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Abstract

The purpose of this study is to gain insight into the role of BMP signaling in the diversification of the embryonic limb
mesodermal progenitors destined to form cartilage, joints, and tendons. Given the importance of extracellular BMP
modulators in in vivo systems, we performed a systematic search of those expressed in the developing autopod during the
formation of the digits. Here, we monitored the expression of extracellular BMP modulators including: Noggin, Chordin,
Chordin-like 1, Chordin-like 2, Twisted gastrulation, Dan, BMPER, Sost, Sostdc1, Follistatin, Follistatin-like 1, Follistatin-like 5 and
Tolloid. These factors show differential expression domains in cartilage, joints and tendons. Furthermore, they are induced in
specific temporal patterns during the formation of an ectopic extra digit, preceding the appearance of changes that are
identifiable by conventional histology. The analysis of gene regulation, cell proliferation and cell death that are induced by
these factors in high density cultures of digit progenitors provides evidence of functional specialization in the control of
mesodermal differentiation but not in cell proliferation or apoptosis. We further show that the expression of these factors is
differentially controlled by the distinct signaling pathways acting in the developing limb at the stages covered by this study.
In addition, our results provide evidence suggesting that TWISTED GASTRULATION cooperates with CHORDINS, BMPER, and
NOGGIN in the establishment of tendons or cartilage in a fashion that is dependent on the presence or absence of TOLLOID.
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Introduction

In living organisms chondrogenesis occurs in the context of

complex morphogenetic processes associated with the formation of

other connective tissues [1]. The formation of digits in the

developing vertebrate limb illustrates this phenomenon. In the

embryonic limb autopod, mesodermal cells that share a unique

origin from the lateral mesoderm, form phalangeal cartilages and

the associated perichondrium, interphalangeal joints and tendons.

Hence, in terms of tissue differentiation, the formation of a digit,

includes the following: formation of and subsequent differentiation

of prechondrogenic condensations; differentiation of the perichon-

drium; the formation and subsequent differentiation of tendon

blastemas, including the establishment of the entheses (i.e., the

zone where the tendon attaches to the bone primordia); and the

formation of joints (hyaline articular cartilage, synovium, and

fibrous capsule). Different BMP genes exhibit regulated expression

patterns in the undifferentiated and interdigital mesoderm, joints

and tendon blastemas [2,3]. There is compelling evidence that

BMP signaling plays a key role in each of the aforementioned

morphogenetic events [4–11]. However, the mechanism by which

BMPs function to establish divergent cell fates during develop-

mental processes such as chondrogenesis, joint differentiation or

tenogenesis while using the same population of cell progenitors

remains to be clarified [5]. In avian limbs, the overexpression of

BMPs results in a dramatic increase in chondrogenesis [12–14],

and loss-of-function experiments cause severe skeletal truncations

[14]. In mammals, the alterations observed in naturally occurring

or experimentally induced genetic mutations of members of the

BMP signaling pathway, confirmed its role in skeletogenesis

[4,5,7,15–20]. However, digit phenotypes are not very informa-

tive, which is most likely due to the functional redundancy of these

molecules [16,21].

In the canonical signaling pathway, active BMPs are released in

the extracellular space and subsequently bind to transmembrane

type I and type II serine-threonine kinase receptors, triggering an

intracellular cascade that results in the phosphorylation and

nuclear translocation of Smad 1/5/8 proteins, which in conjunc-

tion with Smad 4 and other transcription factors, regulate target

gene expression. In addition, BMPs activate non-Smad pathways

that involve signaling via mitogen-activated protein kinases

(MAPK; see [22]). Taking into account that the signaling cascade

activated by the different BMPs is constant, it is believed that the

differences in the response of BMP target cells may reside largely

on the intensity of the signal. Hence, gradients of BMP signaling

play a key role during vertebrate development to establish the
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dorso-ventral axis of the gastrula, and most likely, function in other

embryonic models [23,24]. The morphogenetic gradient relies

largely on the functional interactions between BMPs and secreted

BMP-binding molecules, often called ‘‘extracellular BMP antag-

onists’’ (see: [25,26]).

Several BMP antagonists are expressed at advanced stages of

limb skeletogenesis [27–29]. In the course of digit development,

Noggin [14], Chordin [30], Chordin-like 1 [31,32], BMPER [33],

Sost [34], Sostdc1 [35,36], Dan [37,38], Follistatin [39,40], and

Follistatin-like 1 [41] have been detected; however, except for

Noggin [4] and Follistatin-like 1 [42], mice that are mutant for

these factors lack a digit phenotype. This lack of a phenotype is

indicative of intense functional redundancy. Therefore, an

appropriate understanding of the role of BMP antagonists in digit

morphogenesis requires a comprehensive analysis of the BMP

modulators that are expressed in the course of digit formation. The

goal of this study was to analyze the involvement of extracellular

modulators of BMP signaling during the early differentiation of the

structural components of the embryonic digits. In an initial

systematic gene expression study we identified 13 different BMP

antagonists with dynamic expression patterns associated with the

differentiation of the phalanges, interphalangeal joints and

tendons. The role of these factors and their regulation by major

signaling pathways that are involved in limb morphogenesis was

next explored through gain-off-function experiments in high-

density cultures of digit mesodermal progenitors. Our findings

provide new insights that clarify the role of BMPs in the divergent

differentiation of the connective tissue progenitors into cartilage,

tendon, and joint tissues, which is a process of major importance in

regenerative medicine of the locomotor apparatus.

Materials and Methods

In this work, we employed Rhode Island chicken embryos from

day 4,5 to day 8 of incubation (id) equivalent to stages 24 to

32 HH. This study was approved by the Cantabria University

Institutional Laboratory Animal Care and Use Committee and

carried out in accordance with the Declaration of Helsinki and the

European Communities Council Directive (86/609/EEC).

In situ Hybridization
In situ hybridization was performed in 100 mm vibratome

sectioned specimens. Samples (a minimum of 5 sectioned limbs of

each stage) were treated with 10 mg/ml of proteinase K for 20

minutes at 20uC. Hybridization with digoxigenin labeled antisense

RNA probes was performed at 68uC. Alkaline phosphatase-

conjugated anti-digoxigenin antibody (dilution 1:2000) was used

(Roche). Reactions were developed with BM Purple AP Substrate

precipitating (Roche). No variability among the samples was

appreciated in the expression pattern of the analyzed genes was

constant in all the samples analyzed.

