher smoothness of Lagrange
multipliers is shown up to Hölder regularity.
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1. Introduction

In a bounded domain Ω ⊂ RN , N ≥ 1, with Lipschitz boundary Γ, we investigate the following problem of
sparse optimal control:

min J(y, u) :=

∫ T

0

∫
Ω

(1

2
|y − yQ|2 +

ν

2
|u|2 + κ |u|

)
dxdt (1.1)
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subject to the parabolic initial-boundary value problem

∂ty −∆y +R(y) = u in Q = Ω× (0, T )

∂ny = 0 on Σ = Γ× (0, T )

y(x, 0) = 0 in Ω

(1.2)

and to the pointwise mixed control-state constraints

ua ≤ u(x, t) ≤ ub, (1.3)

ya ≤ u(x, t)− y(x, t) ≤ yb (1.4)

to be fulfilled for a.a. (x, t) ∈ Q := Ω× (0, T ).
In this problem, a desired state function yQ ∈ Lr(Q) with some r > N/2 + 1, r ≥ 2 if N = 1, a fixed final

time T > 0, a Tikhonov parameter ν > 0, and a sparsity parameter κ ≥ 0 are given. Moreover, R : R→ R is a
C1 function such that R(0) = 0 and

R′(y) ≥ cR ∀y ∈ R

holds with some real parameter cR that is allowed to be negative. Any polynomial of odd order with positive
director coefficient obeys this assumption, if it vanishes at zero; e.g. R(y) = y (y − y1)(y − y2) as in Nagumo
equations. Another possible candidate is the function R(y) = ey − 1.

The assumptions R(0) = 0 and y(·, 0) = 0 are made for the ease of presentation. In the last section, we will
explain the minor changes, if these conditions are not fulfilled.

Further, real numbers ua < 0, ub > 0, ya < 0, yb > 0 are given as bounds. We denote by ∂n the outward
normal derivative on Γ.

The main difficulty of this paper is the simultaneous appearance of two-sided control and mixed control-
state constraints along with the sparsity term κ‖u‖L1(Q). This type of completely two-sided control and state
constraints is a challenge, because the proof of existence of regular Lagrange multipliers associated with the
mixed control-state constraints is delicate.

In first papers on optimality conditions for the control of parabolic equations, the existence of Lagrange
multipliers in Lebesgue spaces was shown on a detour via the duality theory of linear continuous programming
problems [31]. This technique is not applicable to the case of completely two-sided control-state constraints.
Later, in [25] a new control v = αu − y was introduced to transform two-sided mixed constraints of the form
ya ≤ αu− y ≤ yb to the pointwise control constraints ya ≤ v ≤ yb. However, this trick can only help, if at least
one of the four constraints (1.3)–(1.4) is missing.

Following a technique developed in [20] for the control of ordinary differential equations with mixed con-
straints, in [28] problems with finitely many nonlinear mixed control-state constraints were discussed that
in particular cover problems with two-sided control and mixed control-state constraints. Higher regularity of
Lagrange multipliers up to Hölder regularity was proven.

All the papers mentioned so far concentrated on control problems with smooth objective functionals. The
case of sparse optimal control includes the L1-norm of the control function. It eventually leads to the sum of a
non-convex differentiable and a convex non-differentiable functional. Since the seminal paper [30] was published,
many contributions to sparse optimal control with pointwise control constraints appeared. We mention e.g. [6–
8, 11, 22, 33], or [34]. Looking for optimal controls with very small support, maybe with zero Lebesgue measure,
some authors considered measures as controls, see [4, 5, 9, 14–18, 24, 26]. The reader can find a review on
sparsity control theory in [2].

Associated problems with mixed control-state constraints were discussed by the authors in [12, 13], where the
existence of regular Lagrange multipliers was proved again by the standard duality technique of [31]. Therefore,
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the authors confined themselves to a simpler type of mixed control-state constraints that includes only three
constraints out of (1.3)–(1.4).

The main novelty of our new paper is the discussion of the fully two-sided constraints (1.3), (1.4) for κ > 0
by the technique of [28]. It turns out that the extension of this method to sparse optimal control raises new
difficulties. On the other hand, we observed that the main assumption of [28], a structural property of weakly
active sets, is automatically satisfied by our problems, if the sparsity parameter κ is sufficiently large. Moreover,
we slightly improved the application of the Yosida-Hewitt theorem [35] in proving the existence of integrable
Lagrange multipliers.

The remainder of this paper is structured as follows: In Section 2, we discuss the existence of an optimal control
and prove a linearization theorem for optimal solutions as a prerequisite for necessary optimality conditions.
Based on this linearization, in Section 3 we derive a first version of necessary optimality conditions that include
Lagrange multipliers in the dual space L∞(Q)∗. Section 4 is to improve the regularity of the multipliers by
the technique of [28] that uses the Yosida-Hewitt theorem. Having integrable Lagrange multipliers, in Section 5
the sparsity of optimal controls is investigated. For small sparsity parameter κ, the structure of the sparsity
theorems essentially differs from the case including only pointwise control constraints.

If κ is sufficiently large, the associated results simplify and show similarities to the case of control constraints
only. Higher regularity of multipliers and of the subgradient is the issue of Section 6. Here, we prove that these
quantities are bounded and measurable. Moreover, we improve the regularity up to Hölder regularity of certain
sums of Lagrange multipliers and of the subgradient of the L1-norm of the optimal control.

In the last section, we outline how the results of this paper can be proved under slightly weaker assumptions,
in particular for inhomogeneous initial data and for R(0) 6= 0. Moreover, we discuss extensions to other optimal
types of control problems (more general elliptic operator, other types of linear mixed control-state constraints,
elliptic state equation, different homogeneous boundary conditions).

2. Existence of an optimal control and linearization

The optimal control problem is well posed. First of all, we mention the following standard result on existence
and regularity for the state equation. Here, we use the Sobolev space

W (0, T ) = {y ∈ L2(0, T ;H1(Ω)) :
∂y

∂t
∈ L2(0, T ;H1(Ω)∗)}.

Theorem 2.1. For every control u ∈ Lp(Q) with p > N/2 + 1, the state equation (1.2) has a unique solution
yu ∈ Y = W (0, T ) ∩C(Q̄). The control-to-state mapping G : u 7→ yu is continuously Fréchet differentiable from
Lp(Q) to Y . Moreover, for every u, v ∈ Lp(Q), zv = G′(u)v ∈ C(Q̄) ∩W (0, T ) is the solution of the equation

∂tz −∆z +R′(yu)z = v in Q

∂nz = 0 in Σ

z(x, 0) = 0 in Ω.

(2.1)

For the proof of this theorem, the reader is referred to [1] and ([32], Thms. 5.5 and 5.9).
Thanks to R(0) = 0 and y(0) = 0, the state y = 0 corresponds to the control u = 0. This pair fulfils the

constraints (1.3)–(1.4), hence the feasible set of the optimal control problem is not empty. Moreover, by the
control constraints (1.3), the set of all controls is bounded in L∞(Q). Therefore, the following existence result
is an immediate consequence:

Lemma 2.2. The optimal control problem (1.1)–(1.4) has at least one optimal control ū with associated
(optimal) state ȳ = yū.

Remark 2.3. This result remains true, if at least one upper bound and at least one lower bound are given, while
the others can be missing (allowed to be ±∞, respectively). This includes the cases ya, yb ∈ R or ua, ub ∈ R or
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ya, ub ∈ R or ua, yb ∈ R. Here, results on inverse isotony have to be used to show the weak compactness of the
feasible set. We refer to [12, 13].

We should mention that more than one optimal control might exist. Therefore, throughout the paper, all
statements refer to an arbitrary but fixed optimal control denoted by ū or uκ, if the dependence on κ is
investigated. The associated state is denoted by ȳ or yκ, respectively.

In all what follows, we consider the controls u as functions of L∞(Q) because this is implied by the control
constraints (1.3). Moreover, we introduce the restriction of the control-to-state mapping to L∞(Q) by G :
L∞(Q) → C(Q̄), G : u 7→ yu. Our first step in establishing necessary optimality conditions for (ȳ, ū) is a
linearization of the control problem at (ȳ, ū). To this aim, we first re-write the control problem as an optimization
problem in terms of u, i.e. as a reduced problem. We define f : L∞(Q)→ R and j : L1(Q)→ R by

f(u) =
1

2

∫
Q

(
|yu − yQ|2 + ν|u|2

)
dxdt, j(u) =

∫
Q

|u|dxdt.

Moreover, we define the mapping standing in the mixed control-state constraint by H : L∞(Q)→ L∞(Q),

H(u) = u−G(u),

where we consider G as mapping with range in L∞(Q). Throughout the paper, for functions u, v ∈ L∞(Q),
inequalities such as u ≥ v or u ≤ v are defined in the sense of L∞(Q), i.e. by u(x, t) ≥ v(x, t) a.e. in Q or
u(x, t) ≤ v(x, t) a.e. in Q.

We define the convex closed set

Uad = {u ∈ L∞(Q) : ua ≤ u ≤ ub}.

