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Abstract: A numerical method for American options pricing on assets under the
Heston stochastic volatility model is developed. A preliminary transformation is
applied to remove the mixed derivative term avoiding known numerical draw-
backs and reducing computational costs. Free boundary is treated by the penalty
method. Transformed nonlinear partial differential equation is solved numerically
by using the method of lines. For full discretization the exponential time differen-
cing method is used. Numerical analysis establishes the stability and positivity of
the proposed method. The numerical convergence behaviour and effectiveness are
investigated in extensive numerical experiments.
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1 Introduction

The price of options is one of the key topics in quantitative finance. The classic Black-Scholes model is
based on unrealistic assumptions, such as the log-normality of the asset price. One possible solution is to
presume that the volatility of the asset follows a stochastic process. In the literature there are various
stochastic volatility (SV), such as Heston model [1], constant elasticity of variance (CEV) model
proposed by Cox [2], widely used the generalized autoregressive conditional heteroskedasticity (GARCH)
model and others. SV models assume realistic dynamics for the underlying asset and explain in a self-
consistent way why options with different strikes and expirations have different Black-Scholes implied
volatilities. Thus, study of such models is of great interest to the financial markets.

In this paper, the Heston model [1] is considered, which assumes that the variance follows the Cox–
Ingersoll–Ross (CIR) process. Previous studies show that the non-negative and mean-reverting process is
more consistent with the real markets [3]. Apart from the independent variables appearing in the Black-
Scholes equation, i.e., the time t and the asset price S, the Heston pricing partial differential equation
(PDE) has an additional variable, the variance ν, due to the included stochastic volatility. Due to the
possibility of early exercise, from the mathematical point of view, we deal with two-dimensional free
boundary PDE that is challenging task especially in presence of mixed derivative term.
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Various studies attempted to solve this PDE problem associated with the valuation of American options
under the Heston model. One of the common approaches for treating the optimal exercise boundary is to
add some penalty term [4]. Clarke et al. [5] formulate the American put pricing problem as a linear
complementarity problem (LCP) and proposed a multigrid finite difference method (FDM) for numerical
solution taking an advantage that the number of iterations required to solve a LCP is inherently
independent of the grid size, but a complicated smoother procedure is necessary. An improvement of this
method suggested in [6] is based on Fourier analysis to optimize the smoothing procedure. Alternative
approach is an operator splitting method is proposed in [7], that allows to improve the accuracy by
introducing an auxiliary variable. In [8] a space-time adaptive FDM based on operator splitting is
proposed for the generalized Black-Scholes model. Zhu et al. [9] develop a predictor-corrector scheme
based on the alternating direction implicit (ADI) method paying special attention to the boundary
conditions. Alternative approaches based on contour integral method are proposed in [10].

However, much of the research up to now has been focused only on the case with low correlation, that
has slight influence to the qualitative characteristics of a numerical method. This fact motivates us to develop
an algorithm that includes a canonical form transformation that removes the source of computational
problems–the cross derivative term. After that, numerical techniques are required. We apply method
of lines (MOL), resulting in a system of ordinary differential equations (ODE) that has to be
solved numerically by, for instance, widely used Runge-Kutta method [11] or the full FDM discretization
[12–14].

In this paper, the exponential time differencing method (ETD) [15] is used. This approach based on exact
integration of the system of ODEs has been applied to various problems [16,17], including the American
option under the Heston model valuation [18]. An additional computational challenge arises due to the
necessity of inverse matrices, not always well conditioned [19]. To overcome this difficulty the accurate
Simpson’s rule is used. Furthermore, taking advantage of logarithmic matrix norm and exponential matrix
properties a stability and positivity analysis is performed to guarantee conditionally the boundedness of
the solution independently of the semi-discrete system step-size.

This work is organized as follows. The Heston model for American put option is presented in Section 2.
Section 3 addresses the problem transformation aimed to remove cross derivatives and explain the new
rhomboid numerical domain. The semi-discretization and the ETD scheme are proposed in Section 4.
Section 5 studies the positivity, stability and boundedness of the numerical solution. Section 6 presents
numerical results comparing the proposed method with other authors and compute the numerical order of
convergence. Concluding remarks are given in Section 7.