The probes for Noggin, Chordin (Chd), Chordin-like 1 (Chdl-1;

ventroptin), Chordin-like 2 (Chdl-2); Twisted gastrulation (Tsg; Twsg 1);

DAN (differential screening-selected gene aberrative in neuroblastoma);

BMPER (BMP binding endothelial regulator; crossveinless 2), Sost

(Sclerostin), Sostdc1 (Sclerostin domain containing-1; Uterine sensitization

associated gene-1; Wise; Ectoidin), Follistatin (Fst), Follistatin-like 1 (Fstl-1;

Flick), Follistatin-like 5 (Fstl-5), Tolloid (Tll1; Colloid; Tolloid-like 1)

and Alk1 were obtained by PCR using the following primers: for

Noggin, 59- aaggatggatcattcccagt-39 and 59-ctagcaggagcacttgcact-39;

for Chd, 59-acctgctcttctccatcagc-39 and 59- ccatagtgatgttggcatgg -

39; for Chdl-1, 59-ggaattccgatgagaagaaagtggagatcg-39, and 59-

gctctagagcagattcaccgtgggagtat -39; for Chdl-2, 59- ggcaccactgtgaa-

gatcg -39 and 59- tgtagttctgcgcttcttgc -39; for Tsg, 59- gtcag-

caagtgcctcatcc -39 y 59- cttgcactgatgtattgacatgc -39; for Dan, 59-

tgcgagtccaagtccatcc -39 and 59- ggctcttctacctcctgttgg -39; for

BMPER, 59- aagcgagatgacctgattgg -39 and 59- cgctgaggacatag-

gactgg -39; for Sost, 59- ctctgtctgcgtcctcatcc -39 and 59- taccgagtg-

tagcgcttgc -39; for Sostdc1, 59- ctccgccattcacttctacg -39 and 59-

tgtgctgcctggtgtatcg -39; for Fst, 59- ccgtgtgtggcttagatgg -39 and 59-

gagttgcaagatccagagtgc -39; for Fstl-1, 59- gaatgtgcagtgactgagaagg -

39 and 59- tgagcagcttgttggtctcc -39; for Fstl-5, 59- tcagccactcataa-

gattacgc -39 and 59- tcattggtgtccacaagtcc -39; for Tll1, 59-

gaagatggagcctggagagg -39 and 59- acggaactcaatccacatcc -39; and

for Alk1, 59- agcgactacctggacattgg -39 and 59-ccttcttcatgtcctcgaagc

-39. Chicken probes for Bmpr1a and Bmpr1b were kindly provided

by Lee Niswander and for Alk2 by Joan Massague.

The above mentioned BMP antagonists have been identified in

the genome of most the analyzed vertebrates (Homo sapiens, Pan

troglodytes, Macaca mulatta, Mus musculus, Rattus novergicus, Gallus gallus,

Xenopus laevis) except for the zebrafish (Danio rerio) where there is

only a Chordin-like [43], which is thought to represent Chordin-like 1

and Chordin-like 2 of mammals.

Phospho Smad 1/5/8 and p-c-Jun Immunolabeling
Limb buds between 6 and 8 days of incubation were fixed in

4% PFA O/N at 4uC, washed in PBS and sectioned with a

vibratome. Sections were incubated O/N at 4uC with the primary

antibody. Specimens were next washed in PBS, incubated O/N in

the secondary antibody washed for 2 h in TBS, dehydrated,

cleared and examined with the confocal microscope (LEICA LSM

510). Polyclonal antibodies against phospho-SMAD1/SMAD5/

SMAD8 (Ser463/465; Cell Signaling) and p-c-Jun (Sc-822, Santa

Cruz Biotechnology) were employed. For double labeling purpose,

we employed actin staining using 1% Phalloidin-TRITC (Sigma).

Experimental Induction of Ectopic Digits
In vivo analysis of gene regulation preceding the formation of an

ectopic digit was performed in samples of interdigital tissue 10, 14,

and 20 hr after implantation at 5.5 id of heparin beads (Sigma)

incubated for 1 hr in 2 mgr/ml TGFb1 (R&D Systems). This

treatment leads to the formation of ectopic digits detectable by

alcian blue staining 20 hr or later after bead implantation [44].

The contralateral left limb or limbs treated with beads incubated

in PBS, were employed as controls.

Micromass Mesodermal Cultures
Progenitor mesodermal cells of the digit tissues were obtained

from the progress zone region located under the apical ectodermal

ridge of chick leg buds of embryos at 4.5 id (25 HH). Cells were

dissociated and suspended in medium DMEM (Dulbecco’s

modified Eagle’s medium) with 10% fetal bovine serum, 100

units/ml penicillin and 100 mg/ml streptomycin. Cultures were

made by pipetting 10-ml drops of cell suspension at a density of

2.06107 cells/ml into each well of a 24-well plate. The cells were

left to attach for 2 hr and then 200 ml serum-free medium was

added. In gene overexpression experiments (see below) cultures

were performed with DMEM medium containing 10% fetal

bovine serum and 50 mgr/ml of ascorbic acid. We employed these

cultures for analyzing the effects of adding BMP modulators on

gene regulation, cell proliferation and cell death and to study the

regulation of BMP modulators by major signaling pathways acting

in the autopod.

The effect of BMP modulators and BMP2 were analyzed by

adding recombinant protein to the medium in 24 hr cultures.

Treatments were maintained for another 24 hr period. After

testing different protein concentrations we selected the following:

human recombinant BMP2 200 ngr/ml (Peprotech); human

BMP Antagonists and Connective Tissues
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recombinant NOGGIN, 200 ngr/ml (R&D Systems); human

recombinant CHDL-1, 2400 ngr/ml (R&D Systems); mouse

recombinant CHDL-2 1200 ngr/ml (R & D Systems); human

recombinant TSG 1000 ngr/ml (R & D Systems); mouse

recombinant DAN 3000 ngr/ml (R & D Systems); Follistatin

800 ngr/ml (Peprotech). After these treatments we analyzed by Q-

PCR changes in the expression of cartilage markers (Sox9, type 2

Collagen; and Bmpr1b), fibrogenic markers (Scleraxis, type 1 Collagen

and Tgfb2), and joint markers (Activinba, Gdf5, and Jaws). The

selected genes are well known markers of the corresponding

morpho-developmental processes. Only Jaws has not been used

very often as joint marker, but it has been shown that it is essential

for the formation of interphalangeal joints [45].

To study the effect of autopodial signaling pathways in the

expression of BMP modulators we performed 6 hr treatments to

48 hr Micromass cultures. We employed: FGF2 66 ngr/ml

(Peprotech), ACTIVIN A 200 ngr/ml (Peprotech), all-trans-

retinoic acid (RA) 50 ngr/ml (Sigma); BMP2, 200 ngr/ml

(Peprotech); TGFbeta2, 10 ngr/ml (R&D Systems); and WNT5a

100 ngr/ml (R & D Systems).

Cell Transfections
Gain-of-function experiments for Tsg, and BMPER were

performed by overexpression constructs containing the mouse

coding sequences. We employed ‘‘Addgene plasmid 25778’’ for

Tsg and ‘‘Addgene plasmid 25776’’ for BMPER (both made by

Dr Edward De Robertis). For Fstl-1 overexpression we used a

construct based on the coding sequence of the human gene

cloned into the pCMV6-XL5 vector (Origene, MD, USA). For

Dan overexpression we used a construct based on the coding

sequence of the mouse gene cloned into the pCMV6-ENTRY

vector (Origene, MD, USA) Control samples were transfected

with empty plasmids. Limb mesodermal cells were electropo-

rated employing the Multiporator System (Eppendorf) and

cultured in high-density conditions as indicated above. After

48 hr of cultured the level of gene overexpression and the

expression of cartilage, joint, and tendon markers were

evaluated by Q-PCR.

Flow Cytometry
Cell proliferation and cell death was deduced from measure-

ment of DNA content by flow cytometry in control Micro-

masses and in Micromasses treated with CHDL-1, TSG, or

both CHDL-1 and TSG. For this purpose cultures were

dissociated to single-cell level by treatment with Trypsin EDTA

(Lonza). 1 million cells (5 Micromasses) were used in each test.