Then we can re-write the optimal control problem in the form

min {f(u) + κj(u)} subject to u ∈ Uad and ya ≤ H(u) ≤ yb. (2.2)

For the linearization, we need a linearized Slater condition. In terms of the reduced optimization problem
above, it requires the existence of û ∈ Uad and ε > 0 such that ya + ε ≤ H(ū) + H ′(ū)(û − ū) ≤ yb − ε holds.
Applied to the optimal control problem, this amounts to the following condition (notice that H ′(u) = I−G′(u)):

Assumption 2.4 (Linearized Slater condition). A control û ∈ Uad and ε > 0 exist such that the following
condition holds:

ya + ε ≤ û− ȳ −G′(ū)(û− ū) ≤ yb − ε.

Invoking this assumption, we apply the linearization Theorem 4.1 of [12] and obtain the following result:

Theorem 2.5 (Linearization). Under Assumption 2.4, the optimal control ū of problem (1.1)–(1.4) satisfies
the variational inequality∫

Q

(
(ȳ − yQ)G′(ū)(u− ū) + νū (u− ū) + κ(|u| − |ū|)

)
dxdt ≥ 0

for all u ∈ Uad that obey

ya ≤ u− ȳ −G′(ū)(u− ū) ≤ yb. (2.3)
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Proof. We apply Theorem 4.1 of [12] with U = Y = L∞(Q), K = Uad, f and H as defined above, C = {z ∈
L∞(Q) : ya ≤ z ≤ yb}, and g = κ j. In these terms, the theorem states for the reduced problem (2.2) that

f ′(ū)(u− ū) + κj(u)− κj(ū) ≥ 0

holds for all u ∈ K with H(ū) +H ′(ū)(u− ū) ∈ C.
We have H(ū) +H ′(ū)(u− ū) = u− ȳ −G′(ū)(u− ū) and

f ′(ū)(u− ū) =

∫
Q

(
(ȳ − yQ)G′(ū)(u− ū) + νū (u− ū)

)
dxdt.

Now, the statement of the theorem immediately follows.

In view of the linearization Theorem 2.5, any optimal control ū minimizes the nonlinear functional

u 7→
∫
Q

(
(ȳ − yQ)G′(ū)u+ νū u+ κ |u|

)
dxdt

among all u ∈ Uad that obey the constraints (2.3). The functional is convex and continuous and the constraints
(2.3) define a convex set. Therefore, by standard subdifferential calculus we obtain the following conclusion that
is the basis for a Lagrange multiplier theorem.

Corollary 2.6. If ū is an optimal control of problem (1.1)–(1.4) that satisfies Assumption 2.4, then there is a
function λ̄ ∈ ∂j(ū) ⊂ L∞(Q) such that

∫
Q

(
(ȳ − yQ)G′(ū)(u− ū) + νū (u− ū) + κ λ̄ (u− ū)

)
dxdt ≥ 0 (2.4)

holds for all u ∈ Uad that obey the constraints (2.3).

We recall for convenience that any element λ ∈ ∂j(u) is defined by

λ ∈ ∂j(u) ⇐⇒ λ(x, t) ∈

 {1} if u(x, t) > 0
[−1, 1] if u(x, t) = 0
{−1} if u(x, t) < 0

for a.a. (x, t) ∈ Q.

In view of the corollary, any optimal control ū solves the following linear continuous optimization problem:

min

∫
Q

(
(ȳ − yQ)G′(ū)u+ νū u+ κ λ̄ u

)
dxdt (2.5)

subject to u ∈ Uad and the constraints (2.3).
We know from Theorem 2.1 that the operator G′(ū) can be continuously extended to Lp(Q) with values in

C(Q̄). Let us denote this extension by

S : Lp(Q)→ C(Q̄).
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Therefore, the optimization problem above is equivalent to minimizing (2.5) subject to

u ∈ Uad
ȳ − u+ S(u− ū) + ya ≤ 0

u− ȳ − S(u− ū)− yb ≤ 0.

(2.6)

Before finishing this section, let us comment about the adjoint operator of S, S∗ : M(Q̄) = C(Q̄)∗ −→ Lq(Ω),
where q = p/(p − 1) is the conjugate number of p and M(Q̄) is the Banach space of real and regular Borel
measures in Q̄. Given a measure ν ∈M(Q̄), ϕ = S∗ν ∈ Lq(Q) is the solution of the system

−∂tϕ−∆ϕ+R(ȳ) = ν|Q in Q

∂nϕ = ν|Σ in Σ

ϕ(x, T ) = ν|Ω×{T} in Ω,

(2.7)

where ν|Q , ν|Σ , and ν|Ω×{T} denote the restrictions of ν to Q, Σ, and Ω× {T}, respectively. To check this, let us
first give a precise definition of a solution of (2.7); here we follow [10].

Definition 2.7. We say that a function ϕ ∈ L1(Q) is a solution of (2.7), if the following identity holds for all
z ∈ Z: ∫

Q

(
∂z

∂t
−∆z +R′(ȳ)z)ϕdxdt =

∫
Q

z dν|Q +

∫
Σ

z dν|Σ +

∫
Ω

z(T ) dν|Ω×{T} , (2.8)

where

Z = {z ∈ L2(0, T ;H1(Ω)) :
∂z

∂t
−∆z ∈ L∞(Q), ∂nz = 0 on Σ, and z(0) = 0 in Ω}.

We observe that Z ⊂ C(Q̄), hence R′(ȳ)z ∈ C(Q̄) holds as well. Therefore, all the integrals in (2.8) are
well defined. Arguing as in [10], Theorem 2.2, we get that there exists a unique solution of (2.8) enjoying the
regularity ϕ ∈ Lr(0, T ;W 1,s(Ω)) for every r, s ∈ [1, 2) such that 2

r + N
s > N + 1; see also [1].

Thus, we have that zv = Sv ∈ Z for every v ∈ L∞(Q). Therefore, with (2.8) and the fact that z(0) = 0, we
obtain

〈S∗ν, v〉Lq(Q),Lp(Q) = 〈ν, Sv〉M(Q̄),C(Q̄)

=

∫
Q

z dν|Q +

∫
Σ

z dν|Σ +

∫
Ω

z(T ) dν|Ω×{T} =

∫
Q

ϕv dxdt.

From here, we deduce

∣∣∣ ∫
Q

ϕv dxdt
∣∣∣ ≤ ‖S∗ν‖Lq(Q)‖v‖Lp(Q) ∀v ∈ L∞(Q).

Since L∞(Q) is dense in Lp(Q), we conclude that ϕ ∈ Lq(Q) and S∗ν = ϕ. As p > N
2 + 1 is arbitrary, we infer

that ϕ ∈ Lq(Q) for every q < 1 + 2
N .
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3. Necessary optimality conditions

On the basis of the optimization problem (2.5)–(2.6), we establish a Lagrange multiplier rule. The Lagrangian
function for this problem that eliminates only the mixed control-state constraints, is

L(u, ν∗a , ν
∗
b ) =

∫
Q

(
(ȳ − yQ)Su+ (νū+ κλ̄)u

)
dxdt

+
〈
ν∗a , ȳ − u+ S(u− ū) + ya

〉
L∞(Q)∗,L∞(Q)

+
〈
ν∗b , u− ȳ − S(u− ū)− yb

〉
L∞(Q)∗,L∞(Q)

,

where ν∗a and ν∗b are elements of the dual space L∞(Q)∗. The interior of the cone of nonnegative functions
of L∞(Q) is non-empty. Therefore, Assumption 2.4 is a classical Slater condition for the constraints (2.6). It
ensures the existence of nonnegative Lagrange multipliers ν∗a , ν

∗
b ∈ L∞(Q)∗ such that

∂L
∂u

(ū, ν∗a , ν
∗
b )(u− ū) ≥ 0 ∀u ∈ Uad (3.1)

holds along with the complementarity conditions〈
ν∗a , ȳ − ū+ ya

〉
L∞(Q)∗,L∞(Q)

= 0〈
ν∗b , ū− ȳ − yb

〉
L∞(Q)∗,L∞(Q)

= 0.
(3.2)

For this standard result, we refer to [36] or [23]. Notice that these Lagrange multipliers are associated with the
selected fixed optimal control ū.

The terms
〈
ν∗a , S(u − ū)

〉
L∞(Q)∗,L∞(Q)

and
〈
ν∗b , S(u − ū)

〉
L∞(Q)∗,L∞(Q)

need special attention. Since Su ∈
C(Q̄) for every u ∈ Lp(Q), here we can use the restrictions of ν∗a , ν

∗
b to C(Q̄). To this aim, we define

ν̃a = ν∗a |C(Q̄)
, ν̃b = ν∗b |C(Q̄)

.

