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ABSTRACT Real-time systems where applications with timing requirements coexist with applications
without timing constraints are increasingly common. Furthermore, the processors used in desktops, smart
phones or embedded devices are mostly multi-core, allowing the execution of applications in parallel. This
article presents a set of non-blocking synchronization mechanisms to share data between real-time and
non-real-time applications executing in different cores of a shared memory multi-core system. Four typical
producer/consumer scenarios have been explored; a) shared data object with real-time reader, b) shared
data object with real-time writer, c) shared queue with real-time writer, and d) shared queue with real-time
reader. For these scenarios we have developed different non-blocking protocols where the execution of
the real-time application is always prioritized over the execution of the non-real-time part. In this way,
the real-time applications never have to repeat their operations and, consequently, their execution times
are bounded. Furthermore, to reduce the overhead caused by the copies of the information used in the
non-blocking algorithms, we have imposed the limitation of a single real-time reader or a single real-time
writer in the algorithms developed. Finally, we have evaluated the response times of the developed protocols
on a multi-core device with the Android operating system.

INDEX TERMS Android, multi-core, non-blocking synchronization, real-time, wait-free.

I. INTRODUCTION
In recent years, the evolution of processors has been car-
ried out by increasing the number of cores. As evidence
of this evolution, most major chip manufacturers implement
multi-core processors. This type of processors are used in
all kinds of computing devices, from desktop computers or
smartphones to embedded systems. In such devices, various
processes or threads can be executed simultaneously in the
different cores to sharply reduce the computation times. With
parallel and concurrent programing, the applications can be
divided into several threads to be executed in different cores
and thus maximize the performance of the system.

When there are different processes or threads running
simultaneously in a multi-core device there is a need
to have inter-process communication (IPC) mechanisms.
These mechanisms are used for transferring data between
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processes. There are different techniques to carry out this
communication, for example shared memory, message pass-
ing, remote procedure calls (RPC), etc [1]–[3]. When these
techniques are used, a synchronization mechanism is nec-
essary to deal with the possible concurrent accesses to the
shared data.

Since real-time applications are usually concurrent, devel-
opers are faced with the need to use synchronization among
the different threads. In addition, it is becoming more usual
to find systems that allow the execution of heterogeneous
applications in the same computational device. This means
that in the same system there may be real-time applica-
tions coexisting with applications without real-time require-
ments. Evidence of this is that there is a rising interest in
adapting general-purpose operating systems such as Android
in systems where real-time applications can be executed
[4]–[6] together with general-purpose applications obtained
from very large repositories and stores, or developed under
ecosystems populated of libraries built for different purposes.
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The aim of this work is to provide synchronization proto-
cols to share data between real-time and non-real time appli-
cations that run in different cores on the same shared memory
multi-core device. The protocols guarantee that read/write
operations on the shared data performed by real-time threads
will have bounded response times even in the case of concur-
rent access with the non-real-time threads. In order to achieve
this objective, the protocols are non-blocking to avoid locks
that could increase the response time of real-time applications
and introduce unbounded delays or even priority inversion
problems. In addition, our non-blocking protocols ensure that
real-time applications will always execute read or write oper-
ations on shared data with guarantees of not having to repeat
the operation due to the interference of the non-real-time part
of the system, which could lead to unbounded response times.

Four typical producer/consumer scenarios have been
explored in this work, a) shared data object with real-time
reader, b) shared data object with real-time writer, c) shared
queue with real-time writer, and d) shared queue with
real-time reader.

These scenarios have a series of requirements. They must
allow data sharing between real-time and non-real-time apps
running on a multi-core processor. Moreover, they have to
ensure that the real-time part should never be interrupted by
the non-real-time part in order to have bounded response
times. They must also offer the possibility of sharing one or
more data items. To share several data items, a queue structure
is used.

One of our objectives is that the protocols developed have
small overheads, therefore, despite the fact that there are
previous studies [9], [10] that offer wait-free solutions with
multiple readers or writers, we self-impose the limitation of
a single writer or a single real-time reader to significantly
reduce overheads. By limiting the number of real-time read-
ers or writers, we use fewer copies of the information.

To satisfy the previous scenarios, we present the fol-
lowing protocols: (1) SDrtR (shared data with real-time
reader), (2) SDrtW (shared data with real-time writer),
(3.1) QrtWo (queue with real-time writer and overwrite),
(3.2) QrtWc (queue with real-time writer and clearing) and
(4) QrtR (queue with real-time reader).

These protocols are intended for shared memory
multi-core systems with real-time and non-real-time applica-
tions running on different cores. In this article, we also present
an evaluation of these protocols in an Android device where
real-time and non-real-time applications can coexist using
core isolation mechanisms described in a previous work [4].

The remainder of this article is organized as follows.
In Section II we present existing related works on
non-blocking synchronization algorithms and give the moti-
vation that led to the realization of this study. The description
of the environment where our non-blocking synchroniza-
tion protocols are applicable is carried out in Section III.
Section IV describes the five non-blocking synchronization
protocols developed. In Section V we describe our proposed
solution to run real-time applications on anAndroid operating

system based on Linux. In Section VI we describe and eval-
uate the inter-process communication mechanisms more fre-
quently used in Linux-based operating systems. Section VII
contains the evaluation of the five protocols developed on an
Android device. Section VIII gives our conclusions.

II. RELATED WORK AND MOTIVATION
A recurring problem in real-time environments is how
to share data between different tasks while maintaining
data consistency and avoiding priority inversions. For this
reason, during the last decades different techniques have
been explored to achieve this objective. Many different
options exist to access shared resources using synchroniza-
tion mechanisms. Two types of mechanisms are blocking and
non-blocking synchronization.

Themost commonly used synchronizationmechanisms are
blocking synchronization or locks. This traditional approach
uses synchronization primitives such as mutexes, semaphores
or critical sections, which ensure that specific sections of code
are executed under mutual exclusion. If a process tries to
acquire a lock that is already held by another process, it will
be blocked until the lock is released. However, as described
in other studies [11], [12], this type of mechanism can
cause undesirable situations such as low throughput in case
of heavily contended lock, priority inversion or deadlock.
Although priority inversion or deadlock may be avoided or
mitigated with some algorithms, low throughput may occur
in multi-core systems due to the serialization introduced in
the execution of protected operations. Non-blocking syn-
chronization mechanisms are presented as a solution to the
problems associated with blocking algorithms. In addition,
non-blocking techniques can improve the overall perfor-
mance of the system, as shown in some studies [13]–[15].