For propidium iodide (PI) staining the cells were washed twice

in PBS and centrifuged at 405 g, 5 min at 4uC. The samples

were then incubated overnight at 4uC with 0.1% sodium citrate,

0.01% TritonX-100 and 0.1 mg/ml PI. Cell suspension was

subjected to flow cytometry analysis in a Becton Dickinson

FacsCanto cytometer and analyzed with Cell Quest software.

This technique allows the titration of apoptotic (hipodiploid) and

proliferating (hiperdiploid) cells according to their DNA content

deduced from PI staining [46].

Real time Quantitative PCR (Q-PCR) for Gene Expression
Analysis

In each experiment total RNA was extracted and cleaned from

specimens using the RNeasy Mini Kit (Qiagen). RNA samples

were quantified using a spectrophotometer (Nanodrop Technol-

ogies ND-1000). First-strand cDNA was synthesized by RT-PCR

using random hexamers and M-MulV reverse transcriptase

(Fermentas). The cDNA concentration was measured in a

spectrophotometer (Nanodrop Technologies ND-1000) and ad-

justed to 0.5 mg/ml. Q-PCR was performed using the Mx3005P

system (Agilent) with automation attachment. In this work, we

have used SYBRGreen (Agilent) based Q-PCR. Gapdh had no

significant variation in expression across the sample set and

therefore was chosen as the normalizer in our experiments. Mean

values for fold changes were calculated for each gene. Each value

in this work represents the mean 6 SEM of at least three

independent samples obtained under the same conditions.

Samples consisted of 4 Micromass cultures or 15 interdigital

spaces. Data were analyzed using one-way analysis of variance

followed by Bonferroni tests for post-hoc comparisons or Student’s

t test, for gene expression levels in overexpression experiments.

Statistical significance was set at p,0.05. All the analyses were

done using SPSS for Windows version 18.0. Primers for Q-PCR

are included as Supplementary Table 1.

Results

Extracellular BMP Modulators
In an initial PCR expression screening, we identified 13

different extracelular modulators of BMP signaling that were

expressed at high levels in mesodermal tissues of the developing

chick autopod at day 6 of incubation, including: Noggin, Chordin

(Chd), Chordin-like 1 (Chdl-1; ventroptin), Chordin-like 2 (Chdl-2); Twisted

gastrulation (Tsg; Twsg 1); DAN (differential screening-selected gene

aberrative in neuroblastoma); BMPER (BMP binding endothelial regulator;

Crossveinless 2), Sost (Sclerostin), Sostdc1 (Sclerostin domain containing-1;

Uterine sensitization associated gene-1; Wise; Ectoidin), Follistatin (Fst),

Follistatin-like 1 (Fstl-1; Flick), Follistatin-like 5 (Fstl-5), and Tolloid

(Tll1;Colloid; Tolloid-like 1). Although Tolloid is not a BMP

antagonist but rather is a protease, it was included here because

it is responsible for the release of the BMP ligands that are

bounded to BMP antagonists into the target tissues [26]. Although

the presence of some of these factors was known from previous

Table 1. Regulation of BMP modulators.

10 h 14 h 20 h

Noggin 1,0060,1 1,9360,2** 3,9860,9*

Chd 1,3660,3 1,1160,1 1,2360,4

Chdl-1 3,6461,0* 3,8360,7* 8,0961,7*

Chdl-2 1,9060,2* 2,3360,4* 2,9461,0**

Tsg 1,2760,2 1,2760,4 1,2460,1

Dan 1,0160,0 1,1660,0 3,4060,9*

Bmper 1,3060,1 1,8560,3* 1,8560,2*

Sost 1,0260,2 0,9460,0 1,0060,0

Sostdc1 0,9260,1 1,1360,1 1,1260,0

Follistatin 9,0961,3*** 5,1460,4*** 8,1661,7*

Fstl-1 0,8660,0 1,1560,0 1,1260,0

Fstl-5 0,4760,1* 1,3860,2 0,9960,1

Tll1 1,3360,1 2,5560,6* 2,2360,1**

Regulation of BMP modulators at 10, 14, and 20 hr after interdigital
implantation of a bead bearing TGF-b1. In all experiments an ectopic digit was
present in at least 3 out of 4 limbs allowed to develop for 4 days.
*p,0.05;
**p,0.01;
***p,0.001.
doi:10.1371/journal.pone.0060423.t001
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studies, we next performed a systematic study of all of them using

in situ hybridization to demonstrate a complete picture of their

spatial distribution within the developing autopod (Fig. 1). We

excluded the members of the CCN secreted factors and the

members of the HtrA serine proteases from the study because they

have been analyzed in detail elsewhere [44,47].

Noggin and Chdl-1, are prominently expressed in the central

region of the differentiating phalanges, excluding the peripheral

subperichondrial region and the zones of joint formation (Fig. 1 A

and C). Noggin is also expressed in the proximal region of the

tendons at advanced stages of differentiation (Fig. 2A).

Chdl-2, is expressed in the hyaline articular cartilage of mouse

embryonic and in human adult osteoarthritic joints [29]. Here we

found a wide and well-defined expression domain for this BMP

antagonist in the digit blastemas that precede the identification of

interphalangeal joints (Fig. 1D). The expression of Chdl-2 is also

noted in the diaphysis of metatarsals preceding the ossification of

hypertrophic cartilage forming a collar under the perichondrium

(Fig. 2E).

At the beginning of digit formation, Chd is expressed at low

levels in the digit rays (Fig. 1B), with a slight intensification in the

zones of joint formation. Small Chd expression domains are also

prominent in the zone of the tendons located close to the foot

muscles (Fig. 2C). Chd transcripts are also present in the diaphysis

of the digit cartilages preceding the ossification of hypertrophic

cartilage forming a collar under the perichondrium (Fig. 2C).

Tsg is expressed in zones of cartilage and tendon differentiation

(Fig. 1 E and I). In the chondrogenic regions Tsg forms a tenuous

expression domain in the cartilage subjacent to the perichondrium

of the digit rays. This peripheral digit expression domain is

intensified in the digit tip marking the zone of recruitment of

cartilage progenitors, the previously termed, ‘‘digit crescent’’ [48],

Figure 1. In situ hybridizations in longitudinal (A–G, M–P) and transverse (H–L; Q–T) vibratome sections of the autopod showing
the expression of Noggin (A), Chd (B), Chdl-1 (C), Chdl-2 (D), Tsg (E and I), Dan (F and J), BMPER (G and K), Sost (H), Sostdc1 (L), Tll1 (M
and Q), Fst (N and R), Fstl-1 (O and S), and Fstl-5 (P and T). All the specimens are at day 6,5 of incubation (stage 30HH) except H, which is at 7,5
days of incubation (stage 32HH).
doi:10.1371/journal.pone.0060423.g001

BMP Antagonists and Connective Tissues
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and also in the developing joints. Additionally, its expression is

remarkable in the subectodermal mesenchyme with zones of high

intensity marking the tendon blastemas.