Notice that ν̃a and ν̃b are regular Borel measures. With these definitions, the variational inequality (3.1) reads∫
Q

(
(ȳ − yQ)S(u− ū) + (νū+ κλ̄)(u− ū)

)
dxdt+

〈
ν∗b − ν∗a , u− ū

〉
L∞(Q)∗,L∞(Q)

+
〈
ν̃a − ν̃b, S(u− ū)

〉
C(Q̄)∗,C(Q̄)

≥ 0 ∀u ∈ Uad.
(3.3)

Theorem 3.1. Let ū be an optimal control of problem (1.1)–(1.4) that satisfies Assumption 2.4 and let ȳ be the
associated state. Then there are nonnegative functionals ν∗a , ν

∗
b of L∞(Q)∗, nonnegative regular Borel measures

ν̃a, ν̃b ofM(Q̄) being the restrictions of ν∗a , ν
∗
b to C(Q̄), respectively, and an adjoint state ϕ̄ ∈ Lr(0, T ;W 1,s(Ω)),

for all r, s ∈ [1, 2) such that 2
r + N

s > N + 1, being the unique solution of the adjoint equation

−∂tϕ−∆ϕ+R′(ȳ)ϕ = ȳ − yQ + (ν̃a − ν̃b)|Q
∂nϕ = (ν̃a − ν̃b)|Σ (3.4)

ϕ(T ) = (ν̃a − ν̃b)|Ω×{T} ,

such that ∫
Q

(ϕ̄+ νū+ κλ̄)(u− ū)dxdt+
〈
ν∗b − ν∗a , u− ū

〉
L∞(Q)∗,L∞(Q)

≥ 0 ∀u ∈ Uad (3.5)
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and the complementarity conditions (3.2) are fulfilled.

Proof. We consider the first and the last summand in the variational inequality (3.3) above. We know that
z = S(u− ū) = G′(ū)(u− ū) is the unique solution of the linearized equation

∂tz −∆z +R′(ȳ)z = u− ū
∂nz = 0
z(0) = 0.

(3.6)

Now, standard adjoint calculus yields∫
Q

(ȳ − yQ)(S(u− ū)) dxdt =

∫
Q

(ȳ − yQ)z dxdt =

∫
Q

ϕ1(u− ū) dxdt,

where ϕ1 is the unique solution of the equation

−∂tϕ−∆ϕ+R′(ȳ)ϕ = ȳ − yQ
∂nϕ = 0

ϕ(T ) = 0.

Moreover, as explained an the end of Section 2, we have

〈
S∗(ν̃a − ν̃b), u− ū

〉
Lq(Q),Lp(Q)

=

∫
Q

ϕ2 (u− ū) dxdt,

where ϕ2 ∈ Lq(Q)∩Lr(0, T ;W 1,s(Ω)) for all q < N
2 + 1 and for all r, s ∈ [1, 2) with 2

r + N
s > N + 1 is the unique

solution to

−∂tϕ−∆ϕ+R′(ȳ)ϕ = (ν̃a − ν̃b)|Q
∂nϕ = (ν̃a − ν̃b)|Σ
ϕ(T ) = (ν̃a − ν̃b)|Ω×{T} .

The function ϕ̄ = ϕ1 + ϕ2 obeys the adjoint equation (3.4). Using ϕ̄, the variational inequality (3.3) reduces to
(3.5).

Remark 3.2. Note that, given q < 1 + N
2 , then Lr(0, T ;W 1,s(Ω)) ⊂ Lq(Q) for r = q and s = Nq

N+q . Therefore,

we have Lq(Q) ∩ Lr(0, T ;W 1,s(Ω)) = Lr(0, T ;W 1,s(Ω)) for some r, s ∈ [1, 2) satisfying 2
r + N

s > N + 1. This

follows from the embedding W 1,s(Ω) ⊂ L
Ns

N−s (Ω) = Lq(Ω) for our choice of s.

4. Lagrange multipliers in L1(Q)

In this section, we are going to show that the Lagrange multipliers ν∗a and ν∗b can be identified with integrable
functions in Q, if a certain structural assumption is satisfied.

Each functional ν∗ ∈ L∞(Q)∗ can be uniquely written in the form

ν∗ = νc + νs,

where νc can be identified with a countably additive measure ν and νs is a purely finitely additive part that
is also said to be totally singular. This follows from a theorem of Yosida and Hewitt, (see [35], Thm. 1.24).
Moreover, if ν∗ ≥ 0, then ν and νs are also non-negative ([35], Thm. 1.23).
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While the notion of countable additivity is well-known, pure finite additivity is less standard. It is defined
as follows : A nonnegative finitely additive functional ν∗ ∈ L∞(Q)∗ is said to be purely finitely additive, if the
unique countably additive measure λ on Q with 0 ≤ λ ≤ ν∗ is the zero measure.

An arbitrary finitely additive measure is purely finitely additive if its nonnegative and nonpositive parts are
purely finitely additive; we refer to Definition 1.13 of [35].

We have that L∞(Q) = L∞(Q̄) when the Lebesgue measure is considered in both sets. In this case, for
nonnegative purely finitely additive measures ν∗ ∈ L∞(Q)∗ = L∞(Q̄)∗, the following property is known ([35],
Thm. 1.22). There exists a sequence (Qn)n∈N of Lebesgue measurable sets Qn ⊂ Q such that Q1 ⊃ Q2 . . . ⊃
Qn . . . and lim

n→∞
|Qn| = 0 holds, but we have ν∗(Qn) = ν∗(Q) for all n. This means, that |Qn| → 0 when n→∞,

but 〈
ν∗, χ(Qn)

〉
L∞(Q)∗,L∞(Q)

=
〈
ν∗, 1

〉
L∞(Q)∗,L∞(Q)

= ‖ν∗‖L∞(Q)∗ ∀n ∈ N. (4.1)

Our next goal is to show that, under a structural assumption on the active sets, the totally singular (i.e.
purely finitely additive) parts of all Lagrange multipliers vanish. In this case, the multipliers ν∗a and ν∗b can be
represented by functions νa, νb ∈ L1(Q) for all i ∈ {1, . . . , k}.

Let us explain this: Assume that ν ∈ L∞(Q)∗ is a countably additive measure. We check that ν is an absolutely
continuous measure with respect to the Lebesgue measure. Indeed, let E ⊂ Q be a Lebesgue measurable set
such that |E| = 0. Then we have χE = 0 in L∞(Q) and, hence,

ν(E) =

∫
Q

χE(x, t) dν = 〈ν, χE〉L∞(Q)∗,L∞(Q) = 〈ν, 0〉L∞(Q)∗,L∞(Q) = 0.

This means that the measure ν is absolutely continuous with respect to the Lebesgue measure. As a consequence
of the Radon-Nikodym theorem, there exists µ ∈ L1(Q) such that

〈
ν∗, y

〉
L∞(Q)∗,L∞(Q)

=

∫
Q

y(x, t)dν(x, t) =

∫
Q

y(x, t)µ(x, t)dxdt.

Therefore, we can identify ν with µ.
As a conclusion of the Yosida-Hewitt theorem, all elements of L∞(Q)∗ are the sum of a totally singular part

and of an integrable part. Therefore, for the Lagrange multipliers ν∗a and ν∗b we have

ν∗a = νsa + νca, ν∗b = νsb + νcb ,

where νsa, ν
s
b are totally singular and nonnegative, while νca, ν

c
b can be identified with a.e. nonnegative functions

νa, νb of L1(Q).
We show that, under a certain structural assumption on ȳ in δ-active sets, the totally singular parts vanish.

Let us give the reader an intuitive view on this assumption: To show regularity of Lagrange multipliers, we need
that lower and upper bounds for u have a sufficiently large distance. It is clear that the box constraints for an
optimal u fulfil this requirement, since we have ua < ub. Writing the mixed constraints in the form

ya + y(x, t) ≤ u(x, t) ≤ yb + y(x, t),

they impose additional lower and upper bounds on u. Viewed in this form, they also obey this requirement,
because we have ya < yb. Therefore, considering box constraints on the control and mixed control state con-
straints separately, the bounds have a sufficiently large distance. However, this is not necessarily true for the
two “cross combinations” of bounds

ua ≤ u(x, t) ≤ yb + y(x, t), ya ≤ u(x, t) ≤ ub + y(x, t).
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Here, the distance between lower and upper bounds depends on the unknown state y. We assume below that
this distance is uniformly positive for an optimal state ȳ.

Definition 4.1 (δ-active sets). Associated with the fixed optimal control ū, for given δ > 0, we define

Ma(δ) = {(x, t) ∈ Q : ū(x, t)− ȳ(x, t) ≤ ya + δ}
Mb(δ) = {(x, t) ∈ Q : ū(x, t)− ȳ(x, t) ≥ yb − δ}.

Ma(δ) (resp. Mb(δ)), is the set of δ-active points associated with the lower (resp. upper) mixed control-state
constraint.

We remark that, for any δ > 0, the supports of ν∗a and ν∗b are contained in Ma(δ) and Mb(δ), respectively.
Indeed, this is an immediate consequence of the non-negativity of ν∗a and ν∗b and the complementarity conditions
(3.2).

Assumption 4.2 (Structural assumption on ȳ). There is some δ > 0 such that the following inequalities are
satisfied:

ȳ(x, t) + ya ≤ ub − 2δ a.e. in Ma(δ)

ȳ(x, t) + yb ≥ ua + 2δ a.e. in Mb(δ).

If this assumption is fulfilled for some δ0 > 0, then it it is also true for all 0 < δ ≤ δ0. Therefore, we can
select δ so small, such that

0 < δ ≤ 2

3
min{ub, |ua|, yb, |ya|} (4.2)

holds, whenever Assumption 4.2 is satisfied. Therefore, throughout the paper, (4.2) is included in Assumption
4.2. Thanks to ub, yb > 0 and ua, ya < 0, the right-hand side of (4.2) is positive.