The traditional approach to non-blocking implementations
distinguishes three types of algorithms: obstruction-free,
lock-free, and wait-free [16], [17]. Obstruction-free provides
theweakest non-blocking progress guarantee. A synchroniza-
tion algorithm is obstruction-free if, from any point after
which it executes in isolation, it finishes in a finite number
of steps [18]. Lock-free algorithms guarantee system-wide
progress, but individual threadsmay have a possibility of star-
vation (even permanent starvation). Wait-free is the strongest
non-blocking guarantee of progress, thus all threads in the
system have a bound on the number of steps to complete
every operation. A wait-free algorithm is always lock-free,
but lock-free may not necessarily be wait-free. Wait-free
algorithms and their associated data structures are even harder
to design and implement than lock-free ones.

There are several studies that propose different implemen-
tations of non-blocking shared data structures and techniques
in a satisfactory manner. Therefore, we are identifying some
of the most relevant ones. It is known that any data struc-
ture can be transformed into a lock-free one [19]. Proof of
this is that there are numerous implementations to obtain
efficient lock-free data structures such as the non-blocking
queue implementation [20] using a singly linked list and
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double-word compare-and-swap operations for the head and
tail pointers, hash tables [21] or lock-free concurrent dictio-
naries [22]. These solutions use lock-free synchronization
algorithms, and therefore they do not offer full guarantees
that some executions do not have to be repeated until the
data is consistent. This means that when a process tries to
access a shared resource the execution times are not bounded.
Moreover, there are developments such as the Tervel frame-
work [10] for implementing non-blocking libraries. This
framework tries to be an unification for methodologies
and techniques to enable the implementation of wait-free
algorithms. This development provides an alpha release for
developers, thanks to the utilization of memory reclama-
tion, descriptors and progress assurance constructs. This
framework needs a system that supports C++11 and all the
algorithms that use it are based on descriptor-based method-
ologies that introduce significant space and time overhead.

None of the previous algorithms have been designed to be
used in environments where there are real-time applications
alongside non-real-time applications, where real-time threads
need to have bounded time without unbounded repetitions to
access shared resources.

Non-blocking mechanisms for real-time systems have
become a research topic that attracts extensive interest. There
is a work [23] that describes an implementation of a lock-free
framework for uniprocessor systems, based on a multi-word
compare-and-swap primitive (MWCAS) that allows simulta-
neous access to shared data. Another work [24] describes a
non-blocking protocol for read/write buffers with support for
multiple readers. The writer never has to repeat the operation
(wait-free). At the end of their operation, readers always
check if the shared data has been modified during the read-
ing. If a modification has occurred, the reader has to repeat
the operation. Another paper [9] describes a non-blocking
solution for the read/write buffers with support for multiple
writers on multiprocessor real-time systems.

The work presented in [23] uses the MWCAS atomic
instruction to generate lock-free implementations, however
our goal is to obtain wait-free behaviour for the real-time
threads. The solutions presented in [9] and in [24] are valid for
mixed-criticality systems where there are a real-time writer
and a non-real-time reader. As this is one of the scenarios that
we study in this work we have chosen the solution proposed
in [24] because of its implementation simplicity.

Despite all the existing studies on non-blocking synchro-
nization, we have not found a practical study that explores the
different producer/consumer scenarios in a multi-core system
where real-time and non-real-time applications can coexist
sharing data. Thus, in our approach we seek that the response
times of real-time applications are bounded and without sig-
nificant overhead when operating with shared resources.

During the last few years, real-time systems have gone
from executing closed applications in embedded systemswith
a specific purpose to being part of powerful, open and inter-
connected execution environments. However, the increase
in power is no longer associated with the speed of

processors, and is currently linked to a greater number of
cores. Asmulti-core systems becomemore common in indus-
trial environments, a natural evolution is to integrate more
and more functionality into a single system. In many cases it
is desirable to use a general purpose operating system, such
as Linux, in which non-real-time and real-time applications
can coexist together to make the best possible use of all
the features of the system. Thus, in a previous work [4]
we have presented a proposal where soft real-time applica-
tions are executed in a set of isolated cores from the rest of
non-real-time applications on devices with an Android/Linux
operating system. The isolation of the real-time components
in a specific set of cores makes it possible to eliminate inter-
ferences that the non-real time components might cause in the
response times.

The protocols presented in this article are targeted to
multi-core systems with shared memory, where real-time and
non-real-time applications are executed in different cores. For
this kind of systems we need to have data structures that can
be shared and for which access or modification in the real
time part is performed with bounded times and wait free, thus
without retries.

The following section presents a description of the environ-
ment where our four non-blocking scenarios are being used.

III. APPROACH TO THE PROBLEM
A. ARCHITECTURAL ENVIRONMENT
The proposed solutions in this work for the synchronization
of real-time and non-real-time applications are designed to be
used in multi-core systems with shared memory.

We propose the use of non-blocking synchronization pro-
tocols in applications where real-time and non-real-time
threads are executed in different cores. In this way, we have
guarantees that the response times of the threads with real-
time requirements are never affected due to sharing data
with non-real-time applications. In our solution we only
focus on synchronization between real-time and non-real-
time applications, and thus the synchronization mechanism
is asymmetric: it has real-time and non real-time operations.
Real-time applications that use our algorithm to access or
modify a shared resource are guaranteed to advance in a
finite number of steps, since they do not have locks or loops.
Therefore, the execution times are bounded. On the other
hand, response times can be affected by the interferences that
are caused by the used operating system, the interruptions or
tasks with higher priority, but in no case by the use of our
algorithms.