Dan forms a continuous expression domain in the mesenchyme

subjacent to the dorsal and ventral ectoderm with zones of

increased expression marking the tendon blastemas (Fig. 1 F and

J). BMPER is expressed in small but intense domains located in the

most proximal zone of the interdigits and along the lateral margins

of the extensor and flexor tendons (Fig. 1, G and K). It is also

strongly expressed in the lateral margins of the autopod at the

borderline with the zeugopod. BMPER is also expressed in the

diaphysis preceding the ossification of hypertrophic cartilage

forming a collar under the perichondrium (Fig. 2D).

Sost expression has been studied in early stages of limb

development [34]. Here we show that at advanced stages of digit

development, Sost is expressed in the maturing tendons (Fig. 1H)

and in the subperichondral region of the diaphysis, which is

undergoing hypertrophic differentiation (Fig. 2F).

Sostdc1 is expressed mainly in the ectoderm with the highest

transcript levels in the interdigit region (Fig. 1 L). Transcripts are

also observed in the mesenchymal peridigital tissue in a fashion

resembling that of BMPER (Fig. 1L).

Tll1 is expressed in the contour of the immature phalanges,

including the early developing joints and the tip of the digit (Fig. 1,

M and Q). In this distal digit region, the transcripts form a cap

encompassing the condensing mesenchyme. Tll1 transcripts are

also present in the mesoderm subjacent to the dorsal and ventral

ectoderm of the interdigital and digital regions excluding the zone

of tendon formation (Fig. 1Q). However, in the proximal regions

where tendon maturation is advanced, including the zone of

myotendinous junction, tll1 transcripts are also detected in the

tendon tissue (Fig. 2G).

Fst shows restricted expression domains in the tendon blastemas

(Fig. 1 N and R). Fstl-1 is highly expressed in the interdigital

mesoderm with additional domains in the developing joints (Fig. 1

O and S), while Fstl-5, is expressed at low levels in the core of the

differentiating digit cartilages (Fig. 1 P and T). However, in

proximal regions where tendon maturations is advanced, Fstl-5

transcripts are also detected in the tendon tissue and in the

subperichondral region of the diaphysis undergoing hypertrophic

differentiation (Fig. 2B).

Figure 2. In situ hybridization on transverse sections of the proximal segment of the autopod of embryos after 7 and 7,5 days of
incubation, to show the expression domains of BMP modulators in the zone of hypertrophic differentiation of the metatarsal and
in the maturing tendons at the zone close to the myotendinous junction. Noggin (A), Fstl- 5 (B), Chd (C), BMPER (D), Chdl-2 (E), Sost (F), Tll1
(G), and Tsg (H). Note that at this stage of differentiation Tll1 transcripts are present in the tendon blastemas (arrow heads in G). Note also that the
expression domains in the diaphysis of the metatarsal are specifically located in the inner cellular layer of the perichondrium in the interface with the
hypertrophic cartilage.
doi:10.1371/journal.pone.0060423.g002

BMP Antagonists and Connective Tissues
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BMP Signaling Domains in the Developing Digits
The zones of active BMP signaling were monitored by BMP

effectors immunolabeling (Fig. 3). Active BMP signaling

domains that were marked by phospho-smad 1/5/8 are present

in the interdigital mesenchyme and in the core of the

developing cartilages, with greater intensity in the tip of the

growing digit (Fig. 3 A and D). The perichondrium shows poor

labeling and the interface between the cartilage and the

perichondrium is relatively devoid of signaling (Fig. 3 B). In

the course of digit differentiation, the labeling in the cartilage is

reduced while it increases in the outer layer of the perichon-

drium (Fig. 3C). The tendon formation zones are almost

negative, but are encompassed at both sides by zones of intense

signal in a pattern closely paralleling the expression of BMPER,

including stronger expression in the dorsal than in the ventral

regions of the autopod (compare Fig. 1K and Fig. 3A).

However, a weak positive stain is observed in the tendons at

advanced maturation stages and in the zone of myotendinous

junction (Fig. 3C). As expected from previous studies [22], the

zones of joint formation appear as bands of low phospho-Smad

1/5/8 positivity (Fig. 3D), but exhibit intense labeling by

phospho-c-Jun, which is activated by the JNK MAP kinase

(Fig. 3E).

As shown in Figure 3 (F–M), all the structures of the autopod

exhibited transcripts of at least one of the four type 1 receptors of

this signaling pathway, including Bmpr1b (Alk6), Bmpr1a (Alk3), Alk2

(ACVR1), and Alk1 (ACVRL1; see [49]), supporting the function of

BMP antagonists in the establishment of the zones of active

signaling.

The Expression Sequence of Extracellular Bmp
Modulators during the Formation of an Ectopic Digit
(Table 1)

To gain insight into the significance of BMP modulators during

digit morphogenesis we monitored the temporal sequence of

activation of BMP antagonist genes when an ectopic digit is

induced in the interdigital regions by implantation of a Tgf b bead

[32]. An analysis of expression was performed using Q-PCR at 10,

14 and 20 hr after interdigital implantation of a Tgfb-bead

(Table 1). We selected these time points because 10 hr marks the

stage at which genes encoding for the cartilage matrix become

upregulated, and 20 hr corresponds with the period when the

extra digit condensation become identifiable by specific histolog-

ical dyes (i.e., Alcian Blue; [44]). At this period the connective

tissues located around the ectopic cartilage; including the

perichondrium and the pretendinous aggregates, initiates differ-

entiation. Chdl-1, Chdl-2 and Fst genes were upregulated at 10 hr

after bead implantation, coincident with the upregulation of the

most precocious extracellular matrix markers of cartilage differ-

entiation [44]. By14 hr after bead implantation Noggin, BMPER,

and Tll1 were up-regulated. Dan was the last of the examined BMP

antagonists to be up-regulated during the formation of the ectopic

digit (20 hr after bead implantation), consistent with a function in

the differentiation of tendons. In the period covered by our study,

Tsg appeared moderately upregulated from 10 hr, but without

reaching levels of statistical significance. Fstl-5 was transiently

downregulated at 10 hr after bead implantation. There were no

changes in the expression of Fstl-1, Sost and Sostdc1. Transcripts of

those three genes are present in the interdigital mesoderm from

the beginning of the experiment, and the formation of an ectopic

digit may not generate detectable changes in their levels of

expression.

Gene Regulation after Administration of Extracellular
BMP Modulators

The structure and functional properties of the BMP modulators

are not uniform. Antagonism of BMP signaling may be variable

due to differential affinity for distinct ligands. Hence, to gain

insight about their role in the developing digits, we monitored the

effects on the regulation of most of BMP modulators by the

addition of recombinant proteins to Micromass cultures of digit

progenitors. In some cases, protein-addition based experiments

were complemented or substituted by overexpression approaches,

employing vectors containing the full gene coding region. Several

preliminary experiments were performed to adjust the dose of

BMP regulators to obtain clear and reproducible effects on the

genes explored. Tables 2 to 4 summarize the changes in the

expression of the cartilage (Table 2), joint (Table 3), and tendon

(Table 4) markers selected in this study. The effects of BMP2 on

the expression of the mentioned markers were also analyzed to

allow a clear distinction between effects that were dependent or

independent of the inhibition of BMP signaling (data are shown at

the bottom of each table). The following aspects can be

emphasized from results:

1) The overexpression of the mouse Tsg gene induced down-

regulation of chondrogenic markers (Sox9, Collagen2 a1,

Bmpr1b), Gdf5 and Jaws. In addition, the tenogenic master

gene Tgfb2, which was not regulated by BMP2, was strongly

downregulated following Tsg overexpression.

