

2

Resumen global (en español)

De acuerdo con el enorme respaldo internacional recibido por parte de actores

e instituciones de referencia dentro de la investigación cient́ıfica, incluyendo or-

ganismos de financiación y agencias especializadas tales como la UNESCO, la

Ciencia en Abierto se considera como el inminente salto cualitativo y revolu-

cionario dentro del campo de la ciencia, decisivo para el impulso de la innovación

y el intercambio de conocimiento cient́ıfico. Dentro de las fronteras europeas,

la transición hacia el nuevo paradigma de la Ciencia en Abierto se encuentra en

pleno auge y desarrollo, tal y como indica la consecución del primer prototipo de

un cloud europeo de Ciencia en Abierto, denominado European Open Science

Cloud.

El software abierto, aśı como el acceso y los datos en abierto, es uno de los

pilares fundamentales de la Ciencia en Abierto. De hecho, como resultado de

la fuerte dependencia que la investigación moderna ha establecido con la com-

putación de datos intensiva, el software surge como la pieza clave para conducir

la innovación cient́ıfica en el futuro y en un número de disciplinas cada vez

mayor. Sin embargo, de acuerdo con el análisis de la literatura cient́ıfica rela-

cionada con la Ciencia en Abierto llevado a cabo en la redacción de la presente

tesis, el software no siempre es considerado como ciudadano de primera clase en

el ámbito cient́ıfico, siendo en ocasiones desvirtuado en favor de otros productos

resultantes del estudio cient́ıfico, como es el caso de los datos resultantes de la

investigación. Esta realidad es particularmente perceptible en el caso europeo,

objeto de estudio de esta tesis, tal y como se puede extraer de los primeros pasos

dados en la implementación del European Open Science Cloud.

Este ecosistema aspira a convertirse en el punto de acceso universal para to-

dos los investigadores europeos, mediante la oferta de un catálogo completo de

servicios útiles para llevar a cabo la investigación cient́ıfica en diferentes campos,

de acuerdo con los valores promulgados por la Ciencia en Abierto. Sin embargo,

en el momento de la redacción del presente trabajo, los criterios para evaluar

la calidad y la madurez de los servicios ofertados no consideran el papel activo

del software como elemento habilitador para el adecuado funcionamiento de di-

chos servicios. Como resultado, existe un asesoramiento y control inadecuado

de los criterios mı́nimos de calidad, que en el peor de los casos, podŕıa exponer

al European Open Science Cloud ante la situación de suministrar, a través de

su catálogo, servicios inestables que no cumplen con los requisitos y expectati-

vas de los usuarios, ya sean cient́ıficos u otros actores dentro del ámbito de la

investigación.

La presente tesis detalla un proceso automático para garantizar la calidad

del software de investigación, tomando como referente la cultura DevOps, desde

las fases iniciales del desarrollo de software hasta su despliegue final como ser-

vicio. Este proceso se propone como modelo para garantizar la calidad de los

servicios del European Open Science Cloud, como paso previo a su integración

en el catálogo. La viabilidad del proceso propuesto está avalada por su apli-

cación, y progresiva evolución, durante el transcurso de una serie de proyectos

de desarrollo de software y servicios para e-Infrastructuras europeas, analizados

a lo largo de este trabajo. Estas e-Infrastructuras disponen de una experiencia

sólida, forjada a lo largo de los años, en el desarrollo, operación y soporte de

servicios centrados en el usuario, y como tal, son un referente para el suministro

de los servicios del European Open Science Cloud.

Principales conclusiones. Aun estando contextualizado en el marco eu-

ropeo, y dentro del paradigma de la Ciencia en Abierto, las contribuciones y

conclusiones extráıdas a lo largo de este estudio son igualmente aplicables en

un contexto cient́ıfico más amplio o global. El principal objetivo es contribuir

a realzar el valor del software como elemento habilitador de la reproducibilidad

en la ciencia y acelerador de la innovación en la investigación moderna. Para

ello, en los sucesivos caṕıtulos se presenta un manifiesto que fomenta el com-

promiso con una cultura de calidad en la producción de software cient́ıfico o de

investigación.

El paradigma de la Ciencia en Abierto ofrece el contexto perfecto para el

2

establecimiento de dicha cultura de calidad para el software cient́ıfico, y como

tal, las principales contribuciones del presente trabajo están orientadas a abor-

dar los retos e inflexiones puestas de manifiesto en la actual implementación de

la Ciencia en Abierto en Europa, especialmente en relación a la calidad de los

servicios ofrecidos a la comunidad investigadora. Aśı, la usabilidad del servicio

es primordial para el éxito del European Open Science Cloud, y ésta depende en

gran medida de la calidad del servicio, no sólo en términos de estabilidad y fia-

bilidad, sino también en relación a la idoneidad de sus capacidades funcionales,

necesarias para satisfacer las expectativas de los investigadores.

El presente trabajo concluye que la aplicación práctica de una cul-

tura de calidad del software de investigación, gobernada por el mani-

fiesto anteriormente mencionado y operada por medios automáticos,

tiene un fuerte impacto en la usabilidad del futuro servicio de in-

vestigación. Como demostración, la segunda parte de esta tesis describe

los resultados emṕıricos obtenidos en relación a la puesta en práctica de la

metodoloǵıa y criterios de calidad propuestos en proyectos de desarrollo de soft-

ware y servicios avanzados para e-Infrastructuras de investigación europeas.

Estas e-Infrastructuras llevan proporcionando desde hace más de una década

recursos de computación intensivos y servicios de investigación avanzados a una

plétora de comunidades cient́ıficas y, por tanto, son un modelo fiable para la

implementación del European Open Science Cloud.

Contribuciones y resultados obtenidos.

• La definición de los criterios mı́nimos para asegurar la calidad

del software de investigación a lo largo de su ciclo de vida, in-

cluyendo prácticas para la producción y análisis del código fuente, tes-

tado, mantenimiento y usabilidad. El manifiesto resultante es público

y está abierto a colaboración externa, con objeto de establecer una v́ıa

sostenible para la generación y transferencia de conocimiento colectivo,

que sirva como referencia en desarrollos de software cient́ıfico prospec-

tivos.

3

En el contexto del European Open Science Cloud, este documento sirve

además como base para la estimación de la calidad del software en los

servicios ofrecidos. Aśı, el software dispondrá de una serie de principios

o criterios de calidad, actualmente inexistentes, que a d́ıa de hoy sólo son

considerados para los datos de investigación dentro de la hoja de ruta

establecida por la Unión Europea.

• El diseño y puesta en práctica de un proceso automático que

implementa los criterios de calidad definidos en el manifiesto,

apoyándose en la cultura DevOps, para desarrollar software con

miras al futuro rendimiento operacional en las e-Infrastructuras

europeas que contribuyen al European Open Science Cloud.

El principal resultado de este proceso es la composición de tubeŕıas de

ćodigo o code pipelines, que permiten implementar y ejecutar los criterios

de calidad para cada cambio realizado en el código fuente. Para facilitar

esta tarea, se ha desarrollado una libreŕıa que implementa las funcional-

idades comúnmente requeridas en entornos de integración continua. Las

code pipelines permiten un alto grado de portabilidad, de manera que

pueden ser reutilizadas en diversos entornos, con lo que las prácticas de

calidad alĺı implementadas persisten durante la vida útil del producto soft-

ware, perdurando más allá de la duración de los proyectos de investigación

en los que se han desarrollado.

• La demostración de la aplicabilidad del mencionado proceso de

calidad no sólo en los casos de software cŕıtico para la operación

de las e-Infrastructuras, habitualmente desarrollado por exper-

tos en ingeneŕıa del software, sino igualmente adecuado para

software desarrollado por cient́ıficos computacionales, de origen

multidisciplinar. Muestra de ello es la sucesiva implementación de solu-

ciones DevOps para el desarrollo y distribución de aplicaciones cient́ıficas

en los proyectos del Programa Marco Horizon 2020, INDIGO-DataCloud

y DEEP-Hybrid-DataCloud. En este último proyecto se consolidó una

4

solución particularmente avanzada para la disponibilidad continua de apli-

caciones de deep learning a través del catálogo del proyecto.

• La modernización del proceso de provisión de software dentro de

la federación European Grid Infrastructure, e-Infrastructura clave

en la implementación del European Open Science Cloud, con el objetivo

de optimizar la fiabilidad y tiempo de entrega del software suministrado a

través de sus dos distribuciones oficiales. La revisión del proceso incluye

la gradual adopción de prácticas de automatización, concluyendo en la

implementación de un proceso DevOps para llevar a cabo la continua

validación del software antes de ser distribuido por los canales oficiales.

• El diseño de un servicio, denominado Software Quality Assur-

ance as a Service y desarrollado como parte de las actividades

del proyecto EOSC-Synergy, para promover y sustentar la cul-

tura de calidad en el software cient́ıfico dentro del ecosistema eu-

ropeo de la Ciencia en Abierto. Por un lado, este servicio se apoya en

el anteriormente mencionado manifiesto para evaluar de forma automática

la calidad del software cient́ıfico, y reconociendo sus cualidades mediante

la emisión de distintivos o sellos digitales, como primer paso hacia la im-

plantación de un sello de calidad oficial a nivel europeo. Por otro lado, el

servicio ofrece la capacidad de componer code pipelines personalizadas, con

funcionalidades relacionadas con el desarrollo y distribución de software,

de acuerdo con los propósitos y aspiraciones del cient́ıfico computacional.

Desarrollos futuros. De acuerdo con las principales contribuciones recién

expuestas, dos hitos fundamentales se preveen en un futuro inmediato.

• La definición de un manifiesto espećıfico para la calidad de los

servicios, siguiendo el modelo establecido por los criterios de la calidad

del software. Aunque están estrechamente relacionados, los factores de

calidad de los servicios están ı́ntegramente relacionados con su usabilidad,

y por tanto, difieren en cuanto a la perspectiva de aplicación. Aśı, para

5

evaluar la calidad de un servicio se debe analizar como una caja negra

en la que sólo su comportamiento, en términos de idoneidad funcional, es

relevante. Otros aspectos operacionales relacionados con la infrastructura,

como la seguridad o condiciones de uso, deberán ser igualmente consider-

ados. Debido a que el European Open Science Cloud solamente considera

servicios, y no expĺıcitamente software, la redacción de este documento es

especialmente significativa.

• La instauración de una certificación oficial de calidad de servi-

cios de investigación a nivel europeo. Uno de los informes publicados

en la fase de consulta de la implementación del cloud europeo de Ciencia

en Abierto, Prompting an EOSC in practice, recomendaba el establec-

imiento de un sistema de certificación para “promover la sostenibilidad

a largo plazo de la operación del European Open Science Cloud y dar

crédito a desarrollos de software innovativos”. La implementación de la

anteriormente mencionada solución Software Quality Assurance as a Ser-

vice proveerá de un prototipo para la emisión de sellos de calidad para

servicios de computación, de acuerdo con los criterios establecidos en el

manifiesto de calidad del software. La adopción de esta solución deberá

ser considerada no sólo como medio de certificación y reconocimiento de

la calidad del software, sino como herramienta de evaluación, formación y

regulación tanto para el mantenimiento del software existente como para el

futuro desarrollo de software de investigación. De esta manera, el software

ocupará su lugar leǵıtimo dentro de la investigación moderna.

6

8

Abstract

Given the strong endorsement by the research stakeholders worldwide, includ-

ing national and international funding bodies and specialized agencies such as

UNESCO, the Open Science movement is considered as the next quantum leap

in science, decisive for accelerating innovation and knowledge sharing. In the

particular case of the European Union, the transition towards Open Science has

already started, undertaking the preliminary steps towards the establishment of

an European Open Science Cloud.

Open source software, in addition to open access and open data, has been

identified as one of the main pillars of Open Science. Indeed, as modern research

is requiring data-intensive computing, software is deemed as the cornerstone to

drive the innovation in an increasing number of scientific disciplines. However,

according to the analysis of Open Science-related literature conducted in this

thesis, software is commonly regarded as a second class citizen, not being equally

treated as the other research objects, such as data. This fact is particularly

noticeable in the European case, subject of study of the present work, when

examining the initial steps taken in the implementation of the European Open

Science Cloud.

This ecosystem aims at constituting an universal entry point for all the

European researchers, offering them a catalogue of research-enabling services

to do science according to the Open Science values. However, at the time of

writing, these services are not being accurately assessed in terms of quality and

maturity, and the role of the underlying software, that enables the services, has

been disregarded to a great extent. As a result, there is an inadequate guidance

and control of the minimum quality standards, which can pose the risk to the

European Open Science Cloud of delivering unreliable services that not meet

the researchers’ expectations.

This thesis presents an automation-driven Software Quality Assurance pro-

cess, built upon a DevOps culture, to govern the whole life-cycle of software

production, from the early development stages to the final delivery as services,

thus serving as a model for the quality assessment and integration of services in

the European Open Science Cloud. This process is established on a strong foun-

dation, evolving throughout the years of guiding the software delivery of several

research e-Infrastructure development projects. The European e-Infrastructures

have a solid background, forged over the years, on the development, opera-

tion and support of user-centric services, and accordingly, can be regarded as

a benchmark for the delivery of services within the ecosystem of the European

Open Science Cloud.

As part of the outcomes of this thesis, concrete guidance is provided to drive

the development life-cycle of quality research software. Furthermore, a quality

assessment tool is presented, which is intended to contribute to address the

aforementioned challenges with regards to the viability of the service onboarding

in the European Open Science Cloud.

Although the work is contextualized under the European scope, the outcomes

and conclusions presented are equally applicable in a wider or global context.

The main goal is to contribute to enhance the value of software in the scientific

community as a key research object for the realization of the Open Science.

Research software is the enabler of reproducibility in science, as well as an

innovation accelerator in modern research. Only by ensuring the quality of

research software, the aforementioned goals can be accomplished.

2

4

Acknowledgements

Needless to say that one single individual cannot embark alone on the under-

taking being described throughout the following chapters. The practical im-

plementation of the most innovative ideas requires being surrounded by skilled

partners that deeply believe in achieving a common goal, and in my case, I had

the luck of having highly valued travel companions over the years and research

projects. I am particularly thankful to my Portuguese colleagues at Laboratório

de Instrumentação e F́ısica Experimental de Part́ıculas (LIP) –especially Joao,

Mario, Jorge and Samuel–, and Cristina from the Istituto Nazionale di Fisica

Nucleare (INFN-CNAF). Moreover, since groundbreaking ideas always came

from most bright minds, I would like to highlight the pivotal role that my friend

and next-door colleague (and thesis co-director) Álvaro had in the work pre-

sented through constant advice and vision. Last but not least, very grateful to

the thesis advisors, Isabel and Francisco, always there when needed, and the

rest of my department colleagues at Instituto de F́ısica de Cantabria (IFCA).

I should not forget COVID-19 lockdown, which definitely made me sit up and

write this dissertation.

Contents

Thesis Statement 13

1 Thesis Statement 15

Software Quality, Open Science and European Re-
search Ecosystem 19

2 The Role of Software in Open Science 21

2.1 Ode to Open Science: addressing the reproducibility crisis 22

2.1.1 The contextualization of the Open Science term 23

2.1.2 The Open Science pillars 24

2.1.3 The path to reproducibility in Science 27

2.2 Research software in Open Science 31

2.2.1 Common problems in research software development . . . 31

2.2.2 Reproducibility in Software 35

2.3 Conclusion . 38

3 Building a Culture of Software Quality 41

3.1 Why quality on research software? 42

3.1.1 The defining factors of quality in software 45

3.2 The path to software quality engineering 52

3

Contents

3.2.1 Software Quality Assurance 53

3.2.2 Verification and Validation processes 53

3.3 The DevOps culture: automation to enable quality 55

3.4 Conclusion . 60

4 Software Quality to drive the delivery of services in the Eu-

ropean Open Science Cloud 63

4.1 Enabling Open Science in Europe: the European Open Science

Cloud . 64

4.1.1 The Horizon 2020 Framework Programme 65

4.1.2 The foundational elements of the European Open Science

Cloud: e-Infrastructures and Research Infrastructures . . 66

4.1.3 The roadmap to the implementation of an European Open

Science Cloud . 66

4.2 Service maturity assessment within the European Open Science

Cloud . 68

4.3 Quality-aware e-Infrastructures as the guidance for the European

Open Science Cloud implementation 71

4.3.1 Software quality for e-Infrastructure operation and ex-

ploitation . 72

4.3.2 The missing element in the European Open Science Cloud

equation . 73

4.3.3 Featured e-Infrastructure enabling initiatives in Horizon

2020 Programme . 75

4.4 Conclusion . 79

A Story of Three Acts 81

4

Contents

I Laying out the Groundwork: The Definition of a
Baseline for Software Quality Assurance 85

5 Wrapping-up: The definition of a Software Quality Assurance

baseline for Research Software 87

5.1 Background . 88

5.2 Motivation . 90

5.3 Essential criteria for quality research software 91

5.3.1 Code management . 91

5.3.2 Collaborative coding . 96

5.3.3 Code accessibility . 99

5.3.4 Verification and validation 102

5.3.5 Software uptake . 110

5.4 Conclusion . 114

II Where Theory Meets Praxis: the Implementation
Process 117

6 Developing quality software from its origin: the INDIGO-

DataCloud project 119

6.1 The Software Quality Assurance process 120

6.2 Software verification, validation and delivery through DevOps . . 121

6.3 Compliance with the requirements from the Software Quality As-

surance baseline . 127

6.4 Conclusion . 133

7 Tailoring software to user needs: the DEEP-

HybridDataCloud project 137

7.1 Moving towards a Pipeline as Code environment 138

7.2 Stage composition of Continuous Integration and Delivery code

pipelines . 142

5

Contents

7.3 Extended automation beyond Continuous Integration and Deliv-

ery environments . 145

7.3.1 Automated generation of Open Catalogue’s content . . . 145

7.3.2 Continuous Deployment for machine learning inference . . 147

7.4 Conclusion . 149

8 Software validation in the European Grid Infrastructure 153

8.1 Software distribution in the European Grid Infrastructure: the

Software Provisioning Process . 154

8.2 Phase 1 of the Software Provisioning Process modernization:

boosting the software validation 157

8.2.1 Statement of the problem 157

8.2.2 Automation of the Quality Criteria requirements 158

8.2.3 The umd-verification tool 160

8.2.4 Evidence of the umd-verification adoption 164

8.3 Phase 2 of the Software Provisioning Process modernization: De-

vOps adoption . 166

8.3.1 From release preparation to stage rollout 167

8.3.2 Statement of the problem 168

8.3.3 Setting up a DevOps-like continuous validation process . 168

8.4 Conclusion . 174

III Mapping out the Future: Universalize and Sus-
tain a Culture of Quality Research Software 177

9 Incentivize a Software Quality Culture in the European Open

Science Cloud: the Software Quality Assurance as a Service 179

9.1 Framing the Software Quality Assurance as a Service in the Eu-

ropean Open Science Cloud . 180

9.2 Dissemination of a culture of software quality 183

9.2.1 Online Software Quality Assurance baseline assessment . 183

6

Contents

9.2.2 Pipeline as a service . 184

9.3 Architecture of the Software Quality Assurance as a Service . . . 185

9.3.1 Integral components . 186

9.3.2 Automated validation of the Software Quality Assurance

baseline requirements . 186

9.3.3 Implementation of the workflows 187

9.4 Conclusion . 192

Conclusions 195

9.5 Summary and Contributions . 197

9.5.1 Role of the author in the reviewed research projects . . . 200

9.6 Publications . 200

9.7 Future Work and Perspective . 203

Appendices 224

A Software Quality Assurance 227

A.1 A representative view of educational initiatives for research soft-

ware development . 227

A.2 Test to build trust . 229

A.3 Agile software development . 233

B European Open Science Cloud 235

B.1 Roadmap towards the implementation of the European Open Sci-

ence Cloud . 235

C European Grid Infrastructure 245

C.1 Operating system support within the Unified and Cloud Middle-

ware Distributions . 245

7

Contents

Glossary 247

8

List of Figures

2.1 The three main pillars of Open Science 25

2.2 Common problems of software developed in academia 32

2.3 Role of reusability in Easterbrook’s comparison of repeteability

and reproducibility . 36

2.4 SQA as a enabler of reproducible research 38

3.1 The duality (and synergies) in Verification and Validation (V&V)

processes . 55

3.2 Classification of testing types according to V&V processes and

automation capabilities . 56

3.3 Foundations of the DevOps culture 58

4.1 Horizon 2020’s most representative e-Infrastructure enabling

projects . 76

5.1 Milestones along the SQA baseline roadmap 89

5.2 Mapping between software characteristics and the criteria’s cat-

egories of the Software Quality Assurance (SQA) baseline 92

5.3 Popular open source licenses for software distribution 100

5.4 Required documentation expected for any software project 111

6.1 Representation of the delivery process in INDIGO-DataCloud

(INDIGO) project by means of a Continuous Integration and De-

livery (CI/CD) pipeline . 122

9

List of Figures

6.2 Evolution of the uncovered software bugs during INDIGO project

lifetime . 123

6.3 CI/CD workflow implementation for the INDIGO core components124

6.4 Evolution of the CI/CD pipeline builds as part of the SQA process

operation in INDIGO project . 125

6.5 CI/CD workflow implementation for a prototype application part

of the INDIGO project use cases 126

6.6 Code style standards followed by INDIGO software products. . . 127

6.7 Analysis of unit testing coverage for the two major releases of

INDIGO software . 128

6.8 Adoption of Continuous Configuration Automation (CCA) tools

throughout the INDIGO project lifetime 130

6.9 Distribution of INDIGO components among the cloud IaaS cen-

ters part of the pilot preview testbed 133

7.1 The notification stage streamlines the software delivery in DEEP

Hybrid-DataCloud (DEEP)’s CI/CD pipelines 143

7.2 The delivery of DEEP-ML applications as Docker images is linked

with the Continuous Integration (CI) part and new releases of

DEEP-as-a-Service (DEEPaaS) component 144

7.3 Management of the DEEP Open Catalogue (DEEP-OC) and

DEEPaaS Function as a Service (FaaS) endpoint through Jenkins

code pipelines . 150

8.1 The EGI Software Provisioning Process (EGI SWPP). 156

8.2 Trend graph showing the number of products supported in

the European Grid Infrastructure (EGI) production repositories

(Unified Middleware Distribution (UMD) and Cloud Middleware

Distribution (CMD)) . 157

8.3 Product validation workflow in umd-verification. 160

8.4 Comparison of the duration times of manual and automated val-

idation process . 165

10

List of Figures

8.5 CCA modules being maintained, forked and published in the of-

ficial repositories by the EGI SWPP team 166

8.6 Sequential Phases 1 and 2 of the EGI SWPP modernization . . . 169

8.7 A detailed view of the workflow required for implementing the

automated version of the UMD/CMD software validation process 173

9.1 Scoping the concept of a SQA as a Service in the EOSC 181

9.2 High-level overview of the SQA-as-a-service (SQAaaS). 185

9.3 Detailed view of the SQAaaS operation 190

11

List of Tables

3.1 The defining factors of quality in the research software 45

5.1 Code management, accessibility and collaborative coding criteria. 97

5.2 V&V criteria in the SQA baseline. 103

5.3 Software uptake criteria in the SQA baseline 110

8.1 EGI Quality Criteria (EGI QC) (v7) requirements 161

9.1 Automation capabilities and means of verification for Code man-

agement and Code accessibility categories from the SQA baseline.