The communication between applications of the same type
(real-time or non-real time) can be done using the classic
mechanisms of mutual exclusion. The non-blocking synchro-
nization algorithms presented in this article only allow one
real-time thread to act as reader or writer, and therefore a
classic mechanism of mutual exclusion could be used to
synchronize all real-time readers or writers that want to com-
municate with non-real-time applications. Fig. 1 illustrates
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FIGURE 1. Proposal for the synchronization between real-time and
non-real time applications.

this situation in a system with four cores; three of them are
used to execute non-real-time applicationswhile the other one
(Core 3) is isolated to allow the execution of applications with
real-time requirements.When the synchronization is between
a real-time thread and a non-real-time thread, one of the
non-blocking mechanisms that we propose in this work can
be used directly (see Thread 3 and RT-thread 3 in Fig. 1).
However, if several real-time threads need to be synchro-
nized with any of the non-real-time threads, the real-time
threads can use a traditional mutual exclusion mechanism
using a real-time protocol [7], [8] to serialize the access
to the non-blocking synchronization algorithm. Since the
non-blocking synchronization is wait-free, it can be used
from inside a protected operation or critical section per-
formed with a mutex locked (this is illustrated in Fig. 1
as a blocking synchronization used between RT-thread 1
and RT-thread 2). When non-blocking protocols are used to
synchronize the real-time part with the non-real-time part,
we are guaranteed that there are no problems such as pri-
ority inversion [7], since no thread is involved in a block-
ing wait. The real-time threads never have to wait, and the
non-real-time threads only have busy waits. As mentioned
above, when we combine our non-blocking protocol with
other blocking mechanisms, we must use real-time protocols
(such as priority inheritance or priority ceiling) that avoid
priority inversion.

B. NON-BLOCKING SYNCHRONIZATION PROBLEM
Non-blocking synchronization algorithms are designed in
such a way that they do not require a critical section. This
kind of algorithms operate with a local copy of the shared
data. When a writer thread wants to update any shared data,
it attempts to copy its local value to the shared one. This oper-
ation will fail if it overlaps another read or write operation on
the same data performed by another thread. In such case, one
or both operations must be repeated.

Real-time applications must have time guarantees in the
access to shared resources, so that this kind of applica-
tions should never have to repeat a read or write operation.
However, applications that do not have timing requirements
could repeat the read or write operations as many times as
necessary until the data is consistent.

We have identified four commonly used producer/
consumer scenarios:
• SDrtR (shared data with real-time reader): Shared
data with one non-real time writer and one real-time
reader.

• SDrtW (shared data with real-time writer): Shared
data with one real-time writer andmultiple non-real time
readers.

• QrtW (queue with real-time writer): Circular queue
with one real-time writer and one non-real time reader.
In this situation we have identified two possible
behaviours when the queue is full and new data needs
to be written:
– QrtWo (queue with real-time writer and over-

write): When the queue is full, the new data over-
writes the oldest data.

– QrtWc (queue with real-time writer and clear-
ing): When the queue is full and there is new data
to enqueue, all the old data is discarded.

• QrtR (queue with real-time reader): Circular queue
with one non-real-time writer and one real-time reader.

As an example of a real-time writer thread, we can think
of an application where a thread is used to obtain information
from a sensor, process the data, perform some control action,
and finally display that information in a graphic interface for
the user. The sensor needs to be read periodically, from a
real-time thread, which processes the data, performs control
actions based on it, and writes the information into a syn-
chronization object for its display in the non-real-time part
of the application where the graphical user interface (GUI)
is located. Depending on the application requirements, it is
possible that the GUI is only interested in the latest available
data item, in which case wewould use the SDrtW pattern, or it
may require processing the full series of data, in which case
one of the QrtW patterns would be used. Another example
where our algorithms could be used is the arrival of data
through a communication network accessible from the non-
real-time part. The data is passed to the real-time part for
processing. Again, it could be interesting to collect only the
last available data, or to have a queue with various data items
that must be processed.

These kind of scenarios have a limitation in the number of
readers and writers; this limitation makes the overhead low,
since in the protocols developed in this work the number of
copies of the information is a maximum of two. In addition;
it would be possible to share data with more readers or writ-
ers if classic mutual exclusion mechanisms are used, as we
describe in the Subsection III-A.

C. PROPERTIES OF THE SOLUTION
Our non-blocking algorithms for synchronization and data
sharing must satisfy two properties:
• Real-time part without blocking or repetitions: In
a system where there are real-time applications, it is
really important to have bounded response times. In our
case, where the real-time thread synchronizes with
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non-real-time threads whose response times are poten-
tially unbounded, we propose wait-free synchronization
where the real-time part does not repeat write or read
operations. Thus, worst case execution times for the
real-time applications will not be negatively affected by
contention in the resources shared with non-real-time
applications.

• Integrity of the data: It is necessary that the solution
guarantees the integrity of the data in both the writ-
ing and the reading operations. Due to the asymmetric
nature of our synchronization primitives non-real-time
applications will be the ones that have to verify in each
of their operations wheather the data is valid or not, and
may need to wait or repeat operations to ensure their
successful completion.

In the next section we develop the four non-blocking pro-
tocols for the scenarios depicted in Section III-B.

IV. NON-BLOCKING PROTOCOLS
To provide synchronization mechanisms that can be used
in the scenarios described in the Section III-B we have
developed five solutions for reader-writer and queueing non-
blocking synchronization. Figure 2 shows the non-blocking
synchronization patterns developed in this work for the dif-
ferent scenarios. For illustration purposes the queues hold
integer data.

FIGURE 2. Non-blocking patterns developed.

A. SDrtR: SHARED DATA WITH ONE NON-REAL-TIME
WRITER AND ONE REAL-TIME READER
We describe a protocol in which there is one reader with
real-time requirements and a non-real-time writer. The reader
always has access to the last valid written data without the
need to block or repeat the operation. On the other side,
in some situations the writer needs to wait until there is no
conflict with the reader who is accessing the data.

For the correct operation of the protocol a double buffer
is used. Therefore, the writer never modifies data when the
reader is accessing the buffer. To carry out the development
of a non-blocking protocol with a double buffer, the elements
in Fig. 3 have been used. The double buffer and the pointer
to the index value (pt_reader_index) to identify the buffer
that is currently being read are stored in a shared memory
region available to both the reader and the writer starting at
the address pointed by pt_base. The index value can identify
a buffer using two values: 0 or 1 for the first one and 2 or 3 for
the second one. The use of two different values is necessary
to know if the reader is accessing the buffer. When the value
of the index is odd, the reader is accessing the data and when
it has an even value this indicates that it is not reading.