2) At the highest doses tested (up to 1000 ng/ml) rhTSG, was

much less effective than gene overexpression experiments.

Treatments caused only a mild downregulation of Tgfb2 and

Gdf5. However, the gene regulation that was induced by

CHDL-1, CHDL-2, or NOGGIN was strongly potentiated

when they were administered in combination with rhTSG

(1000 ng/ml). This effect supports the functional association

between TSG and CHD that has been observed in other

systems [50] and supports also the interaction of TSG with

NOGGIN, which to our knowledge, has not been reported

in previous studies. This interplay potentiated the BMP

antagonistic effect of CHDL-1 and NOGGIN, and also

caused modifications in the regulation of genes not induced

by BMP2 (see below), and even regulations not observed in

separate treatments of TSG and CHDL-1, or NOGGIN (i.e.

the regulation of Activin ba in combined treatments with

CHDL1-TSG, Table 3; and see below for interactions

NOGGIN-TSG).

3) NOGGIN, was the most intense antagonist of gene

regulation induced by BMPs in Micromass cultures (see

tables 2–4); however, treatments also induced the upregula-

tion of Scleraxis, type 1 Collagen, and Tgfb2 which are not

regulated by BMP2. As mentioned above, the effects of

NOGGIN were intensified when administered in combina-

tion with TSG. Intensification was appreciated even for the

effects like the up-regulation of Scleraxis, type 1 Collagen, or

Tgfb2 which are not induced by BMP2. In addition,

NOGGIN in combination with TSG down-regulate the

expression of Jaws. A detailed analysis of the molecular bases

for the interplay between TSG and NOGGIN is out of the

scope of this study. However, considering the roles of TSG

in other systems (see discussion for references), a tentative

explanation is that the addition of TSG may protect

sequestering and/or degradation of NOGGIN in the

extracellular matrix.
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4) CHDL-1, was ineffective at doses ranging between 400 and

2500 ng/ml; however, as previously mentioned, CHDL-1 in

combination with rhTSG exhibited BMP antagonism at

remarkable levels.

5) CHDL-2 administered alone (up to 1200 ng/ml), caused a

moderate upregulation of Scleraxis, Tgfb2 and Gdf5 and had

no effect on most chondrogenic markers; however, when

CHDL-2 was administered in combination with rhTSG,

Sox9, type 2 Collagen and Bmpr1b were downregulated.

6) Previous analysis in different systems has provided contro-

versial information concerning the targets of DAN

[38,51,52]. It has been proposed that the production of

bioactive DAN protein is cell-specific [52]. In our analysis

the BMP targets analyzed here were not significantly

Figure 3. Immunolabeling for p-Smad 1/5/8 (green, A–D) and p-c-Jun (green, E), to show the zones of active BMP signaling in the
course of digit formation. Note in A, the absence of labeling in the tendon blastema (tb) at 7,5 days of incubation. In addition, zones of intense
labeling paralleling the expression of BMPER of are observed, (arrows, compared with Fig. 1K). B is a higher magnification image of A to show the
labeling in the differentiating cartilage except in the most peripheral region subjacent to the perichondrium (p). C shows positive labeling in a
proximal region of the tendons corresponding with the myotendinous junction (day 8 of incubation). D is a longitudinal section of digit 3 at day 6 of
incubation showing intense labeling in the growing tip (dt) and reduced labeling in the zones of joint formation (arrow heads). E, is a longitudinal
section of digit 3, showing intense labeling for p-c-Jun in the joint forming region (arrow heads). In A and B the actin cytoskeleton was labeled in red
with Phalloidin-TRITC. F–M, are longitudinal (F, G, I, K, and M) and transverse (H, J, and L) sections through digit 3 showing the expression of type 1
BMP receptors in the autopod. Bmpr1b (F–H) is highly expressed at RNA (F–H) and protein (G) levels in the early chondrogenic digit ray with zones of
reduced expression in the joint forming region. In the non-chondrogenic domains of the autopod, the expression of Bmpr1b is predominant in the
subectodermal mesenchyme and interdigital regions. Expression of Bmpr1a (I–J) and Alk2 (K–L) is poor in the chondrogenic rays, but transcripts are
abundant in the tissues around the digit cartilage including the perichondrium, the interdigital mesenchyme. Transcripts of Alk2, are also appreciated
in the developing joints (arrow in K). Alk 1 was only appreciated in the peridigital blood vessels (M).
doi:10.1371/journal.pone.0060423.g003
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regulated by mouse recombinant DAN even at doses up to

3000 ng/ml. However, overexpression of the mouse Dan

gene down-regulated chondrogenic markers (Sox9, type 2

Collagen, and Bmpr1b) and up-regulated the expression of

Scleraxis more than twofold.

7) BMPER gain-of-function experiments were done by over-

expressing the mouse BMPER gene and the effects on the

chondrogenic markers corresponded largely with those of a

typical BMP antagonist. However, Scleraxis, and Activin ba,

which are not regulated in treatments with BMP2, were also

up-regulated by this factor.

8) FST exhibited an intense inhibitory effect on Sox9 gene

expression, but the expression of other genes up-regulated

by BMPs was not down-regulated. Remarkably, no effects of

FST were recognized in tendon markers in spite of its

restricted expression in the tendon blastemas.

9) The overexpression of Fstl-1 had similar, but less intense,

effects than the addition of rh-NOGGIN, except for a

negative influence in the expression of Activin ba which did

not occur with NOGGIN.

Cell Proliferation and Cell Death in Micromass Cultures
following Treatments with BMP Antagonists

The low anti-BMP influence on gene regulation in rh-CHDL-1

alone treatments prompted us to check whether it has an effect

promoting cell proliferation as reported in cultures of human

mesenchymal stem cells [53]. However, no changes in cell

proliferation or apoptosis were observed in cultures treated with

different doses of CHDL-1 (Fig. supplementary 1).

In view of the functional potentiation of the effects of CHDL-1

when administered in combination with TSG, we further analyzed

the effects of the combined treatments of CHDL-1 and TSG.

Neither cell proliferation or cell death was modified by this

treatment (Fig. supplementary 1).

Table 2. Regulation of Cartilage Markers.

CARTILAGE Sox9 Col2a1 BmpR1b

TSG 0,9960,2 1,0660,1 0,8560,0

TSG o/e 0,3860,0** 0,4660,0* 0,5860,0*

NOGGIN 0,2760,0*** 0,1160,0*** 0,1660,0***

NOGGIN+TSG 0,1460,0** 0,0660,0*** 0,0660,0***

CHRDL1 0,7360,0 0,9660,0 1,0160,0

CHRDL1+ TSG 0,3760,1** 0,4460,0** 0,2360,1**

CHRDL2 0,7760,0 0,8060,0 0,9660,1

CHRDL2+ TSG 0,6260,0* 0,4560,0** 0,4460,0**

DAN 1,0060,1 0,9960,0 0,9660,0

DAN o/e 0,5460,0* 0,4560,0** 0,3560,0**

BMPER o/e 0,5660,0* 0,4560,0* 0,8060,1

FST 0,5860,1*** 1,6760,3* 1,0260,0

FSTL1 o/e 0,3560,0* 0,3960,0* 0,7360,0*

BMP2 5,5860,9* 12,262,6* 4,1560,1*

Regulation of 3 selected markers of cartilage in 2 days Micromass cultures of
digit progenitors treated for 24 hr with recombinant proteins. As indicated in
the table (o/e), in the cases of TSG, DAN, and BMPER gain-of-function
experiments were also performed by transfection of mesodermal cells with
expression vectors.
*p,0.05;
**p,0.01;
***p,0.001.
doi:10.1371/journal.pone.0060423.t002

Table 3. Regulation of Joint Markers.