URL endpoints correspond to GitHub Application Programming

Interface (API). 188

9.2 Automation capabilities and means of verification for Code V&V

and Software adoption categories from the SQA baseline. 189

9.3 The three-level badges of software quality issued by EOSC-

Synergy (SYNERGY) project . 192

C.1 Operating Systems (OSs) supported throughout UMD and CMD

distributions lifetime . 246

12

Thesis Statement

13

1
Thesis Statement

Contextualization and Objectives

Software is an indispensable tool for conducting research. The term research

software is used throughout this thesis to refer to the type of software that

produces, analyses and visualizes the data in a scientific study, or is accessory

to it. Hence, research software and data are mutually inclusive, but, whilst much

of the global attention has been put on data, the former has been traditionally

overshadowed.

The advent of the Open Science movement, increasingly considered as the

future of science, has raised great expectation not only within the research

ecosystem, but also in the society, as it fosters the democratization of the scien-

tific knowledge, making it readily accessible for all the individuals and countries.

15

1. Thesis Statement

In a research context, one of the most prominent goals of Open Science is to ad-

dress the currently existing reproducibility crisis of the scientific outputs, and for

that purpose, a major cultural shift is required within the scientific community.

According to the working hypothesis of this study, the quality of the software

plays a strategic role as the legitimate enabler of the principles underpinned by

the Open Science movement. To this end, the scenario of this study is placed

in the context of the first stages of the Open Science implementation within

the European Union. Here, the predominant effort has been put on delivering

horizontal and thematic services, through the European Open Science Cloud

(EOSC), that allow to conduct research and data management according to

standards akin to Open Science principles, such as the FAIR principles.

However, as elaborated in subsequent chapters, the EOSC implementation is

yet again disregarding the role of software in delivering those services, without

providing adequate guidance and regulation. Accordingly, the main objective

of this thesis is to demonstrate how the quality of the software con-

tributes to meet the challenges that emanate from the implementation

of the Open Science values in the services offered through the EOSC.

Hence, the present work places great emphasis on building a Software Quality

Assurance (SQA) culture for the development of research software, providing

empirical evidence throughout the chapters from the second part.

Document structure

The content is broken down in two main blocks, structured as follows:

• The first three chapters are clustered around the “Software Quality,

Open Science and European Research Ecosystem” block, which provides a

proper contextualization of the work and introduces the essential concepts

and tools that are pivotal in order to discuss the main outcomes that are

laid out in the second block “A Story of Three Acts”.

In particular, Chapter 2 “The Role of Software in Open Science” exhibits

the current status and challenges that the Open Science paradigm seeks

16

1. Thesis Statement

to address, putting specific emphasis on the strategic role of the software.

In Chapter 3 “Building a Culture of Software Quality”, the foundations for

establishing a culture of software quality are set by scouting the desirable

quality characteristics, as well as the state-of-the-art methodologies that

will provide the tools for the practical implementation of such a culture

in the second block.

The scope of the discussion will then be framed into the Open Science im-

plementation in the European landscape, as part of Chapter 4 “Software

Quality to drive the delivery of services in the European Open Science

Cloud”. A comprehensive analysis of the first steps taken for the reali-

sation of the EOSC is herein presented, outlining the currently existing

strategic and technological gaps that are preventing the successful delivery

of the Open Science values.

• The second block, “A Story of Three Acts”, presents the major outcomes

of this study as a logical sequence of acts that cover the definition, imple-

mentation and dissemination of the aforementioned SQA culture in the

European e-Infrastructures, and thus, in the EOSC. Consequently:

1. Act I “Laying out the Groundwork: The Definition of a Baseline

for Software Quality Assurance” lays out the groundwork for the

subsequent phases through the formulation of a comprehensive cri-

teria, coined as SQA baseline, that identifies the flagship topics to

be addressed while driving the development and maintenance of the

research software.

2. Act II “Where Theory Meets Praxis: the Implementation Process”

presents real use cases of past and ongoing e-Infrastructure projects

where the herein proposed SQA culture has been successfully imple-

mented. The chapters of this act cover the DevOps approaches to

cope with the the development, deployment and operation phases,

which are relevant to serve as a model to improve the delivery of

services in the EOSC.

17

1. Thesis Statement

3. Act III “Mapping out the Future: Universalize and Sustain a Cul-

ture of Quality Research Software” introduces the SQA-as-a-service

(SQAaaS) solution, which harnesses the insight and knowledge ac-

cumulated over the course of the previous projects, putting them

within reach of the global scientific community. The SQAaaS pro-

vides a means to accurately assess, and award, the quality of the

EOSC software and services.

The last blocks of the thesis are reserved for the formulation of the “Conclu-

sions”, which captures the main contributions of this thesis and discusses the

future directions and possible improvements of the outcomes herein obtained,

and the “Appendices” that collects the relevant appendices of this thesis.

18

Software Quality, Open

Science and European

Research Ecosystem

19

“Information wants to be free”

Stewart Brand

2
Present and Future of Software in

Research: the Role of Software in Open

Science

Open Science has the simple, and yet ambitious, objective of making all the

present and future scientific advances within global reach, thus not only being

open to the research community but also to the society at large. The democrati-

zation of the scientific knowledge will build on collaboration and sharing values

to unlock the full potential of innovation in research, as all this knowledge will

be readily available by all the stakeholders in the research process, extending

the dissemination levels to citizens worldwide.

21

2. The Role of Software in Open Science

In this chapter, Open Science will be presented as the qualitative step ahead

for research advancement. However, the Open Science realisation requires both

a cultural shift in the scientific community, to empower the creation of collab-

orative knowledge and subsequent transparent dissemination, and the proper

identification of the pillars that will sustain the movement. On this latter point,

the role of the software is emphasized as the principal enabler of reproducible

research, key goal to achieve such quality leap.

2.1 Ode to Open Science: addressing the repro-

ducibility crisis

Open Science movement stands for the global cooperation and dissemination of

scientific knowledge, across all disciplines and accessible by all the individuals

and stakeholders, reaching the long tail of research. No country, institution

or scientific discipline shall be disfavored in the exploitation of Open Science,

regardless of the geographical location, income status or regional policies. Ac-

cording to the UNESCO, “Open Science could be a game changer for achieving

the United Nations Sustainable Development Goals” [1].

The current landscape is promising. New digital technologies pave the path

for the practical implementation of the Open Science culture by removing the

barriers for collaborative work from the very early stages of research process.

International bodies such as the Organisation for Economic Co-operation and

Development (OECD) drafted guidelines [2] that set the standards to be followed

for establishing Open Science. Other research community organisations such as

the Committee on Data for Science and Technology (CODATA) or the Research

Data Alliance (RDA) advocate for international collaboration to advance Open

Science and to accelerate the transition to immediate accessibility and usability

of data for all areas of research. The European Commission (EC) is pioneering at

the governmental level the implementation of the Open Science paradigm since

the publication of the Open Innovation, Open Science and Open to the World [3]

22

2. The Role of Software in Open Science

report, which constituted the starting point for materialising the open access

to scientific data and the development of an European Open Science Cloud

(EOSC).

The implementation of Open Science shall guarantee the promotion of open-

ness, reproducibility and transparency values in scientific publications. But this

implies educating the scientific community, in an attempt to drive researchers’

behaviour towards the adoption of these values in daily practice, through the

adjustment of the current incentive structures. Initiatives such as the Trans-

parency and Openness Promotion (TOP) guidelines [4] promote the practice

of Open Science values in scientific journals through the definition of concrete

actions to change rewarding mechanisms in research towards open practices.

Hence, the immediate outcome of the adoption of Open Science are both the

extended capacity to reproduce scientific results, and subsequently, the building

of trust in science by citizens.

2.1.1 The contextualization of the Open Science term

Since its inception, the Open Science term has generated debate about the scope

of application among the diverse stakeholders involved in the research process,

i.e. scientists, research infrastructure developers and operators, policy makers

or citizens. It is an overarching concept that cuts across several domains such

as the access and creation of the research knowledge, more aligned with the

interests of the two former groups, or the outreach capacity of science to the

general public, more in line with the expectations of politicians and society.

In this regard, Fecher and Friesike [5] identify five different schools of thought

in Open Science, in which the aforementioned stakeholders are grouped accord-

ing to their requirements in regards to the accessibility –equal, public, peer

recognized– and creation –collaborative effort, tools and services– of scientific

knowledge. A more precise attempt of providing a formal definition for Open

Science was carried out by Vicente-Sáez and Martinez-Fuentes [6] through a

systematic analysis based on the presence of the term and associated predi-

23

2. The Role of Software in Open Science

cates across interdisciplinary literature. The definition “Open Science is the

transparent and accessible knowledge that is shared and developed through col-

laborative networks” includes keywords commonly present when describing the

Open Science phenomenon.

The fact that Open Science concept is diversely interpreted reveals the pop-

ularity and the growing interest of the involved stakeholders in the realisation

of a paradigm in science that makes all the publicly funded research knowl-

edge globally accessible. Each group provides a different vision that reflects

the existing gaps in their approach to science. Open Science evokes numerous

concepts and therefore entails a broad and complex set of topics, some yet to

be identified.

The unreleased UNESCO Recommendation on Open Science [7] is expected

to build a global consensus on Open Science’s overarching principles and values,

through global and inclusive dialogue with all the member states, with the aim

of reducing the science gaps “between the haves and have-nots”. Until then,

the definitions and approaches herein discussed, along with the enumeration of

the pillars in the next section, provide a realistic approximation to the Open

Science movement.

2.1.2 The Open Science pillars

Just as the Open Science definition is subject to different interpretations, there

is no universal agreement about the principal pillars that sustain this paradigm.

From three [8], through four [9] to six [10], the common understanding, as

illustrated in Figure 2.1 is that Open Access, Open Data and Open Source are

the fundamental prerequisites for the Open Science realization.

Open Access

Open Access is a well-known publishing model that entails general free-of-charge

accessibility to digital scientific literature. Traditionally, there were three main

ways for scientists to deliver publications in Open Access mode, either via pre-

24

2. The Role of Software in Open Science

Open Access
Free-of-charge access to
scientific literature

Open Source
Code
Public access and reuse of the
source code that conducted the
scientific experiment

Open Data
Research data from public-funded
projects used to obtain the
experiment's results

Open
Methodology

Open
Peer Review

Open
Education

Figure 2.1: The three main pillars of Open Science

prints –articles before the formal peer review has been performed within the

scientific journal’s acceptance process– or post-prints –journal peer-reviewed

articles that can be published after an embargo period– in online repositories,

and paying to subscription-based research journals the production costs upfront

as a way to avoid the establishment of access barriers to research advancements.

The advent of the Open Access journals provided a means to publish free-

of-charge and peer-reviewed scientific content in Open Access. The widespread

acceptance of this type of journals is illustrated by the metrics provided by the

Directory of Open Access Journals (DOAJ) [11], which, at the time of writing,

records more than 14K journals for a total of 4.7M articles. Furthermore, stud-

ies [12] have shown that the funding mechanism is irrelevant when considering

the quality of a scientific journal, and as a result, the Open Access journals are

closely approximating the same scientific impact and quality as the subscription

journals. And this fact represents a major push to Open Science implementa-

tion.

25

2. The Role of Software in Open Science

Open Data

Open Data implies the public access and utilisation of an experiment’s data

–both raw (or primary) and processed (secondary, tertiary)–, relevant to the

pursuit of the research value. Consequently, the extent of data should enable

the execution of the same analysis conducted during the course of such exper-

iment. Such lack of data availability is commonplace in scientific publications,

thus hindering the solidness and, most importantly, the reproducibility of

scientific results.

This is specially controversial in the research conducted using public funds,

where the valuable data is traditionally considered as intellectual property [8]

of the researchers. Data outlives the scientific paper [10], and should not be

hidden, rationed or hijacked by the researcher in order to exclusively extract

the knowledge out of them, and rather, be openly available to other researchers.

This is the only way that fast innovation, promoted by the Open Science move-

ment, can be achieved. Needless to say that there are specific cases, usually

involving ethical concerns, where data protection is a requirement and cannot

be delivered publicly.

In Europe, the EC’s Horizon 2020 Programme has set the goal to remove

the barriers for accessing scientific outcomes, both in terms of publications and

research data. For the latter, the Open Research Data (ORD) pilot [13] has been

established to provide guidance in order to balance openness and protection of

data in underlying publications.

Open Source

Open Source refers to the public access and reuse of the source code, which is

the representation of the software in plain text using a programming language.

The term was originally coined as a way to diverge from the philosophical impli-

cations of the free software term in order to promote business adoption. Even-

tually both terms co-existed over time, giving rise to the Free/Libre and Open

26

2. The Role of Software in Open Science

Source Software (FLOSS), which appears as a neutral term 1 that highlights

their commonalities.

As the rest of Open Science pillars, open source concept was empowered

by the digital transformation that occurred with the advent of the Internet

technology. It enabled a new methodology underpinned by the collaborative

development of software. To this end, the open source software is required to be

delivered under a licensing agreement that not only makes the software readable,

but also relinquished all creative or financial control over the code 2. This

methodology was firstly applied in the development of the Linux kernel project,

and later on universalized by the code sharing platforms, such as Sourceforge [15]

and GitHub [16].

In accordance with the “Thesis Statement” and the outcomes that will be

presented in the next chapters, Open Source is a key enabler of the Open

Science movement, not only in terms of openness, intellectual property or

accessibility in general –as it is commonly and uniquely found in the Open

Science-related literature–, but also within a broader and inclusive context

of software quality.

2.1.3 The path to reproducibility in Science

Reproducible research is a popular topic and a particular aim in the current

research scene, not only because of the recent focus on the reproducibility crisis,

but also as a way to enhance modern science and the scholarly process. When

talking about Open Science, and how this movement is gaining momentum as

a solution to the reproducibility crisis in global research, most of the scientific

1See https://www.gnu.org/philosophy/floss-and-foss.html for further clarification
about FLOSS and Free and Open Source Software (FOSS) terms.

2The open source models were represented by one of its founders, Eric S. Raymond, in his
essay The Cathedral and the Bazaar [14]. While the cathedral model supported a closed –or
non-open– software development approach, the bazaar model stands for source code freely
shared and collaboratively developed by programmers worldwide, exploited through the po-
tential of Internet. Through the “given enough eyeballs, all bugs are shallow” statement,
Raymond expressed the fundamental benefit of open source over the traditional closed ap-
proach.

27

https://www.gnu.org/philosophy/floss-and-foss.html

2. The Role of Software in Open Science

literature and research policies remark the need of a data-driven process. It is

widely accepted that, even the Open Science term suggest otherwise, open is not

the only element in the equation [17], but instead it needs to be supplemented

by additional research practices during the data analysis process.

Debate in the scientific community on data sharing

The scientific literature from the early days of the Open Science implementa-

tion reflected some concerns about the upcoming shift to open data. In order

to be valuable, open research data is required to be curated before being dis-

tributed and used by others, and thus, the sceptics argued about the process

and cost of carrying out such process [18]. More recent studies gave light to

data protection issues, presenting the risks of being plagiarized or even jeopar-

dizing a collaboration as a result of discrepancies on adhering to Open Science

principles [19].

However, the upsides of the new paradigm were also broadly acknowledged,

and solutions to the identified risks started to emerge [20]. It is a fact that open

publications have a higher number of citations, as not only the paper itself is

cited, but also the other research objects such as data and software. Persistent

Identifiers (PIDs) enable the citation of the research objects, and thus, highly

contribute to the reproducibility of scientific results since the paper-data-code

triangle is uniquely identified. Other risks such as plagiarism can be dissuaded

by the use of time-stamped data, data deposition plans or temporary embargo

periods for the most sensitive data.

In short, data sharing requires from a previous, complex process to produce

and curate data in order to profit from the demonstrated benefits of an open

data approach to science. Good practices are then needed to build a data culture

within research that enables the Open Science implementation.

28

2. The Role of Software in Open Science

Establishing a data culture through the FAIR principles

Adopting good practices early in the data management process is key to en-

able the reproducibility and reusability of research data. In this regard, the

unquestionable reference are the Findability, Accessibility, Interoperability and

Re-usable (FAIR) principles formulated by Wilkinson et al. [21]. These pro-

vide a measurable way to attain good data management and stewardship, both

for data producers and publishers, via a set of requirements categorized un-

der four foundational principles: Findability, Accessibility, Interoperability and

Reusability.

The FAIR principles enable an accurate use of metadata, treated equally as

the data themselves. Considerations such as having PIDs both for data and

metadata, licensing or the use of standarized ways to create or access the data,

are part of the FAIR practices.

Since its inception, the FAIR data principles have been extensively embraced

by scientific initiatives worldwide, but with special emphasis in the design of

the Open Science implementation in Europe, as it will be showed later on in

Chapter 4 “Software Quality to drive the delivery of services in the European

Open Science Cloud”.

What about Software?

According to what it has been stated so far, much of the global research focus

has been put on data, overshadowing the role of the software in the Open Science

movement. FAIR principles have been adopted by research institutions and even

at the policy level, such as in the European Union (EU), as the reference for

guiding data management and stewardship processes.

Software has not received the same treatment at the institutional level. Un-

like the data, there is no research regulation or policy that defines the

principles that should guide the development and maintenance of re-

search software. As a result, software has been already considered as the

forgotten pillar of Open Science [22].

29

2. The Role of Software in Open Science

Box 1.1: EC expert group on FAIR data

The consultation report on FAIR data implementation [23], requested to data

experts by the EC, states that “(FAIR principles) do not just apply to data

but to other digital objects”, revealing later on those objects as “metadata,

identifiers, software and Data Management Plans (DMPs)”.

In terms of reproducibility, software is certainly a key player. Chen et al. [17]

advocates that the path to reusability and reproducibility does not consist ex-

clusively on data issues, but they also go hand in hand with “software, workflows

and explanations”. Consolidated reproducibility guidelines [24] extensively pro-

mote the use of software engineering practices, such as the use of version control

systems or verification and validation processes. Other guidelines, such as Good-

man et al.’s [25], also underline the fact that “publishing the source code and

its version history is crucial to enhance transparency and reproducibility”.

Box 1.2: Software not part of the EC Open Science ambitions

The EC identified a set of recommendations for the implementation of Open

Science in the European research ecosystem, collected under the Open Science

Policy Platform (OSPP) recommendations [26] document, released in April 2018.

Contrary to most research literature on Open Science, none of the formulated re-

quirements in this document considers open source –or software– as a prioritized

issue to be promoted towards the implementation of Open Science in Europe.

This fact was subsequently acknowledged by the League of European Research

Universities (LERU) in an advice paper [27], highlighting that “the European

Commission has identified eight component parts of Open Science, but universi-

ties may feel that there are additional areas that should be catered for. Copyright

regimes allied to Open Science principles, infrastructure development, sustain-

able research software, open education, and artificial intelligence are examples

of areas which are not explicitly treated in the Commission’s vision”.

30

2. The Role of Software in Open Science

2.2 Research software in Open Science

Software is present in a lot of disparate fields in modern research, ranging from

sciences to engineering to humanities. It is being considered as an indispens-

able tool for doing research, either as a value object by itself or to conform

the groundwork that provides the scientific result [28]. The term research soft-

ware identifies with the kind of software that is used for generating, processing,

analysing and visualizing data in a scientific study. Accordingly, research soft-

ware is both diverse, it might be targeted to address a complex simulation

in a high-performance computer or to solve a simple problem, and specialized,

dwelling within a very specific application domain. As a consequence, it is

commonly developed and maintained by the scientific community doing the re-

search [29].

Several studies have confirmed the growing presence of software in reference

journals such as Nature, where an examination of the published papers over

a 3-month period showed that 80% of them had mentioned software and/or

referred to research software tools [30]. Therefore, according to surveys [31, 32],

more and more scientists are relying on software tools to carry out their work,

both in universities or other academic-related organisations, to such an extent

that their research would be hard or even impossible to be conducted without

software assistance.

2.2.1 Common problems in research software develop-

ment

Despite the widespread adoption in academic environments, software is still not

treated as a value object in modern research. As a result, a series of problems,

associated with the involved stakeholders –mainly scientists, universities and

funders–, characterize and hinder the application of good practices in research

software development [33]. Figure 2.2 summarizes the source of those problems

that are both inherent and accidental to the academic research development.