2 American Options with Stochastic Volatility

One of most widely used SV models is the Heston model [1], when the asset price process S and squared
volatility process ν are governed by the following risk-neutral dynamics

dSðtÞ ¼ lSðtÞdt þ ffiffiffiffiffiffiffiffi
mðtÞp

SðtÞdW1;

dmðtÞ ¼ jðh� mðtÞÞdt þ r
ffiffiffiffiffiffiffiffi
mðtÞp

dW2;
dW1dW2 ¼ qdt

(1)

where W1, W2 are standard Brownian motions, μ represents the deterministic drift, κ is the mean reversion
rate, θ is the long-run variance, σ is the volatility of the variance and ρ is the instantaneous correlation
ρ ∈ (−1, 1). The variance process follows a square root, also known as a CIR process [3,20]. This kind of
processes is bounded below by zero and, if the Feller condition is satisfied: 2κθ ≥ σ2, the boundary
cannot be achieved.
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Applying Itô lemma and standard arbitrage arguments to (1) we achieve a PDE for the price U =
U(S, ν, t) of a contingent claim

@U

@t
þ 1

2
mS2

@2U

@S2
þ qrmS

@2U

@S@m
þ 1

2
r2m

@2U

@m2
þ rS

@U

@S
þ ðjðh� mÞ � fÞ @U

@m
� rU ¼ 0; (2)

where r is the interest rate, f represents the market price of volatility risk, f = αν for some constant α [1];
κ(θ − ν) − αν is the risk-neutral drift rate.

When the contingent claim is an European vanilla put option with strike price E and maturity at T, the
function U(S, ν, t) satisfies the PDE (2) subject to the final and boundary conditions

UðS; m;TÞ ¼ maxðE � S; 0Þ; (3)

Uð0; m; tÞ ¼ E; (4)

lim
S!1

@U

@S
ðS; m; tÞ ¼ �1; (5)

@U

@t
ðS; 0; tÞ þ rS

@U

@S
ðS; 0; tÞ þ jh

@U

@m
ðS; 0; tÞ � rU ¼ 0; (6)

lim
m!1UðS; m; tÞ ¼ 0: (7)

American put option is described by a free boundary PDE problem, which is treated by adding the
penalty function f(E, S, U) = λ max{E − S − U, 0}, where λ is a positive penalty parameter, λ → ∞, for
more details see [21]. Thus, free boundary PDE is replaced by the following nonlinear problem posed on
fixed domain:

@U

@t
þ 1

2
mS2

@2U

@S2
þ qrmS

@2U

@S@m
þ 1

2
r2m

@2U

@m2
þ rS

@U

@S
þ �jð�h� mÞ @U

@m
� rU þ f ðE; S;UÞ ¼ 0; (8)

0 < S < 1; 0 < m < 1; 0 � t < T : (9)

Problem (8) is a time dependent two-dimensional Diffusion-Advection-Reaction (DAR) problem. Since
the closed-form solution is not available, several numerical methods have been proposed, for instance, a tree-
based method [22], PSOR method [23], sparse wavelet [24] or FDM [25]. In the case of FDM, presence of
the mixed derivative term involves the appearance of negative coefficients in the numerical scheme,
deteriorates the quality of the numerical solution augment the computational cost and possible rounding
accumulation error [26]. Thus, the next section addresses to the classical technique for the reduction of
second-order PDE to canonical form.

3 Canonical Form Equation

Following the classical techniques for canonical form transformation, see for instance [27], chapter 3, we
proceed to classify the spatial part of (8) by the discriminant

D ¼ B2 � 4AC ¼ r2m2S2ðq2 � 1Þ; B ¼ qrmS; A ¼ 1

2
mS2; C ¼ 1

2
mr2: (10)

Assuming –1 < ρ < 1, the spatial differential operator of (8) becomes of elliptic type. Then, the suitable
change of variables is given by solving the following ODE
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dm
dS

¼ Bþ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4AC � B2

p

2A
¼ rðqþ i~qÞ

S
; ~q ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
: (11)