JOINT Gdf5 Activin BA Jaws

TSG 0,7960,0* 0,7960,0 1,2260,1

TSG o/e 0,3960,0** 0,9160,1 0,5760,0*

NOGGIN 2,2360,5* 1,0960,1 1,3860,1

NOGGIN+TSG 1,8260,0** 0,8060,1 0,3360,0**

CHRDL1 1,1660,1 0,9260,0 1,0160,0

CHRDL1+ TSG 0,9960,0 0,4460,0*** 0,8560,1

CHRDL2 1,4160,2* 0,6060,0* 0,9560,1

CHRDL2+ TSG 1,4560,1* 0,8360,1 1,1160,1

DAN 1,2560,0 1,1160,0 0,7860,0

DAN o/e 0,6760,2 1,1860,1 0,9760,2

BMPER o/e 1,0760,1 1,4860,0*** 1,1060,2

FST 1,2860,1 0,9760,1 1,3160,1

FSTL1 o/e 1,3960,0* 0,6360,0* 1,1260,1

BMP2 0,0260,0** 12,0561,2** 1,0760,2

Regulation of 3 selected markers of fibrous and tendon tissue in 2 days
Micromass cultures of digit progenitors treated for 24 hr with recombinant
proteins. As indicated in the table (o/e), in the cases of TSG, DAN and BMPER
gain-of-function experiments were also performed by transfection of
mesodermal cells with expression vectors.
*p,0.05;
**p,0.01;
***p,0.001.
doi:10.1371/journal.pone.0060423.t003

Table 4. Regulation of Tendon Markers.

TENDON Scleraxis Col1a1 Tgfb2

TSG 1,1560,2 1,1260,0 0,7360,0**

TSG o/e 0,8360,0 0,8360,1 0,5260,0***

NOGGIN 1,9860,3* 1,5060,1** 2,9760,4**

NOGGIN+TSG 2,1560,0** 1,7260,1** 4,7960,3**

CHRDL1 0,9960,0 0,9860,0 0,9860,1

CHRDL1+ TSG 0,6060,1 0,9060,1 0,6660,0*

CHRDL2 1,5360,0* 1,1360,1 1,5960,1*

CHRDL2+ TSG 1,8160,3* 1,2060,2 1,2160,2

DAN 1,2860,3 1,0160,0 1,0260,0

DAN o/e 2,6460,6* 0,9460,0 0,8360,0

BMPER o/e 2,3860,2* 1,0860,0 1,3660,2

FST 0,9760,1 1,0560,1 0,9360,1

FSTL1 o/e 1,8160,1** 1,4060,0** 1,4460,0**

BMP2 0,1360,0** 0,6960,0 0,7960,0

Regulation of 3 selected genes responsible for joint formation in 2 days
Micromass cultures of digit progenitors treated for 24 hr with recombinant
proteins. As indicated in the table (o/e), in the cases of TSG, DAN and BMPER
gain-of-function experiments were also performed by transfection of
mesodermal cells with expression vectors.
*p,0.05;
**p,0.01;
***p,0.001.
doi:10.1371/journal.pone.0060423.t004
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Transcriptional Regulation of BMP Modulators by Major
Signaling Pathways Operating in the Developing
Autopod

To the light of the regulated expression patterns of BMP

antagonists and their distinct effects on mesodermal tissue

differentiation, we sought to known if, as reported in other models

[54], there is an interactive signaling network which establishes the

level of expression of the different regulatory components of the

pathway, or if additional signaling pathways regulate their

expression.

The regulation of BMP modulators was studied in 2 days old

Micromass cultures after 6 hr treatments with the signaling

molecules that are responsible for growth and differentiation of

the autopod mesoderm, including the following: FGFs which are

implicated initially in the maintenance of the undifferentiated state

of the mesoderm in the distal margin of the bud and in inhibiting

the chondrogenic differentiation of digit progenitors [14], and they

are involved later in tendon differentiation [55]; all-trans-Retinoic

Acid which, similar to FGF signaling, is a primary inhibitor of

mesodermal differentiation [56] and later regulates the differen-

tiation of tendons [57]; ACTIVIN A, which is an early signal for

the formation of digit chondrogenic aggregates and next a

prominent joint marker [40]; TGF bs, which are responsible for

the formation of tendons but also promote the formation of

prechondrogenic aggregates [58,59]; BMP2, which together with

other BMPs are responsible for cartilage differentiation [8]; and

WNT 5a, which together with other members of the family are

involved in cartilage and joint differentiation [60].

The following data can be stressed from our results (Table 5):

1) In the FGF treated cultures, the expression of BMP

modulators including Noggin, Chordins and Fstl-1 was

inhibited. The inhibition was also strong for Dan and Tll1.

In contrast, BMPER, Fstl-5, and Sost were highly upregulated

by FGF treatments. Other antagonists (Sostdc1, Fst, and Tsg)

were not regulated at significant levels by FGFs.

2) Consistent with the functional similarity between retinoic

acid and FGF signaling in cartilage and tendon differenti-

ation at the stages studied here, the addition of all-trans-

Retinoic Acid (RA) to the culture medium was followed by a

downregulation of Noggin, Chordins, Tll1 and Dan. In contrast

with findings obtained by FGF treatments, Sostdc1 was the

only antagonist upregulated by RA. The expression of the

remaining studied antagonists was not modified by RA

treatments.

3) Treatments with ACTIVIN A resulted in a strong

upregulation of Fst expression. There was also an increase

in the expression of the BMP modulators Noggin, Chordins,

Tsg and Fstl-1. In contrast the BMP modulators that are

expressed in or around the tendon blastemas, including Dan,

and BMPER were downregulated.

4) Tgfb1 treatments upregulated Noggin, Sostdc1 and Fst while

Chordins, Tll1 and BMPER were downregulated. The

expression levels of the other studied antagonists were not

modified.

5) BMP2 treatments induced a strong up-regulation of Noggin,

Chdl-1, and Fst while all the remaining antagonists were

downregulated. It is remarkable from these findings that

BMP2 was the only treatment which downregulated the

expression of Tsg

6) WNT5a treatments induced up-regulation of BMPER and

Sost. Expression of other BMP modulators was not modified.