FIGURE 3. Shared elements used in the SDrtR protocol.

The detailed non-blocking protocol for writing and reading
data using a double buffer is shown in the following listing:

For the write operation we have a local variable called
writer_index which is an index to identify the buffer where
the new data must be written. To obtain the value of this
local variable, the content of the pt_reader_index pointer is
shifted right by one bit (which is the same as performing the
integer division between 2), and the subtraction of 1 minus
the previous value is performed to flip the value and identify
the buffer that is not being used for reading (see line 17 in
Listing 1). In line 19 of Listing 1 the local variable called
non_reading_value is used to stored the even value (used
when the reader is not accessing the data) of the current
buffer used for the reader. In line 20, pt_next is a pointer to
the buffer in which the new data is written. After the data
is stored in the buffer, we obtain the index with an even
value that points to the newly written data (see line 22 in
Listing 1). To change the shared pointer pt_reader_index an
atomic operation called CAS (compare and swap) is used.
This operation only changes the content of pt_reader_index
with the value of pt_reader_new_index if it is equal to the
value of non_reading_value. In case this comparison is not
fulfilled, meaning that the reader is currently using the buffer,
the writer has to busy-wait until it is satisfied (see Lines 23-24
in Listing 1). Finally, with pt_has_data we specify that some
data has been written for the first time.

The real-time reader always gets the last correct data avail-
able and it performs two atomic operations. The first one
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Listing 1. Pseudocode for shared data with non-real-time writer and
real-time reader.

called fetch_and_add(see Line 34 in Listing 1) increases the
value of pt_reader_index by one unit to set it to an odd value
(indicating that the reader is accessing the data). The sec-
ond atomic operation called fetch_and_sub decrements the
content of pt_reader_index to indicate with an even value that
the data is no longer being read (see Line 38).

We have identified the instructions in Listing 1 where the
shared pointer called pt_reader_index is accessed or modi-
fied by the writer and the reader. These instructions are all
those that could cause an inconsistency in the data if they
are not atomically modified. The instructions for the write
operation are the following:
• Line 17: Read pt_reader_index
• Line 19: Read pt_reader_index
• Line 23: Read and modify pt_reader_index
For the read operation we have identified the following

instructions:
• Line 34: Read and modify pt_reader_index
• Line 35: Read pt_reader_index
• Line 38: Read and modify pt_reader_index
To verify the integrity of the data we have used the same

reasoning described in Kopetz’s work [24]. Seven possible
temporal relations between a real-time read and a write oper-
ations are illustrated in Fig. 4.

FIGURE 4. Temporal relations between a real-time read and a write
operation.
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The integrity of the data is ensured when the operations are
not concurrent as in relations (1) and (2) of Fig. 4. In relations
(3) and (4) the writer does not end until the reader changes
the content of the pt_reader_index pointer to an even value
(line 38) because in line 23 the writer performs a CAS atomic
operation to verify that the pt_reader_index has a correct
value and then it modifies the pointer. In relation (5) the writer
can finish the operation because the reader has set the content
of the pt_reader_index pointer to an even value, to indicate
that it is no longer accessing the data. In the relation (6) the
writer necessarily has to wait for the real-time reader to finish
with the atomic operation in line 38 in order to complete its
operation. Finally, in relations (7), (7a), (7b) and (7c) the
writer can not complete the first operation until the reader
changes the content of pt_reader_index to an even value
(line 38 in Listing 1). Therefore, in all the temporal relation-
ships described in Fig. 4 the integrity of the data is ensured
and the real-time reader always ends in a finite number of
steps since each operation is performed sequentially without
loops or interruptions from the non-real-time part with which
it is synchronized.

B. SDrtW: SHARED DATA WITH ONE REAL-TIME WRITER
AND MULTIPLE NON-REAL-TIME READERS
A solution for having a writer on a data structure that can
be read by multiple readers has been described previously
in [24]. The algorithm described in the referred work fits
perfectly our requirements, consequently we do not develop
a new one, but we describe it in this article for completeness.

In their study, the authors describe the solution to be used in
real-time systems where both readers and writer have timing
requirements. Readers have to check at the end of each read-
ing whether the writer has modified the data structure during
this reading or not. To detect if the writer has carried out any
modification to the shared data, an unsigned global counter
is used. This counter is incremented just before modifying
the shared data, setting it to an odd value, and then after
the modification the global counter is incremented again to
obtain an even value (see lines 14 and 17 in Listing 2). If the
reader verifies that the shared data has not been modified,
by checking the global counter (see line 25 in Listing 2),
the reading operation will be finished; otherwise the oper-
ation must be repeated. For this reason the authors do a
timeliness analysis for the write and read operations. Firstly,
they assume that the duration of a read and write operation
is the same, in this way they determine that an interference
originated by the writer could cause up to three retries in the
read operation. Secondly, they assume that a minimum time
between succesive write operations into the shared data is
known, if this time cannot be guaranteed it is not possible to
determine the worst case number of interferences. With this
assumption it is possible to bound the maximum execution
time of a read operation considering the retries.

This algorithm fits perfectly the SDrtW scenario described
in Subsection III-A, where the writer is the one with real-time
requirements while the readers do not have such timing

requirements. In our approach, we cannot make assumptions
about the non-real-time part because we have no control over
the interruptions that could occur in the system. Therefore,
we have used the algorithm adding the initialization function
with the necessary variables for its implementation in the C
language. The protocol for writing and reading data based
on [24] is given in the following Listing:

Listing 2. Pseudocode for shared data with real-time writer and multiple
non-real-time readers.

In theworkwhere the previous protocol was described [24],
correctness is demonstrated and it is proved that readers
always obtain uncorrupted data.

C. QrtW: CIRCULAR QUEUE WITH A REAL-TIME WRITER
AND A NON-REAL-TIME READER
Two protocols have been developed for a circular queue with
a real-time writer and a non-real-time reader. The real-time
writer can enqueue elements without blocking or repeating
the operation. When the queue is full and a new element
is enqueued two different behaviours have been considered.
One overwrites the oldest element and the other one clears the
queue. Therefore, these two protocols have been developed:
• QrtWo (Queue real-time writer with overwrite): If
the queue is full and there is a new element to enqueue,
the new element overwrites the oldest element.