Solving (11) one gets

x ¼ ~qr ln S; y ¼ qr ln S � m: (12)

Now, applying the time inverse transformation τ = T − t and denoting U(S, ν, τ) = P(x, y, τ), Eq. (8) takes
the form

@P

@s
¼ 1

2
~q2r2m

@2P

@x2
þ @2P

@y2

� �
þ ~qr r � 1

2
m

� �
@P

@x
þ qr r � 1

2
m

� �
� �jð�h� mÞ

� �
@P

@y
� rP þ f ðE; S;PÞ; (13)

where f(E, S, P) is the penalty term defined by

f ðE; S;PÞ ¼ � maxðE � e
x
~qr � P; 0Þ: (14)

Inside a bounded domain, the PDE numerical solution will not be crucially affected by artificial
boundary conditions, then some simplified strategies can be taken into consideration, see proposition 4.1
in [28]. In this paper, the artificial boundary conditions are chosen to be equal to the payoff function, as it
is proposed in [29]:

lim
S!0

UðS; m; sÞ ¼ E; (15)

lim
S!1

UðS; m; sÞ ¼ 0; (16)

lim
m!0

UðS; m; sÞ ¼ maxðE � S; 0Þ; (17)

lim
m!1 UðS; m; sÞ ¼ maxðE � S; 0Þ: (18)

Note that there are other types of boundary conditions in literature, see [9,18,30].

From (12), ν takes the expression in terms of x and y as follows

m ¼ mx� y; m ¼ q
~q
: (19)

The variance ν has to be positive, thus, the variable ymust be upper bounded by mx. Finally, the domain
of the transformed problem is as follows

D ¼ ðx; y; sÞ; x 2 R; y < mx; 0 < s � Tf g: (20)

Since the spatial domain (20) is not bounded, a truncated computational domain has to be defined for
numerical solution. First, following the ideas of [31], we chose S1 and ν1 close to zero and S2 and ν2
large enough. In order to perform practical simulations the choice is specified in Section 6. Then, the
computational rectangle domain [S1, S2] × [ν1, ν2] is transformed into rhomboid ABCD, see Fig. 1, with
the sides
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AD ¼ ðx; yÞ 2 R2 j x ¼ a ¼ ~qrlnS1; y ¼ ma� m; m1 � m � m2
� �

;

AB ¼ ðx; yÞ 2 R2 j a � x � b ¼ ~qrlnS2; y ¼ mx� m2;
� �

;

BC ¼ ðx; yÞ 2 R2 j x ¼ b; y ¼ mb� m; m1 � m � m2
� �

;

CD ¼ ðx; yÞ 2 R2 j a � x � b; y ¼ mx� m1
� �

:

(21)

Note that if S and ν are fully correlated: |ρ| = 1, from (10), the discriminant Δ = 0 and the right-hand side
of (8) becomes a parabolic PDE. Following the techniques for reduction to canonical form, an appropriate
substitution is x = S ; y = ν − ρσ that leads to the following equation

@P

@s
¼ 1

2
mx2

@2P

@x2
þ rx

@P

@x
þ rq

1

2
m� r

� �
� �jð�h� mÞ

� �
@P

@y
þ f ðE; S;PÞ: (22)

4 Numerical Algorithm

For the transformed DAR problem (13), the closed-form solution is not available and some numerical
technique is required. In this paper, we proposed MOL-ETD combined method. MOL lies in discretization of
the spatial derivatives, which leads to a system of ODEs. This system is solved numerically by ETD method
[15,17]. This approach has to afford the computation challenge of the inverse matrices, not always well
conditioned when eigenvalues are close to zero [19].