The inherent problems are the most relevant to this thesis as they are

31

2. The Role of Software in Open Science

Unawareness of
software

fundamentals
Failure to achieve long-term

sustainability

Little code reusability

Wrong dissemination and
accessibility (licensing)

Erroneous view of software
as a complex object

Use of old languages and
technologies

Educational and
endemic

Expertise
management

Quick-and-dirty, throw-away
code

Regard development
methodologies as too

formal

Engineering practices
impact on time-constrained

research

Software practitioners
are novices (PhD

students, early post
docs)

Lack of a domain-expert
software engineer

profile

Little funding

 Underestimated effort by
funding agencies

Poor resilience to
software cost risks

No incentives
Limited access to

skills
Research reward structures

undervalue software
Insufficient education

programs

Team knowledge loss

Inherent

Accidental

Scientists

University

Funding
agencies

University

Figure 2.2: Common problems of software developed in academia

resultant from bad practices that, in some cases, do not even provide any profit

to the researchers, and, in most cases, inevitably lead to future burden on

software development and maintenance tasks. In software engineering, the term

technical debt expresses this issue, as quick and dirty code incur debt to obtain

rapid benefit –a program that does its job–, but such debt will be paid by future

code maintainers and/or users.

Inherent problems

Software was traditionally developed in an ad hoc manner, to serve promptly

the specific needs of a given research activity, without worrying about

the long-term sustainability of the solution. Consequently, in such cases,

no design principle or best practice was followed, only individual, and usually

random, decisions done by the developers at the time of coding. In many oc-

32

2. The Role of Software in Open Science

casions, those software projects become popular in the scientific domain have

prevailed for a longer time than it was first planned. It is then when development

and maintenance problems might arise.

As it will be described in the second part of this thesis, the experience of

managing software development in academic research has shown that the lack

of awareness of the fundamentals of software engineering theory is

a recurrent issue. But even if scientists are familiar with software engineering

practices, they are tempted to develop quick and dirty code in order to come

up with a solution in the short term. This may be a practical solution for

very specific and rare situations, such as when developing throwaway code to

serve its purpose during a very short period of time and never reuse it anymore.

However, when it comes to software meant to be reused, it is indeed a deceptive

practice since the cost of maintenance grows with the increase in the program

size. Software reusability is then a key concept in order to illustrate the virtues

of the quality software. Specially in small teams, there are recurring situations

where the developer of a program or application stops maintaining it at a given

point in time,

Underestimating the value of quality software, or putting it differ-

ently, the bad consequences that unstructured code might bring along, is a

educational and endemic problem in academia. To illustrate this, one

could think about a project coordinator or senior researcher that sets the policy

of refusing the application of well-known software engineering conventions, so

that any software solution that derives from within the project or department

work will be lacking of any type of quality control. Such opposition is not that

uncommon and may arise from meeting time constraints or, in the specifics of

developing cutting edge solutions, to the fact that the research product might

not be tangible in the event of investigations not producing any outcome, so why

spend time on software quality then? Mentoring young researchers in software

engineering good-enough practices would set the path to confront this problem

in academia.

In this regard, a widespread fault in the academic system points to the

33

2. The Role of Software in Open Science

general management of the software-related expertise within research

groups. Probably as a result of not treating software as a first-class object,

universities and research organisations are currently lacking from a profile that

both understands the research processes and has the software engineering back-

ground and skills in order to carry out, in a more professional manner, the

development of research software. In order to fill this gap, in recent years there

have been an effort in order to define the career paths of such a profile, nam-

ing it as Research Software Engineer (RSE) [34], who differs from a technology

expert in that the RSE is, much like the scientist, an expert in the particular

scientific domain. RSE-type jobs are increasingly emerging across research orga-

nizations [35] and are expected to change the current organizational structures

for research software development in academia.

Accidental problems

More than usual, the underlying problems cannot be ascribed purely to the

researchers themselves, but instead to the public funding agencies. Limited

funding is a barrier to carry out the required actions when developing quality

software, usually in terms of required personnel. Furthermore, this leads to

serious difficulties to overcome the occurrence of risks associated to software

development [36].

Accidental issues encompass also the lack of proper reward systems, which

should favor source code contributions in addition to the current structure based

on the publication of research articles [37]. In order for this code contributions to

be reused, funding agencies should be required to promote educational initiatives

to improve the software engineering skills of computational researchers. A recent

survey [32] reflects that self-taught computational post-doctoral scientists still

represent more than a half (54%) in the US, where the 95% of respondents

commonly use research software and 63% state they could not do their research

without research software.

34

2. The Role of Software in Open Science

2.2.2 Reproducibility in Software

The advent of the Open Science paradigm is a great opportunity to empower

the role of research software. Reproducibility is a fundamental principle of

science, and thus, the underpinning goal of Open Science. However, the nature

of software challenges the ideal of achieving full reproducibility, even before

considering the availability of inputs. Software might not be deterministic for all

the possible use cases, indeed challenges will arise when trying to reproduce the

conclusions reached previously by other researcher, but as it will be shown in this

section, a set of decisive factors are prerequisites for attaining reproducibility

as far as research software is concerned.

The three R’s

Assuming the availability of data, the reproducibility of the software used as

part of the original experiment is often associated with other related terms that

enable or require it.

In the first place, replicability implies tackling the very same steps followed

in the original experiment, aiming at obtaining the same results. To this end,

the same execution environment –such as hardware, compiler, libraries– shall be

required. Replicability is also known as repeatability [38], which is dependant

on the deterministic nature of the software.

Instead, reproducibility does not really require that the same environment is

mirrored, but that the same conclusions of the original experiment are reached,

even though this implies some changes in the process followed. Obviously, the

differences shall not be significant for the final result and both processes shall

be equivalent. Running the original version of the source code in a different

platform or refactoring the code to implement the same algorithm are different

forms of reproducibility [39]. Accordingly, reproducibility is the cornerstone of

science –or the “bread and butter” of doing science [38]– as it finds alternative

ways to corroborate the findings obtained during a previous scientific experi-

ment. Successful reproducibility points to an extended reliability of both such

35

2. The Role of Software in Open Science

findings and the process followed to achieve them.

Lastly, reusability builds on the capacity of the software to be encapsulated

and reused for additional purposes other than the original intention. Reuse often

transcends the boundary of the projects where the software was first designed.

Consequently, the three R’s [40] are tightly coupled: replicability or repeata-

bility is the minimum level of scientific integrity, except in the case that software

systems are non-deterministic by design. Reproducibility is the catalyst of such

integrity or scientific rigor through the corroboration of the reliability of the pro-

cess followed to obtain the research value. Reusability is, on the other hand, an

engaging result of achieving reproducibility, and a key objective when enhancing

the quality of the software.

Reutilize code
for different
purposes

Repeteability

Reproducibility
Re-run the
code and

get the same
results

Re-run the code
and get different

results

Obtain the same
results with a

different program or
code refactoring

Corroborate
previous

conclusions
through

 code reuse

Repeteability Reusability

Figure 2.3: Addition of reusability in the Easterbrook’s comparison of repeteability
and reproducibility. While reproducibility alone was the most relevant outcome ac-
cording to Easterbrook’s analysis, the emergence of reusability changes the game since
reproducibility is best promoted when both are used in conjunction, i.e., by corrobo-
rating previous conclusions through code reuse.

36

2. The Role of Software in Open Science

The reproducibility and reusability marriage

The differences between replicability and reproducibility in scientific computing

have been clearly spotted by Easterbrook [38]. Replicability by itself is relevant

from an engineering perspective as it seeks the deterministic behaviour of the

software through testing methodologies. As such, re-running the software and

not getting the same results is a clear sign of poor code. On the other hand,

replicability is not that relevant from a research perspective, as it implies re-

peating the experiment following the original approach, and thus, it does not

yield new scientific insights.

Figure 2.3 applies Easterbrook’s method to compare reproducibility and

reusability. As it can be seen, there are a few differences with the previous

case. First, the three possible outcomes are positive so it is safe to say that

both are complementary. And secondly, the main outcome is placed in the

intersection, not at the reproducibility side as it happened in previous compar-

ison. Consequently, achieving reproducibility through reuse is the most

effective way to do science, as reproducibility without reuse would imply the

higher costs of producing new algorithms, and reuse by itself does not provide

any benefit when trying to corroborate the conclusions reached by a previous

scientific study.

Software reusability is a key objective in software engineering, which is either

the unique purpose of producing the software, such as the case of libraries, or an

intended outcome when developing an end-to-end solution. Software engineering

literature [41] pictures both processes as construction for reuse and construction

with reuse, respectively. And both require high standards of Software Quality

Assurance (SQA), specifically in coding and testing.

The scientific computing literature also states that reusability is a necessary

prerequisite for reproducibility [42], and viceversa [40]. The bottom line is that

both concepts can operate in full symbiosis, strengthened by the application

of a SQA process. Figure 2.4 completes the previous duality of reproducibility

and reusability to include the SQA process as the third enabling requirement

37

2. The Role of Software in Open Science

to achieve reproducible research.

Software
Quality

Corroborate
conclusions
through the

reuse of
QA code

Reproducibility Reusability

Figure 2.4: Software Quality Assurance as the enabling environment for achieving
reproducible research

2.3 Conclusion

Similarly to data, software is a fundamental research object for achieving repro-

ducibility in science, and accordingly, for the Open Science realisation. However,

such perception has been undermined or not correctly conducted within the on-

going Open Science implementations, in particular the one being conducted by

Europe. Accordingly, no formal regulation or policy about software has been

considered and/or promoted, even though research software development evi-

dences a series of inherent problems. Lack of awareness of software fundamen-

tals, educational and endemic problems, as well as the suboptimal management

of expert personnel are the most tangible types of problems existing in scientific

environments.

Reproducibility in software is different from replicability, the most basic level

38

2. The Role of Software in Open Science

of scientific integrity, and reusability, which builds on an already existing code.

The definition of reproducibility implies the use of an alternate and equivalent

procedure to reach the same results, and thus, corroborate the original conclu-

sion. Last section of this chapter has unveiled the need of exercising quality

practices in software, following a SQA process, as the path to empower repro-

ducible research through software reusability. The next chapter will elaborate

on the foundations that support such a culture of software quality through the

identification of the quality characteristics and the methodologies that lead to

the successful implementation of such SQA process.

39

40

“Quality is not something you be-

lieve in, Quality is something you

experience”

Robert M. Pirsig

3
Building a Culture of Software Quality

The outcome from the previous chapter suggests the establishment of a quality

culture in research software development in the path towards the Open Science

implementation. Even though several open educational initiatives are available

to computing scientists, there is still a prevailing hesitation to adhere to Open

Science standards that is deeply rooted in the scientific environments.

This fact has been confirmed in the preliminary steps of the Open Science

implementation in the European research infrastructures. Several reports, com-

missioned by the European Union (EU), stress the need of a cultural shift in

the research communities’ mindset in order to embrace the practices enacted by

the Open Science paradigm.

In order to lay out a culture that empowers the presence of quality processes

41

3. Building a Culture of Software Quality

within the routine practice of research software development, and progressively

build trust in such processes, it is precise to clearly showcase the beneficial

aspects and identify the Software Engineering (SE) methodologies that enable

them.

In this chapter, a discussion is carried out in the context of the main software

quality practices that can impact on the scientists’ experience, followed by an

overview of the SE methodologies and approaches that will be the vehicles for

implementing such practices. These methodologies play a decisive role in the use

cases presented in the second part of the thesis, in particular in Act II “Where

Theory Meets Praxis: the Implementation Process”.

3.1 Why quality on research software?

The source code being built these days might be hard to be ran in future com-

puting platforms, just as it might be the recreation of the old’s code execution

environment. According to the insights from the preceding chapter, steering

the development of software towards reusability seems to be a more convenient

and proactive way to make today’s code more likely to be reproduced in the fu-

ture. Reusability, as it was also stated, is enabled through the compliance with

software quality practices that are being carried out throughout the Software

Development Life Cycle (SDLC).

But the quality of software goes beyond reusability, as it aims at improving

the software at different levels such as its reliability or long-term sustainability.

Source code that has been developed following a minimum viable quality-based

process is readily subject to modification. The chances of it being sustainable

over the long run increase since it will be considerably quicker and cost-effective

to modify or add new features to an existing software, rather than engineering

new code from scratch. Sustainability in experimental sciences is constantly

challenged by the evolution of theories, so software integrity shall be preserved

when a new theory evolves or needs to be re-adjusted, according to the Theory-

software Translation process [43]. Reliability ensures the consistency of the

42

3. Building a Culture of Software Quality

scientific work by facilitating its replicability and promotes the software adapt-

ability and portability to diverse environments.

All these quality-related topics, that are facilitated by the Software Quality

Assurance (SQA) process, cooperate to mutual advantage. Quoting a classical

reference in SE [44] “reusing well-designed and well-developed software will in-

crease reliability and maintainability not only because the software has been

previously tested, but also because it has been used successfully”. Along the

same lines, Bourque and Fairley, in their SE masterpiece Guide to the Software

Engineering Body of Knowledge [41], corroborate the previous statement that

reuse-based development “can enable significant software productivity, quality,

and cost improvements”.

Definition of Quality: the Metaphysics of Quality

Although conceptually substantiated in the SE literature, quality, as it is inter-

preted throughout this thesis, does not differ from its domestic and universal

understanding. In modern times, quality is actively present as a means to set

and ensure that the minimal standards are met for any product or service.

However, quality presents a particularly elusive definition subject to one’s

experience. From a metaphysical perspective, insights gleaned from Pirsig’s

Zen and the Art of Motorcycle Maintenance philosophical novel suggest that

quality “exists always as a perceptual experience before it is ever thought of

descriptively or academically”. Hence, quality is a concept hard to be defined,

but tightly aligned with the concept of care: “Care and Quality are internal and

external aspects of the same thing. A person who sees Quality and feels it as he

works is a person who cares. A person who cares about what he sees and does

is a person who’s bound to have some characteristic of quality”. Consequently,

quality demands intense focus, a “sincere desire to know what’s best so we may

create value”.

The purpose of this work is not at all far from this conception, however

in this case a systematic examination of quality for software will be given and

demonstrated through empirical evidence.

43

3. Building a Culture of Software Quality

Scope of quality in this study

Quality of software embraces all the concepts defined so far. From the three R’s

–replicability and reproducibility and reusability– of scientific computing to SE-

related topics such as reliability and sustainability. Accordingly, the definition

and implementation of a SQA process that improves the quality of research

software is at the core of the present thesis, and thus, the next chapters will

be progressively addressing the definition of the suitable quality practices and

their further implementation within real research environments.

Throughout these experiences, beyond the immediate overall positive results

obtained in the respective research projects, the participant computer engineers

and scientists have become aware, through practice, of the importance of con-

sidering quality methodologies early in the SDLC. The SQA practices discussed

in detail throughout this work, are indeed in line, and complement, the Open

Science principles in such a way that skilled practitioners will definitely lead,

by true conviction, the cultural shift required for the Open Science realisation.

Consequently, this work is based on the assumption that a better computing

science rests on the shoulders of higher levels of compliance in the quality of

software being produced.

Education on quality software for research

Several educational initiatives are tackling the academic-inherent problems in

research SE from diverse perspectives. They are accessible as training pro-

grammes, scientific publications and manifestos or national facilities. As it

would be impractical to undertake a comprehensive review of all the existing

literature and initiatives, Appendix A.1 discusses the most representative con-

tributions existing in global academic community.

In this regard, as one of the most prominent outcomes of the present work,

Chapter 5 “Wrapping-up: The definition of a Software Quality Assurance base-

line for Research Software” will thoroughly present a baseline containing a com-

prehensive set of requirements and good practices to be considered throughout

44

3. Building a Culture of Software Quality

Quality
character-

istic

Aim Reusable Reliable Sustainable

Open and
Accessible

Ability to access and reuse
versions of the code

(3) (3)

Collaborative
and

supportable

Project promotes community
engagement and provides

active support

(3)

Readable Source code is understandable 3 3

Testable Seeks software reliability 3 3 3

Secure Implements security practices 3 3 3

Discoverable Software is uniquely and
clearly identified

(3) 3

Portable and
Interopera-

ble

Software is stable on multiple
platforms and relies on open

standards

3 3 3

Usable Software provides
documentation that makes the
software buildable, installable

and runnable

3 3

Table 3.1: The defining factors of quality in research software, where missing check
marks mean not required and brackets indicate optional or desirable compliance. Sev-
eral conclusions can be drawn from the table contents: i) both reusable and reliable
are prerequisites for sustainability, and ii) sustainability requirements are considerably
similar to those of quality software.

the SDLC.

3.1.1 The defining factors of quality in software

A SQA culture builds on the identification of the desired quality characteristics

that shall be enforced to the software. To this end, a good approach is to

leverage the work in the available literature [45, 46] and quality standards [47].

The strategy to compose the following enumeration of quality characteristics

is inspired by those references, but eventually adapted in accordance to the

intended scope of the present work.

45

3. Building a Culture of Software Quality

Open and accessible

Doing research in an open manner is crucial for the timely questioning and

discussion of the scientific breakthroughs, and the seamless dissemination of the

scientific knowledge. Bringing your source code out in the open is a catalyst

to accomplish the Open Science goal, and a pivotal requirement to address the

currently existing reproducibility crisis. Free/Libre and Open Source Software

(FLOSS) is then the primary prerequisite that enables the SQA culture.

In spite of the proven benefits, going open is still not a widely adopted prac-

tice in the scientific community, even in the case of publicly funded research

projects. This trend must be reversed not only to sustain the continuous sci-

entific progress or even to contribute to a fast-paced innovation, but also to

strengthen the consistency of the research value, towards the path of full repro-

ducibility in Science.

While the outreach capacity of software does not exclusively depend on its

accessibility –e.g. it may be well more determined by the usefulness and innova-

tive skills within the field of application–, the potential impact on the scientific

field of application is far more likely to happen when the source code is exposed

to the outside world.

Unrestricted access to the different objects that drive the software devel-

opment practice has direct benefits on other quality aspects reviewed in this

section. Source code accessibility implies the developer’s commitment to clarity

and transparency of the SQA practices throughout the SDLC process, which

has the beneficial effect of building trust around the software product. This

fact has the capability of building a community of collaborators for a fast-paced

problem solving and provisioning of new features in the software.

Collaborative and supportable

Open Science advocates for data and code sharing. In some scientific computa-

tional environments there is the risk of insufficient funding for the maintenance

and support costs that arise from a successful software development project.

46

3. Building a Culture of Software Quality

Collaboration comes to the rescue as a way to share this effort among the

workforce of volunteers that participate in it. Consequently, the success and

popularity of a FLOSS project greatly relies on its capacity of engagement, and

this latter characteristic definitely contributes to the long-term sustainability of

the software.

Box 1.1: Incentives for voluntary contribution to FLOSS projects

Intrinsic incentives

• Human altruism or philanthropic nature

• Desire to belong to a team or community

• Craftsmanship model: satisfaction of getting something valuable,

creative work admired by others

• Ethical values: alternative to propietary software

• Satisfy personal use-value of a product, scratching a “personal itch”

in terms of software functionality

Extrinsic incentives

• Reputation: recognition among peers

• Rewarding: citation, access to better salary and/or employment

• Learning, education

Sources from [48, 49, 50]

There are well-known successful stories about the potential capacity of big

collaborations in FLOSS projects. The oft-cited case of the Linux kernel is the

most representative illustration of a strong community that is progressively be-

ing built upon the appeal of an open collaboration that develops a sustainable

and highly competitive software solution [51]. In the research area, the bene-

fits of open collaboration have been also empirically proven [48], asserting its

47

3. Building a Culture of Software Quality

capacity to accelerate the discovery of research value.

Nevertheless, successful collaboration is obviously not granted by default for

any FLOSS project. Several studies [52, 53] have measured the grade of inac-

tivity of FLOSS projects. Abandonment or inactivity are usually originated by

the developer’s lack of time or interest, and undertaken by an inadequate hand-

off to interested developers, disregarding the advice of the already mentioned

founder of the open source movement Raymond: “When you lose interest in a

program, your last duty to it is to hand it off to a competent successor”.

Collaboration poses another form of protection for the user of the software,

as even in cases when the software reaches the end of support or goes into

an inactive state, the user still has a way to extend its end of life. This is

particularly helpful in academic environments where limited funding for setting

up software solutions, via short-lived projects or grants, is commonplace. The

fact that the research project ceases does not entail the discontinuation of the

software product [48].

Without collaboration, software sustainability becomes a tougher task.

Box 1.1 summarizes some of the intrinsic and extrinsic incentives that boost

collaboration in software projects (note that competing for innovative leader-

ship is not part of the incentives)

Readable

The feeling that source code is not readable is a deep-rooted belief of some sci-

entists. In the early days of Open Science conception, Easterbrook stated in the

Nature’s article Open code for open science? [38] that releasing the code along

with the scientific publication was not really needed since all but the simplest

codes are impenetrable to non-experts. This statement stems from the

practical evidence of many computational scientists who are used to deal with

unstructured code, and builds the conviction that in-depth programming skills

are required for even trying to comprehend what the code is actually doing.

Often seen as an utopia, the code should be ideally self-documented [54],

in particular meaning that the identifiers used throughout the code –variable,

48

3. Building a Culture of Software Quality

class, method names– are self-explanatory 1. Even if not reaching that stage,

the code should at least be understood by the relevant scientific communities,

otherwise the source code loses part of its value.

Readable code will not only facilitate the understanding of the method fol-

lowed to obtain your scientific insights, but in the most prominent cases, read-

ability can be a booster for external collaboration. Hence, as it was discussed

before, it can lead to build a community –of users and contributors– around the

software project.

Commitment to a SQA process is key to write understandable code. As it

was also mentioned, new code contributions are not only done to active software

projects, but as the maintenance of a FLOSS project usually entails a voluntary

effort, it is susceptible to be discontinued at a certain point, regardless of its

popularity. At this point, a “competent successor” 2 usually takes over the

responsibility of the code maintenance. A smooth hand-off is only achieved if

the code is readable, and thus, avoiding technical debt-related issues. How this

debt will evolve is notably on the hands of the early developers.

Testable

It is rather a common practice in science to deal with software that shows unex-

pected behaviours, which leads to real struggle when trying to replicate results,

or even formulate conclusions in the first place. Those unusable programs are

usually composed of poor source code quality that lacks of a representative

aggregate of test cases that would ensure the operation of the expected func-

tionalities.