Discussion

We show that 9 representatives of the three recognized

subfamilies of BMP antagonists [61] together with Tll1, Fst, Fstl-

1 and Fstl-5 are expressed in a regulated fashion during the early

histogenesis of the digit tissues. These factors are precociously

induced during the formation of an extra digit, preceding the

appearance of changes identifiable by conventional histological

procedures, such as the establishment of phalanges, joints and

tendons. These findings support the role of BMP modulators in

digit morphogenesis. However, except for Noggin [4], Fstl-1 [42],

and Sost [62], mice with genetic alterations in these factors,

including BMPER [63], Tsg [63,64], Chd [65], Dan [38], Fst [66],

Sostdc1 [67], and Tll1 [68] lack a digit phenotype. The lack of a

phenotype in these mutants is likely explained by functional

redundancy [42,69]. In line with this interpretation, we show

overlapping expression of Noggin/Chdl-1 in the developing

cartilage, Chdl-2/Fstl-1 in the developing joints, Tsg/Dan/Fst in

the tendon blastemas, BMPER/Sostdc1/Fstl-1 in the peritendinous

mesenchyme, and Chd/Chdl-2/Fstl-5/BMPER/Sost under the

perichondrium of the diaphysis that is undergoing hypertrophic

differentiation and subsequent ossification.

The functional properties of the different BMP antagonists often

includes crosstalk or the inhibition of other signaling pathways

which results in tissue- and developmental-context dependent

responses to their local administration [70,71]. Consistent with the

occurrence of functional specializations, the analyzed antagonists

downregulated the expression of BMP target genes during

skeletogenesis at different levels and their expression was

differentially controlled by the distinct signaling pathways acting

in the developing limb at the stages covered by this study (see

Table 5). Together these findings favor the view considering that

morpho-histogenesis of cartilage/bone, joints, and tendons in the

embryonic limb is generated by a cascade of autoactivation and

lateral inhibition signals resulting from local interactions of

mesenchymal progenitors (‘‘reactor–diffusion’’ model, see

[72,73], and references therein). The formation of the prechon-

drogenic aggregate constitutes the first step of this process and is

followed not only by the inhibition of chondrogenesis in the

adjacent tissue, but also by signals which regulate its divergent

differentiation to form joints and tendons.

Considering the pattern of expression in the autopod (Table 6),

the different BMP modulators can be grouped as follows: 1)

cartilage associated, which include: Noggin, Chdl-1, and Fstl-5; 2)

joint associated, represented by Chdl-2 and Fstl-1, although the

later is also expressed in the undifferentiated interdigital mesen-

chyme, and Noggin is expressed in the cartilage encompassing the

developing joints; 3) tendon or associated peridigital connective

tissue, which include the following: Dan, BMPER, Sost, Sostdc1, Fst,

and at stages of advanced differentiation, also Noggin, and Fstl-5;

and, 4) a group which can be termed ‘‘mixed distributed’’, is

represented by Tsg, Tll1, and Chd which may function in concert

with the other antagonists.

TSG, Chd, and Tll1 and the Differentiation of Cartilage
and Tendons

Due to their association with other BMP modulators in

developing cartilage, joints and tendons, the functional signifi-

cance of TSG, CHD, and TLL1, merits individual discussion.

TSG is a multifunctional BMP modulator, which interacts with

other antagonists to potentiate or inhibit their function depending

on the proteolytic activity of TLL1 (reviewed in [74]). TSG forms

heterotrimeric complexes with BMPs and CHD which potentiates

the antagonistic effect of CHD and facilitates the diffusion of BMP

BMP Antagonists and Connective Tissues
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ligands through the extracellular space to reach the appropriate

targets [28,75]. In addition, when the complex is subjected to the

action of TOLLOID metalloprotease, CHD is cleaved, delivering

active BMPs [76]. TSG also forms trimolecular complexes with

BMPER and BMP4 [69] but in this case the complex does not

promote BMP diffusion [26].

We show that the contour of the phalanges at the stages of initial

differentiation express Tsg, Tll1 and Chd. Taking into account that

BMP ligands are predominantly expressed outside the cartilage

rods in the undifferentiated interdigital mesoderm [3], this

expression pattern is consistent with a function of the complex

TSG/CHD in the transport and subsequent delivery of BMPs into

the differentiating cartilages, which are positive for phospho Smad

1/5/8 immunolabeling. In our culture model, the overexpression

of Tsg down-regulates markers that are activated by BMPs. In

addition, consistent with previous studies [64,77,78], we also noted

the occurrence of pro-BMP responses, such as the intense down-

regulation of Gdf5, which is an effect that is also induced by BMP2

treatments.

The distribution of ‘‘mixed distributed’’ BMP modulators in the

zones of tendon formation is more complex. We show that the

core of the tendon blastemas expresses high levels of Tsg

accompanied, in a stage-dependent manner, with other BMP

antagonists (see discussion below). Remarkably, at initial stages of

formation, the tendon blastemas lack Tll1 transcripts, suggesting

that in this tissue TSG exerts only an anti-BMP function. This

interpretation is consistent with the poor labeling of the tendon

blastemas with phospho Smad 1/5/8. Taking into account that

overexpression of TSG in mesoderm progenitor cultures results in

the inhibition of chondrogenic markers without a positive

influence on tendon markers, the expression of Tsg could preclude

chondrogenic differentiation of the pretendinous mesenchymal

aggregates, which is the default fate of the undifferentiated limb

mesoderm. Mice deficient in TSG lack a digit or tendon

phenotype [64], but this could be explained by the overlapping

expression of additional antagonists (see below).

During the differentiation of the tendon blastemas, in the

subectodermal mesenchyme of the proximal region of the

interdigit intercalated between two neighbor tendons, there are

intense expression domains of Tll1 overlapping with low levels of

Tsg and high levels of BMPER. This gene expression pattern

correlates with strong immunolabeling for phospho Smad 1/5/8,

suggesting that the presence of TOLLOID reverses the influence

of TGS on BMP signaling from negative to positive. Furthermore,

the negative regulation of Tll1 by FGFs, TGF bs, and RA which

are all key signals in the differentiation of tendons [55,57–59]

reinforces the idea that TSG functions in the initial differentiation

of the tendon blastemas requires the absence of TOLLOID. At

more advanced stages of differentiation and coinciding with the

Table 5. Regulation of BMP modulators.

FGF2 RA Activin A TGFb1 BMP2 Wnt5a

Noggin 0,4060,0* 0,5160,0*** 2,1560,3* 1,7660,2* 33,8662,5** 1,1460,1

Chordin 0,7260,0 0,1260,0*** 1,3560,2 0,5960,0* 0,1760,0*** 0,9660,1

Chdl-1 0,1260,0** 0,6660,0** 2,2960,3* 0,5260,0* 3,7560,1*** 1,2160,2

Chdl-2 0,0560,0*** 0,0160,0** 1,9060,1** 0,6760,0 0,6560,2 0,9860,0

Tsg 1,3560,1 1,0460,0 2,0960,1* 0,9160,0 0,5360,0*** 1,2460,1

Dan 0,1560,0** 0,5460,0** 0,4660,0* 0,8360,0 0,1460,0*** 1,0960,3

Sost 2,6460,4* 0,8060,0 0,6360,2 0,9260,1 0,3860,0* 1,9860,1*

Sostdc1 0,8860,0 2,6660,3** 1,1860,2 3,4060,2* 0,5060,0*** 1,0260,2

Follistatin 0,9860,0 0,8160,0 9,0660,7** 4,9560,6* 7,4860,8** 1,0460,1

Fstl-1 0,3360,0*** 0,9060,0 1,5660,0* 1,1860,3 0,4560,0* 0,8060,0

Fstl-5 2,3760,2* 0,8360,0 0,7560,1 0,9460,2 0,6660,1 1,0960,2

Tll1 0,2160,0** 0,2660,0** 0,7360,0 0,4760,0* 0,2160,0*** 0,8660,0

Bmper 8,2960,3** 0,9060,1 0,3260,0* 0,4060,0* 0,3460,0** 4,5760,1***

Regulation of BMP modulators in 48 hr Micromass cultures of digit progenitors treated for 6 hr with BMP2, FGF2, all-trans-retinoic acid, TGFb1, ACTIVIN A, and WNT 5A.
*p,0.05;
**p,0.01;
***p,0.001.
doi:10.1371/journal.pone.0060423.t005

Table 6. Semi-quantitative association of gene expression
intensity in the autopodial tissues.