4.1 Semi-Discretization
Firstly, the spatial mesh is introduced:

xi 2 a; b½ �; h ¼ Dx; xi ¼ aþ ih; 0 � i � Nx (23)

yij 2 y1 ¼ mx� m1; y2 ¼ mx� m2½ �; mh ¼ Dy; yij ¼ y0 þ ðiþ jÞmh; 0 � j � Ny; (24)

where

Nx ¼ b� a

h
; Ny ¼ y1 � y2

mh
¼ m2 � m1

mh
; y0 ¼ ma� m2: (25)

Thus, the numerical rhomboid domain includes all the mesh-points of the discretization. Let us denote
the set of all mesh points by Γ, the subset located at the numerical domain boundary by ∂Γ and the interior
nodes by _� ¼ �� @�. Now, the rhomboid boundary sides are partitioned in the following way:

PðABÞ ¼ ðxi; yi0Þ j 0 � i � Nx; j ¼ 0f g;
PðBCÞ ¼ ðxNx ; yNxjÞ j i ¼ Nx; 0 � j � Ny

� �
;

PðCDÞ ¼ ðxi; yiNyÞ j 0 � i � Nx; j ¼ Ny

� �
;

PðADÞ ¼ ðx0; y0jÞ j i ¼ 0; 0 � j � Ny

� �
:

(26)

The total number N + 1 of points ξ in the mesh-grid is N þ 1 ¼ ðNy þ 1ÞðNx þ 1Þ. Further, let us reorder
the mesh-points denoting

nD ¼ ðxi; yjÞ; D ¼ ðNy þ 1Þiþ j; 0 � i � Nx; 0 � j � Ny: (27)

Taking into account that j = D − (Ny + 1)i, for given point ξD, we define the recovered coordinates as xD
and yD:
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xD ¼ aþ D

Ny þ 1

� �
h; yD ¼ ma� m2 þ Dþ D

Ny þ 1

� �
� ðNy þ 1Þ D

Ny þ 1

� �� �
mh: (28)

where [·] stands for the integer part. Further, an expression for νD from (19) is found to be

mD ¼ m2 � jmh: (29)

Taking into account (28) and omitting τ argument, the spatial derivatives are approximated by the
centred finite difference as follows

@P

@x
nDð Þ � PðnDþNy

Þ � PðnD�Ny
Þ

2h
;

@2P

@x2
nDð Þ � PðnDþNy

Þ � 2PðnDÞ þ PðnD�Ny
Þ

h2
; (30)

@P

@y
nDð Þ � PðnDþ1Þ � PðnD�1Þ

2mh
;

@2P

@y2
nDð Þ � PðnDþ1Þ � 2PðnDÞ þ PðnD�1Þ

ðmhÞ2 : (31)

Applying (30)–(31) to (13) and denoting P(ξD±z) as PD±z we achieve the following system of ODEs

@P

@s
nDð Þ ¼ � 2aD

h2
� 2aD
ðmhÞ2 � r

 !
PD þ aD

ðmhÞ2 þ
cD
mh

 !
PDþ1 þ aD

ðmhÞ2 �
cD
mh

 !
PD�1

þ aD
h2

þ bD
h

� �
PDþNy þ

aD
h2

� bD
h

� �
PD�Ny þ f ðPDÞ;

(32)

where

aD ¼ 1

2
~q2r2mD; bD ¼ 1

2
~qr r � 1

2
mD

� �
; cD ¼ 1

2
qr r � 1

2
mD

� �
� �jð�h� mDÞ

� �
: (33)

The previous system (32) is presented in the vectorial form

dP

ds
¼ AðnÞPðsÞ þ f n;Pð Þ; (34)

where P = P(τ) ∈ RN+1 denotes the vector of all values P0, : : : , PN, such that P ¼ P0; . . . ;PN½ �T and
f ðn;PÞ ¼ f0; . . . ; fN½ �T is the penalty term vector for every PD. Matrix AðnÞ ¼ aDLð ÞND;L¼02 RðNþ1Þ�ðNþ1Þ

is a singular matrix whose non-zero entries are

Figure 1: Rhomboid domain
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aD;D ¼ � 2aD
h2

þ 2aD
ðmhÞ2 þ r

 !

aD;D�1 ¼ aD
ðmhÞ2 �

cD
mh

aD;D�Ny ¼
aD
h2

� bD
h

9>>>>>>=
>>>>>>;
if nD 2 _�: (35)

Note that the rows of A(ξ) corresponding to boundary points ξD ∈ ∂Γ are zero rows. Matrix
AðnÞ 2 RðNþ1Þ�ðNþ1Þ dimension depends on h