The structural Assumption 4.2 guarantees that a δ-active upper mixed control-state constraint cannot simul-
taneously be δ-active for the lower control constraint and a δ-active lower mixed control-state constraint cannot
simultaneously be δ-active for the upper control constraint. This is shown in the next proof. For instance, the
assumption can be expected to hold, if the differences yb − ua and ub − ya are very large. However, we shall
prove later that the structural assumption is satisfied for all sufficiently large sparsity parameters κ. This simple
but interesting observation is another novelty of our paper.

Theorem 4.3 (L1-regularity of multipliers). Let ū be an optimal control that satisfies, along with nonnegative
Lagrange multipliers ν∗a, ν∗b from L∞(Q)∗ and the associated adjoint state ϕ̄, the variational inequality (3.5)
and the complementarity conditions (3.2). If Assumption 4.2 is fulfilled, then the totally singular parts νsa and
νsb of ν∗a and ν∗b , respectively, vanish.

Proof. We show the statement for νsb ; the proof for νsa is analogous. In the proof, we write for short
〈
·, ·
〉

=〈
·, ·
〉
L∞(Q)∗,L∞(Q)

.

By definition of νsb , there is a nested sequence of measurable sets Qn ⊂ Q such that |Qn| → 0, n→∞, but〈
νsb , χQn

〉
=
〈
νsb , 1

〉
= ‖ν∗b ‖L∞(Q)∗ ∀n ∈ N. (4.3)

We consider now the following sequence un of admissible controls:

un =

{
ua in Mb(δ) ∩Qn,
ū else.
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Thanks to condition (4.2), we have Ma(δ) ∩Mb(δ) = ∅. In fact, if (x, t) ∈Ma(δ) ∩Mb(δ), then

yb + ȳ(x, t)− δ ≤ ū(x, t) ≤ ya + ȳ(x, t) + δ

must hold. This implies yb − ya ≤ 2δ and hence

δ ≥ 1

2
(yb + |ya|) ≥ min{yb, |ya|} >

2

3
min{ub, |ua|, yb, |ya|} (4.4)

in contradiction to (4.2). Therefore, 〈
ν∗a , χQn∩Mb(δ)

〉
= 0 ∀n ∈ N

is satisfied, because the support of ν∗a is contained in Ma(δ) that is disjoint with Mb(δ). Now we insert u = un
in the variational inequality (3.5) and get

〈
νsb , ū− un

〉
≤
∫
Q

(ϕ̄+ νū+ κλ̄+ νcb )(un − ū) dxdt. (4.5)

Since |un − ū| ≤ ub − ua and un − ū = 0 in Q \ (Mb(δ) ∩Qn), we find∣∣∣∣∫
Q

(ϕ̄+ νū+ κλ̄+ νcb )(un − ū) dxdt

∣∣∣∣ ≤ ∫
Qn

(|ϕ̄+ νū+ κλ̄|+ νcb ) dxdt(ub − ua).

Therefore, by |Qn| → 0, the right-hand side of (4.5) tends to zero for n→∞. The left-hand side can be estimated
from below by 〈

νsb , ū− un
〉
≥ δ
〈
νsb , 1

〉
.

This can be seen as follows: First of all, we have ȳ + yb ≥ ua + 2δ on Mb(δ) by the second part of Assumption
4.2. Therefore,

ū− ua ≥ ȳ + yb − δ − ua ≥ δ

follows from the definition of Mb(δ). In view of this, we further deduce with (4.3) that

〈νsb , ū− un〉 = 〈νsb , χQn∩Mb(δ)(ū− ua)〉

≥ 〈νsb , δ χQn∩Mb(δ)〉 = 〈νsb , δ χQn
〉 = δ〈νsb , 1〉 = δ‖νsb‖L∞(Ω)∗ .

(4.6)

In the second line of (4.6), we invoked

〈νsb , χQn∩Mb(δ)〉 = 〈νsb , χQn〉.

Notice that 〈νsb , χQ\Mb(δ))〉 = 0 holds, since the support of νsb is a subset of Mb(δ). Inserting the last inequality
of (4.6) in (4.5) and passing to the limit n→∞, we deduce

νsb = 0,
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because the right-hand side of (4.5) tends to zero. Analogously, setting

un =

{
ub in Ma(δ) ∩Qn,
ū else,

the statement νsa = 0 is shown.

With Theorem 4.3 at hand, the variational inequality (3.5) can be re-written as∫
Q

(ϕ̄+ νū+ κλ̄+ νb − νa)(u− ū)dxdt ≥ 0 ∀u ∈ Uad, (4.7)

where νa and νb are nonnegative integrable functions on Q.

Remark 4.4. A discussion of the variational inequality (4.7) yields a projection formula for an optimal control
ū. This is standard in the case without the mixed control-state constraints. We have

ū(x, t) = P[ua,ub]

(
− 1

ν
(ϕ̄+ κλ̄+ νb − νa)(x, t)

)
, (4.8)

where P[ua,ub] : R→ [ua, ub] is defined by P[ua,ub](α) = max{ua,min{ub, α}}.

Introducing nonnegative Lagrange multipliers µa, µb ∈ L1(Q) associated with the pointwise control con-
straints −u+ ua ≤ 0 and u− ub ≤ 0, we find that the variational inequality (4.7) is equivalent to the following
equation in L1(Q)

ϕ̄+ νū+ κλ̄+ νb − νa + µa − µb = 0, (4.9)

where 0 ≤ µa ∈ L1(Q) and 0 ≤ µb ∈ L1(Q) are defined by

µa = (ϕ̄+ νū+ κλ̄+ νb − νa)+ and µb = (ϕ̄+ νū+ κλ̄+ νb − νa)−.

This explicit construction is well known, we refer e.g. to [32]. In this way, we have shown the following result:

Theorem 4.5 (Lagrange multiplier rule). Let ū be optimal. If the Slater type Assumption 2.4 and the structural
Assumption 4.2 are fulfilled, then there exist a.e. nonnegative Lagrange multipliers µa, µb, νa, νb of L1(Q) and
an adjoint state ϕ̄ ∈ Lr(0, T ;W 1,s(Ω)), for all r, s ∈ [1, 2) with 2

r + N
s > N + 1, satisfying

−∂tϕ−∆ϕ+R′(ȳ)ϕ = ȳ − yQ + νa − νb
∂nϕ = 0

ϕ(T ) = 0,

(4.10)

such that the gradient equation

ϕ̄+ νū+ κλ̄− µa + µb − νa + νb = 0 (4.11)

and the complementarity conditions∫
Q

(ua − ū)µa dxdt = 0,

∫
Q

(ū− ub)µb dxdt = 0 (4.12)
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Q

(ya − ū+ ȳ)νa dxdt = 0,

∫
Q

(ū− ȳ − yb)νb dxdt = 0 (4.13)

are fulfilled.

We now show that the structural Assumption 4.2 is satisfied for all sufficiently large sparsity parameters
κ. So far, we considered κ as fixed. To indicate the dependence of the associated optimal solution on κ, we
alternatively denote the selected fixed optimal control by uκ and (with a slight noncorrectness of notation in
view of yu) its associated state by yκ. In this way, the family {(yκ, uκ)}κ≥0, is a family of optimal solutions of
our optimal control problems. Notice that we did not prove uniqueness of the optimal solution for fixed κ.

The key result for this task is the following simple but important observation that we adopt from [13]:

Lemma 4.6 ([13]). For κ→∞, we have

‖uκ‖Ls(Q) → 0 for all s <∞ and ‖yκ‖C(Q̄) → 0.

Proof. We only briefly sketch the idea. The control u = 0 and the associated state y = 0 satisfy all constraints,
hence we have

κ ‖uκ‖L1(Q) ≤ f(uκ) + κ‖uκ‖L1(Q) ≤ f(0). (4.14)

This implies ‖uκ‖L1(Q) → 0 as κ→∞ and, by the uniform boundedness ua ≤ uκ ≤ ub, also ‖uκ‖Ls(Q) → 0 for
all s <∞. The uniform convergence of yκ to zero is an immediate consequence of Theorem 2.1.

The convergence of uκ to zero is uniform with respect to all optimal controls uκ, because (4.14) yields

‖uκ‖L1(Q) ≤
1

κ
f(0) (4.15)

for all optimal controls uκ associated with the sparsity parameter κ. As a consequence, also the convergence
yκ → 0 in C(Q̄) is uniform w.r. to all optimal controls. This follows, because the C(Q̄)-estimates of solutions
to the parabolic equation (1.2) depend on ‖u‖Lp(Q) but not on the concrete form of u.

Corollary 4.7. For any δ > 0, there is some κ(δ) > 0 such that

|yκ(x, t)| ≤ δ ∀(x, t) ∈ Q̄

holds for all κ ≥ κ(δ) and any optimal control uκ with associated optimal state yκ.

This immediately follows from Lemma 4.6 and the remark above. While optimal states yκ tend to zero in
C(Q̄) as κ → ∞, optimal controls uκ converge to zero in L1(Q), hence they can attain large values on small
sets for all κ. Therefore, κ ≥ κ(δ) does not ensure that the mixed constraints are inactive at the pair (uκ, yκ).