147624 VOLUME 8, 2020



A. P. Ruiz et al.: Non-Blocking Synchronization Between Real-Time and Non-Real-Time Applications

• QrtWc (Queue real-time writer with clearing): If the
queue is full and there is new element to enqueue, all old
data is discarded.

The protocol called QrtWo uses a queue with an empty
entry to help in determining when the queue is full or empty
(see Fig. 5). There are also two variables that determine the
head and the tail of the queue. Therefore, when the queue
is full this condition is satisfied: (tail+2)%queue_size ==
head and for an empty queue this condition is met
(tail+1)%queue_size == head.

FIGURE 5. Graphical representation of the shared variables for the
protocol called QrtWo. In this scenario the queue is full since (tail + 2)%
queue_size == head.

For the correct operation of this protocol, both the head
and the tail are in shared memory. In addition, the head stores
three values inside. We consider the head as a 32-bit integer
where the least significant bit (called overwrite) indicates
whether an overwriting has occurred by the real-time writer,
the second least significant bit (called changing) indicates
whether the writer is modifying the head index value, and
finally the 30 most significant bits are used to store the
index into the array containing the queue. This is illustrated
in Fig. 6.

FIGURE 6. Elements used inside the head index for the QrtWo protocol.

The detailed protocol called QrtWo is shown in the
following listing:

Listing 3. Pseudocode for the QrtWo (Queue real-time writer with
overwrite) protocol.
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Listing 3. (Continued.) Pseudocode for the QrtWo (Queue real-time
writer with overwrite) protocol.

In this protocol, the real-time method called enqueue
copies the data item into the empty slot in the queue and
then always checks whether or not the queue is full. In case
it is full, the value of the bit called changing is set to one
to indicate to the non-real-time operation (dequeue) that the
head index is going to be incremented (see line 31 in listing 3).
When the modification is complete, the changing bit is set to
0 and the overwrite bit is set to 1 to indicate that the head
index has been modified.

The non-real-time method called dequeue has to verify,
after reading the corresponding element pointed to by the
head, that it has not been overwritten and that it is not
being changed by the real-time operation (see lines 54-55 in
Listing 3). If any change is detected in the overwrite or
changing bits in the head, the dequeue operation is repeated.

In the case of the shared variable called tail, it is not
necessary to modify it atomically because only the real-time
method can modify it to indicate that a new element has been
added to the queue.

In our protocol, apart from having the shared queue, there
are two shared variables for which we must verify how they
are modified and accessed to determine the correctness of the
algorithm. These shared variables are tail and head.

In the enqueuemethod the shared variables are accessed or
modified in the following lines of the Listing 3:

• Line 24: Read head.
• Line 29: Read tail and copy data item into the queue.
• Line 31: Read tail and modify head.
• Line 35: Modify head.
• Line 37: Read and modify tail.

The dequeue method performs the following accesses and
modifications of the shared variables:
• Line 42: Read tail and head.
• Line 47: Read head.
• Line 50: Read data item from queue.
• Line 54: Modify head.
• Line 56: Read head.
• Line 60: Modify head.
All modifications of the previous shared variables are

made through the atomic operation called CAS (compare
and swap). In addition, the fact of having three pieces of
information in the shared variable head means that we can
modify them atomically in a single operation. This helps us
to guarantee that inconsistent data is not produced during the
modification of these variables.

To demonstrate the correctness and consistency of the
circular queue data we have identified some scenarios where
the operations could have conflicts:
• A possible temporal sequence of operations is illustrated
in Fig. 7. In this case the queue is empty and just initial-
ized. When it comes to obtaining data from an empty
queue through the dequeue method, the writer has to
enqueue a new data item and then it modifies the tail
to indicate that there is at least one new data item. In this
case, the temporal sequence of the operations is carried
out without causing any potential conflict in the shared
data.

FIGURE 7. QrtWo: Temporal sequence of possible operations when the
queue has no elements and has just been initialized.

• Fig. 8 shows a temporal sequence where a queue is full
and a new element is enqueued. In the first invocation
of the dequeuemethod, the data is not available because
the changing bit indicates that thewriter is modifying the
head value.When the writer finishes the modification of
the head value, the changing bit is 0 and this indicates
that the head is accessible by the reader. Next, the reader
needs two iterations to get the data. In the iteration 3
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FIGURE 8. QrtWo: Temporal sequence of possible operations when the
queue is full and a new element is enqueued.

of Fig. 8 it detects an overwrite through the overwrite
bit. The fourth iteration (see iter 4 in Fig. 8) with the
overwrite and changing bits with a value of 0 allows
obtaining the data pointed to by the head index. In this
sequence of operations the race conditions have been
avoided by the overwrite and changing bits and by the
use of atomic operations.

• Fig. 9 illustrates a scenario where the queue is full and
two elements are enqueued. During the enqueue of the
elements the reader tries to obtain the data pointed to
by the head but in the first iteration it is unsuccessful
because the changing bit has a value of 1. When the
real-time writer finishes enqueueing the second element,
the changing bit changes to 0 and that is when the
reader can access the data pointed to by the head. In this
case, the reader has been prevented from accessing an
element that was being modified by the real-time writer,
therefore, no race condition occurs.

When the queue is not full, the real-time writer and the
reader do not have potential race conditions since each
one modifies or accesses a different element of the queue.

FIGURE 9. QrtWo: Temporal sequence of possible operations when the
queue is full and two new elements are enqueued.

Instead, the above three scenarios represent temporal
sequences of operations where without the use of the control
bits (changing and overwrite) and atomic operations race con-
ditions could occur generating corrupted data in the queue.