ðN þ 1Þ ¼ ðNx þ 1ÞðNy þ 1Þ ¼ b� a

h
þ 1

� �
m2 � m1
mh

þ 1
	 


¼ O
1

h2

� �
! 1; h ! 0: (36)

Denoting f(ξ, P)D as the Dth element of vector f(ξ, P), one gets

f ðn;PÞD ¼ 0 if nD 2 @�
f ðPDÞ if nD 2 _�

:

�
(37)

4.2 ETD Method
System (34) is equivalent to a non-linear integral equation (semigroups approach, see [32]):

PðsÞ ¼ eAðs�s0ÞPðs0Þ þ
Z s

s0

eAðs�vÞf ðn;PðvÞÞ dv; s > s0: (38)

The ETD methods [15] deal with the numerical approximation of the integral part of (38). First, let us
introduce the temporal discretization

sn ¼ kn; 0 � n � Ns; Ds ¼ k ¼ T

Ns
: (39)

Then, for each sub-interval sn; snþ1½ �, the approximation of (38) takes the form

Pðsnþ1Þ ¼ eAkPðsnÞ þ
Z snþ1

sn
eAðs

nþ1�vÞf ðn;PðvÞÞ dv; (40)

that is under the change of variable s = tn+1 − v is equivalent to the following

Pðsnþ1Þ ¼ eAkPðsnÞ þ
Z k

0
eAsf ðn;Pðsnþ1 � sÞÞ ds: (41)

As it is proposed in [17], a first explicit integral approximation P(τn+1 − s) is replaced by the known value
P(τn) corresponding to s = k:

Pðsnþ1Þ ¼ eAkPðsnÞ þ
Z k

0
eAsds

� �
f ðn;PðsnÞÞ þ Oðk2Þ: (42)

It is well known that if A is a regular matrix, then
R k
0 e

Asds ¼ A�1 eAk � I
� 


. Indeed, this formula can fail
due to matrix inverse computation in the case of singular or ill-conditioned matrix. In our case, matrix A, see
(35), is not regular due to the existence of zero rows, meanwhile

R k
0 e

Asds exists. It motivates us to
approximate the integral term by the accurate Simpson’s quadrature rule see [33],
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Z k

0
eAsds ¼ k’ðA; kÞ þ Oðk5Þ; ’ðA; kÞ ¼ 1

6
I þ 4eA

k
2 þ eAk

	 

: (43)

Finally, denoting P(τn) as Pn, the numerical solution to (13) is given by

Pnþ1 ¼ eAkPn þ k ’ðA; kÞ f ðn;PnÞ: (44)

5 Numerical Analysis

In this section, the qualitative properties of the proposed method, such as positivity and stability,
are studied.

The positivity can be assured if all the matrix elements of eAk and φ(A,k) are positive. For the sake of
clarity, we recall some definitions and results from [34].

A matrix A 2 Rn�n is calledMetzler if its off-diagonal elements are non-negative, i.e., ai,j ≥ 0, 1 ≤ i ≠ j ≤
n. If A is Metzler, then eAt ≥ 0 for t ≥ 0, that can be shown taking a0 ¼ min

D
aD;D.

Lemma 5.1 Matrix A defined by (35) is Metzler, if spatial step-size h satisfies

h � ~q2r2m1
2max b; mcf g; (45)

where β = maxD |βD|, γ = maxD |γD|.

Proof. Let us consider the non-zero off-diagonal elements of matrix A. From (35), aD,D±1 are non-
negative, if

h � aD
m cDj j ; 0 � D � N þ 1: (46)

Analogously, from (35), aD,D±Ny ≥ 0, if h � aD
bDj j. Combining both conditions one gets that the off-

diagonal elements of A are non-negative, if

h � aD
maxfm cDj j; bDj jg ; 8D ¼ 0; 1; . . . ;N þ 1: (47)

Under (45) all the off-diagonal elements of A are non-negative, thus, matrix A is Metzler.

Corollary 5.1. If (45) is fulfilled, then matrix A is Metzler, that assures eAt ≥ 0 and φ(A,k) ≥ 0 and,
consequently, the positivity of the numerical solution by the proposed scheme.