The ultimate goal of software testing is to increase the reliability of the sys-

tems being delivered to the users. However, testing cannot guarantee that a

system performs accurately under all conditions, but only that it is not per-

forming properly under specific conditions. As such, testing can only pretend

1Firm advocates of self-documenting code propose leaving the documentation in the back-
ground as a second-class object. In particular, one of the principles of the Agile manifesto [55]
states that “Working Software over comprehensive documentation”.

2According to Raymond, see [14].

49

3. Building a Culture of Software Quality

that the uncovered errors are no longer present 3.

Furthermore, the economics of testing shall be carefully considered as well

for every software project. On the one hand, inadequate investment may imply

solving defects at later stages. Quoting from Perry [57], “it is at least 10 times

as costly to correct an error after coding as before, and 100 times as costly to

correct a production error”. On the other hand, a generous effort may lead to

increased project costs [58], not estimated in the project design, and delays in

the release dates [59]. Therefore, measuring the cost-effectiveness of the testing

process does not only imply stopping at the optimum point where the cost

of testing does not exceed the value obtained from the defects uncovered, but

rather focusing on the valuable features first [60].

Secure

Granting the secure operation of the software is a fundamental objective of

testing. Independently of the size and popularity of the project, developers

must consider security flaws with the highest priority. This entails immediate

action to publicly-disclosed vulnerabilities and a preventive assessment, tackled

through the SDLC, to uncover and fix common security bad practices to prevent

software to be compromised by attackers. Security testing is no different from

common testing and occasionally security flaws cannot be spotted during the

closed-doors environment that characterizes the SDLC. As a result, policies and

procedures shall be in place in order to react promptly to security issues being

reported by external users. Nevertheless, a great deal of software maintainers

do not usually have enough training to perform an accurate software security

assessment. It is a complex domain that requires from a high level of expertise.

Again, the larger the open collaboration, the more likely to reckon on security

experts. Conversely, small projects might face this problem, but as it will be

shown in the second part of the thesis, there are automated security testers that

3C. Kaner el al. [56] identify three main reasons why complete testing is impossible: 1)
Domain is too large to test, 2) Too many possible paths through the programs to test, and 3)
User interface issues are too complex to be completely tested.

50

3. Building a Culture of Software Quality

require no prior experience to be leveraged.

Discoverable

Despite the traditional thinking of software being a second class research object

still persists, recent scientific literature unanimously consider software as a value

object, equally as important as the resulting scientific journal article or the data

sets used and produced throughout the scientific process [61]. In fact, journals

are increasingly enforcing the unique identification of the research publications

where the software has played a key role in conducting the scientific insight. The

achievement of higher levels of reproducibility in science is behind the current

scholarly trend of revising the software as a first class product of research.

Likewise the data, the existing path to achieve the full identification of

the software is through the use of metadata. Hence, research software

improves its discoverability, which potentially leads to software reuse. Software

citation –if any– is commonly tackled by referring to the journal article or sci-

entific paper that describes it, rather than citing the software itself. This leads

to inconsistencies since the version used might not match with the one being

described in the cited paper. Persistent and unique identifiers make soft-

ware citation viable in journal publications, especially if such iden-

tifier is mapped to a specific release or version of the software, thus

facilitating the task of replicating the scientific experiment.

Portable and interoperable

Portability of software is the capability of the software to be usable on multiple

platforms or environments. As it can be inferred from this definition, no modi-

fication in the code is allowed for a software system to be ported to a different

platform. Consequently, portability must be granted during the SDLC and it

is enabled through the use of testing environments. Software can be then vali-

dated for each one of those environments and adapted accordingly. Portability

is an operational requirement for reproducibility.

51

3. Building a Culture of Software Quality

Software interoperability connects two different systems so that they work

together. Interoperability in software is achieved by the use of open standards,

which make the software usable and compatible with coupled technologies. As

such, open standards create a fair market that prevents from vendor lock-in

situations. Unlike the FLOSS projects, private companies developing their own

software solutions –remember the Cathedral model from [14]–, may decide not

to follow the specification of an open standard. Instead, source code openness

provides the flexibility to allows any contributor to enhance the code, and thus,

provide support to any given standard [62].

Usable

The ultimate goal of software is to be used by the interested stakeholders. In

the scientific domain, usability requirements are often mistakenly circumvented

based on the assumption that the software is exclusively used by the group

tackling its development. No matter the target audience, the software needs

to be provided with guidance for building, installing, running and harnessing.

Complete documentation is key for the software adoption.

3.2 The path to software quality engineering

This section assesses software quality from a technical perspective through the

observation of SE processes and methodologies. The bottom line is to explicitly

situate the objectives of a SQA process as the groundwork for the subsequent

chapters in the second part of the thesis.

Quality management in software engineering

According to Bourque and Fairley’s Guide to the Software Engineering Body of

Knowledge [41], the de-facto SE reference, the practice of SE is comprised by

a set of knowledge areas, among which the so-called “Software Quality” is the

most relevant for the interests of the present thesis. According to this work,

52

3. Building a Culture of Software Quality

software quality is a transversal area, tightly coupled with related areas such as

“Software Maintenance” and “Software Testing”.

Conceptually, the management processes of software quality boil down to the

i) definition of the quality requirements for the specific software prod-

uct to be built, the SQA process, followed by the ii) implementation and

operation of the means –i.e. procedures, technologies and tools– to

achieve those, managed by the Verification and Validation (V&V) processes.

3.2.1 Software Quality Assurance

According to the SE practices, the SQA process is driven by a plan, or Software

Quality Assurance Plan (SQAP), usually part of deliverable documentation in

research projects, that ensures the quality targets are precisely defined. A SQAP

compiles the quality activities and tasks, schedules, metrics and risk assessment,

estimation of resources, technologies and tools that enable the SQA process.

The ultimate goal is to seek the achievement of the software quality objectives

and the stakeholder satisfaction, so these processes build upon the end user

requirements.

The quality characteristics previously defined in Section 3.1.1 “The defining

factors of quality in software” provide the guidance that helps identifying the

concrete requirements to be compiled in the SQAP and enforced during the SQA

process. This task will be carried out later on in Chapter 5 “Wrapping-up: The

definition of a Software Quality Assurance baseline for Research Software”.

3.2.2 Verification and Validation processes

The V&V processes contribute to build quality into the system during the

SDLC. While planning V&V is part of the software quality management pro-

cesses, it also drives the practical implementation of the SQA process, so it is

often considered within the software development and testing area.

V&V are commonplace concepts in SE literature, but these terms are often

–and mistakenly– used interchangeably in practice [63]. Indeed, both processes

53

3. Building a Culture of Software Quality

serve different purposes since verification is linked to the early stages of the

SDLC, focusing on building the software correctly, while validation is

commonly placed at the end of the development process, providing “evidence

that the software and its associated products satisfy system require-

ments allocated to software at the end of each life cycle, solve the

right problem, and satisfy intended use and user needs” [64].

Box 2.1: V&V processes in research reproducibility

As it was discussed in Chapter 2 “The Role of Software in Open Science”, V&V

processes are commonplace in the context of scientific computing reproducibility.

Here, the verification addresses the replication of an experiment, while validation

refers to the evaluation of the experiment’s result to prove that the author’s

conclusions are justified [65].

Static and Dynamic analysis

The practical application of the V&V processes consists in the implementation

of the static and dynamic analysis of the software. Whilst the static analy-

sis techniques evaluate the software by examining the code without actually

executing it, the dynamic analysis evaluates the software at runtime.

Static and dynamic analysis give rise to additional dualities in SE litera-

ture, such as the popular concepts of white and black box testing, which are

complementary types of testing that focus, respectively, on the code structure

and the functionalities provided by the software. Figure 3.1 summarizes all the

aforementioned concepts existing within the V&V processes.

It is important to remark that it is not in the scope on the current work to

build on the knowledge base of software testing, such purpose is thoroughly cov-

ered by the existing literature on SE. Appendix A.2 covers the types of testing

that are relevant for the appropriate understanding of the prospective identifi-

cation of SQA requirements elicited in Chapter 5 “Wrapping-up: The definition

54

3. Building a Culture of Software Quality

of a Software Quality Assurance baseline for Research Software”. Accordingly,

it is highly recommended to be familiar with those definitions before proceeding

to the Act II “Where Theory Meets Praxis: the Implementation Process”. Ad-

ditionally, Figure 3.2 situates each type of testing in accordance with the V&V

processes.

Verification Validation
Software does

things right
Software does
the right thing

Static
analysis
Non-runtime

code analysis

Dynamic
analysis
Runtime code

analysis

White-box
testing

Software is
implemented
as expected

Software
behaves as
expected

Black-box
testing

vs

Figure 3.1: The duality (and synergies) in V&V processes

3.3 The DevOps culture: automation to enable

quality

Automation brings faster completion of the SQA process when a new change is

added to the source code. Furthermore, this optimization of the time-to-deliver

new changes enables the rise of new requirements that can be progressively

added to the SQA process. However, relying overly on automation may intro-

55

3. Building a Culture of Software Quality

Unit
testing

Functional
testing

Integration
testing

Regression
testing

Code
style

Security
inspections

Manual

Static Analysis

Code verification

Automated

Dynamic Analysis

Security
static

analysis

(secure)
Code
review

Vulnerability
scanning

Secure
code

analysis

Code
dependency
analysis

Penetration
Testing

Code validation

Figure 3.2: Categorization of the different types of testing that are relevant within this
study. They are classified according to their suitability of automation and grouped
within the V&V processes.

duce risks in the software development chain, so manual or human observation

offers an undeniable value along the SQA process.

The SE methodologies foster a culture of continuous application of V&V

processes by harnessing automation are most relevant for the challenges ahead

within the present work. Having automation as the game-changer, increased

levels of quality in software development, sustainability and delivery can be

reached.

56

3. Building a Culture of Software Quality

Testing automation

Test automation is gaining momentum as a way to decrease the costs associated

to software testing tasks. Efficiency gets improved as automation optimizes the

execution time of testing, maximizing the test coverage as more tests can be

performed in less time [66]. The augmentation of the test coverage strengthens

the reliability of the end product, reducing the number of defects present.

Automation also increases the overall effectiveness, avoiding the risk of hu-

man errors and achieving repeatability. This is particularly useful to reduce

the regression risk by finding defects in the modified, but previously working,

functionalities of the system [67].

However, test automation does not always supersede manual testing. Ac-

cording to a number of studies [68, 69, 70], not all the testing tasks can be easily

automated, such as those requiring extensive knowledge in a specific domain, or

they require a costly maintenance. In such cases, manual testing complements

automation, but generally speaking, automation shall be the end purpose in

testing.

Introducing DevOps

DevOps is the reference paradigm, in recent times, when it comes to build agility

and efficiency throughout the SDLC. As the name suggests, DevOps theorizes

and provides practical solutions that aim at unifying traditionally confronted

parties, i.e. software development (Dev) and infrastructure operation (Ops)

teams, in order to tear down the so-called “wall of confusion” [71] built over the

years between them.

To this end, DevOps puts emphasis on the establishment of a SQA culture

to drive the development phase that eventually builds trust in the operational

side. As a consequence, DevOps culture is commonly sketched as illustrated in

Figure 3.3. It is indeed the SQA process that enables the DevOps culture, but

automation is the vehicle to achieve it through the fulfillment of a high amount of

quality characteristics. Automation optimizes the execution of the SQA process

57

3. Building a Culture of Software Quality

Repeteability

Software
Quality

IT
OperationsDevelopmentDevelopment IT Operations

Figure 3.3: In the DevOps culture, an effective collaboration and communication be-
tween the development and operations teams is only accomplished by assuring quality
in the software produced. Automation enables the realisation of the SQA process that
builds the required level of trust on both teams.

and makes it viable to be continuously applied in a change-driven scenario. The

transparency of the SQA process allows further confidence towards production

infrastructure operators.

Commitment to agility

DevOps builds on the Agile software development approach that emerged as

a response to previous models characterised by their inflexibility, such as the

Waterfall methodology [72]. There is indeed an historical connection between

DevOps and Agile that traces back to the 2008 Agile Conference, where the

DevOps term was first coined.

Agile –see Appendix A.3– and DevOps are cultural movements that com-

plement each other. Both promote the incremental delivery of quality software,

but, whilst Agile offers guidance with regards to the managerial skills of the

58

3. Building a Culture of Software Quality

software team itself, DevOps goes beyond extending this collaborative dimen-

sion to the IT operations teams, leveraging the spread of automated deployment

and cloud-based provisioning technologies.

Challenges in adopting Agile are at the cultural and educational level, but

DevOps adds to those the complexity of its varied forms of practical implemen-

tation. As it will be demonstrated throughout the chapters in the second part

of this thesis, there is no one-size-fits-all when it comes to implement a DevOps

approach. The generic approaches to DevOps are presented below.

Continuous integration and delivery

The practice of DevOps can be applied at different stages in the SDLC, usually

encompassing the integration, delivery and deployment. Due to its nature, not

all the existing software facilitates the execution of the entire cycle, however

the flexibility of the different DevOps approaches allows tailored strategies to

be put in place.

Continuous Integration (CI) is primarily connected to the static analysis of

the source code. This is not to say that dynamic testing cannot take part at

this stage, which implies the involvement of the more advanced and subsequent

approaches in the DevOps chain –i.e. delivery and deployment–, but rather that

the static analysis is a must at this point. The idea behind CI is to integrate

developers’ work as early, often and as safely as possible, relying on automation

tools, which will be discussed in the next section.

Continuous Delivery (CD) is the next stage in the DevOps realisation. Al-

though there is no general consensus in the literature, the prevailing view is to

consider the automated deployment as part of the CD process. This is indeed

the cornerstone of the agility of the DevOps implementation, as it implies the

automated resource provisioning and deployment. According to DevOps prin-

ciples, both tasks shall be automated leveraging Infrastructure as Code (IaC)

or Continuous Configuration Automation (CCA) solutions, which use machine-

readable definitions to express the full software provisioning process.

Hence, once the source code is statically tested and subsequently deployed

59

3. Building a Culture of Software Quality

in an isolated testing environment, additional dynamic analysis testing is per-

formed over the system on execution. If successful, the software is packaged

and delivered. Note that, as it was mentioned before, the possible approaches

of DevOps are diverse, so that there is room for more complex scenarios, such

as the automated deployment in production environments. In any case, the

ultimate goal of a DevOps implementation is to have an automated, end-to-end

pipeline tackling the CI and/or CD phases, aiming at reducing the development-

to-production time without negatively impacting on quality.

The CI infrastructure

DevOps has computing industry as its primary influence, and as a result it is

often associated with benefits on metrics such as Time to Market (TTM) and

Return on Investment (ROI), measuring respectively the duration of the delivery

cycles and the investment’s gains relative to its cost. The popularisation and

widespread industry adoption 4 of the DevOps culture motivated the emergence

of tools that facilitated the implementation of the aforementioned approaches.

In terms of availability, the myriad of DevOps tools can be either categorized

as cloud-based or on-premise. The former ones are particularly suitable for

individual projects with standard requirements with regards to the Continuous

Integration and Delivery (CI/CD) capabilities. As the requirements grow, tools

that facilitate on-premise deployment are increasingly needed. Jenkins CI [74] is

the most representative CI tool to meet the specific needs of all-size projects, as

it will be the reference technology for the practical insights exposed hereinafter.

3.4 Conclusion

Quality of software embraces all the concepts defined so far, not only as a result

of the etymology of the word quality, but from the more technical perspec-

4According to the 2019 State Of Devops Report [73], high performance companies like
Google, Amazon and Netflix use DevOps practices to deploy software thousands of times per
day.

60

3. Building a Culture of Software Quality

tive given by SE literature. Hence, quality covers the realisation of reusability,

identified as key aspect for the accurate reproducibility of computational exper-

iments in Open Science, as well as the additional goals commonly pursued when

dealing with software, such as reliability and sustainability.

A set of characteristics have been identified in order to better understand

what software quality actually encompasses. These characteristics shall be un-

ambiguously mapped to requirements in order to enable the systematic imple-

mentation of quality software. This task is managed by the SQA process that,

as it will be shown in Chapter 5 “Wrapping-up: The definition of a Software

Quality Assurance baseline for Research Software”, procures a policy plan to

drive the SDLC.

The V&V processes are particularly suitable to drive the SQA process, cov-

ering both the code analysis, or static, and assessment of the runtime execution,

or dynamic analysis. These process are tightly coupled with the final reliability

of the software, so it is crucial to be diligent at this stage, but also attentive

not to overestimate the capabilities of testing, as 100% reliable software is not

doable.

Automation definitely helps in driving the SQA process, otherwise difficult

to tackle according to its complexity or the volume of quality requirements.

Besides, the costs associated to software production are mitigated. In SE-related

literature, automation is usually associated to testing purposes, but the aim in

this study is to widen the scope to all the SDLC activities that seek quality in

the software. DevOps culture and related implementations, such as CI/CD, will

be the landmark in the SQA approach being discussed in the next chapters.

61

62

4
Software Quality to drive the delivery of

services in the European Open Science

Cloud

In the European Union (EU) context, research e-Infrastructures 1 provide the

computational capacity for multi-disciplinary Research Infrastructures (RIs)

that meet their e-needs. The Open Science implementation draws on their of-

1According to IGI Global academic publisher, an e-Infrastructure is defined as “short term
for Electronic Infrastructure, i.e., all Information and Communications Technology (ICT)
based resources (distributed networks, computers, storage devices, software etc.) and support
operations which facilitate the collaboration among research communities by sharing resources,
analysis tools and data.”

63

4. Software Quality to drive the delivery of services in the European Open
Science Cloud

ferings and availability in order to deliver the resources and services that allow

scientists to perform their research, and thus, e-Infrastructures appear as the

driving force for the establishment and success of the Open Science movement.

The usability of the e-Infrastructures is heavily dependent on the quality

of the services offered to the researchers, especially in terms of stability and

reliability. Here, the quality of the underlying software that makes up a service

is crucial for achieving these goals. The software quality concepts from the pre-

vious chapter can be applied to any software product, regardless of the scope of

application. Whether it is e-Infrastructure enabling software –i.e. the software

that provides the functionality of thematic services within the RIs–, or the stan-

dalone software used to conduct a particular scientific experiment; exercising the

quality of software shall be a common objective within every development and

maintenance effort.

This chapter situates the Open Science implementation in the European re-

search scene, which shall be underpinned by the extensive experience of the

existing European e-Infrastructures in delivering services to the RIs, and there-

fore, for the scientific communities’ exploitation. The guiding premise is the rel-

evance of the software in the operational accuracy and functional suitability of

such services, either being e-Infrastructure enabling or fit-for-purpose research

services. This chapter provides a suitable contextualization for the incoming

chapters.

4.1 Enabling Open Science in Europe: the Eu-

ropean Open Science Cloud

The European Open Science Cloud (EOSC) is the response to the Open Science

realisation within the European research ecosystem. The EOSC was officially

announced by the European Commission (EC) with the adoption of the Digital

Single Markets strategy on May 2015 [75]. The goal is to build a unique access

point to an open, trusted and federated environment that supports the research

64

4. Software Quality to drive the delivery of services in the European Open
Science Cloud

needs of 1.7 million European researchers and 70 million professionals in science

and technology. The implementation of the EOSC shall be facilitated by the

federation of existing generic, or horizontal, e-Infrastructures at the national

level together with domain-specific, or vertical, RIs [76].

4.1.1 The Horizon 2020 Framework Programme

Horizon 2020 is the biggest EU Research and Innovation programme to date

with AC80 billion of funding available over 7 years, from 2014 to 2020. An

overarching goal of the Horizon 2020 is to deliver an EOSC that “truly supports

interdisciplinary research and Open Science”. The EC used the Horizon 2020

Work Programmes, in particular through the INFRAEOSC dedicated call, to

consolidate the implementation of the EOSC, planned to be realized by the end

of the programme, in 2020. To this end, the Horizon 2020 particularly promoted

the integration of existing e-Infrastructure platforms and RIs to support the

development of cloud-based services for Open Science.

A series of EOSC-enabling projects were progressively funded in order to

integrate the most relevant and leading technology into the future EOSC. The

ongoing EOSC-hub [77] project, started in 2018, is driving the integration of

the initial set of shared resources, and as a result of the outcomes of the first

months of the project, it was the principal benefactor of the EOSC Portal launch

back in late 2018. The EOSC-hub project is primarily working on delivering

technologies and services from the major research e-Infrastructures, such as

the European Grid Infrastructure (EGI) Federation and EUDAT Collaborative

Data Infrastructure (EUDAT-CDI), and Technology Providers (TPs), such as

INDIGO-DataCloud (INDIGO) project.

65

4. Software Quality to drive the delivery of services in the European Open
Science Cloud

4.1.2 The foundational elements of the European Open

Science Cloud: e-Infrastructures and Research In-

frastructures

In the European Union context, a RI encompasses those resources and services

required by the research communities in order to undertake the continuous inno-

vation challenges. The e-Infrastructures are an integral part of them, covering

the data and computing resources, as well as the communication networks.

In the European research context, the EINFRA call, under the Horizon 2020

framework, has enabled a constant expansion of the e-Infrastructures in order

to offer specialized data-driven and computer-intensive capabilities for science

and engineering. Hence, e-Infrastructures are playing a leading role in the Euro-

pean research context as almost all large-scale research activities include or are

supported by several e-Infrastructure components [76]. The e-Infrastructures

have become very experienced in delivering distributed computing services to

researchers, and as such, shall be key players in the specification and the setup

of the EOSC.

4.1.3 The roadmap to the implementation of an European

Open Science Cloud

The EOSC is an evolving federation of European research data, services and

infrastructures in compliance with the Open Science principles. The EOSC

has been defined as a long-term process that will provide user-driven services

to European researchers –covering both the academia and industry–, supported

by an underlying infrastructure that provides the required advanced computing,

networking and data management capabilities. Throughout this process, which

is currently ongoing, the EOSC implementation has gone through two different

stages, clearly separated by the official launch of the EOSC Portal, which took

place in November 2018.