Cartilage Joint
Early
Tendon Late Tendon

Peri-
tendinous

Noggin +++ – – + –

Chordin + ++ – + –

Chdl-1 +++ – – – –

Chdl-2 – +++ – – –

Tsg + ++ +++ + +

Dan – – +++ ++ ++

Bmper – – – – +++

Sost – – – ++ –

Sostdc1 – – – – ++

Follistatin – – +++ ++ –

Fstl-1 – ++ + + ++

Fstl-5 + – – +++ –

Tll1 + ++ – + ++

Table summarizing the expression intensity of the BMP modulators in the
autopodial tissues.
doi:10.1371/journal.pone.0060423.t006
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appearance of Tll1 transcripts, immunolabeling for phospho-Smad

1/5/8 becomes visible in the tendon primordia.

BMP Antagonists and the Formation of Phalanges and
Joints

Digits develop as cartilage rods, which become segmented into

jointed structures by local de-differentiation of cartilage. Hence,

the zones of joint formation appear as strips of fibrous-like

connective tissue, which constitute the substrate for subsequent

cavitation and differentiation of the joint tissues (fibrous capsule

and synovium). It has been shown that Jaws exerts a central role in

the formation of joints, although lack specific expression domains

in these regions [45]. The formation of phalanges is a direct effect

of BMP signaling via Smad 1/5/8 [48]. Differentiation of the

joints is also controlled by BMP signaling [5,79], but it is directed

by the activation of MAP kinases [22]. Furthermore, the reduced

phalangeal size and loss of interphalangeal joints that is observed

in humans and mice deficient in NOGGIN [4,17], indicates that

regulation of BMP signaling is a central function in the formation

of phalanges and joints.

Our findings reveal that the outer layer of the developing

phalanges expressing Tsg/Tll1/Chd encompass a core of differen-

tiating chondrocytes expressing Chdl-1 and Noggin in the body of

the phalanx, and Chdl-2 in the zones of joint formation. We show

that CHDL1 alone, or even in combination with TSG, does not

modify proliferation, at difference of studies in other systems [53].

The effect of NOGGIN and both CHDL-1 and CHDL-2 on

cultures of digit progenitors, concerns tissue differentiation, and

becomes intensely potentiated by TSG. Together these findings

suggest that, in addition to the previously discussed role of TSG/

CHD complexes in the transport of BMP ligands, TSG also

functions in a concerted fashion with NOGGIN and CHORDINS

to modulate the intensity of BMP signaling in the differentiating

cartilage.

We further show that cartilage-expressed (Noggin and Chdl-1)

and joint-expressed antagonists (Chdl-2 and Fstl-1) are regulated in

an opposite fashion by BMP2. The positive regulation of Noggin

and Chdl-1 by BMP2 is consistent with the occurrence of a

negative feed-back loop tuning the level of BMP signaling in the

differentiating cartilage as observed in different systems [80].

Conversely, the negative regulation of Chdl-2 by BMP2, suggest

that joints are formed in zones of the digit cartilage templates with

the lowest BMP signal.

BMP Antagonists and the Establishment of Tendons and
Intertendinous Mesoderm

Tendon blastemas are formed in the mesoderm subjacent to the

dorsal or ventral ectoderm. We have previous shown that all the

subectodermal tissue of the autopod has the potential to

differentiate into tendons, but that in normal conditions, tendons

differentiated only in the digit regions [40,81]. The present study

shows a regionalization of the mesoderm subjacent to the

ectoderm into digit and interdigit regions characterized by distinct

distribution of BMP antagonists accompanied, at the beginning of

tendon formation, by differences in Smad 1/5/8 phosphorylation.

Tendon blastemas are formed in zones expressing high levels of

Dan, Fst, and Tsg, which recruit Chd, Noggin and Sost at advanced

stages of differentiation. During the differentiation of these tendon-

forming regions, the subectodermal mesenchyme intercalated

between the tendon blastemas shows intense domains of BMPER

expression accompanied by reduced expression of Dan, TSG, Tll1,

and Sostdc1. As mentioned above, the different patterns of gene

expressions correlate with a dramatic change in the intensity of

BMP signaling. This finding might be of interest in regenerative

medicine to direct the differentiation of connective tissue

progenitors. However, there is no tendon phenotype in mice

deficient for these factors [38,63,66,67]. The difference in the

intensity of phospho Smad 1/5/8 immunolabeling might be due

to the antichondrogenic and profibrogenic action of DAN in

conjunction with and the functional interplay between BMPER

with TSG and TLL1. BMPER has been characterized as a CHD

related BMP modulator with context-dependent pro-BMP or anti-

BMP activities [63,69,82–84]. Our findings show that its

expression marks zones of very high BMP activity. In previous

studies the expression of BMPER in the autopod has been

functionally related with interdigital cell death [33]. However, the

spatial distribution of BMPER transcripts and their maintenance

after the period of interdigital cell death, support the involvement

of this BMP modulator in the formation of the peridigital

connective tissues.

Conclusion
In conclusion our findings reinforce the morphogenetic

importance of BMP antagonists in the establishment of a

molecular signaling scaffold that is responsible for the allocation

of the cell fate of digit mesodermal progenitors. The information

drawn from this study provides a basic view of this functional

signaling network but further work is required to unravel the

exquisite extracellular regulation of BMP signaling during the

histotypic differentiation of digit precursor mesoderm. A subject to

be addressed in future studies is that the function of the different

BMP modulators in tendon development may result from a

combination BMP and Wnt modulation, as several factors such as

Sost [34,85], Noggin [86], Chd [87], and Sostdc1 [85,88], have

been shown to exert both functions.

Supporting Information

Figure S1 Representative flow cytometry plots of disso-
ciated mesodermal cells propidium iodide stained,
obtained from 2 day Micromass in control (A and B),
CHDL-1 treated (A9 and B9), and CHDL-1 plus TSG
treated cultures of digit progenitors. Upper panels (A–A0)

represent the cell cycle distribution of cells expressed in a linear

scale. In lower panels (B–B0) the intensity of propidium iodide

label is plotted on a logarithmic scale to show the presence of cell

death (sub-G1 region). The percentage of dying cells is indicated.

(TIF)

Table S1 Primers for Q-PCR. Note that except indicated,

the primers are for Gallus gallus.

(DOC)
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