Now, we define the infinite vector norm as

vk k1 ¼ max
n

jvnj; 8v 2 Rn: (48)

The scheme (44) is ‖ · ‖∞-stable on the domain Γ × [0,T] if for every domain partition and for some
positive constant K independent of h, k, and n, it is verified

Pnk k1 � K; 0 � n � Ns: (49)

Exponential matrix norm is bounded by the exponential of logarithmic norm μ[A], see [35,36]:

eAk
�� �� � ekl½A�; l1½A� ¼ max

i
<ðaiiÞ þ

Xn
j 6¼i

jaijj
 !

; (50)

where <(x) is the real part of a complex number x.
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From (35), the row’s sum of matrix A could take only two values

XNþ1

j¼1

aij ¼ 0 if nD 2 @�
�r if nD 2 _�

;

�
i ¼ 1; 2 . . . N þ 1: (51)

From (50) one gets μ∞[A] = 0, and consequently, ‖eAk‖∞ ≤ e0 = 1 and from (43) ‖φ(A,k)‖∞ ≤ 1.

From other hand, matrix A has some zero rows, and their corresponding rows in eAk have only one entry
equal to 1 and 0 at the others, consequently, ‖eAk‖∞ = ‖φ(A,k)‖∞ ≥ 1. Then,

eAk
�� ��

1 ¼ ’ðA; kÞk k1 ¼ 1: (52)

Let us represent each i − th row of Pn+1 in (44) as a function giðPn
0; . . . ;P

n
N Þ, i.e.,

Pnþ1
i ¼ giðPn

0; 	 	 	 ;Pn
N Þ ¼ ðeAkÞiPn þ k’ðA; kÞi f ðn;PnÞ; 0 � i; j � N ; 0 � n � Ns: (53)

Assuming the boundedness of the derivative
@f ðni;PÞ

@P

����
���� � �, ni 2 _�, 0 ≤ P ≤ E, from non-negativity of

eAk and φ(A, k) one gets

@gi
@Pn

j

 ðeAkÞij � � k ’ðA; kÞij; 0 � i; j � N : (54)

Let us denote the lower bound of derivative ψ(A, k) = eAk − λ k φ(A, k) and the vector function

gðPn
0; 	 	 	 ;Pn

N Þ as g0; . . . ; gN½ �T . Then, from (54), the Jacobian matrix
@g

@Pn
satisfies

@g

@Pn

 wðA; kÞ: (55)

Under the assumption (45), a matrix defined by B = A − a0I, where a0 ¼ min
D

aD;D, verifies B ≥ 0. Taking

into account eAk = ea0keBk and eBk ¼ I þP1
s¼1

Bsks

s!
, the lower bound derivative ψ(A, k) can be written in

terms of B powers as follows

wðA; kÞ ¼ f0ðkÞ þ
X1
s¼1

fsðkÞ
Bsks

s!
; (56)

where

f0ðkÞ ¼ ea0k � � k

6
1þ 4ea0

k
2 þ ea0k

	 

; fsðkÞ ¼ ea0k � � k

6

4

2s
ea0

k
2 þ ea0k

� �
; a0 ¼ min

D
aD;D: (57)

From (57), fs(k) > f0(k) for s ≥ 1. A Taylor expansion of f0(k), with 0 < ξ < k, gives

f0ðkÞ ¼ f0ð0Þ þ f0
0ð0Þk þ

f00
0ðnÞ
2

k2; (58)

where

f0ð0Þ ¼ 1; (59)

f0
0ð0Þ ¼ a0 � �; (60)
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f00
0ðnÞ ¼ a20 þ

�

3
ja0jea0

n
2 þ �ja0j

6
ð2� ja0jnÞðea0n þ ea0

n
2Þ: (61)

Note that the two first terms the Taylor expansion (58) are positive if k <
1

�þ ja0j, moreover, |a0|
satisfies

ja0j ¼ 2am
1

h2
þ 1

ðmhÞ2
 !