The inequality (4.2) alone does not in general imply the conditions of Assumption 4.2. However, this holds
for large κ:

Corollary 4.8. The condition (4.2) on δ ensures that, for all κ ≥ κ(δ), the structural Assumption 4.2 is satisfied
for all optimal controls uκ.

Proof. Let us define for short m = min{|ua|, ub, |ya|, yb}. Then

ub − ya − 2δ ≥ 2m− 2δ ≥ 2m− 4

3
m =

2

3
m ≥ δ ≥ yκ
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follows from (4.2) and the preceding Corollary. This implies yκ + ya ≤ ub − 2δ, i.e. the first condition of
Assumption 4.2. Analogously, the second condition can be shown.

We can draw another interesting conclusion for large values of κ. The linearized Slater condition is satisfied
by û = 0. We proved an analogous result for a simpler one-sided mixed control-state constraint in [12]. The
proof for the more complicated case of two-sided constraints is similar:

Lemma 4.9. For all ε > 0 with ε < min{|ya|, yb} there is some κ̃(ε) > 0 such that the linearized Slater Assump-
tion 2.4 is satisfied with û = 0 for all κ ≥ κ̃(ε). The number κ̃(ε) is independent of the selected optimal control
uκ that is inserted for ū in the linearized Slater Assumption.

Proof. Thanks to Theorem 2.1, the mappings G and G′(ū) are continuous from Lp(Q) to C(Q̄) for p > N/2 + 1.
Moreover, we know that G(0) = 0. By Lemma 4.6 and (4.15), we have uκ → 0 in Lp(Q) as κ → ∞, the
convergence being uniform for all optimal controls uκ. We set α = min{|ya|, yb} and take κ̃(ε) so large that
‖yκ‖C(Q̄) = ‖G(uκ)‖C(Q̄) < (α − ε)/2 and ‖G′(uκ)uκ‖C(Q̄) < (α − ε)/2 holds for all κ ≥ κ̃(ε). Above, we also
invoked the continuous differentiability of G′. Then we have ‖ − yκ + G′(uκ)uκ‖C(Q̄) < α − ε for all optimal
controls uκ and their associated states yκ, and consequently

ya + ε ≤ −α+ ε ≤ −yκ +G′(uκ)uκ ≤ α− ε ≤ yb − ε,

hence the linearized Slater condition is satisfied by û = 0.

For problems with pointwise control constraints, it is known that optimal sparse controls vanish for all
sufficiently large sparsity parameters, because all possible adjoint states ϕ̄ are uniformly bounded w.r. to κ. We
will show this boundedness at the end of Section 6 but provide the following preparatory result already here:

Lemma 4.10. Let κ(δ) and κ̃(ε) be as in Corollary 4.7 and Lemma 4.9, respectively. For all κ ≥
max{κ(δ), κ̃(ε)}, the L1(Q)-norm of the Lagrange multipliers νa and νb is uniformly bounded, i.e. there exists
some L > 0 such that

‖νa‖L1(Q) + ‖νb‖L1(Q) ≤
L

ε
for all κ ≥ max{κ(δ), κ̃(ε)}. (4.16)

The estimate (4.16) holds for all Lagrange multipliers νa, νb associated with an arbitrary optimal control uκ.

Proof. For all κ ≥ max{κ(δ), κ̃(ε)}, Lagrange multipliers νa, νb for the mixed control-state constraints exist,
since the linearized Slater condition is satisfied. Moreover, they are integrable functions, because the structural
Assumption 4.2 is fulfilled. To avoid a heavy notation, we do not write (νa)κ and (νb)κ to indicate the dependence
of the Lagrange multipliers on uκ. However, we should keep this dependence in mind. For κ ≥ κ̃(ε), the control
û = 0 obeys the linearized Slater condition,

ya + ε ≤ −ȳ + Sū ≤ yb − ε,

where ū := uκ is the optimal control uκ under consideration, ȳ denotes the associated state and λ̄ the element
of the associated subdifferential. We prefer this shorter notation by a bar for convenience. All these findings do
not depend on the concrete choice of the optimal control uκ. We insert û = 0 for u in the variational inequality
(3.3) and obtain∫

Q

(
(ȳ − yQ)S(0− ū) + (νū+ κλ̄)(0− ū)

)
dxdt+

∫
Q

(νb − νa)(−ū− S(0− ū)) dxdt ≥ 0,
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and hence∫
Q

(
− (ȳ − yQ)Sū− νū2 − κλ̄ū

)
dxdt+

∫
νb>0

νb(−ū+ Sū) dxdt+

∫
νa>0

νa(ū− Sū) dxdt ≥ 0.

Moreover, we use the complementarity conditions (4.13),

∫
νa>0

(ya − ū+ ȳ)νa dxdt = 0,

∫
νb>0

(ū− ȳ − yb)νb dxdt = 0

and add these two vanishing expressions to the last inequality to find

∫
Q

(
− (ȳ − yQ)Sū− νū2 − κλ̄ū

)
dxdt+

∫
νb>0

νb (−ȳ + Sū− yb)︸ ︷︷ ︸
≤−ε

dxdt+

∫
νa>0

νa (ȳ − S(ū) + ya)︸ ︷︷ ︸
≤−ε

dxdt ≥ 0.

Therefore, we have

∫
Q

(
− (ȳ − yQ)Sū− νū2

)
dxdt ≥ ε

∫
νb>0

νb dxdt+ ε

∫
νa>0

νa dxdt+

∫
Q

κλ̄ū︸︷︷︸
≥0

dxdt.

The left-hand side is uniformly bounded by some constant L > 0, since all admissible controls are uniformly
bounded by the pointwise control constraints. This information yields

‖νa‖L1(Q) + ‖νb‖L1(Q) ≤
L

ε
,

independently of κ ≥ max{κ(δ), κ̃(ε)} and for all optimal controls uκ.

5. Sparsity

5.1. Sparsity parameter of arbitrary size

Sparsity means that an optimal control ū vanishes in subsets of Q having a large measure in comparison with
|Q|. It is clear that ū(x, t) = 0 must fulfill the constraints in these subsets. This is automatically satisfied for the
pointwise control constraints, because we have assumed ua < 0 < ub for this reason. We do not know in general
that ya + ȳ(x, t) ≤ 0 ≤ yb + ȳ(x, t). However, this is needed in the subsets of Q, where the optimal control ū
is zero. We have the result of the last section that |ȳ| is small for large values of κ. In view of our assumption
ya < 0 < yb, the value ū(x, t) = 0 fits in these bounds, if κ is large enough. In this case, we can expect sparsity
results that are analogous to the known theory for problems with pure pointwise control constraints; namely,

ū(x, t) = 0 ⇐⇒ |ϕ̄(x, t)| ≤ κ.

This will be shown in the next subsection for all sufficiently large κ. For small κ, the situation is different.
We begin the discussion of sparsity without restriction on κ. In the next subsection, we will assume that κ

is sufficiently large. Then the presentation will simplify.



16 E. CASAS AND F. TRÖLTZSCH

To shorten the proof of the next result, we introduce the following sets that are associated with the selected
fixed optimal control ū:

E0 = {(x, t) ∈ Q : ū(x, t) = 0},
E+ = {(x, t) ∈ Q : ū(x, t) > 0}, E− = {(x, t) ∈ Q : ū(x, t) < 0},
Ma = {(x, t) ∈ Q : ū(x, t)− ȳ(x, t) = ya}, Mb = {(x, t) ∈ Q : ū(x, t)− ȳ(x, t) = yb}.

First we consider the set E of points (x, t) ∈ Q, where |ϕ̄(x, t)| ≤ κ holds. This is the set, in which ū(x, t) = 0
would follow for optimal control problems without the mixed control-state constraints (1.4). In our case, the
situation is more complicated.

Lemma 5.1. Suppose that the linearized Slater Assumption 2.4 and the structural Assumption 4.2 are satisfied
and consider the set

E = {(x, t) ∈ Q : |ϕ̄(x, t)| ≤ κ}.

Then for a.a. (x, t) ∈ E the following implications are fulfilled:

(i) ū(x, t) > 0 =⇒ ū(x, t)− ȳ(x, t) = ya and νa(x, t) = (ϕ̄+ κ+ νū)(x, t),

(ii) ū(x, t) = 0 =⇒ νa(x, t)− νb(x, t) = (ϕ̄+ κλ̄)(x, t),

(iii) ū(x, t) < 0 =⇒ ū(x, t)− ȳ(x, t) = yb and νb(x, t) = (κ− ϕ̄− νū)(x, t).

It holds νa(x, t) > 0 and νb(x, t) = 0 a.e. in case (i), while νa(x, t) = 0 and νb(x, t) > 0 is satisfied a.e. in case
(iii).

Proof. We recall that ū must satisfy the gradient equation (4.11).
Case (i), (x, t) ∈ E ∩E+: For a.a. (x, t) ∈ E ∩ E+, the lower control constraint is inactive, hence µa(x, t) = 0
follows a.e. in E ∩ E+. Moreover, we know that λ̄(x, t) = 1. Therefore, (4.11) yields

(ϕ̄+ κ︸ ︷︷ ︸
≥0

+ νū︸︷︷︸
>0

+νb − νa)(x, t) ≤ 0 (5.1)

and hence νa(x, t) > 0 and νb(x, t) = 0 must hold a.e. in E ∩E+. In view of this, the lower mixed control-state
constraint is active, i.e. ū(x, t)− ȳ(x, t) = ya.