Another much simpler protocol has been developed where,
if the queue is full and there is new data to enqueue, all
the enqueued elements are discarded. This protocol has been
called QrtWc and it is described in detail below:

This protocol controls the possible conflicts between the
real-time reader and the non-real-time writer using a counter.
When the writer is enqueueing a new element it increases
the counter, setting it to an odd value to indicate that it is
modifying the data, and when it finishes the modification,
it increases the counter again setting it to an even value (see
lines 21 and 25 in Listing 4). In addition, in this queue it is not
necessary to have a free slot and, therefore, to determine if it
is empty we have to check that the following condition is met
(*tail+1) % queue_size == head. In this algorithm the head
is only modified by the non-real-time dequeuemethod, while
the tail is only modified by the real-time writer (enqueue).
This fact causes that when the tail reaches the head, queue is
considered empty and as a consequence, all its elements are
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Listing 4. Pseudocode for the QrtWc (Queue real-time writer with
clearing) protocol.

discarded (see lines 30-31 in Listing 4). Moreover, the non-
real-time reader can detect if there is any change in the
queue data by checking if the counter has been modified,
in which case it retries the reading operation (see line 37 in
Listing 4). Fig. 10 illustrates a scenario where a new data item
is enqueued while the dequeue method is reading a data item
pointed to by the head value and, therefore, the reader has to
repeat the operation until it does not detect a change in the
counter and the counter has an even value.

There is a scenario where the QrtWc algorithm could pro-
vide an inconsistent data item. It is a really unlikely scenario

FIGURE 10. QrtWc: Temporal sequence of possible operations when the
reader tries to dequeue an element and the writer is enqueueing.

to occur but it should be taken into account. If during the
reading of a data item in the dequeue method, the invoker’s
thread is preempted it could happen that the writer might
execute 232 times, overflowing the unsigned integer that is
used for the counter. In this case, when the reader resumes
its execution it would detect that the read data item had
not been modified but in reality it has changed and may be
inconsistent. However, the described scenario is extremely
unlikely. For instance, assuming very frequent writes every
100 microseconds, the reader would have to be preempted for
at least 119 hours to produce the situation described above.
This is totally unrealistic and therefore, it can be said that this
situation is highly unlikely to happen.

The advantage of this protocol is that it is simpler than the
previous one described in this work (QrtWc), however it has
the disadvantage that many elements are discarded when the
queue is full and overwrites occur.

D. QrtR: CIRCULAR QUEUE WITH A REAL-TIME READER
AND A NON-REAL-TIME WRITER
In this case a queue with a real-time reader and a non-
real-time writer has been implemented. The real-time reader
can obtain data without blocking or repeating the operation,
as long as there is data available. The writer will be able to
enqueue data whenever there is no conflict with the real-time
reader, in which case the writer will have to wait until the
resource is no longer being used by the reader.

The queue is circular and when it is full, the writer will
have to wait until the reader dequeues some element to free
a slot. Moreover, our protocol uses an empty entry to avoid
having a variable to count the number of items in the queue.
As illustrated in Fig. 11, our solution uses two indexes, the tail
to store the position of the last enqueued element and the head
to address the element that will be read by the reader.
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FIGURE 11. QrtR: Graphical representation of the all the elements used
in our protocol.

The protocol developed for this type of queue is described
below:

Listing 5. Pseudocode for the QrtR (Queue real-time Reader) protocol.

The method called enqueue performs a check at the
beginning to determine whether the queue is full or not
(see Line 21 in Listing 5). If the queue is full the method will
return a constant indicating it. By using this information an
external active wait could be programmed until the queue has
a free space to enqueue a new element. The method called
dequeue needs to check on line 30 in Listing 5 if the queue has
elements available to dequeue. After this check an element is
dequeued and the head increased.

In this protocol, to avoid conflicts between the writer and
the real-time reader, overwriting data when the queue is full
is disallowed. Therefore, the tail variable is only modified
by the enqueue method and the head variable only by the
dequeue method.

To demonstrate that the data read and written are consistent
we have identified the four possible cases that can occur
through Fig. 12.When the enqueuemethod has available slots
there is no conflict (case 1 in Fig. 12). When there are no slots
for new elements a full queue notification value is immedi-
ately returned (case 2 in Fig. 12). In case 3 of Fig. 12 there is
no conflict because the reader (dequeue method) never has a
new available element until the writer (enqueue method) has
not finished writing the data (see line 19 in Listing 5). Finally,
if the queue is empty the reader will immediately return a
notification value.

FIGURE 12. QrtR: Situations that the enqueue and dequeue methods can
find, depending on the state of the queue.

With this protocol it is guaranteed that the reader has a
bounded response time if there are items available in the
queue.

V. RUNNING REAL-TIME APPLICATIONS ON
ANDROID/LINUX
In a previous study [4] we have presented a mechanism
to run soft real-time and non-real-time applications on an
Android/Linux device. Applications with timing require-
ments are executed directly on an isolated core of the CPU,
and the rest of the applications are run on the other cores.
In this section we summarize the isolation mechanisms used
in our previous study because they have been applied to test
the non-blocking synchronization algorithms developed in
this work.

VOLUME 8, 2020 147629



A. P. Ruiz et al.: Non-Blocking Synchronization Between Real-Time and Non-Real-Time Applications

The isolation mechanisms can be used on any Android/
Linux device with a multi-core processor and Linux kernel
version 2.6 or higher. The applications with timing require-
ments must be executed using one of the real-time policies
offered by the Android/Linux kernel (SCHED_FIFO,
SCHED_RR or SCHED_DEADLINE scheduling policies).
Moreover, modern Linux kernels make most of the kernel
code preemptable, except in the interrupt handlers and
regions protected with spinlocks.

Despite all the features offered by the Android/Linux
kernel, there are some issues that we have to solve if we want
to have some reasonable predictability for applications with
timing requirements:
• Interferences between real-time applications and other
applications that may be running in the system.

• Interferences of interrupt handlers on the tasks of the
real-time application.

• Dynamic frequency changes and automatic shutdown of
cores.

• Limitations of the Bionic library (only in Android) for
real-time applications.

To reduce the interferences between real-time applications
and other applications in the system, we take advantage
of multi-core processors and the mechanisms offered by
Android/Linux kernel to isolate a core. The real-time appli-
cations will be executed directly on the Android/Linux kernel
and the native libraries offered by the system. Figure 13
illustrates the architecture for our solution.

FIGURE 13. Solution proposed to execute real-time applications on
Android/Linux.