þ r; am ¼ max
D

aD (62)

So, if temporal step-size k satisfies

k � h2

ð�þ rÞh2 þ 2am
1þ m2

m2

� � ; (63)

then (2 − |a0|ξ) > 0, so
f00

0ðnÞ
2

k2 > 0. Consequently, f0(k) ≥ 0, that implies non-negativity of ψ(A, k), that

guarantees also the non-negativity of the Jacobian matrix
@g

@Pn
. Moreover, initial vector P0 is bounded

0 � P0 ¼ P0
0; 	 	 	 ;P0

N

� �T � E;E; 	 	 	 ;E½ �T : (64)

The boundedness of the solution Pn
D ≤ E is proven using the induction principle. The base case is given

by (64). Induction hypothesis is established as follows: 0 � Pn
i � E; 0 � i � N and conditions (63) and (45)

are fulfilled. In addition, as
@g

@Pn

 0 every gi is increasing in each direction Pn

j :

giðPn
0; 	 	 	 ;Pn

N Þ � giðE; 	 	 	 ;EÞ. Hence,
Pnþ1
i ¼ giðPn

0; 	 	 	 ;Pn
N Þ ¼ ðeAkÞiPn þ k’ðA; kÞi f ðn;PnÞ

� giðE; 	 	 	 ;EÞ ¼ ðeAkÞiEþ k’ðA; kÞi f ðn;EÞ:
(65)

where E ¼ E; 	 	 	 ;E½ �T .
Since

l1½A� ¼ max
i

aii þ
X
j6¼i

jaijj
( )

¼ max 0; �rf g ¼ 0; (66)

from (65) one gets

ðeAkÞiE ¼ E
XNþ1

j¼1

ðeAkÞij ¼Metz:
E
XNþ1

j¼1

ðeAkÞij
��� ��� � EkeAkk1 � E ekl1½A� ¼ E: (67)

Then, by taking into account (67) and the fact that f(ξ, E) = 0, the boundedness is established

Pnþ1
i � E; 0 � i � N ; 0 � n � Ns � 1; (68)

that implies
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kPnk1 � E: (69)

Summarizing all above, the main result of the paper is established as follows.

Theorem 5.1.With the previous notation under conditions (45) and (63) the numerical solution Pn of the
scheme (44) is non-negative and ‖ · ‖∞-stable, with ‖Pn‖∞ ≤ E for 0 ≤ n ≤ Nτ.

Note that apart from the positivity and stability of the numerical scheme, it has been proven that the
solution remains between zero and the strike price as it is expected dealing with put options.

6 Numerical Results and Discussions

Numerical convergence is studied by providing a sequence of simulations with time stepping starting
with k = 0.125 and keep on halving. The results are presented in Tab. 1. “Difference” is calculated by
‖P2k − Pk‖∞, where Pk and P2k are the consecutive solutions taking values 2k and k for the time step, R is
defined as the ratio of consecutive differences:

R ¼ kP4k � P2kk1
kP2k � Pkk1

¼ e2
e1
: (70)

Order of numerical convergence α is defined by

a ¼ log e2 � log e1
log 2

: (71)

As expected, the scheme maintains the second order of convergence in time.

We check the verity of the established stability conditions by setting the temporal step-size k that does
not satisfy (63). The results plotted in Fig. 2 show that if stability condition (63) is broken, some option
values surpass the strike (E = 10) and the boundedness of the solution is lost.

Further, we compare the numerical results for American put options with other known methods in
literature. The prices are presented for the asset values S = 8, 9, 10, 11, 12, for variance ν = 0.0625, 0.25,
and correlation ρ = 0.1, 0.7. Rest of parameters are given in Tab. 2. To obtain the solution at the point of
interest a linear interpolation is used for the ν values, and a cubic spline interpolation–for asset values.

The test case with low correlation ρ = 0.1 is widely considered in literature that gives us the possibility to
compare the results with other known methods, such as predictor-corrector ADI scheme of Zhu et al. [9],
multigrid method of Oosterlee [6], space-time adaptive FDM proposed in [8], etc. The results are plotted
in Fig. 3 and compared in Tab. 3. Since the exact solution is not known, the error cannot be estimated,
however, the proposed method is found to be competitive and efficient.