In (5.1), the strict inequality is impossible, since in that case the variational inequality (4.7) would imply
ū(x, t) = ub. Then the upper control constraint and the lower mixed control-state constraint would be simulta-
neously active in contrary to the structural Assumption 4.2. Therefore, (5.1) is satisfied as an equation and we
have

νa(x, t) = (ϕ̄+ κ+ νū)(x, t).

Case (ii), (x, t) ∈ E ∩E0: From ua < ū(x, t) = 0 < ub we deduce that µa(x, t) = µb(x, t) = 0 and hence, by
(4.11),

(ϕ̄+ κλ̄+ νb − νa)(x, t) = 0 for a.a. (x, t) ∈ E ∩ E0. (5.2)

From this equation, the implication (ii) follows.
Case (iii), (x, t) ∈ E ∩E−: Here, we have λ̄(x, t) = −1. The discussion is completely symmetric to case (i); we
leave it to the reader.
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Remark 5.2. Let us briefly comment on the role of Assumption 4.2 in the context of sparsity. This assumption
only guarantees that ua < yb + yκ and ya + yκ < ub holds. It might happen that both yb + yκ and ya + yκ are
positive (or negative) so that the value 0 of ū(x, t) is not included by these bounds. As we shall see in the next
subsection, the inclusion of ū(x, t) = 0 is guaranteed for all sufficiently large κ. Then the discussion of sparsity
makes sense.

Next, we consider the set E0, where ū vanishes, and the associated conclusions for ϕ̄ and ȳ.

Lemma 5.3. Let the Assumptions 2.4 and 4.2 be satisfied. Then for almost all (x, t) ∈ E0, the following
implications hold true:

(i) νa(x, t) = 0 and νb(x, t) = 0 =⇒ |ϕ̄(x, t)| ≤ κ
(ii) νa(x, t) > 0 =⇒ ȳ(x, t) = −ya
(iii) νb(x, t) > 0 =⇒ ȳ(x, t) = −yb.

Proof. Our assumptions are needed to have integrable Lagrange multipliers. The multipliers µa and µb must
vanish a.e. in the set E0, because ua < ū = 0 < ub holds. Therefore, the gradient equation (4.11) simplifies to

ϕ̄+ κλ̄+ νb − νa = 0 a.e. in E0. (5.3)

Case (i): In a.a. points, where νa(x, t) = νb(x, t) = 0 holds, (5.3) yields

|ϕ̄(x, t)| = |κλ̄(x, t)| ≤ κ,

since we have |λ̄(x, t)| ≤ 1 a.e. in Q.
Case (ii): In a.a. points (x, t) with νa(x, t) > 0, the lower mixed control state constraint is active, hence
ū(x, t) = 0 = ya + ȳ(x, t). This confirms the implication (ii). Case (iii) follows analogously.

Remark 5.4. If R(−ya) 6= 0 or R(−yb) 6= 0, then the cases (ii) or (iii) of Lemma 5.3 cannot take place a.e. in
Q. This is a conclusion from the following observation: If, e.g., R(−ya) 6= 0 and case (ii) would hold, then for
almost all (x, t) ∈ Q such that ū(x, t) = 0 and ȳ(x, t) = −ya we have

∂tȳ(x, t)−∆ȳ(x, t) +R(ȳ(x, t)) = 0 +R(−ya) 6= 0 = ū(x, t).

This is a contradiction to the state equation. Let us comment on the pointwise identity above. From the state
equation satisfied by ȳ, we deduce that ∂tȳ ∈ L2(Q) and ∆ȳ ∈ L2(Q); see, for instance, [29], Proposition III-2.5.
Hence, we get that ȳ ∈ H1(Q) ∩ L2(0, T ;H2

loc(Ω)). If D ⊂ Q is a set of points where the function y is constant,
then ∂tȳ(x, t) = ∂xi

ȳ(x, t) = 0 for almost all (x, t) ∈ D and every 1 ≤ i ≤ n; cf. [21], Lemma 7.7. Applying again
this lemma and using that ∂xi ȳ ∈ L2(0, T ;H1

loc(Ω)), we infer that ∆ȳ(x, t) = 0 for almost every point (x, t) ∈ D.
Consequently, the identity ∂tȳ −∆ȳ = 0 holds a.e. in D.

Finally, we derive a formula for the function λ̄ ∈ ∂j(ū).

Lemma 5.5. Under the Assumptions 2.4 and 4.2, for a.a. (x, t) ∈ Q and all κ > 0, the element λ̄ ∈ ∂j(ū) is
uniquely determined by

λ̄(x, t) = P[−1,1]

(
− 1

κ
(ϕ̄+ νb − νa)(x, t)

)
, (5.4)

where P[−1,1] : R→ [−1, 1] is defined by P[−1,1](α) = max{−1,min{1, α}}.
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Proof. We have Q = E0 ∪ E+ ∪ E−. In a.a. points (x, t) ∈ E0, the equation (5.2) holds, i.e. (ϕ̄ + κλ̄ + νb −
νa)(x, t) = 0. This is equivalent to

λ̄(x, t) = − 1

κ
(ϕ̄+ νb − νa)(x, t)

and formula (5.4) is deduced from λ̄(x, t) ∈ [−1, 1].
In E+, a.e. λ̄(x, t) = 1 is fulfilled, hence (5.1) implies

(ϕ̄+ κ+ νū+ νb − νa)(x, t) ≤ 0.

This yields

λ̄(x, t) = 1 ≤ − 1

κ
(ϕ̄+ νū+ νb − νa)(x, t) < − 1

κ
(ϕ̄+ νb − νa)(x, t)

in view of ū(x, t) > 0. Formula (5.4) is an immediate conclusion. Analogously, formula (5.4) is deduced for a.a.
(x, t) ∈ E− from λ̄(x, t) = −1 and the inequality

(ϕ̄− κ+ νū+ νb − νa)(x, t) ≥ 0.

5.2. Sufficiently large sparsity parameter κ

We mention first that the condition (4.2) on δ implies

0 < δ < min{|ya|, yb}. (5.5)

Therefore, from (5.5), we immediately obtain

yκ(x, t) + ya < 0 < yκ(x, t) + yb ∀(x, t) ∈ Q̄ (5.6)

for all κ ≥ κ(δ), where κ(δ) is defined according to Corollary 4.7.
In this subsection, we assume that κ is large enough such that (5.6) is satisfied. We know that this happens

for all κ ≥ κ(δ). Let us denote by κ0 ≥ 0 the smallest value such that (5.6) holds for all κ > κ0. The inequalities
(5.6) are even uniformly fulfilled w.r. to (x, t) ∈ Q; notice that ȳ = yκ is continuous. Moreover, they are satisfied
for all optimal controls uκ.

Therefore, the mixed control-state constraints are inactive in all points, where uκ vanishes, i.e. in all (x, t) ∈
E0. We have

νa = νb = 0 a.e. in E0 ∀κ ≥ κ(δ). (5.7)

Now it is easy to prove the following theorem:

Theorem 5.6. Assume κ > κ0 and let the Assumptions 2.4 and 4.2 be satisfied for ū := uκ. Then the equivalence

uκ(x, t) = 0 ⇐⇒ |ϕκ(x, t)| ≤ κ (5.8)
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and the projection formula

λκ(x, t) = P[−1,1]

(
− 1

κ
ϕκ(x, t)

)
(5.9)

are fulfilled for a.a. (x, t) ∈ Q. Furthermore, the regularity λκ ∈ L2(0, T ;H1(Ω)) holds.

Proof. We first prove the equivalence (5.8). Let (x, t) ∈ E0, i.e. uκ(x, t) = 0. By (5.7) and Lemma 5.3, the
inequality |ϕκ(x, t)| ≤ κ immediately follows for a.a. (x, t) ∈ E0.

On the other hand, for a.a. (x, t) ∈ Q with |ϕκ(x, t)| ≤ κ, i.e. for a.a. (x, t) ∈ E, the equality uκ(x, t) = 0 is
deduced from Lemma 5.1: Indeed, from Lemma 5.1, (i), and (5.6), for a.a. (x, t) ∈ E ∩E+ the strict inequality
uκ(x, t) = yκ(x, t) + ya < 0 would follow. This contradicts (x, t) ∈ E+; therefore, we have |E ∩ E+| = 0.

Analogously, |E ∩E−| = 0 is obtained from Lemma 5.1, (iii), since the inequality uκ(x, t) = yκ(x, t) + yb > 0
would follow a.e. in E ∩ E− contradicting (x, t) ∈ E−. Therefore, for a.a. points in Q with |ϕκ(x, t)| ≤ κ, only
case (ii) of Lemma 5.1 can happen, i.e. uκ(x, t) = 0.

The projection formula (5.9) is now a direct consequence of Lemma 5.5, formula (5.4) and (5.7). For a proof
of the regularity of λκ, the reader is referred to [3], Lemma 1.