Linux provides some mechanisms to isolate CPUs from
the general activity of the scheduler. The most suitable for
our purpose is the one called cpuset. Its aim is to restrict
the number of processors and memory resources that a set of
processes can use. With this mechanism we can move all the
processes of the system to a specific cpuset and at the same
time we can create another cpuset where only the real-time
processes are assigned. Therefore, in the cpuset that is used
for real-time applications, system applications cannot be run.

To avoid the arrival of interrupts to an isolated core, it is
possible to assign certain interrupts to a core of the processor
(or a set of cores). This functionality is called SMP IRQ

affinity and allows us to control which cores handle the
different interrupts that occur in the system. Not all inter-
rupts are masked since there are some interruptions whose
default affinity cannot be changed, for example those pro-
duced between the cores (IPI-interprocessor interrupts).

To achieve a greater degree of predictability in the execu-
tion times, it is necessary to set the frequency of the cores
destined to execute applications with timing requirements.

If we are using Android it is necessary to take into account
that this platform does not use the traditional glibc library, but
uses the Bionic library. This library is developed by Google
under BSD license to isolate Android applications from the
effect of copyleft licenses, in order to allow the creation
of proprietary user-space code in the application ecosystem.
In addition, Bionic is much smaller than the traditional glibc.
However, the Bionic library has some limitations to execute
real-time applications, for example it does not have priority
inheritance protocols for mutexes. To solve these limitations
in a previous work [25] we have confirmed that it is possible
to use the traditional glibc library in Android.

Applying all the mechanisms described above, we deter-
mined that substantial improvements are achieved in the inter-
ference of the OS and the non-real-time tasks on the execution
of a simple task in an isolated core, compared to execut-
ing that same task in a non-isolated core. In our previous
experiments, we found that the maximum jitter observed in a
real-time thread is 250 microseconds executing during hours
compared to the jitter of 1.5 seconds when no CPU isolation
is used. This improvement is sufficient for soft real-time
requirements.

In the next section we analyze the existing mechanisms to
share memory in Linux/Android.

VI. SHARING DATA BETWEEN TASKS
If we want to share data between real-time and non-real-time
tasks, we need to use inter-process communication (IPC)
mechanisms. The most powerful and popular IPC mecha-
nisms are pipes, sockets and shared memory.

It has been shown in another study [26] that sharedmemory
is the fastest form of IPC mechanisms. The shared memory
is a mechanism that provides simultaneous memory access
to multiple processes or threads. This mechanism allows
bidirectional communication between two or more processes.
Therefore, the sharedmemorymechanism is themost suitable
for exchanging data between processes located in different
cores of the same host.

We have different alternatives to share memory between
processes in Linux-based operating systems. There are essen-
tially three, that we proceed to describe below.

A. MEMORY-MAPPED FILES
A mechanism to share data between processes is to use
a file. In order to improve performance, this file can be
mapped in virtual memory. The mapped file can be shared
among various processes and can be accessed through an
arithmetic pointer. We have done some tests measuring the
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performance of this mechanism. After analyzing the results
we have detected that every 4096 bytes written in the mapped
memory segment there is a dump of the data to the file on disk.
Therefore, there is a significantly increment of response time.

B. POSIX SHARED MEMORY
The POSIX interface provides a series of functions that allow
having a shared memory area between different processes.
The shared object can be mapped concurrently in the address
spaces of several processes.

The POSIX functions for shared memory managment are
not available natively on Android, because this operating
system uses the Bionic library instead of the traditional glibc
library. However, it is possible to use these functions if we
use the library glibc in Android as we described in a previous
work [25]. It is also necessary to disable the security layer
called SELinux (Security-Enhanced Linux) which is used by
default in Android. SELinux improves the protection, con-
fines system services, controls access to application data and
system logs and diminishes the effects of malicious software.
From Android 4.3, SELinux is used to further define the
boundaries of the Android application sandbox (the limits of
the environment where the application can run), therefore we
could compromise system security if we disactivate it tem-
porarily. Consequently, we discourage using POSIX shared
memory objects in the Android operating system.

C. TMPFS
The temporary file system, tmpfs, is a file system that keeps
files in virtual memory. It is intended to appear as a mounted
file system, but stored in volatile memory instead of in a
persistent storage device. Since the files that use the tmpfs
are held in the kernel’s caches and not swapped out, access to
them is significantly faster than access to a file on disk.

D. EVALUATION OF DATA SHARING MECHANISMS
We have done some tests in order to measure the response
times to access an integer field shared by two processes using
the three aforementioned mechanisms. In the tests we have
used the Android operating system on a Nexus 5 phone that
has an ARM Snapdragon 800 processor and 2GB of RAM.

The process on which the measurements were taken was
running on an isolated core of the processor. To achieve
the process isolation of the process, the solution described
in section V has been followed. Table 1 shows the average
access values and the worst case times for each of the mech-
anisms used. The worst case response times observed in the
table are caused because the isolation is not perfect and the
operating system can generate some interferences during the
execution of the tests. The average-case response times show
a more precise measurement of the actual overheads incurred
by the synchronization primitives. As indicated by the table 1,
the most suitable mechanisms for real-time environments are
POSIX sharedmemory and tmpfs.Moreover tmpfs is natively
supported in Android therefore our recommendation is to use
this mechanism with this operating system.

TABLE 1. Measurements of access time to an integer using different
shared memory mechanisms. They have been obtained through one
million executions.

VII. EVALUATION
A. TEST ENVIRONMENT
All tests are executed on the Android device Nexus 5. This
smartphone has Android 6.0 with root privileges, a Qual-
comm Snapdragon 800 (Quad-core) processor and 2GB of
RAM. To carry out the tests, the mechanisms explained in
Section V have been used: the cpuset mechanism has been
activated, the affinity of the interrupts has been modified and
the CPU frequency has been set to 2 GHz.

We have conducted several tests that consist of measuring
the time to read or write one integer using the non-blocking
protocols described in this work. The tests intended to mea-
sure real-time and non-real-time read or write times have
always been run on an isolated CPU. Therefore, we have
isolated two cores to execute in parallel the real-time and non-
real-time parts of our protocols. We use the C programming
language with a gcc cross-compiler for the ARM architecture
to run directly on the kernel and using the libc standard
library. In addition, as it is necessary to use shared memory
in all the tests, the tmpfsmechanism has been selected, which
has been shown in Section VI to be the most suitable for our
purpose.