66

4. Software Quality to drive the delivery of services in the European Open
Science Cloud

Stage I: EOSC vision and launch

Appendix B.1 presents the main checkpoints that took place during the EOSC

vision stage. This stage covered the consultation phase, targeted to experts and

relevant stakeholders in the European research ecosystem, and the definition

and roadmap implementation of the preliminary phase of the EOSC. Two High

Level Expert Group (HLEG) reports [78, 79] and the EOSC Declaration [80]

were the main outcomes of the consultation, based on which the EC defined the

EOSC Roadmap implementation [81] of the preliminary phase of the EOSC.

Box 1.1: Action lines in the EOSC Roadmap

1. Build a federated architecture that remedies existing RIs’ fragmentation.

2. Promote a data stewardship culture through the FAIR principles.

3. Elaborate a catalogue of interdisciplinary and user-driven services.

4. Guarantee universal access through the EOSC Portal.

5. Definition of the rules that set out the rights, obligations and account-

ability of the different stakeholders, mainly service providers and users.

6. Design of a representative, multi-stakeholder governance model.

The EOSC Roadmap defined six main action lines to be pursued in the in-

coming years, determined the lines of funding through the Horizon 2020 Work

Programme 2018-2020 and the timeline with the milestones to be reached. The

six action lines are enumerated in Box 1.1 and built on the foundation of a

federated environment of e-Infrastructures resources and research services with

unique access through the EOSC Portal. The range of services shall be repre-

sentative of the multiple scientific disciplines existing in the European research

ecosystem, and accessible through the EOSC catalogue once compliant with the

so-called Rules of Participation (RoP). In addition, data management services

offered through the EOSC Portal shall promote and allow the management of

67

4. Software Quality to drive the delivery of services in the European Open
Science Cloud

data according to the FAIR principles.

This first stage concluded with the first release of the EOSC Portal, the main

entry point for the EOSC audience, where all the integration efforts, in terms

of data and services, are progressively being added.

Phase II: from EOSC launch to sustainability

The next steps towards the sustainability of the EOSC build on the integration

work continued through the ongoing EOSC-hub project, being complemented

by specific funding from the INFRAEOSC call. The Strategic Implementa-

tion Plan [82] delivered in 2019 emphasized the liaisons between projects of the

call. This document established the priority of providing a set of recommenda-

tions concerning the implementation of an operational, scalable and sustainable

EOSC federation after 2020.

Later on in 2019, the EOSC Work Plan 2019-2020 [83] outlined the activities,

timelines and key inputs to be tackled until the end of 2020, where a new

governance structure will be set up.

4.2 Service maturity assessment within the Eu-

ropean Open Science Cloud

The EOSC’s most visible outcome is the progressive federation of multidis-

ciplinary data infrastructure services that exist within the European research

boundaries. Those services are to be readily accessed by the researchers through

a marketplace, the EOSC Portal, and as such, quality-related aspects such as

the usability, reliability or functional accuracy, shall be assessed beforehand. As

discussed in the previous section, the EOSC-hub project is driving the prelim-

inary phase of an operational EOSC. To this end, the project is progressively

tackling the integration process of the most mature e-Infrastructure and RI ser-

vices, both internal to the project –the thematic services, competence centers

and business pilots planned for inclusion in the description of activities– and

68

4. Software Quality to drive the delivery of services in the European Open
Science Cloud

also external services, coming from the European RI landscape, through the

Early Adopters Programme (EA).

Technology Readiness Levels (TRLs)

TRLs are a type of measurement system used to estimate the maturity level of

a particular technology. The outcome of the evaluation is a TRL rating, that

ranges from TRL-1, the lowest maturity, to TRL-9, which corresponds to the

highest maturity.

Since the Horizon 2020 Work Programme 2014-2015 [84], the EC officially

adopted the NASA’s TRLs in order to estimate the maturity of a technology.

Accordingly, based on the EC mandate, EOSC-hub adopted the TRL scale in

order to define the minimal requirements for inclusion in the catalogue, setting

the TRL-8 as the reference for production technologies. Box 2.1 provides the

definition of TRL-8 and TRL-9.

Box 2.1: TRL-8 and TRL-9 definitions

TRL8: System complete and qualified End of system development. Fully

integrated with operational hardware and software systems. Most user

documentation, training documentation, and maintenance documentation

completed. All functionality tested in simulated and operational scenarios.

Verification and Validation (V&V) completed.

TRL9: Actual system proven in operational environment Fully inte-

grated with operational hardware/software systems. Actual system has

been thoroughly demonstrated and tested in its operational environ-

ment. All documentation completed. Successful operational experience.

Sustaining engineering support in place

Potential shortcomings of a TRL-based service assessment

The TRLs are expressed as high level descriptions. A technology is conceived as

a combination of hardware and software deployed in an operational environment,

69

4. Software Quality to drive the delivery of services in the European Open
Science Cloud

which at first glance is quite in line with the service concept, as it is used in the

consultation documents of the EOSC implementation. But from a Information

Technology Service Management (ITSM) perspective [85, 86], a service is a

“means to deliver value to a customer”, and accordingly, a technology, as

described by the TRLs, misses the user component, especially the extent

to which the user support shall be covered.

This fact was actually acknowledged within EOSC-hub deliverables, where

the suitability of the TRL system for use within the context of operational ser-

vice delivery was questioned [87] 2. Consequently, the TRL-based service assess-

ment was enhanced to include the evaluation of both operational and technical

aspects. On the one hand, the adoption by the project of a lightweight ITSM

framework, FitSM [88], helped to cover the operational requirements. However,

not all the services from EOSC-hub required the same level of integration, be-

ing the operational services the ones with higher ITSM requirements and the

research enabling services the ones with lower requirements. On the other hand,

the technical requirements were elicited following an agile framework that iden-

tified the technical gaps that need to be addressed for a successful integration

within EOSC-hub. The identification of the operational and technical require-

ments improved the TRL-8 and TRL-9 assessment.

Software quality as the key indicator for service assessment

But the remaining issue with the TRL assessment, not solved by

EOSC-hub approach, boils down to the lack of accuracy in the re-

quirements being formulated, and, more importantly, each level do

not provide the means of verification to ensure how its requirements

can be fulfilled. Hence, having “most documentation completed” or “thorough

demonstration and testing in an operational environment” leads to confusion

and divergent interpretations. The immediate consequence is that the owners

2The EOSC-hub’s D4.1 deliverable Operational requirements for the services in the cat-
alogue states that “TRL has its limitations as it is usually used to describe the maturity of
underlying technologies rather than the delivery of them in the form of a service to end users”.

70

4. Software Quality to drive the delivery of services in the European Open
Science Cloud

of the technologies can only but vaguely estimate the appropriate TRL level,

which can be hardly proved through the EOSC service integration process. In

this regard, the limitations of the TRL scale were also highlighted in documents

produced within the European RIs when trying to ascertain the minimum levels

of maturity for the software being deployed in such infrastructures [89].

This lack of accuracy does not contribute to building trust in the research

users that eventually will rely on the EOSC services to tackle thier work. In the

worst case scenario, users’ expectations of stability cannot be met because the

maturity of those services is overrated. If TRL-8 is considered production-level,

the associated requirements must be unambiguously detailed and the quality of

the service shall be underpinned by the transparency of the previous software

development and piloting stages the service has gone through. Thus, the ex-

pected functionalities of the service are readily visible by the users and have

been proven to work before reaching the production level.

Chapter 5 “Wrapping-up: The definition of a Software Quality Assurance

baseline for Research Software” presents such a clear definition of quality re-

quirements that drove the Software Quality Assurance (SQA) process that man-

aged the development of services for European e-Infrastructures, also discussed

in subsequent chapters. The results obtained definitely contribute to increase

the accuracy of service maturity measurement, and to develop fit-for-purpose

services for the involved research communities.

4.3 Quality-aware e-Infrastructures as the guid-

ance for the European Open Science Cloud

implementation

The 2018 EOSC implementation roadmap [81] concluded that the EOSC archi-

tecture would build on the existing e-Infrastructures and RIs, as an “soft overlay

to connect them and making them operate as one seamless European research

data infrastructure”. Accordingly, e-Infrastructures and EOSC benefit mutu-

71

4. Software Quality to drive the delivery of services in the European Open
Science Cloud

ally since the e-Infrastructures already have the experience in providing cloud

services to researchers, while the EOSC will consolidate their federation, thus

removing the existing fragmentation in the European infrastructures, which is

a reality actively highlighted during the EOSC consultation phase. Indeed, the

aforementioned 2018 EOSC implementation roadmap document underlined the

key role of the existing e-Infrastructures in Europe as the baseline for build-

ing the EOSC and cover the whole life-cycle of the services, from planning to

delivery.

4.3.1 Software quality for e-Infrastructure operation and

exploitation

As previously introduced, the European e-Infrastructures have traditionally con-

fronted similar issues in terms of stability and functional suitability of the ser-

vices exposed to their target scientific communities. From pre-Horizon 2020

programme’s projects that envisioned the implementation of Grid technology-

based infrastructures as the new paradigm of distributed computing, to the

current days of Cloud computing models, the continuous need of new tools

and services to match research requirements has been addressed by the EC

through dedicated software development projects for e-Infrastructure creation,

operation and management. The result of this investment was that the re-

liability and adequacy of the services provided by such e-Infrastructures was

progressively enhanced following novel and state-of-the-art software engineering

practices. Hence, building on the knowledge base built and the expertise gath-

ered throughout these past and ongoing projects is an optimal approach for the

service delivery in the EOSC.

In the years of the inception of the EU framework programme Horizon 2020,

the main drivers of the culture of innovation, as far as the software engineer-

ing in research is concerned, already shifted their attention towards the future

quality and sustainability of the software [28]. Such a change of mentality was

notably motivated as a consequence of the feedback obtained from stakeholders,

72

4. Software Quality to drive the delivery of services in the European Open
Science Cloud

such as the e-Infrastructure users, who were familiar with the past instability

issues. This trend permeated in the Horizon 2020 programme’s EINFRA call,

as reflected in the Work Programme 2014-2015, by demanding “services to en-

sure the quality and reliability of the e-infrastructure, including certification

mechanisms for repositories and certification services to test and benchmark

capabilities in terms of resilience and service continuity of e-infrastructures”.

4.3.2 The missing element in the European Open Science

Cloud equation

But as discussed in previous section, the advent of the EOSC did not bring new

incentives towards the production of quality software. Much of the focus shifted

to data stewardship, leaving the software –previously devised as a crucial ele-

ment both for the e-Infrastructure and RI services’ operation and exploitation–

as a second class citizen. This fact is reflected through the analysis of the pres-

ence of software in the EOSC design documents, as shown in Box 3.1, which

complements the already-identified undervaluation of software as found in the

EC’s Open Science Policy Platform (OSPP) advice document [26], highlighted

in Chapter 2 “The Role of Software in Open Science”.

Therefore, there is no guidance, incentive or rewarding structure defined

within the EOSC implementation roadmap that drives the appropriate devel-

opment and maintenance of the software that enables the accurate operation of

the services that will be integrated and offered through the EOSC on a prospec-

tive basis. Software and services require active maintenance 3 and the EOSC

must define benchmarks for excellence in software, not only to protect it as an

essential asset for knowledge management and sharing [90], but as a means of

protection for the EOSC audience. Otherwise, the EOSC will confront simi-

lar shortcomings in service exploitation by researchers as the ones faced by the

3The 1st HLEG report [78] points to a cultural clash among e-Infrastructure providers
and scientific domain specialists that leads to a shortage of data expertise in Europe. The
document remarks that “scientists expect that Open Source, project-funded software tools
will stay magically updated, online; they will continue to produce and consume new data
types, even when the project generating them is long-gone”

73

4. Software Quality to drive the delivery of services in the European Open
Science Cloud

e-Infrastructures in the past.

Box 3.1: Role of software in the EOSC implementation

EC Communication in 2016 defines the EOSC as the access point of a cat-

alogue of interoperable services to manage and share data. Among the six

main lines of consideration for the EOSC implementation, services are

expected to be “open and seamless”, but no mention to the quality of

the services whatsoever. Conversely, data is required to be FAIR.

First HLEG report in 2016 bolsters the adoption of the RoP as the criteria

for service adoption in the EOSC. Software is timidly mentioned as

one of the “data related elements” that enable reproducibility in

Open Science.

EOSC Declaration reports that “software sustainability should be treated on

an equal footing as data stewardship”, but still only mentioned in one out

of the 33 requirements for the EOSC implementation.

EOSC implementation roadmap does not implicitly make any reference to

software. The action line about the “development of the initial cata-

logue of services to be provided via the EOSC” fosters the integration of

existing services offered by the e-Infrastructure providers –such as EGI,

EUDAT-CDI and INDIGO–, with the RoP as the only criteria for service

onboarding in the EOSC catalogue.

Second HLEG report 2018 makes specific reference to software developers,

and service providers, within the relevant actors for the preliminary im-

plementation of the EOSC, coined as Minimum Viable Ecosystem (MVE).

Moreover, the report states the need of an EOSC-Ready certification for

software in order to promote the long-term sustainability of the EOSC

operation and give credit to innovative software developments. This is

the first time that the role of the software in the service provision of the

EOSC is accentuated, promoting the development of “open, sustainable,

versioned, documented and energy consumption aware software”.

Strategic Implementation Plan includes software as one of the driving prin-

74

4. Software Quality to drive the delivery of services in the European Open
Science Cloud

ciples for the implementation of the EOSC. However, whilst software is

targeted to “play a specific role as enabler of services and interoperabil-

ity”, the data are ascribed as the only first-class citizen. According to the

plan, software requirements are narrowed down to two: open source and

open for contributions.

4.3.3 Featured e-Infrastructure enabling initiatives in

Horizon 2020 Programme

The chapters that follow, clustered around the Act II “Where Theory meets

Praxis: the Implementation process”, illustrate the impact that the implemen-

tation of a SQA process has on the delivery of services both for e-Infrastructure

operation and for scientific experimentation, which might eventually contribute

to the EOSC. In order to contextualize the insights described in the incom-

ing chapters, the following lines introduce the aforementioned e-Infrastructure

development projects.

EGI Federation

The EGI Federation federates computing and data resources, mainly hosted in

Europe, into a publicly-funded e-Infrastructure that offers a catalog of advanced

computing services, based on Cloud and Grid technologies, and support for

research and innovation. The audience of EGI ranges from multidisciplinary

scientific communities and research infrastructures to industry. At the time

of writing, the EGI federated e-Infrastructure provide access to more than 1M

computing cores and 900 PB of storage [91] via High-Throughput Computing

(HTC) offerings –enabled through the Grid technology– and 21 cloud compute

providers through the EGI Federated Cloud.

Back to the EGI’s inception in 2010, the EGI acronym stood for European

Grid Initiative, as at that time the Grid was the emerging distributed computing

paradigm. As a result of the governance model shift from the preceding Enabling

Grids for E-sciencE (EGEE) project [92], EGI was consolidated as the new

75

4. Software Quality to drive the delivery of services in the European Open
Science Cloud

2015

Digital Single
Market Strategy
6 May 2015

INDIGO-DataCloud

Launch of EOSC
Portal
23 Nov 2018

1 Apr 2015 - 30 Sep 2017

H2020 EU Programme

DEEP-Hybrid-DataCloud
1 Nov 2017 - 30 Apr 2020

EOSC-Synergy
1 Sep 2019 - 28 Feb 2022

EC Communication
on the ECI
16 Apr 2016

EOSC
implementation
roadmap
14 Mar 2018

EOSC strategic
implementation
plan
27 July 2019

EGI-Engage
1 Mar 2015 - 31 Aug 2017

EOSC-hub
1 Jan 2018 - 31 Dec 2020

2016 2017 2018 2019 2020 ...

Figure 4.1: Lifespan of the most representative Horizon 2020 e-Infrastructure enabling
projects within the context of the current work. The key milestones in the EOSC
implementation are highlighted in the figure.

coordinating body of a pan-European Grid-based e-Infrastructure build upon

National Grid Initiatives (NGIs), and interoperable with other Grids worldwide.

EGI was subsequently scaled from initiative to infrastructure in order to reflect

the transition towards a more sustainable effort [93]. This fact set the path

for the establishment of the EGI Foundation as the coordination body of the

EGI e-infrastructure. Until 2018, the EGI activities were carried on through the

lifespan of two EINFRA projects, EGI-InSPIRE and EGI-Engage, which from

that point onwards were continued under the scope of EOSC-hub.

The EGI Federation infrastructure is enabled by the services and software

developed by diverse technology providers, and delivered through two software

distributions, Unified Middleware Distribution (UMD) and Cloud Middleware

Distribution (CMD), dealing with the aforementioned HTC and Cloud offerings,

76

4. Software Quality to drive the delivery of services in the European Open
Science Cloud

respectively. The UMD and CMD products are validated before being deployed

in the infrastructure by means of the EGI Software Provisioning Process (EGI

SWPP), which does not interfere in their software development process, but

focus instead on the quality assurance of the software artefacts contributed by

those technology providers. To this end, the services are deployed and tested,

according to the requirements in the EGI Quality Criteria (EGI QC) [94], as

a preventive measure against prospective malfunctions once in the production

infrastructure. There are currently around 60 products [95, 96] being maintained

through UMD and CMD distributions. Chapter 8 will dive into the details of

the EGI SWPP modernisation as part of the outcomes of this thesis.

INDIGO-DataCloud (INDIGO)

The INDIGO [97] consortium included 26 partners from 11 different countries.

The project duration was limited to a 30-month period, starting in 2015 and

concluding in late 2017. The primary goal of the project was to develop ad-

vanced cloud-based tools, applications meant to be used within the European

e-infrastructures, such as the EGI Federation. Accordingly, it was a major effort

to incorporate the cloud technology capabilities within those e-infrastructures

in order to bring them within reach of the researchers. To this end, the solu-

tions developed built on well-known open source cloud frameworks and included

enhancements at the different infrastructure –covering computing, storage and

network technology gaps–, platform and software as a service (IaaS, PaaS &

SaaS) cloud levels.

The project delivered two main software releases, each comprising about 40

components, 50 Docker containers and 170 software packages total. The software

development approach was eminently community-driven building upon the re-

quirements elicited from the multidisciplinary scientific use cases that took part

in the project. Leveraging the lessons learned from previous software develop-

ment and e-infrastructure management projects [98], the project established a

rigorous SQA process that stressed the fulfillment of a well-defined set of quality

requirements from the very early stages of the software production. Thus, the

77

4. Software Quality to drive the delivery of services in the European Open
Science Cloud

compliance of each code contribution was assessed enabled by the adoption of

state-of-the-art software engineering practices. Chapter 6 delves deeply into the

SQA process established during the lifespan of INDIGO.

DEEP Hybrid-DataCloud (DEEP)

The DEEP project’s partnership was originated from the previous INDIGO

consortium, but not in an all-inclusive approach, as the size of the project is

considerably smaller. The project incorporated new members, but was mainly

comprised of a selection of the leading members existing in this former project.

As its precursor, DEEP is a bounded software development effort that, unlike

the INDIGO’s vision of providing a generic cloud-based framework for better

utilization and harnessing of the underlying resources, focused instead on the

Machine Learning (ML) capabilities. The proposed architecture [99] is a dis-

tributed solution that covers the whole ML development cycle, including the

“models creation, training, validation and testing to the models serving as a

service, sharing and publication”.

In terms of software production, the DEEP’s SQA plan started off from the

previous outcomes of the INDIGO era. DEEP project reused and extended the

previous SQA process, with the particular purpose of extending the domains of

action to the ML applications developed by the user communities, thus not only

restricting those SQA benefits to the infrastructure-enabling services. Chapter 7

discusses the main insights obtained in the DEEP project with regards to the

enhancement of the user experience.

EOSC-Synergy (SYNERGY)

Unlike the previously-described projects, SYNERGY is funded through the IN-

FRAEOSC call to support the implementation of EOSC-relevant national initia-

tives. SYNERGY is an ongoing 3-year duration project that aims at expanding

national e-Infrastructures and integrating thematic services, from nine Euro-

pean countries, in order to expand the avenues of research within the EOSC.

78

4. Software Quality to drive the delivery of services in the European Open
Science Cloud

One key guiding principle embraced by SYNERGY is to ensure the accurate

operation of the e-Infrastructure and thematic services being integrated by the

project into the EOSC. The SQA-as-a-service (SQAaaS) solution, to be deliv-

ered as one of the fundamental outcomes of the project, is a clear proof of this

fact. The SQAaaS will provide a means to automatically assess the software

quality achievements through the –static and dynamic– analysis of the software.

Hence, the SQAaaS is a definitive move towards defining the minimum quality

attributes of the services being integrated in the EOSC. Chapter 9 will pro-

vide a comprehensive description of the architecture and implementation steps

towards building the SQAaaS.

4.4 Conclusion

The ultimate goal of the EOSC is to deliver research-enabling services for mul-

tidisciplinary scientific communities. The way in which those services are de-

livered is key for building the required level of trustworthiness that fosters the

progressive adoption by those communities, and eventually situates the EOSC

as the reference point for doing research within the EU according to the Open

Science standards.

The review of the integral documents released by the EC during the vision

and implementation phases of the EOSC does not reflect the positive impact

that developing software according to modern quality standards has on the

final delivery of the services. Probably as a side effect of this, the ongoing

EOSC-hub project, which is in charge of developing the initial federating core of

services, is lacking of this software-oriented approach, relying on the inaccurate

–as acknowledged by the project– TRL maturity measurement system to set the

minimum quality criteria for the service onboarding.

The primary argument being elaborated throughout this chapter is that the

EOSC should not only aspire to attain the federation and interoperability of

the currently fragmented e-Infrastructures and RIs. Indeed, the EOSC must be

built upon the beneficial outcomes and knowledge base gathered as a result of

79

4. Software Quality to drive the delivery of services in the European Open
Science Cloud

delivering services to researchers during the course of numerous e-Infrastructure

development and management projects, which took place before and during the

lifespan of the Horizon 2020 programme.

In the early days of the European e-Infrastructure development, the focus

was essentially –and erroneously– set on extending the capabilities and services

built on the underlying distributed computing technology, based on poor soft-

ware engineering practices. The resultant operational instability made apparent

the need for a better balance with regards to the quality, especially in terms of

reliability, of the services being offered to researchers. Since then, the increas-

ing awareness of the importance of adhering to software quality procedures is

tangible, as it will be shown throughout the next chapters.