6. Higher regularity of Lagrange multipliers

From our previous analysis, we know that all Lagrange multipliers belong L1(Q). Here, we will improve this
regularity under appropriate assumptions. For this purpose, we need a representation of multipliers that only
includes the state and the adjoint state, since these functions are smoother than the Lagrange multipliers and
the control. Finally, this higher smoothness will transfer to the multipliers.

Theorem 6.1. Under the Assumptions 2.4 and 4.2, for all κ > κ0, we have

µa + νa = max
{

0 , ϕ̄+ νmax{ua, ya + ȳ}+ κP[−1,1]

(
−κ−1ϕ̄

)}
, (6.1)

µb + νb = max
{

0 , −ϕ̄− νmin{ub, yb + ȳ} − κP[−1,1]

(
−κ−1ϕ̄

)}
. (6.2)

Proof. We need the Assumptions 2.4 and 4.2 for the existence of Lagrange multipliers and their L1-regularity.
We consider the following sets for ū(x, t):

Q1 =
{

(x, t) ∈ Q : ū(x, t) = min{ub, yb + ȳ(x, t)}
}
,

Q2 =
{

(x, t) ∈ Q : max{ua, ya + ȳ(x, t)} < ū(x, t) < min{ub, yb + ȳ(x, t)}
}
,

Q3 =
{

(x, t) ∈ Q : ū(x, t) = max{ua, ya + y(x, t)}
}
.

Now we distinguish between the following cases:
a) Case (x, t) ∈ Q1 : Here, thanks to κ > κ0 we know from (5.6) that yb + ȳ(x, t) > 0 holds. Therefore,

ū(x, t) is positive a.e. in Q1. Moreover, by ua < 0 and ya + ȳ(x, t) < 0 that follows again from (5.6), both lower
constraints are inactive a.e. in Q1. This yields µa(x, t) = νa(x, t) = 0 a.e. in Q1. We obtain from (4.11)

0 = ϕ̄(x, t) + νū(x, t) + κλ̄(x, t) + µb(x, t) + νb(x, t) a.e. in Q1.

Therefore, we have

0 ≤ µb(x, t) + νb(x, t) = −(ϕ̄(x, t) + νū(x, t) + κλ̄(x, t))
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and hence

ϕ̄(x, t) + νū(x, t) + κλ̄(x, t) ≤ 0 a.e. in Q1.

The preceding two inequalities yield a.e. in Q1

µb(x, t) + νb(x, t) = max{0,−(ϕ̄+ νū+ κλ̄)(x, t)}
= max

{
0,−

(
ϕ̄+ νmin{ub, yb + ȳ}+ κλ̄

)
(x, t)

}
.

(6.3)

For µa and νa, the situation is as follows: Because both functions vanish a.e. in Q1 and the lower constraints
are inactive, we get

0 = µa(x, t) + νa(x, t) = (ϕ̄+ νū+ κλ̄+ µb + νb)(x, t),

≥ (ϕ̄+ νū+ κλ̄)(x, t)

> (ϕ̄+ νmax{ua, ya + ȳ}+ κλ̄)(x, t) a.e. in Q1.

This fits in the representation

µa(x, t) + νa(x, t) = max
{

0,
(
ϕ̄+ νmax{ua, ya + ȳ}+ κ λ̄

)
(x, t)

}
(6.4)

that holds for a.a. (x, t) ∈ Q1.
b) Case (x, t) ∈ Q2 : Here, all multipliers are zero in a.a. points, hence

0 = (ϕ̄+ νū+ κλ̄)(x, t) a.e. in Q2.

In particular, we deduce for µb + νb

0 = (µb + νb)(x, t) = −(ϕ̄+ νū+ κλ̄)(x, t)

> −(ϕ̄+ νmin{ub, yb + ȳ}+ κλ̄)(x, t) a.e. in Q2

and again formula (6.3) holds.
For µa + νa, we have

0 = (µa + νa)(x, t) = (ϕ̄+ νū+ κλ̄)(x, t)

> (ϕ̄+ νmax{ua, ya + ȳ}+ κλ̄)(x, t) a.e. in Q2

and confirm again formula (6.4).
c) Case (x, t) ∈ Q3 : Here, the Lagrange multipliers µb and νb vanish a.e. The situation is symmetric with

respect to case a). Proceeding analogously, we again confirm the representations (6.3) and (6.4).

Finally, we insert the projection formula (5.9) in (6.3) and (6.4) to verify our claim.

This theorem permits to increase the regularity of all functions by bootstrapping. In the right-hand sides
of the formulas (6.1), (6.2), only the functions ȳ and ϕ̄ appear that have higher regularity than L1(Q). This
transfers to the multipliers.

Theorem 6.2 (Higher regularity of Lagrange multipliers). Suppose that (ȳ, ū) ∈ W (0, T ) ∩ C(Q̄) × L∞(Q)
satisfy, along with non-negative Lagrange multipliers µa, µb, νa, νb ∈ L1(Q), the associated adjoint state ϕ̄ ∈
Lr(0, T ;W 1,s(Ω)), and the subgradient λ̄ ∈ ∂j(ū), the necessary optimality conditions of Theorem 4.5. If κ > κ0,
then
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(i) µa, µb, νa, νb belong to L∞(Q),
(ii) ȳ, ϕ̄, and λ̄ are Hölder continuous in Q̄, ϕ̄ belongs to W (0, T ), and

(iii) µa + νa and µb + νb are Hölder continuous in Q̄ as well.

Proof. By ua ≤ u ≤ ub, all admissible controls are uniformly bounded in L∞(Q). Therefore, all associated states
y are uniformly bounded in C(Q̄). In particular, we have that (ȳ, ū) ∈ C(Q̄)× L∞(Q). Define

v = ȳ − yQ + νa − νb.

With this notation, the adjoint state ϕ̄ solves the equation

−∂tϕ−∆ϕ+R′(ȳ)ϕ = v

∂nϕ = 0

ϕ(T ) = 0.

(6.5)

Thanks to the assumptions of the theorem, we have v ∈ L1(Q). Since L1(Q) can be identified with a subspace of
M(Q̄) we recall that ϕ̄ = S∗v ∈ Lq(Q) for arbitrary 1 ≤ q < 1 + 2

N . From Theorem 6.1 and the non-negativity
of the Lagrange multipliers, we deduce µa, µb, νa, νb ∈ Lq(Q) for the same q. Hence, we have v ∈ Lq(Q) as well.

If N = 1, then v ∈ Lq(Q) for every q < 3, therefore the regularity ϕ̄ ∈ C(Q̄) follows from (6.5). To deal with
the cases N > 1, we use [27, Theorem 4.2-(i)]. Thus, we obtain ϕ̄ ∈ Lα(Q) for all α satisfying

α <
q
(
N
2 + 1

)
N
2 + 1− q

. (6.6)

Replacing q by 1 + 2
N in this inequality, we see that ϕ̄ ∈ Lα(Q) holds for all

α <
N + 2

N − 2
.

Arguing as above, the same regularity is obtained for µa, µb, νa, νb and v. Hence, for N = 2 or 3, we deduce
from (6.5) that ϕ̄ ∈ C(Q̄). For N ≥ 4, we have to perform bootstrapping steps as follows. If ϕ̄ ∈ Ls1(Q) with
s1 <

N
2 + 1, then v ∈ Ls1(Q) as well, and according to [27], Theorem 4.2-(i) we get that ϕ̄ ∈ Ls2(Q) for every

s2 <
s1

(
N
2 + 1

)
N
2 + 1− s1

.

By simple computations we obtain

s1

(
N
2 + 1

)
N
2 + 1− s1

− s1 =
s2

2
N
2 + 1− s2

>
1

N
2 + 1

= σ

and hence ϕ̄ ∈ Ls1+σ(Q). Consequently, given N , after a finite number of steps we obtain ϕ̄ ∈ Ls(Q) with
s > N

2 + 1. Then v ∈ Ls(Q) holds and from (6.5) we infer that ϕ̄ ∈ C(Q̄).
Inserting again ȳ, ϕ̄ ∈ C(Q̄) in (6.1), (6.2), also

µa + νa ∈ L∞(Q), and µb + νb ∈ L∞(Q).

is obtained. By their non-negativity, we eventually have that all Lagrange multipliers µa, µb, νa, νb belong to
L∞(Q).
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As bounded solutions of their parabolic equations, ϕ̄ and ȳ are even Hölder continuous, cf. Di Benedetto [19].
Therefore, the representations (6.1), (6.2) yield the Hölder continuity of µa + νa and µb + νb. Moreover, (5.9)
gives the Hölder continuity of λ̄.

We conclude this section by a result that is also known for problems without mixed control-state constraints:

Theorem 6.3. Let the Assumptions 2.4 and 4.2 be satisfied. Then, the control ū = 0 is the only optimal solution
of problem (1.1)–(1.4) for every κ ≥ κ∗ = max{κ(δ), κ̃(ε), C}, where C is the constant introduced in Lemma 6.4
below.

This theorem is a straightforward consequence of (5.8) and the following Lemma.