B. TESTING THE SHARED DATA NON-BLOCKING
PROTOCOLS
In this subsectionwe present the results of the tests carried out
to measure the time necessary to read or write a 32-bit integer
using the protocols for simple data described in this article
(see Subsections IV-A and IV-B). In these tests the average
and the maximum response times for the real-time part have
been measured, as well as for the non-real-time part. The
latter has been measured for different number of iterations,
since this part can be interfered by the real-time part.

Table 2 illustrates the obtainedmeasurements for the SDrtR
protocol described in Subsection IV-A. Similarly, Table 3
shows measurements for the SDrtW protocol.
In the tests carried out the reader and the writer have been

run periodically every 100 microseconds and show that the
jitter in real-time part, measured as the difference between the
maximum and the average response times, is not increased
by our protocol. The worst response times are due to the
interferences produced by non-maskable interrupts and some
kernel threads.

In the case of the non-real-time part, the response times are
variable depending on the number of repetitions required to
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TABLE 2. Measurements of read and write times for a 32-bit integer
using the SDrtR protocol described in Subsection IV-A.

TABLE 3. Measurements of read and write times for a 32-bit integer
using the SDrtW protocol described in Subsection IV-B.

successfully complete the operation. In both Table 2 and 3,
the tests where repetitions are considered have been obtained
for executions of 108 iterations. Therefore, we can determine
that repetitions occur infrequently and the impact over time
is not very significant. In addition, both the average and
worst response times are small. However, in Table 2 the
non-real-time writer has a significantly lower jitter, this is
because the atomic operations are the most time consuming,
specifically in the hardware used it is about 0.1 microsec-
onds each. Therefore, as the real-time reader has two atomic
operations and the writer only one in the SDrtR algorithm,
this causes that the longer the execution time, the greater the
probability that non-maskable interruptions or kernel thread
executions will occur in the system. The isolation mecha-
nisms used in these tests are not perfect and we already
measured in a previous work [4] that interferences of up to
around 250 microseconds could occur, for this reason the
worst case times are significantly greater than the average
time. Our non-blocking algorithms do not cause those worst
case response times; the average-case response times are a
more precise measurement of their actual overheads.

Table 2 shows performances with up to 3 repetitions in the
non-real-time writer, and Table 3 shows up to 2 repetitions in
the non-real-time reader. In both cases they are the maximum
number of repetitions that we have observed in our tests.

C. TESTING CIRCULAR QUEUES WITH NON-BLOCKING
PROTOCOLS
We have measured the times to read and write data using
the three protocols with the circular queues described in
Subsections IV-C and IV-D. Table 4 and 5 show the read and
write times for a queue of 32-bit integers using the protocols
described in Subsection IV-C. In the same way, Table 6 shows
the same measurements for the QrtR protocol described in
Subsection IV-D.

TABLE 4. Measurements of read and write times for a queue of 32-bit
integer using the QrtWo protocol described in Subsection IV-C.

TABLE 5. Measurements of read and write times for a queue of 32-bit
integer using the QrtWc protocol described in Subsection IV-C.

The worst case response times in Tables 4 and 5 are lower
the more repetitions there are because as the number of obser-
vations decreases the probability of suffering an impact from
non-masking interruptions or kernel threads is significantly
less. Although the previous statement may seem contradic-
tory, the number of observations with repetitions in the non-
real-time parts is low, therefore it is highly unlikely that
interferences caused by the system will occur in these time
intervals. These interferences as we have already commented
in sectionV take place because the isolationmechanisms used
in Android/Linux cannot avoid all the interrupts and kernel
threads.
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TABLE 6. Measurements of read and write times for a 32-bit integer
using the protocol called QrtR described in the Subsection IV-D.

In the previous tables we can notice how the worst-case for
non-real-time and real-time operations is large compared to
the average times. In these protocols, theworst response times
are due to interferences caused by kernel threads that run in
the same cores, in fact the impact caused by these interfer-
ences is more significant than the repetition of the operations
caused by the real time part. This occurs in this way because
the QrtR protocol runs with a small number of instructions
that consumes little CPU time compared to a non-maskable
interrupt. In any case, we can say that real-time operations
obtain response times within the expected jitter values, that
are usable in most control applications with deadlines in the
millisecond range.

D. SUMMARY OF THE EVALUATION
We have evaluated the non-blocking algorithms developed
on a device that uses Android. The isolation mechanisms
described in SectionV have been used in the device to have an
environment where real-time and non-real-time applications
can coexist. In this way it has been possible to evaluate the
response times for the real-time and non-real-time part of our
non-blocking algorithms.

In all the tests carried out, we have observed that the
average times are significantly low, since the algorithms have
a small number of instructions. However, the worst case
response times in tests with many iterations have been sig-
nificantly longer than the average times. This is explained by
the fact that the isolationmechanisms used are not perfect and
some interference occurs in the system that affects the iso-
lated core of the processor. Despite this, the real-time part of
our algorithms has a finite number of steps, therefore we can
guarantee that without external interferences, the response
times are always bounded.

VIII. CONCLUSION
In this article, we consider mixed systems where real-time
and non-real-time applications coexist. Five non-blocking
protocols that cover basic cases to share data between
the real-time and non-real-time parts have been developed.
In these protocols, real-time applications have been priori-
tized over non-real-time applications, allow real-time appli-
cations to have small bounded execution times, even at the
expense ofmaking response times larger for the non-real-time
counterparts. The real-time part never has to repeat oper-
ations, if there is a conflict, while the non-real-time part
may have to repeat the operation until there is no potential

inconsistency in the data. We have tested these algorithms
and evaluated their performance in an implementation over an
Android/Linux operating system where two cores were used
in isolation to execute the real-time tasks. Our experiments
have shown that response times are suitable for soft real-time
applications that need to share data with non-real-time appli-
cations. Furthermore, all the protocols developed in this work
could be used in hard real-time applications if the operating
system where they run is designed to support this kind of
applications.

We plan to extend this work in the future by adding new
protocols over different data structures, as well as, using all
of them in real environments to evaluate the ability for devel-
opers with no experience in non-blocking programming to
adapt or implement solutions with non-blocking approaches.
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