This expertise shall be the groundwork for the delivery of services within the

EOSC, placing value on the definition of an accurate criteria for the underlying

software, and thus, avoiding the current vagueness that exists when estimating

the maturity of those services.

80

A Story of Three Acts

81

A Story of Three Acts

Until now, the virtues of both the Open Science paradigm and the definitive

role that the quality of software plays in its realisation have been discussed as

part of the first block. The last chapter of this block, contextualized the study

within the European frontiers, reviewing the vision and the steps already taken

in the European Open Science Cloud (EOSC) implementation.

The previous Chapter 4 “Software Quality to drive the delivery of services in

the European Open Science Cloud” showcased several challenges in the process

of delivering services that are continuously being integrated into the EOSC, and

those boil down to an imprecise estimation and assessment of the service quality

and maturity. According to the hypothesis of this work, already introduced in

the Section “Thesis Statement”, the software is the enabler of the services, and

thus, it has to be considered as a fundamental part of the EOSC implementation.

Based on this assumption, this second block of the thesis delves into the solution

proposed, which contributes to bolster the task of assessing the quality of those

services.

Methodology followed in the next chapters

The following chapters provide an incremental and comprehensive application

of a Software Quality Assurance (SQA) process, divided in three acts, from the

definition to its practical implementation, complemented by the development

of a solution for disseminating the culture built around it. The field of study

are the European e-Infrastructures that, as stated in the previous chapter, have

83

4. Software Quality to drive the delivery of services in the European Open
Science Cloud

collected expertise in developing and operating research-enabling services, as it

is the case of the EOSC.

The definition act encompasses the identification of the set of suitable cri-

teria, clustered around the so-called SQA baseline, that have a high impact on

the quality of the software being produced, thus being as pragmatic as possi-

ble. The SQA baseline provides a solution to the guidance gap existing in the

EOSC, enabling a more accurate estimation of the quality and maturity of the

onboarding services.

Secondly, in accordance with the SQA baseline criteria, the implementation

act describe the methodological and technological solutions to build a DevOps

culture, underpinned by the tools provided by Chapter 3 “Building a Culture of

Software Quality”. Real examples are covered throughout the chapters in this

act, which cover the perspectives and twinning of both the research projects that

develop the software solutions and the ones that operate the e-Infrastructure

through the use of such solutions. The aggregate of SQA and automation enables

the success of this collaboration, manifested by increasing levels of stability

and reliability within the e-Infrastructures. Similarly, the implementation of

a DevOps approach within the EOSC context would improve the trust of the

researchers in the services being offered.

Lastly, based on the promising results obtained from the practical implemen-

tation of the software quality criteria, the last act broadens the horizons beyond

the e-Infrastructure level, outlining the architecture of general-purpose solution

to assess the quality of the research software. The goal in this act is to convey

and disseminate the SQA culture within the whole research software community,

and how this culture impacts the implementation of the Open Science values in

the EOSC services.

84

Act I

Laying out the

Groundwork: The

Definition of a Baseline for

Software Quality Assurance

85

5
Wrapping-up: The definition of a

Software Quality Assurance baseline for

Research Software

Part of this chapter has been published as:

Pablo Orviz Fernández, Álvaro López Garćıa, Doina Cristina Duma, Mario David,

Jorge Gomes, and Giacinto Donvito. “A set of common software quality assurance

baseline criteria for research projects”. In: (2017). URL:

h t t p : // h d l . h a n d l e . n e t / 1 0 2 6 1 / 1 6 0 0 8 6

This document devises a pragmatic approach for the realization of quality

software in academic research. To this end, we present a detailed discussion of

87

http://hdl.handle.net/10261/160086

5. Wrapping-up: The definition of a Software Quality Assurance baseline for
Research Software

the essential criteria that are expected to find in the software products resultant

from the research work. Hence, the present compilation is purposely oriented to

match Open Science standards while being eligible to conduct the software de-

velopment processes within research infrastructures, which was its initial raison

d’être. Consequently, state-of-the-art methodologies in software engineering are

at the heart of this baseline.

The insight collected in this work is aligned and elaborates on the guidelines

included as part of the version 3 of the A set of Common Software Qual-

ity Assurance Baseline Criteria for Research Projects document [100],

hereinafter referred to as the Software Quality Assurance (SQA) baseline.

5.1 Background

Back in 2015, while in the starting phase of the INDIGO-DataCloud (IN-

DIGO) [101], there appeared the need to compile a set of quality conventions

that guided the planned developments. The project aimed at developing a solu-

tion comprised of a set of software that had varying backgrounds, ranging from

more mature solutions –some having their own quality procedures– to brand

new products that were required by the project’s architecture design. In addi-

tion, contributions to major open–source projects were planned in the project’s

description of work, thus upstream acceptance became a key indicator for the

project success.

As a result of the heterogeneous ecosystem that composed the project’s ar-

chitecture –different level of maturity, wide range of programming languages–,

the focus was put in converging into a minimum viable, but generic enough, set

of requirements. These requirements were complemented with additional good

practices and recommendations acquired from different sources, such as soft-

ware standards and engineering methodologies, industry–proven insights and

processes implemented in leading open–source software projects. The founda-

tional document [102] emerged as a project deliverable, setting the version 0 of

the SQA baseline.

88

5. Wrapping-up: The definition of a Software Quality Assurance baseline for
Research Software

2015

v0 (deliverable)
Jun 2015

INDIGO-DataCloud

v3
Dec 2019

1 Apr 2015 - 30 Sep 2017
DEEP-Hybrid-DataCloud

1 Nov 2017 - 30 Apr 2020

EOSC-Synergy
1 Sep 2019 - 28 Feb 2022

v2
Feb 2018

v1
Jan 2018

Open for collaboration
(CC BY-SA 4.0 license)
Feb 2019

2016 2017 2018 2019 2020 ...

Figure 5.1: Representative milestones within the SQA baseline’s roadmap. The as-
sociated Horizon 2020 e-Infrastructure projects that supported the implementation of
the SQA baseline are highlighted at the bottom of figure.

All along the 30–month duration of the project the SQA baseline drove

the development of more than 30 software components –scattered over around

200 code repositories–, and was gradually enhanced according to the emerging

needs and new requirements. Far from being abandoned, the maintenance of

the SQA baseline continued once INDIGO reached its end. The approval of two

succeeding –but independent– software development projects, DEEP Hybrid-

DataCloud (DEEP) [103] and eXtreme-DataCloud (XDC) [104], not only en-

abled the continuation of the SQA activities but extended their recognition and

application to a broader public, as new partners joined in the respective projects.

In 2017, shortly after kick-off activities of both projects, the SQA baseline

was compiled and published in a standalone document [100], meant to evolve on

its own, with no further attachment to any particular project, but intended for

general guidance on software engineering research matters. This was actually

the turning point that eventually lead to the opening of the SQA baseline to

external collaboration early in 2019 [105]. Finally, the last version (v3) of the

89

5. Wrapping-up: The definition of a Software Quality Assurance baseline for
Research Software

baseline was published in late 2019. Figure 5.1 illustrates the evolution followed

by the SQA baseline since its inception.

5.2 Motivation

From a research e-Infrastructure perspective

As it can be extracted from the enumeration of the European initiatives de-

scribed in Chapter 4 “Software Quality to drive the delivery of services in the

European Open Science Cloud”, the knowledge transfer between successive

software development projects existed –by means of deliverables and milestones–

, but it was not inclusive enough. Unlike the long-term support of research

infrastructures, these projects were short-lived, funded during a very specific pe-

riod of time, and consequently, there was a natural discontinuity in the research

and maintenance of the implemented processes.

The new forthcoming projects did not, nonetheless, start from scratch. They

considered the working practices from the available documentation of the past

activities, but eventually, the resultant knowledge base was not constructed in

a way that it could be preserved and transmitted. Besides, this knowledge was

reduced to the siloed expertise of the project consortium, so no external

feedback was usually considered, other than the literature on the matter.

Consequently, there were no comprehensive reference point for new projects

to fall back on, in terms of developing quality software for the research infras-

tructures. This situation also affects the sustainability of flagship assets

resultant from concluded projects, where developers are left alone in the

task of maintaining a successful software product. By no means software main-

tenance is an easy task, and should not be left on its own, evolving with no

explicit guidance on the most basic quality features. Assuring software quality

is key for its adequate maintenance and sustainability, as otherwise it would be

hard or unlikely to make it grow and/or adapted to changing conditions such

as the environment and/or the user requirements.

90

5. Wrapping-up: The definition of a Software Quality Assurance baseline for
Research Software

From a research software perspective

Research software development and maintenance often suffers from a notable

absence of quality assurance realization. As discussed in Chapter 2 “The

Role of Software in Open Science”, inherent factors are usually at the root of this

reality. The SQA baseline presented hereinafter is an effective tool for reacting

to this lack of awareness of software engineering practices in those academic

environments.

5.3 Essential criteria for quality research soft-

ware

The quality criteria are identified by virtue of their importance, either falling

into the Requirement or Good practice category, and clustered around four key

categories, each one discussed in a different section. The criteria within each

of those categories meet the demands of the quality characteristics identified in

Chapter 3 “Building a Culture of Software Quality” in order to establish the

SQA process. Figure 5.2 shows the relation between those characteristics and

the five categories from the SQA baseline.

Note that the original criteria, as outlined in [100], set the levels of criticality

using the RFC 2119 convention [106]. For the sake of clarity, the criteria

described herein relies instead on the requirement or good-practice

binary form.

5.3.1 Code management

Requirement I: Create versions of the source code

Version Control Systems (VCSs), also known as Source Code Managers (SCMs),

provide a highly flexible means to maintain a repository of content, perfectly

suited for source code and/or documentation. The benefits of versioning your

code are widely covered in software engineering literature, which include ex-

91

5. Wrapping-up: The definition of a Software Quality Assurance baseline for
Research Software

Code
management

Collaborative
coding

D
is

co
ve

ra
bl

e

Open &
Acessible

Collab. &
Support.

Verification & Validation

Readable Testable

Software
uptake

Secure Usable

Code
accessibility

Po
rt

ab
le

 &
 In

te
ro

pe
ra

bl
e

Figure 5.2: Mapping between the software characteristics (from Chapter 3 “Building
a Culture of Software Quality”) and the SQA baseline criteria’s categories

tended capabilities for collaborative work in geographically dispersed envi-

ronments, the ability to undo or revert changes, ownership management or

backup [107, 108]. As in the previous code accessibility practices, reproducibil-

ity is again a particular area of focus, as code versioning –in conjunction with

with data provenance– plays a decisive role in its improvement [109].

Good practice I: Maintain a clean history of changes

In code versioning terminology, a commit operation is performed for each signif-

icant change –feature or fix– in the code. As a result of a successful commit, an

entry in the history is registered, characterized by a title and, optionally, a more

elaborated description of the change. At a later stage, the VCS user will rely

on this metadata to identify the changes that occurred at that time, therefore

the commit operation plays a definitive role in maintaining a readable history.

To this end, the determination of when doing the commit should be

driven by the identification of an irreducible improvement in the code.

This means that the developer must recognize the minimal set of modifications

92

5. Wrapping-up: The definition of a Software Quality Assurance baseline for
Research Software

–in a file or set of files– that accomplish a common goal. In what regards

to the what, one–line, short and meaningful subject or title messages

are crucial to facilitate forthcoming checks on the history. As a general rule,

commit messages such as “bug fix” and “minor change” shall be avoided. Future

successful retrieve, compare or revert operations will rely upon human-readable

commit histories.

Good practice II: Use a branching strategy to separate your develop-

ment and production versions

A more advanced feature of VCS is branching. The initial repository setup in-

cludes a default branch from where others can derive, in a tree-like structure.

Conceptually, one could see a branch as a diversion from the original

work, useful for implementing new changes without affecting the regular devel-

opment within the parent branch. The lifespan of a branch varies according to

its purpose, following a parallel progress until the developer decides whether to

consolidate it –through a merge operation– or keep it separate as a long–term

version of the software.

SCM branch-based methodologies, such as git-flow 1 [110], advocate for

the use of two long-term branches: development and production. The

development branch contains the new features and fixes that will take part in

the next release. Accordingly, every change is only merged in the development

branch, leaving the production branch untouched. At release time, the develop-

ment branch gets eventually merged into the production branch. At this point

in time, the release is tagged –following the naming convention of “Good prac-

tice VI: Use semantic versioning for your releases”–, which records in the SCM

history the exact commit where both branches were merged.

According to this methodology, all the -smaller– new changes are tracked in

individual and short-lived branches that, once approved, are meant to be merged

1Even though git tool is explicitly referenced here, the theoretical basis behind this work-
flow builds on the branching capabilities of VCSs, and thus, it is applicable to any VCS
solution.

93

5. Wrapping-up: The definition of a Software Quality Assurance baseline for
Research Software

in the development branch. There is only one exception to this, the emergency

fixes. They address security flaws, which are also tracked in separated branches,

but merged in both the production and development long-term branches.

Good practice III: Maintain your long–term support versions

According to the complexity and/or requirements of the software project, addi-

tional long-term branches may exist in addition to development and production

branches. Support branches are used to maintain multiple Long Term

Support (LTS) versions and stem from the release tag that identifies the

particular release to be supported.

As a result, support branches are not intended to be merged back

to production, but rather to be simply removed when reaching the expiration

date. Unlike the production and development long-term branches, the support

branches do only accept bug fixes, not new features.

Good practice IV: Use an unambiguous naming convention for

branches

Semantics are important when naming branches, especially in branching models

as the one described in “Good practice II: Use a branching strategy to separate

your development and production versions”. Regardless of the SCM tool, a

good practice is to fix a naming convention for discriminating among

the different types of changes. Thereby, a feature branch could be prefixed

by the feature/ identifier, followed by the branch name. The same applies to

bug fixes, fix/ or hotfix/ and support, support/ branches.

Good practice V: Use issue tracking

Issue tracking provides software management capabilities and facilitates organ-

ised software development 2. An issue can be seen as a reminder to per-

2Issues are particularly important when relying on the agile frameworks described in Chap-
ter 3 “Building a Culture of Software Quality”. They are the fundamental elements for track-

94

5. Wrapping-up: The definition of a Software Quality Assurance baseline for
Research Software

form a specific task in the source code or documentation. Issues can

roughly be categorized as enhancements, which lead to the implementation of

new code features or documentation enhancements, or anomalies, commonly

mapped to bugs or documentation typos.

Issues are of most value when tightly integrated with the source code. The

practice of adding a reference to the issue/s that the commit is address-

ing –within the title or description– contributes to the composition of

a fine-grained and comprehensive history of changes. Pull requests, as

described in Good practice VII: Use pull requests, can also add references to

open issues.

In addition to internal development purposes, issues are the best means

for supporting users. Thus, issues opened by users provide valuable feedback

for the developers as they can potentially point out to bad performance problems

or uncover defects found in the software. Besides, user input can lead to the

development of new features or better approaches for existing functionalities.

Good practice VI: Use semantic versioning for your releases

As it was described in “Good practice II: Use a branching strategy to separate

your development and production versions”, tags are use to indicate the point

in time of a new release. Tagging a release implies figuring out a version

number that will identify it. This version number should not be randomly

set, but instead, it should follow an incremental approach and, additionally, give

meaningful information to the users of the software about the magnitude and

significance of the changes contained therein.

To meet this goal, the Semantic Versioning (SemVer) specifica-

tion [111] proposes version numbers in the form X.Y.Z, made up of

non-negative incremental numbers. In order to showcase the dimension

and backward compatibility of the changes introduced, the fields within X.Y.Z

correspond, respectively, to a major, minor and patch version. Therefore, an

ing work inside the Kanban boards or Scrum sprints.

95

5. Wrapping-up: The definition of a Software Quality Assurance baseline for
Research Software

increase in the major field represents a backwards incompatible version, whereas

increases in minor or patch versions imply, respectively, compatible new func-

tionalities or bug fixes with regards to the immediately preceding release.

5.3.2 Collaborative coding

Requirement II: Use public forges to distribute your work

Public forges do not only provide code hosting services but also build on the

value of transparency in order to offer social coding capabilities. GitHub [16]

is today’s de-facto social coding platform, widely used for academic research

software, and is increasingly attracting the attention of recent studies about its

influence on software development practices [112].

In the research software context, the power of social media is boosting the

capacity to learn from others –education–, thriving community build-

ing –collaboration– and scientific recognition –reputation– at a sig-

nificantly larger scale [113]. It is also playing a key role in supporting the

sustainability or maintainability of the software, as a result of providing

mechanisms to support forking open source code [114].

Furthermore, public forges provide an extra means of code preser-

vation. Code preservation is a prerequisite of an accurate identification of

software, otherwise it cannot be discovered, accessed, cited or reproduced. Un-

like the traditional belief that considered executables or binaries as the software

products to preserve, the appearance of portability issues when trying to reuse

old programs in new hardware changed the focus towards the underlying source

code. Indeed, the source code represents a valuable and culturally rich object

that exposes the creativity and knowledge of the programmer. Source code,

unlike binaries, can be read, extended and sustained over time.

Nevertheless, it should be noted that code hosting platforms are driven by

commercial interests that may lead to the potential risk of suffering one-sided

policy changes that directly affect the long-term availability of the code [115].

Yet, even skeptics know that nowadays these platforms offer the greatest value

96

5. Wrapping-up: The definition of a Software Quality Assurance baseline for
Research Software

SQA criteria Expected outcome

Code management

Requirement I: Create versions of the source code SCM tool usage (e.g. git)

Good practice I: Maintain a clean history of changes Atomical & topical commits

Good practice II: Use a branching strategy to separate your develop-
ment and production versions

Short (feature, fix) &
long-term (master, develop)

branches

Good practice III: Maintain your long–term support versions Individual long-term branch
for each LTS version

fix/ for bug or emergency
fixes

feature/ for enhancements

support/ for LTS versions
Good practice IV: Use an unambiguous naming convention for branches

release/ for tracking a
release

Internal development issues
(enhancements, bugs)

Good practice V: Use issue tracking
Support issues (incidence,

user wishlist)

Good practice VI: Use semantic versioning for your releases x.y.z release versions

Collaborative coding

Requirement II: Use public forges to distribute your work Publicly accessible code
repository with social coding

capabilities (e.g. GitHub)

Requirement III: Make clear your contribution policy Contribution guidelines &
acceptance criteria in a

CONTRIBUTING or
CONTRIBUTION file

Improved code review

Unique means of adding
contributions to masterGood practice VII: Use pull requests

Make reference to open
issues

Good practice VIII: Protect your long-term branches from direct mod-
ifications

Safeguard production
(master) version from direct

pushes

Code accessibility

Free/Libre and Open Source
Software (FLOSS)-compliant

license in LICENSE file
Requirement IV: Make your code open and publicly available

Copyright header in all the
source code files

Requirement V: Make your software findable, reproducible and citable Digital Object Identifier
(DOI)

Table 5.1: Code management, accessibility and collaborative coding criteria.

97

5. Wrapping-up: The definition of a Software Quality Assurance baseline for
Research Software

to manage and share the code, especially when sustained funding is a common

issue in science, which hinders the long-term preservation of scientific code and

data in a non-commercial scene.

A recent archiving effort conducted by a non-profit organization, known as

Software Heritage [61], is conducting the ambitious task of archiving all the open

source code available in the currently existing worldwide software forges. Con-

sequently, the simple act of using an FLOSS license –see Requirement

IV: Make your code open and publicly available– and making your

source code available in any of the currently popular public forges –

see requirement 5.3.2–, will eventually guarantee the preservation of

your code.

Requirement III: Make clear your contribution policy

As it have been already discussed, using public repositories opens up new op-

portunities of external collaboration. Clear guidelines to engage potential con-

tributors [112] are required in order to describe the contribution process. Those

guidelines are recommended to be compiled in a CONTRIBUTING file at the

root of the code repository.

While the content of this file is not fixed, it should at least state clearly

the acceptance criteria –e.g. under a Governance section– so external con-

tributors are aware of how decisions are made and by whom.

Good practice VII: Use pull requests

Pull Requests (PRs) represent the cornerstone of software collaboration in so-

cial coding environments. They are used to tackle any new contribution,

whether it is done to personal or external code repositories. In the

latter case, a PR implies forking or duplicating the relevant version of the tar-

get software repository to one’s work-space in order to commit the required

changes. The PR is then created back in the original project, thus notifying the

repository owners about your intention of including the proposed changes into

98

5. Wrapping-up: The definition of a Software Quality Assurance baseline for
Research Software

the codebase.

According to social metrics, PRs that address a particular issue thoroughly

and efficiently are readily accepted, whereas the ones suggesting a large change

are less likely to go through [112]. Therefore, the contribution policy from

“Requirement III: Make clear your contribution policy” should describe how

PRs are expected, and thus, avoid undesired inputs.

Good practice VIII: Protect your long-term branches from direct

modifications

Despite the benefits of maintaining a stable and workable production versions

that the branching strategies provide, most of the code contributions still come

in the form of direct code commits to the main or production branch [112].

Even though it is a faster way of adding changes, it is also a riskier approach

as commits containing errors will make the production version malfunction.

Branch protection capability is provided by the code hosting platform, not by

the SCM tool itself.

5.3.3 Code accessibility

Requirement IV: Make your code open and publicly available

Software is exclusive copyright by default 3, so it is imperative to clearly state the

license agreement the software is adhered to, even in the case that the software

shall be eventually copyrighted. Otherwise, software is left in a situation of

legal uncertainty with regards to its accessibility and distribution [117] that may

discourage interested parties from using it, as they may incur into intellectual

property violations.

The essential step for declaring your software as open is to adhere to a non-

propietary license, and in particular, a license that is compatible with both

the Free/Libre Software Foundation and the Open Source Initiative

3Meaning that interested parties are not allowed to use, modify or share your work [116]

99

5. Wrapping-up: The definition of a Software Quality Assurance baseline for
Research Software

Figure 5.3: Popular open source licenses used for distributing the software, where
the group of FLOSS-compatible licenses are located within the darker orange area.
Additional copyleft –used to preserve the openness of derivative works– information is
provided, either in limited (MPL-2.0, EPL-2.0, CDDL-1.0) or full compliance (IPL-1.0,
GPL-3.0)

requirements. They do present philosophical and political discrepancies among

them [118], but in practical terms they converge to endorse a similar set of

licenses, as it can be seen in Figure 5.3.