Lemma 6.4. There is some constant C > 0 such that

‖ϕκ‖L∞(Q) ≤ C

is satisfied for all κ ≥ max{κ(δ), κ̃(ε)}, independently of the selected optimal control uκ.

Proof. If κ satisfies the hypotheses of the Lemma, then Lemma 4.10 implies the boundedness (4.16) of the
Lagrange multipliers νa, νb in L1(Q). This boundedness does not depend on the concrete selection of the
optimal control uκ. Moreover, all controls are uniformly bounded in L∞(Q), hence the same holds true for all
associated states yκ. Now we consider again the adjoint equation (6.5) with right-hand side v = yκ−yQ+νa−νb.
The function v is bounded in L1(Q), uniformly w.r. to κ.

Therefore, the solution ϕ of (6.5) is bounded in Lq(Q) for all 1 ≤ q < 1 + 2/N , uniformly w.r. to κ,

‖ϕ‖Lq(Q) ≤ c1‖v‖L1(Q).

By the representation formulas of Theorem 6.1, this uniform boundedness w.r. to κ transfers to νa and νb, and
hence also to v.

Now we proceed as in the last proof. After finitely many steps of bootstrapping, we obtain uniform
boundedness of v in Ls(Q) with s > N/2 + 1. Finally, ‖ϕκ‖C(Q̄) ≤ C is obtained for all κ ≥ max{κ(δ), κ̃(ε)}.

7. Extensions

7.1. More general elliptic differential operator

All results of this paper remain valid for the elliptic differential operator

(Ay)(x) = −
N∑

i,j=1

∂xi(aij(x)∂xjy(x))

instead of −∆ and the co-normal derivative ∂νAy =
∑n
i,j=1 niaij∂xj

y instead of ∂ny = n · ∇y. Here, the
coefficients aij belong to L∞(Ω) and satisfy with some σ > 0 the condition of uniform ellipticity

N∑
i,j=1

aij(x)ξiξj ≥ σ
N∑
i=1

ξ2
i ∀ξ ∈ RN .

Using A, in all adjoint equations the operator −∆ is to be replaced by the formal adjoint differential operator
A∗.
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7.2. More general mixed control-state constraints

In contrast to our duality method that was used in [13], the method via the Yosida-Hewitt theorem presented
here is able to deal also with mixed control-state constraints of the form

ya ≤ αu+ βy ≤ yb (7.1)

where α and β are arbitrary real numbers. Their sign is not restricted. The associated theory is completely
analogous to the one presented here. In particular the approximation of pointwise state constraints ya ≤ y(x, t) ≤
yb by

ya ≤ εu(x, t) + y(x, t) ≤ yb

with some ε > 0 (Lavrentiev type regularization) fits in this extension.
The necessary changes are more or less straightforward. Therefore, they are left to the readers, who are

interested in this more general setting.

7.3. Inhomogeneous initial condition or R(0) 6= 0

We assumed inhomogeneous initial data y(0, ·) = 0 and R(0) = 0, because this simplifies the presentation. If
R(0) 6= 0 or the inhomogeneous initial condition

y(x, 0) = y0(x)

is given with some y0 6= 0, then this needs some modifications that are explained in the following.

Results that remain true without change

All lemmas, corollaries, and theorems remain true with exception of Theorem 2.1 on the well-posedness of
the state equation, Lemma 2.2 on the existence of an optimal control, Lemma 4.6 on the convergence of yκ as
κ→∞, and Corollary 4.7. In the formulations of these 4 results, the following changes have to be performed:

Re-formulation of some results

Theorem 2.1: Here, the assumption y0 ∈ C(Ω̄) has to be added. Then the theorem remains correct.
Lemma 2.2: To ensure the Lemma, we have to assume the existence of at least one control u that satisfies the
pointwise control constraints and, joint with the associated state yu, the mixed control-state constraints.
Lemma 4.6: The statement remains true with respect to uκ, i.e. if κ→∞, then we still have ‖uκ‖Ls(Q) → 0
for all s <∞. However, the associated state yκ will not in general tend to zero. Instead, we have

lim
κ→∞

yκ = y0 = G(0)

in the sense of C(Q̄).
Corollary 4.7: In view of the modification of Lemma 4.6, the statement of the corollary has to be adapted as
follows: For any δ > 0, there is some κ(δ) > 0 such that

|yκ(x, t)− y0(x, t)| ≤ δ ∀κ ≥ κ(δ).

Modification of assumptions

Even if the formulation of the main theorems remains true without change, some underlying assumptions
must be modified:



24 E. CASAS AND F. TRÖLTZSCH

(i) First of all, instead of ya < 0 < yb, we have to assume

ya + y0(x, t) < 0 < yb + y0(x, t) ∀(x, t) ∈ Q̄,

where y0 = G(0) denotes the state associated with u = 0. This is natural, because we want to show that
uκ tends to zero for κ→∞. Therefore, the state associated with u = 0 should obey the mixed constraints.

(ii) Condition (4.2) on δ has to be modified to

0 < δ ≤ 2

3
min{ub, |ua|, min

(x,t)∈Q̄
|ya + y0(x, t)|, min

(x,t)∈Q̄
(yb + y0(x, t))}. (7.2)

(iii) Condition (5.5) needs the following update: We have to write that (7.2) implies

0 < δ < min{ min
(x,t)∈Q̄

|ya + y0(x, t)|, min
(x,t)∈Q̄

(yb + y0(x, t))}.

Changes in proofs

(iv) In the proof of Theorem 4.3, the inequality (4.4) is to be adapted as follows: It holds

2δ ≥ yb − ya = yb + y0(x, t)− y0(x, t)− ya

and hence

δ ≥ 1

2
{yb + y0(x, t) + |y0(x, t) + ya|} ≥ min

(x,t)
{yb + y0(x, t), |y0(x, t) + ya|}

≥ min{min
(x,t)

(yb + y0(x, t)),min
(x,t)
|y0(x, t) + ya|}

>
2

3
min{ub, |ua|,min

(x,t)
(yb + y0(x, t)),min

(x,t)
|y0(x, t) + ya|}

in contrary to (7.2). The remaining parts of the proof do not need changes.

(v) Corollary 4.8 remains true. The proof works with

m = min{ub, |ua|,min
(x,t)

(yb + y0(x, t)),min
(x,t)
|y0(x, t) + ya|}.

7.4. Elliptic state equation

The elliptic optimal control problem

min J(y, u) :=

∫
Ω

(1

2
|y − yΩ|2 +

ν

2
|u|2 + κ |u|

)
dx (7.3)

subject to the elliptic boundary value problem

Ay +R(y) = u in Ω

∂ny = 0 on Γ
(7.4)
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and to the pointwise mixed control-state constraints

ua ≤ u(x) ≤ ub,
ya ≤ u(x)− y(x) ≤ yb

for a.a. x ∈ Ω can be discussed analogously to the parabolic case. Roughly speaking, all results related to
optimization, in particular those on optimality conditions or on sparsity, and the pointwise discussions of
multipliers and their representations, need only one change: the variable x has to be substituted for (x, t).
The main difference to the parabolic case concerns the theory of existence and uniqueness of the elliptic state
equation and of the adjoint equation.

Here, we assume yΩ ∈ Lr(Ω) for r = 2 if N = 1 or 2, and r > N
2 otherwise. Moreover, we assume the

monotonicity condition

R′(y) > 0 ∀y ∈ R

that ensures, along with the uniform ellipticity of A, existence and uniqueness of the solution yu ∈ H1(Ω)∩C(Ω̄).
Then the theory of the paper can be developed analogously to the parabolic case. The necessary changes are
fairly obvious. We only mention the adjoint equation

A∗ϕ+R′(y)ϕ = y − yΩ in Ω

∂nϕ = 0 on Γ.

The gradient equation (4.11) is then fulfilled with multipliers µ̄a, µ̄b, ν̄a, ν̄b ∈ L1(Ω) and the integration in the
complementarity conditions (4.12)–(4.13) is to be performed in Ω. While these are straightforward modifications,
it is interesting to mention that the existence proof for regular Lagrange multipliers via L∞(Ω)∗ and the Yosida-
Hewitt theorem is superior to the use of the duality theory of continuous linear programming as in [12], [13], or
[31].

The reason is the following: The duality theory method needs results on inverse isotony that are true for
parabolic equations but hold for elliptic equations only under strong restrictions. Inverse isotony depends on
the location of the eigenvalues of the elliptic differential operator and restricts the use of duality methods.
Therefore, in the elliptic case, the application of the Yosida-Hewitt theorem should be the method of choice.

7.5. Other homogeneous boundary conditions

Both in the parabolic and elliptic case, the theory remains true for other homogeneous boundary conditions
such as homogeneous Dirichlet conditions y = 0 on Σ or Γ, respectively, or homogeneous Robin boundary
conditions ∂νAy + α(x, t)y = 0 on Σ (or ∂νAy + α(x)y = 0 on Γ). Here, any α ∈ L∞(Σ) (or any non-negative
α ∈ L∞(Γ)) is admitted. The necessary modifications are obvious.
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[27] J.-P. Raymond and F. Tröltzsch, Second order sufficient optimality conditions for nonlinear parabolic control problems with
state constraints. Discr. Continu. Dyn. Syst. 6 (2000) 431–450.
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