Note that this set of parameters which has been used for the past thirty years do not show the advantages
of the proposed method. When |ρ| is close to zero, the mixed derivative term has not a significant influence on

Table 1: Numerical convergence table for successive values of k

k Difference R α

0.125 – – –

0.0625 2.87874 – –

0.03125 0.613901 4.68926 2.22936

0.015625 0.108354 5.66572 2.50226

0.0078125 0.0196251 5.52117 2.46497
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the numerical method. The importance of the proposed canonical form transformation is shown by
considering ρ = 0.7. The results are given in Tab. 4 and in Fig. 4.

Note that the proposed scheme (44) provides positive and stable solutions under conditions on the step
sizes discretization (45) and (63) even if the correlation parameter has absolute value close to one.

Properties of the numerical solution also can be studied by considering the first order greeks D ¼ @P
@S and

m ¼ @P
@m. For the case with low correlation, the greeks are plotted in Figs. 5 and 6, correspondingly.

Figure 2: Unstable solution for large time-step

Table 2: Parameters of the American put option problem

Parameters S1 S2 ν1 ν2 λ E T r κ θ σ

Values 0.25 40 0.002 1.2 200 10 0.25 0.1 5 0.16 0.9

Figure 3: Numerical solutions with low correlation ρ = 0.1
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Table 3: Comparison of the computed option prices with ρ = 0.1

m value (Nx;Ny;Ns) Asset values

8 9 10 11 12

m ¼ 0:0625 (65, 169, 5000) 1.9941 1.1020 0.5139 0.2122 0.0843

[18] (400, 80, 20) 1.9958 1.1051 0.5167 0.2119 0.0815

[37] 2.00 1.108 0.5316 0.2261 0.0907

[7] (4096, 2048, 4098) 2.0000 1.10763 0.52004 0.21368 0.08205

[6] (256, 256) 2.000 1.107 0.517 0.212 0.0815

[8] (81, 21, 21) 1.9976 1.10768 0.51837 0.21424 0.08193

[9] (100, 100, 50000) 2.0000 1.0987 0.5082 0.2106 0.0861

[4] (177, 103) 2.000 1.1076 0.5202 0.2138 0.0821

m ¼ 0:25 (65, 169, 5000) 2.0744 1.3291 0.7920 0.4467 0.2437

[18] (400, 80, 20) 2.0760 1.3316 0.7945 0.4473 0.2423

[37] 2.0733 1.3290 0.7992 0.4536 0.2502

[7] (4096, 2048, 4098) 2.0784 1.3336 0.7960 0.4483 0.2428

[6] (256, 256) 2.0790 1.3340 0.7960 0.4490 0.2430

[8] (81, 21, 21) 2.0777 1.33219 0.79377 0.44621 0.2417

[9] (100, 100, 50000) 2.0781 1.3337 0.7965 0.4496 0.2441

[4] (177, 103) 2.0784 1.3337 0.7961 0.4483 0.2428

Table 4: Comparison of the computed option prices with ρ = 0.7

ν value (Nx, Ny, Nτ) Asset values

8 9 10 11 12

ν = 0.0625 (150, 57, 2500) 2.0022 1.1382 0.5163 0.1573 0.0317

ν = 0.25 2.1160 1.3665 0.7937 0.4062 0.1803

Figure 4: Numerical solution with high correlation ρ = 0.7
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For small values of S, Δ is approaching to −1 showing the linear decreasing behaviour of the option price
with respect to the asset price. For S ≈ E, Δ is increasing fast up to zero, and then remains there for larger
values of S. As expected, the put option price tends to zero for large asset price.

7 Conclusions

In present paper, a numerical method for solving American options pricing problems under stochastic
volatility has been developed. A suitable transformation is employed to remove the cross derivative term.
The semi-discretization approach combined with the ETD method is proposed, whose positivity and
stability is guaranteed under conditions (45) and (63). Comparing the results with other known numerical
methods, the competitiveness of the proposed method has been shown. A case with high correlation is
considered to show the advantages of the mixed derivative removing transformation.
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