In order to express the licensing adherence, the convention is to add a

LICENSE file alongside the codebase, containing the explicit definitions of the

selected software license. This action shall be required for any active software

project.

Additionally, the LICENSE file shall be complemented by adding a header –

containing both the copyright line and the link to where the full license

100

5. Wrapping-up: The definition of a Software Quality Assurance baseline for
Research Software

declaration is found– at the beginning of each source file existing in

the code base. Thus, not only the licensing notice is more accessible than in

a separate file, but most importantly, the legal implications of using your work

are effectively stated 4.

Requirement V: Make your software findable, reproducible and

citable

The FORCE11 Software Citation Principles document [120] collect the essential

requirements on how software should be cited. Here, the unique identification

of software is recommended to be done through the use of Persistent

Identifiers (PIDs), granted that they are the current standard for digital

products such journal publications. Thus, PIDs should facilitate the access

to the software itself, and the metadata should at least provide the minimum

required information intended for its accessibility.

Multiple metadata schemes do exist nowadays for different communities,

each one having their own specifications. Fortunately, the CodeMeta initia-

tive [121] is facilitating their convergence by creating a minimal schema for de-

scribing scientific software, aiming at achieving the successful exchange of meta-

data among the most popular software repositories and organizations. This way,

the metadata is placed in the repository of code as a JavaScript Object

Notation (JSON) file, following the specification of the CodeMeta-

2.0, filling in the information relevant for academic credit or citation, replica-

tion or reproducibility details –such as version or required dependencies– and

findability or discoverability –by e.g. using keywords–.

Once having the tools for uniquely identifying the software, academic soft-

ware developers should follow the path of journal publishing. There are

specific journal for publishing software, such as SoftwareX [122] and the Journal

of Open Source Software (JOSS) [123]. The latter is tightly aligned with the de-

scribed software citation principles as it issues PIDs and allows the publication

4As an example, OpenStack’s developer guidelines include the presence of the license head-
ers as a requirement [119]

101

5. Wrapping-up: The definition of a Software Quality Assurance baseline for
Research Software

of multiple minor or major versions of a piece of software, as long as it complies

with JOSS code of conduct 5.

5.3.4 Verification and validation

Good practice IX: Adopt agile principles for managing your software

project

Agile development methodology suits software projects of all sizes, but, accord-

ing to the experiences that will be described in the next chapters, it has proven

to be a particularly valuable tool for managing the development and integration

stages when multiple software components come into play.

When eliciting the user requirements, two different types of requirements

need to be considered: functional and non-functional. Functional require-

ments are gathered from user feedback, while non-functional are part

of the software’s quality performance. Whereas non-functional require-

ments do not need any further processing, as they are carried out according

to existing performance specifications, the requirements coming from the users

undergo a refinement process that results in the breakdown of a series of tech-

nical developments. According to the agile methodology, this process shall be

iterative, thus flexible enough to adapt to changing requirements throughout

the entire software development life cycle.

When running the project development, requirements are best handled

through issues –see “Good practice V: Use issue tracking”– and disposed in

accordance with the agile framework in use, either Kanban or Scrum, accord-

ing to the flexibility needed to release the final or intermediate 6 product. Agile

frameworks have become the standards for software development management 7

5https://github.com/openjournals/joss/blob/master/CODE OF CONDUCT.md
6or Minimum Viable Product (MVP), which was discussed in Chapter 3 “Building a Cul-

ture of Software Quality”
7GitHub has built-in capabilities for Kanban frameworks.

102

https://github.com/openjournals/joss/blob/master/CODE_OF_CONDUCT.md

5. Wrapping-up: The definition of a Software Quality Assurance baseline for
Research Software

SQA criteria Aut Good for Means

Verification and Validation (V&V)

Code reuse

Early
identification of

bugs

Testing libraries

Requirement VI: Test the individual units of the code 3

Self-
documentation,

facilitates
integration

Mocking objects

Meet technical
requirements

Testing libraries

Requirement VII: Address functional requirements 3
Address

functional
accuracy

Mocking
objects

Requirement VIII: Check the level of integration and
interconnection with coupled components

3 Software
flexibility within

uncontrolled
environments,

Interoperability

Testing
libraries, IaC

container-based
frameworks

Requirement IX: Ensure new changes do not jeopar-
dize the operation of software’s existing features

3 Software
consistency in
the presence of

new changes

Re-running
unit/function-
al/integration

tests

Good Practice IX: Supplement functional require-
ments with behavioural testing

3 Validate user
stories

Given-When-Then
pattern

Requirement X: Adhere your code to a code style
standard

3 Code readability Analytical tools
for style
standard

compliance
(linters)

3 Uncover code
security flaws

Static
Application

Security
Testing (SAST)

(code linters,
dependency

analysis
checkers and

secure coding)
Requirement XI: Assess the security on your software

3 Protection
against

vulnerability
exploitation

Dynamic
Application

Security
Testing
(DAST)

(vulnerability
scanning tools)

Requirement XII: Broadening the perspective with
peer reviews of the code

7 Detect the
suboptimal

aspects of a code
change

Code-review
tools, PRs

Table 5.2: V&V criteria in the SQA baseline.
103

5. Wrapping-up: The definition of a Software Quality Assurance baseline for
Research Software

Requirement VI: Test the individual units of the code

When writing unit tests, programmers commonly rely on specific libraries –

available for the programming language in use– that facilitate to a large extent

their implementation, such as by mocking –or simulating the behaviour of– the

objects used in the unit that are irrelevant for its evaluation. These libraries

seamlessly execute the set of test cases defined for each unit that, combined with

the code coverage tools, provide the percentage of code being executed over the

total number of code statements, conditionals and/or functions. Test cases

are best written alongside the implementation of the relevant code, so

that coverage does not drop dramatically on high-intensive periods of coding.

The coverage value gives a good estimate of the consistency of our code. Nev-

ertheless, as with any other type of testing, high coverage values yield to upper

costs in terms of effort. The benefit obtained is not necessarily balanced with ef-

fort, tending in fact to follow a non-linear pattern. According to our experience,

and supported by the literature on this matter [124], a coverage value that

approximates to 70% represents a good compromise between testing

benefits and dedicated effort.

Requirement VII: Address functional requirements

As far as where to focus the testing effort, it is a fact that not all the sections of

the code are of equal importance. The Pareto Principle or 80/20 rule [125] states

that a 80% of a program usage is handled by a 20% of the code. Accordingly,

the job of the programmer is to identify the sections where bugs are most likely

to lead to negative effects to end users, and focus on rising their coverage. Note

that this is true also for the case of the unit tests. Similarly to those, the test

cases for the functional tests shall be written at the time of adding each new

functionality.

104

5. Wrapping-up: The definition of a Software Quality Assurance baseline for
Research Software

Requirement VIII: Check the level of integration and interconnection

with coupled components

When writing integration tests, one should always assess the viability of au-

tomation, although this possibility is tightly coupled to the particularities and

complexities of the components and interfaces involved. It is indeed a kind of

testing strategy more likely to rely on manual intervention. However, with the

spread of container virtualization technologies and orchestration tools, the com-

position of complex setups, using simple definitions in configuration files, has

been largely facilitated, and consequently the automated execution in continu-

ous integration environments.

Running integration tests is estimated to be more expensive in terms of effort

and resource consumption than the aforementioned unit and functional tests,

particularly higher when lacking of automation. Thereby, integration tests are

not required to be triggered for minor changes in the code. As a rule of thumb,

integration testing is expected when releasing a new minor or major version of

the software, thus excluding regular changes in the source code (pull requests)

or patch releases.

Non-functional or performance requirements might be assessed along inte-

gration testing. Scalability, usability, volume or load tests fall into the non-

functional testing category. Based on their resource-demanding characteristics,

non-functional tests shall be carried out through automated means.

Requirement IX: Ensure new changes do not jeopardize the operation

of software’s existing features

Regression tests should be those –from the available units, functionalities and

integration test cases– that maximize the coverage of the most representative

characteristics of the software. The Pareto principle described in “Requirement

VII: Address functional requirements” provides a starting point to minimize

the number –by determining the most relevant– regression test cases of the

software [126].

105

5. Wrapping-up: The definition of a Software Quality Assurance baseline for
Research Software

Good Practice IX: Supplement functional requirements with be-

havioural testing

Behaviour-driven –or acceptance– tests are the result of driving a behaviour-

driven development (BDD) methodology to address the user requirements.

Hence, BDD links with the user stories themselves, so it appears as a higher

level type of testing when compared with functional testing. Indeed, a BDD

test is usually aligned with one or more functional tests.

As it has been discussed, functional testing is driven by the developers,

but lacks of the user perspective. BDD tests should be conducted, and ideally

developed, by the end users of the software or the SQA team. It is important

to set the developer aside, since the goal is test the software according to the

user expectations. Otherwise, the likelihood of a biased analysis increases.

Current approaches to BDD rely on the Given-When-Then pattern, which

allows the user to express the diverse situations to be faced when interacting

with the software. Given describes the state upon which the action identified

by When will occur. Then validates the user story by defining how the behaviour

of the system shall meet the user expectations.

Requirement X: Adhere your code to a code style standard

A code style is attached to a given programming language. Different style for-

mulation efforts had attained broad community consensus and sustained main-

tenance, eventually considered de facto code style standards. Conversely,

custom or individual’s agreed set of style rules, while commonplace in the past,

should be avoided and only considered in the hypothetical event of programming

languages without existing standards. The usage of community–driven stan-

dards are strongly encouraged as they are well defined –in terms of evidence

on the value or contrasted suitability of each convention–, supported –having

a strong community of experts behind driving the maintenance of the defini-

tions and analytical tools– and established –used by the leading open–source

projects–.

106

5. Wrapping-up: The definition of a Software Quality Assurance baseline for
Research Software

Practically speaking, the selection of a style standard is highly dependant on

the availability of tools –i.e. linters– that automatically check the conformity of

the source code with the conventions that comprise it, rather than being guided

by the analytical superiority of one standard over the other. Usually there exists

this duality between maintainability and consistency, so that the most accurate

style definitions are in fact the best supported.

Requirement XI: Assess the security on your software

Security must be considered at all the stages of an application development

life cycle. Software security assessment shall be at least guided by the aid of

automated tools available for the static and dynamic analysis testing.

SAST applies to the code and needs to be part of the CI stack, thus regularly

scheduled for each change in the code. The goal is to uncover the security flaws

that might have been added in the last modifications of the code. A rather

complete SAST assessment can be supported on the tripod of code linters,

dependency analysis checkers and secure coding.

Linters provide capabilities for detecting bad practices in the code, such as

file or assertion handling, untrusted connections to remote locations or usage

of unsafe libraries or protocols. Dependency checks 8 focus instead in the pres-

ence of disclosed vulnerabilities –identified by its Common Vulnerability and

Exposure (CVE) code– for the libraries or modules used by the software, whose

security risk should not be under appreciated as they can represent up to 80%

of the total code of an application [127].

Both types of automated SAST tools 9 are necessary complemented, and

preceded, by the application of secure practices while coding. Guidelines such

as the ones provided by the OWASP foundation [128] provide a convenient de-

scription of the common programming mistakes, how they are related to security

8As an indication, GitHub platform already performs dependency analysis checks on every
hosted source code repository to increase the awareness amongst their users.

9The Open Web Application Security Project (OWASP) foundation maintains an exhaus-
tive listing with the most relevant SAST tools available at https://www.owasp.org/index.ph

p/Source Code Analysis Tools

107

https://www.owasp.org/index.php/Source_Code_Analysis_Tools
https://www.owasp.org/index.php/Source_Code_Analysis_Tools

5. Wrapping-up: The definition of a Software Quality Assurance baseline for
Research Software

issues and the means of avoiding them. Needless to say that, in the event of

accessibility to expert counseling, the three aforementioned practices are signif-

icantly improved by secure code reviews, as it is considered as the “single-most

effective technique for identifying security flaws” [129].

An accurate DAST implementation should include protection against vulner-

ability exploitation through the vulnerability scanning tools 10 and penetration

testing. While the latter is the most effective, it requires a solid background on

security testing. Conversely, the vulnerability scanning tools do not require such

background since it provides an automated means to look for common security

vulnerabilities that can be exploited from the outside.

Requirement XII: Broadening the perspective with peer reviews of

the code

Previous requirements and good practices stressed the importance of relying on

automated programs to speed up –and increase the effectiveness of– the code

verification process. Unlike them, code review is explicitly meant to be

done manually, so no automation is desired as, in this specific case, we are

seeking a human perspective about the suitability of the change.

The various areas where source code reviews are particularly fruitful are

summarized in Box 3.1. As code reviews’ main focus is to address the suboptimal

aspects of a source code change, comments can easily take a negative tone.

Therefore, a neutral language should be used, avoiding personal or possessive

pronouns, always seeking constructive criticism. Moreover, comments need to

be concise, avoiding debate or excessive dialogue, and state unambiguously the

actions expected from the author.

There are dedicated tools for carrying out code reviews. However, following

the success of social coding platforms, PRs are the most used means of code

review, based on their capacity to attract feedback from outside the project and

10Again, OWASP provides a benchmarking analysis of the most noteworthy vulnerability
scanning tools currently in the market. See https://www.owasp.org/index.php/Category:

Vulnerability Scanning Tools

108

https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools
https://www.owasp.org/index.php/Category:Vulnerability_Scanning_Tools

5. Wrapping-up: The definition of a Software Quality Assurance baseline for
Research Software

the fact of not having to deploy and maintain an additional tool.

Box 3.1: Source code reviews checklist

Goal or scope This is the first and most fundamental check done at code re-

viewing, which has to be imperatively performed by humans. Although

the change has been correctly implemented, documented and tested, it

may be providing an irrelevant feature or bug fix.

Test completeness . As code review stage represents the last step in the veri-

fication of a source code change, the results from SAST and DAST checks

(this may not include the integration testing) should be already available.

In this area, code reviewers should focus on the identification of uncov-

ered units or sections of the code that directly impact the functionalities

required by the end users a.

Security assessment Code reviews can include an inherent security assess-

ment of the risks that the candidate changes may introduce. The expected

outcome in this area shall safeguard the security model of the software, en-

suring that it has not been downgraded or compromised by those changes.

Compliance with best coding practices . Code reviews offer the opportu-

nity to analyse the software quality conventions that cannot be otherwise

assessed by automated mechanisms. In particular, reviewers should go

through the checklist of good practices for code management, such as

commit messages and history –see “Good practice I: Maintain a clean

history of changes”–, branch naming –“Good practice IV: Use an unam-

biguous naming convention for branches”– or that referenced issues are

completely covered by the changes introduced –“Good practice V: Use

issue tracking”–.

aremember the Pareto Principle in “Requirement VII: Address functional require-
ments”

109

5. Wrapping-up: The definition of a Software Quality Assurance baseline for
Research Software

SQA criteria Aut Means Outcome

Software uptake

Requirement XIII: Comprehensive documentation README (source
code

repository)

Requirement XIV: Treat documentation as code
3 Markup language

Audience-
specific

documentation
(doc

repository)

Good practice X: Ease the deployment of your
software

3 Continuous
Configuration
Automation
(CCA) tools

(Ansible,
Puppet)

CCA module
(code

repository)

Table 5.3: Software uptake criteria in the SQA baseline

5.3.5 Software uptake

Requirement XIII: Comprehensive documentation

Documenting a software product is often regarded as a tedious task, pictured

by the well-known resistance of developers [130], since, unlike programming, it

does not comprise creative work. The agile manifesto [55] advocates for the

bare-minimum generation of documentation as stated by the “working software

over comprehensive documentation” principle 11.

Nevertheless, if we observe the current trends, no relevant or successful soft-

ware possesses deficient documentation, and indeed, it exists a direct relation-

ship between the popularity of a project and the consistency of its documen-

tation [112]. Hence, every effort made in order to maintain a compre-

hensive and readable documentation does pay off.

Documentation is written to be read. Assuming that our source code is

11This statement raised broad debate and controversy within the software engineering com-
munity. S. Rakitin led the criticism to agile approach through his ironic statement “real
programmers don’t write documentation” [131].

110

5. Wrapping-up: The definition of a Software Quality Assurance baseline for
Research Software

readily available in a public forge, the often-neglected README file is the land-

mark of the software, and consequently, it shall contain the relevant

information that facilitates the basic understanding about the pur-

pose and scope of our software. Figure 5.4 illustrates the expected content

of a README file.

Getting
started

installation	&	deps,
deployment,
quick	usage

Links to
comprehensive

docs

README
file

One-paragraph
description

License
information

Test
execution
how-tos,
automated
testsContribution

&
Versioning
guidelines

Audience
specific
docs

 Develop
private	APIs,
standards,

code-of-conduct,
testing

 System
Operation
deployment,
troubleshoot,

FAQs

User

public	APIs	
&	CLI

Figure 5.4: Documentation expected for any software project. Assuming that the code
repository is publicly available, the README file content –figure on the left side– becomes
essential. The more thematic and audience-specific documentation –right figure– is
usually available in documentation-specific online repositories, so it is important to
link them appropriately.

On the other hand, the more elaborated documents are the ones targeted

to the specific audiences of our software. There are no fixed recommendations

about the content since it highly depends upon the given software. A good prac-

tice is to improve the comprehensibility of our documentation is to put ourselves

in the place of our audience’s shoes, without taking the most obvious detail for

111

5. Wrapping-up: The definition of a Software Quality Assurance baseline for
Research Software

granted, no matter if dealing with technical or user-oriented documentation.

Being diligent at this stage can contribute to software adoption.

The documentation shall be thematic according to the different

needs of the final consumers, who are frequently comprised of end

users, developers and operators. Common requirements for these types of

documentation are showed in Figure 5.4.

Requirement XIV: Treat documentation as code

Under the prerequisite of using of plain text format, the development of

documentation can benefit from all the aforementioned good practices of the

code. In combination with markup languages, such as the popular Markdown

or reStructuredText solutions, plain text can be rendered in an appealing way

to readers, so there is no real drawback with the results that can be obtained

with rich text formats.

It is highly recommended to place the documentation next to the code,

usually under a docs/ directory within the repository of code. By acting

this way, changes in the code that have associated modifications in the docu-

mentation can be then reviewed through the same PR, thus facilitating the code

reviewer’s endeavour. Likewise, corrective SCM operations, such as a revert or

amend, can be done in a single step, without the burden of doing the same

operation in two different repositories. Repositories hosting exclusively docu-

mentation are only advisable when in the need of managing documentation that

is not attached to a specific software product.

Whilst code repositories provide the means for documentation composition

and management, there are specific repositories 12 used for rendering

navigable documentation. They integrate seamlessly –via event notification–

with those software forges, so that any given change in the documentation text

files –within the docs/ directory– that is merged in the production branch is

automatically built and rendered in the associated documentation repository.

12See Read the Docs [132] or Gitbook [133]

112

5. Wrapping-up: The definition of a Software Quality Assurance baseline for
Research Software

Good practice X: Ease the deployment of your software

Ease of deployment is an indispensable requirement for software adoption. Un-

fortunately, not all the software out there is easily deployable, requiring cumber-

some installation and configuration steps that, all too often, lead to frustrated

attempts. According to the scope of the software, this unpleasant situation is

either faced by the infrastructure operation teams, more skilled to deal with

complex deployments, or directly operated by the end user, where this situation

is most problematic.

While documentation plays an important role, the advent of CCA method-

ology shifted the complexity of deploying the software towards the de-

veloper of the code. A CCA solution 13 provides a programmatic approach to

a system’s deployment using a high-level declarative language, so that it main-

tains a workable system with the minimal interaction of the end user or the

infrastructure operator. Based on these facts, leveraging CCA is the most

convenient way of raising the adoption of a software product.

As it was the case of source code, and subsequently, the documentation,

the development of a CCA module is best managed with a SCM tool. But,

unlike the documentation, it is recommended that the code is managed in an

individual code repository, separated from the main source code of the software.

Thus, as a self-contained software product, it can be distributed to the official

CCA-related repositories and re-used by the community.

On the other hand, the disruptive advent of the container technology 14 moti-

vated the appearance of Infrastructure as Code (IaC) solutions that, in addition

to the CCA tools, provided the means of not only deal with the software, but

also provision the underlying infrastructure. As a consequence, container images

are increasingly becoming a unit of deployment, whose script-like definitions are

increasingly being added in software’s code base.

13Most notable examples are Ansible [134], Puppet [135] or Chef [136]
14Docker [137] is the most prominent and widely-used container technology nowadays.

113

5. Wrapping-up: The definition of a Software Quality Assurance baseline for
Research Software

5.4 Conclusion

Producing quality software is by no means an easy task. Regardless of the size

of the project, driving the software development life cycle always requires an ab

initio definition of the essential criteria that will guide each modification in the

underlying source.

Back to the inception of the SQA baseline in 2015, no such a compilation

of minimal requirements, oriented to researchers and with a strong pragmatic

approach was available to the extent of the current knowledge. Obviously the

literature largely dives into the big complexities and capabilities of software

engineering, but none provided a high-level, how-to-like view that covered all

the required topics to aid the incipient projects contributing to the implemen-

tation of research infrastructures. Over time, the SQA baseline evolved towards

promoting the values of a software quality culture, and thus, resulted also of

great interest to individual scientists and communities, as the vast majority

of the compiled know-how is generic enough to be applicable to any software

development effort.

The SQA baseline guided the development of software within a series of

research infrastructure development projects, establishing a clear path for

real knowledge transfer. Subsequent projects built on the outcomes of the

precedent, without the need of reinventing the wheel. Having an open-to-

collaboration and accessible document promotes self-maintenance –through a

community endeavor– without the need of sustained or long-term funding. At

the same time, the fact that any software expert or enthusiast appears as a

potential contributor broadens the scope beyond the project partnership.

The use of standards is promoted throughout the SQA baseline. In par-

ticular, the code style requirement, either supported by a strong community

or being the de-facto standard for the programming language in use, enables

–either received or sent– upstream contributions. In conjunction with the re-

quired types of testing, any SQA baseline-compliant software project is in

the best disposition to successfully contribute to any external project,

114

5. Wrapping-up: The definition of a Software Quality Assurance baseline for
Research Software

regardless of their contribution policies.

In regards to the software engineering methodologies, the SQA baseline put

the focus on acting right at the start of the software life-cycle, by promoting the

evaluation of each modification done in the codebase, which appears as one

of its distinctive features. As it will be thoroughly discussed in the production

implementation of the Act Two, implementing such a scenario would not be

realistic for the economics of software without the adoption of automation.

Although not implicitly mentioned in the baseline, the adherence to DevOps

principles are active in the background.

Software manufactured following the SQA criteria is readily accessible and

re-usable by other researchers, meaning that the code is encouraged to be written

with long-term sustainability in mind. Improving the reliability of the software

is achieved through the collection of noteworthy testing strategies that put the

focus on meeting the requirements of end users, thus balancing out the invested

time, cost and effort.

As pointed out in Chapter 2 “The Role of Software in Open Science”, one

of the reasons to conclude that software was not equally treated as data is the

fact that there is no formal policy or research regulation about software. In this

chapter, the SQA baseline defines the criteria for accurate software development

and maintenance, and accordingly, serves the purpose of a regulation for quality

software in research.

115

116

Act II

Where Theory Meets

Praxis: the Implementation

Process

117

6
Developing quality software from its

origin: the INDIGO-DataCloud project

Part of this chapter has been published as:

Pablo Orviz Fernández, Mario David, Doina Cristina Duma, Elisabetta Ronchieri,

Jorge Gomes, and Davide Salomoni. “Software Quality Assurance in

INDIGO-DataCloud project: a converging evolution of software engineering practices

to support European Research e-Infrastructures”. In: Journal of Grid Computing

18.1 (2020), pages 81–98. DOI: 1 0 . 1 0 0 7 / s 1 0 7 2 3 -0 2 0 -0 9 5 0 9 -z

The INDIGO-DataCloud (INDIGO) project featured the first implementa-

tion of the Software Quality Assurance (SQA) baseline, whose initial formulation

was originated as part of the project design. The project’s SQA process laid

out the groundwork for foregoing projects, such as DEEP Hybrid-DataCloud

119

https://doi.org/10.1007/s10723-020-09509-z

6. Developing quality software from its origin: the INDIGO-DataCloud project

(DEEP) and eXtreme-DataCloud, especially in relation to the insights obtained

in the use of automation for the software Verification and Validation (V&V) pro-

cesses. As a consequence, a series of requirements from the previously discussed

SQA baseline can now be automatically evaluated through the implementation

of the DevOps approaches –depicted in Chapter 3 “Building a Culture of Soft-

ware Quality”–, thus enabling the consolidation of the change-based approach

advocated by the baseline.

6.1 The Software Quality Assurance process

Right from the start, INDIGO placed great value on control mechanisms for

software development, allocating considerable effort in this direction. As a re-

sult, novel software engineering approaches were adopted in order to address

the new challenges that were planned throughout the course of the project.

One of those challenges was to achieve a seamless integration with the quality

procedures of external open-source platforms that the INDIGO aimed at con-

tributing. In most cases, those platforms, notably OpenStack [138], follow very

well-defined quality procedures, and consequently, proactive measures had to be

taken within INDIGO in order to be ready for prospective contributions.

The INDIGO roadmap for attaining quality in the software being produced

is condensed in Box 1.1. Following the description of the SQA baseline, this

chapter focuses in the third action, i.e. the automated implementation of the

software development and release management phases leveraging DevOps prac-

tices. The insights obtained will be underpinned throughout the text by concrete

results and metrics.

Box 1.1: INDIGO SQA process roadmap

1. The initial formulation of the SQA baseline, previously covered in Chap-

ter 5, set the ground for the subsequent actions.

2. The definition of a set of quality metrics, based on the ISO/IEC 25022:2016

120

6. Developing quality software from its origin: the INDIGO-DataCloud project

standard [47], to monitor the development, release and maintenance

phases. The metrics were obtained programmatically from several sources,

such as GitHub API [139] and the project’s Jenkins Continuous Integra-

tion (CI) service.

3. The promotion of automation to enable the per-change based assessment

promoted by the SQA baseline, aiming at accelerating the delivery process

of new versions of the software.

4. A post-release and pre-production validation to be carried out using the

project’s testbeds, where the performance and integration between the de-

veloped components were evaluated. Once the integration was successfully

tested, the software was deployed in production environments using the

European Grid Infrastructure (EGI) e-Infrastructure.

6.2 Software verification, validation and deliv-

ery through DevOps

The amount of requirements compiled in the SQA baseline is high enough to

justify by itself the need of automation. But in addition, automation is crucial

for granting the compliance of those requirements for every code modification,

regardless of its size.

In INDIGO, automation was achieved by leveraging on Continuous Integra-

tion and Delivery (CI/CD) services, in particular, the Jenkins CI service [74],

introduced in Chapter 3 “Building a Culture of Software Quality”. The out-

come is the materialisation of CI/CD pipelines, as depicted in Figure 6.1, that

comprise the diverse stages that any change has to go through in order to be

successfully delivered in production.

As discussed in Chapter 3 “Building a Culture of Software Quality”, the

automation of the V&V processes increases the overall reliability of the pro-

duced software: automated testing is more time-efficient, leading to a higher

code coverage and increased defect detection. To put into numbers, during the

lifetime of INDIGO, the total number of defects detected in the V&V stage

121

6. Developing quality software from its origin: the INDIGO-DataCloud project

Continuous
integration

(CI)

Code
style

Unit
testing

Funct.
testing Security Metrics Artefact

build
Repo
update

Continuous
delivery

(CD)

Integration
testing

Stage
rollout

INDIGO
software
repositry

Figure 6.1: A simplified version of the delivery process implemented in INDIGO. The
CI/CD pipeline, represented in dark orange, carries out –automatically– the V&V
processes and delivers the generated software artefacts into the repositories. These
are used to perform the subsequent –manual– integration testing and validation on
production environments, through the stage rollout.

–that corresponds to the CI phase in Figure 6.1– surpassed by a factor of 30 the

ones reported by external users. Figure 6.2 shows the evolution of bug detection

throughout the project.

Technical implementation

Figure 6.3 illustrates the INDIGO CI/CD solution. Apart from the aforemen-

tioned Jenkins CI service, the implementation leveraged other technologies, such

as GitHub, for the code management, and Docker, both for resource provisioning

and to deliver container artefacts.

The project defined a source code contribution workflow based on GitHub

PRs, according to the SQA baseline’s Good practice VII: Use pull requests.

Upon code modification, GitHub sends a notification to Jenkins that triggers

the execution of the CI/CD pipeline, going through all the stages represented

in the previous Figure 6.1.

122

6. Developing quality software from its origin: the INDIGO-DataCloud project

Figure 6.2: Comparison of the number of software bugs – documentation typos are
excluded – detected during development and production or stage rollout phases, over
the lifetime of INDIGO project. Whilst production-related bugs correspond to software
bugs filed by users of the EGI e-Infrastructure, the development defects stem from
CI/CD and integration stages (source: GitHub issue tracking). Note that this chart
does not show all the bugs detected by the execution of the CI/CD pipelines since
they are usually fixed by developers on the fly without being tracked through issues.

As Figure 6.3 shows, the automatic upload of artefacts directly in the pro-

duction branch is intentionally avoided as a precautionary measure, and accord-

ingly, only a preview version of the artefact is uploaded to the repositories. This

preview release is subsequently used in the integration phase and, which in case

of passing the tests successfully, it becomes the production version.

Once the CI/CD pipeline execution ends, either because it ended successfully

or it failed on the way, Jenkins notifies back to GitHub the exit status, so it

can display the appropriate result. As each change is verified and validated, the

chances of early detection of defects increase. Within this scenario, the cost of

defect solving is dramatically reduced and the reliability of the software solutions

improved, as any bug or design issue is likely to be detected and subsequently

corrected, all of which performed at this phase.

123

6. Developing quality software from its origin: the INDIGO-DataCloud project

Feature/fix
branch

New
Pull Request

Update
Pull RequestReview

Feature/fix
merged

webhook

ghprb
web service

https://jenkins.indigo-datacloud.eu

merge

build results &
exit code

HTTP POST

triggerpush

https://hub.docker.com/orgs/indigodatacloud

https://github.com/indigo-dc

trigger get image

download
role

push
preview
image

C
I/C

D
 p

ip
el

in
e

Figure 6.3: Implementation of the CI/CD workflow for the INDIGO core components.
The Pull Request (PR)-based code workflow facilitates the V&V of incoming features
and fixes. The webhook residing in GitHub notifies, through a Hypertext Transfer
Protocol (HTTP) POST request, Jenkins’ ghprb web service that triggers the CI/CD
pipeline associated with the given software component. If successful, a new Docker
image is built and published in the Docker Hub repository within the INDIGO organ-
isation. The exit status of the CI/CD pipeline is updated in the GitHub’s PR, which
will indicate the viability of the change, according to the result of the pipeline.

The CI infrastructure

Figure 6.4 shows the evolution of the Jenkins CI builds carried out, for the static

and dynamic tests part of the CI/CD pipelines, over the course of the project.

The values for each type of test represent the sum of the total builds of each

component from the INDIGO software stack.

The continuation of the SQA activity in subsequent projects, notably in

DEEP and eXtreme-DataCloud, enabled the maintenance and operation of this

CI infrastructure once reached the project’s end of life. Some of the software

components not involved in those subsequent projects leveraged this continuance

to keep using it for their own developments. In other cases, the developers

deployed their own CI systems, taking advantage of the experience gained during

124

6. Developing quality software from its origin: the INDIGO-DataCloud project

Figure 6.4: Evolution of the total number of builds in Jenkins being triggered auto-
matically as part of the operation of the SQA process in INDIGO. The automated
functional testing coverage were not available for all the software stack, thus, as the
figure shows, the associated number of builds are fewer. The visible peaks and valleys
in the chart correspond to the development efforts prior to the scheduled official re-
leases. Towards the end of the project, the software development activity slowed the
pace but not completely ceased.

the project. Hence, either by direct support or education, the INDIGO CI

infrastructure contributed to the sustainability of the software that outlived the

project.

DevOps for the use cases

The aforementioned CI/CD implementation governed the delivery of the soft-

ware that made viable the INDIGO services. As such, they are referred to as

the core or infrastructure services. On the other hand, the applications from

the scientific communities participating in the project relied were integrated in

parallel to profit from the new capabilities of such INDIGO core services.

After the successful experiences, especially in terms of reliability and agility,

obtained from the above-described DevOps practices in the delivery of the core

components, the use cases’ applications seemed the next natural step. Conse-

quently, two use case applications, DisVis [140] and PowerFit [141], benefited

125

6. Developing quality software from its origin: the INDIGO-DataCloud project

Continuous
integration

(CI)

Code
style Security Metrics Artefact

build
Preview
upload

Continuous
delivery

(CD)

INDIGO software repositories

App
exec

Prod
upload

Figure 6.5: DevOps pipeline to distribute Docker images for the DisVis and Powerfit
applications. Note that the CI part is a simplified version, where unit and functional
tests are missing. This fact results from the lower software testing skills commonly
present in computer scientists, when compared with the more engineering-oriented
developers of the core components. Nevertheless, the Continuous Delivery (CD) part
is an improved version of the pipeline used for the core components, which adds the
execution of the application packaged as a Docker image in the previous step.

from those experiences, following a similar approach.

Indeed, the resultant CI/CD pipelines encompassed a simplified version of

the CI phase, but instead the CD part of the pipeline were enriched with the

validation of the application, once packaged as a preview Docker image. The

validation process relied on the availability of pre-existing reference outputs,

obtained from a previous computation that used the same inputs than the ones

now passed to the pipeline. Hence, based on the deterministic nature of both

applications, the results of executing the new Docker-based application must be

identical to the reference outputs.

Unlike the INDIGO core services, the Docker images were automatically

tagged as production versions, since the validation test provided sufficient guar-

antee.

126

6. Developing quality software from its origin: the INDIGO-DataCloud project

6.3 Compliance with the requirements from the

Software Quality Assurance baseline

The aim of the CI/CD pipelines is to tackle as much requirements from the SQA

baseline as possible. Eventually, some of those requirements appeared to be

challenging to be addressed by automated means, and in such situations, there

was no other way out than to rely on manual assessment, which is impracticable

from a change-basis perspective. A recurrent example was the unit or functional

testing requirement, whose automation entails a more advanced knowledge.

Code style

Figure 6.6: Code style standards followed by INDIGO software products.

As it was stated in the SQA baseline’s “Requirement X: Adhere your code to

a code style standard”, both the promotion of the interoperability and readabil-

ity implies the use of de-facto or community-adopted standards. The hetero-

geneity and diverse backgrounds of the INDIGO software components hindered

the adoption of a unique standard per programming language in use. Figure 6.6

reflects this situation, where different style guidelines were adopted for the same

127

6. Developing quality software from its origin: the INDIGO-DataCloud project

programming language. Nevertheless, the de-facto standards were the most

used, as it was the case for Python’s PEP8 or Java’s Google Style guidelines.

Unit testing

Figure 6.7: Comparison of the unit testing coverage values for the INDIGO software
stack over the two major releases, INDIGO-1 and INDIGO-2.

The adoption of unit testing was predominant throughout the lifespan of

the INDIGO. In Figure 6.7, unit testing coverage is compared for each software

component between the two major releases delivered over the course of the

project. As outlined by the figure, there exists an incremental trend at the end

of each release that brought the coverage from an average value of 50.32% to

63.34%.

Nevertheless, Figure 6.7 also shows a decrease in the unit testing coverage

128

6. Developing quality software from its origin: the INDIGO-DataCloud project

values for 18% of products. This decrease was observed to be aligned with

high-demanding periods of software development, as showcased in the previous

months of the second major release. In software programming, it is common-

place to consider tests as accessory, and thus, in the best-case scenario, they

are implemented once the required change in the code has been completed.

However, this practice does not comply with the recommended form in “Re-

quirement VI: Test the individual units of the code”, where unit tests, as they

cover low-level elements of the code, are best considered while the new code is

being written. Besides, modern testing methodologies, such as Test-Driven De-

velopment (TDD), go beyond this approach to promote writing the tests before

the code.

In any case, the application of the SQA process resulted in the overall in-

crease of the unit testing coverage in both the release checkpoints. In the date of

the second release, 53% of the software components (17 out of 32) were over the

threshold of the aforementioned project’s SQA code coverage recommendation

(70%), while 75% (24 out of 32) of the product stack exceeded 50% coverage.

Functional and regression testing

Functional testing followed the same continual growth as the unit testing case,

but in this case in terms of adoption, not functional coverage. The adoption

went from 30% to almost 60% in the time frame between the first and the second

major release. As with unit testing, test reports were asked in those cases where

automated functional tests were not provided. And similarly, the fulfillment of

their fundamental functional requirements was tougher to track, resulting in a

non-viable solution for assessing minor changes, especially when analysing the

regressions.

The major issues observed that hindered developers from the implementation

of automated functional tests were related to the unavailability –at the time–

of libraries and frameworks for tackling specific tests –such as testing graphical

interfaces–, or in the less representative cases, due to low skilled developers.

129

6. Developing quality software from its origin: the INDIGO-DataCloud project

Continuous configuration automation

Figure 6.8: Adoption of Continuous Configuration Automation (CCA) tools through-
out the project lifetime. The figure shows the trend lines leading to the first (light
cream points and line) and second release (dark blue points and line).

In compliance with “Good practice X: Ease the deployment of your software”

from the SQA baseline, INDIGO contributed to open–source CCA tools such as

Ansible [134] and Puppet [135]. A representative example of such contributions

are the 50 Ansible roles developed over the project lifespan, which are hosted

in the Ansible Galaxy portal [142].

Figure 6.8 shows the evolution of INDIGO products that adopted a CCA

tool for deployment. There is a high rate of adoption in the weeks preceding

130

6. Developing quality software from its origin: the INDIGO-DataCloud project

the major release dates. The trend is lower during the weeks before the second

release because a significant fraction of the products had already adopted it

previously to the first release.

Documentation

In addition to the CCA solutions, the documentation is a crucial part of the

software adoption. In compliance with “Requirement XIII: Comprehensive doc-

umentation”, the primary goal in INDIGO was to cover the right set of doc-

uments according to the intended audience. This objective is hard to be fully

tested using an automated approach, so an oversight by the SQA team was

performed at component release time. Furthermore, at the later stage of the

preview testbed integration, both the CCA module and the documentation pro-

vided by the developers were used to deploy and test the functionality of the

candidate component.

What it was fully automated was the generation of the documentation. One

indispensable requirement of the SQA baseline is to treat documentation as

code, and thus, the INDIGO GitHub organisation contained all the documen-

tation repositories for all the software products. On each update, the documen-

tation, in Markdown format, was automatically generated and rendered in the

Gitbook repository [143].

Code review

Following “Good practice VIII: Protect your long-term branches from direct

modifications”, the source code repositories are protected against direct push

operations, so that the code review stage always takes place. Through PRs,

code reviewers analyse the content of each change in the source code and their

suitability, according to the “Requirement XII: Broadening the perspective with

peer reviews of the code”. The level of compliance with these guidelines was

hard to be gauged. Furthermore, at the time of running INDIGO, GitHub

did not provide the feature of setting the minimum amount of peer reviews to

131

6. Developing quality software from its origin: the INDIGO-DataCloud project

be done within a software repository, so even the ability of enforcing the code

reviews was limited.

As already discussed, code reviews are useful when two or three different

reviews can be done, and most useful whenever at least one is done by an

expert developer not involved in the software project. In INDIGO, a significative

part of the software components were supported by small teams, some of them

even comprised by a unique member, which hindered the analysis of a different

reviewer other than the one implementing the change.

Integration testing

As illustrated in the overview of the INDIGO SQA process, see Figure 6.1, inte-

gration testing was undertaken once the CI/CD pipeline delivered the preview

artefacts in the repositories. As a result, this type of testing was not part of the

pipeline, and thus, it was not being carried out automatically.

Also, as stated in Figure 6.2, the integration stage proved to be an effective

tool to uncover bugs. The reason behind this fact is that the integration testing

comprised the operational part, or in other words, the Ops part within DevOps.

Prior to the integration checks, the software was required to be deployed in the

testbed, which was done by the SQA team using the tools provided by the

latter, i.e., the CCA modules and the documentation. This meant that the

software was used for the very first time outside the developer’s domain, which

was reflected by the discovery of bugs or lack of the basic functionalities, not

only in the code, but also in the CCA modules and documentation. Figure 6.9

shows the geographically dispersed resource providers that contributed to the

testbed and the services maintained at each provider.

The final validation step, also highlighted in Figure 6.1, bolstered the oper-

ational readiness of the products. Hence, the software validated in the testbed,

was tested by a set of candidate resource providers within the EGI produc-

tion e-Infrastructure. This process, coined as stage rollout, is key to detect

and mitigate issues that could only appear in production environments. It will

be later on discussed in Chapter 8 “Software validation in the European Grid

132

6. Developing quality software from its origin: the INDIGO-DataCloud project

KIT

IFCA/CSIC

LIP/INCD

DESY

INFN-Padova

CNAF/INFN

OpenStack (PaaS)
OneProvider

OneProvider
CDMI server

IAM connector
ooi

OneProvider
java-syncrepos

cloud-info-provider

IAM connector
ooi

ONEDock
nova-docker

WaTTS
rOCCI server

cloud-info-provider
java-syncrepos

OneZone + OneProvider
IM

LiferayIAM
FG API server + FG Portal

Ophidia
Indigo Kepler

OneProvider
CDMI server

dCache

ooi
Synergy

OneProvider
IAM

Orchestrator
CDMI server

zabbix-wrapper
CloudProviderRanker

CMDB
SLAM

CMCC

CLUES
IM

UPV
Ophidia web server

INFN-Bari

OneProvider
CDMI server

Marathon
Kubernetes

Mesos
Chronos

T-Systems

Figure 6.9: Resource centers supporting the pilot preview testbed and corresponding
set of deployed INDIGO components or services.

Infrastructure”.

6.4 Conclusion

The quality of the INDIGO software products was in constant increase over

the course of the project. The setup of CI/CD pipelines and the associated

CI infrastructure, to support more than 30 products and 200 GitHub reposi-

tories, guaranteed that the changes done at the source code level matched the

requirements from the SQA baseline in an automated fashion. The pipelines

133

6. Developing quality software from its origin: the INDIGO-DataCloud project

delivered the preview software artefacts that were subsequently validated by

manual means in two successive steps, which included both the local testbed

and the EGI e-Infrastructure.

One of the most noticeable metric that demonstrates a reliability improve-

ment is represented by the ratio between the number of software defects uncov-

ered within the INDIGO SQA process, including the integration testing, and

once the software had been deployed in EGI. Hence, the number of bugs de-

tected throughout the SQA process surpassed by a factor of 30 the number of

bugs reported by those end users of the EGI e-Infrastructure, over a total of

almost 200 bugs in the observed time frame. This actually represents a low

rate of bugs according to the size of the INDIGO project, and thus, it can be

inferred that the automation of herein described stages of the V&V processes

had a substantial impact on these numbers.

Nevertheless, the individual products of INDIGO did not undergo a pro-

gressive quality improvement throughout their lifespan. Indeed, unit testing

coverage dropped for about 18% of the total products halfway through the

project. This behavior was aligned with the high-demanding periods of soft-

ware development, in particular, the previous months before the second major

release. This fact demonstrates that the “Requirement VI: Test the individual

units of the code” was not actively pursued during certain periods within the

project’s lifetime.

Automated functional tests followed a continuous growth along the project,

reaching the 60% of the total products by the second major release. As it can be

concluded from INDIGO outcomes, their provision should be a goal in modern

software development as it is key both for the operational impact and towards

the final user acceptance. Manual assessment of functional tests was found to

be unfeasible for a per-change based SQA strategy.

But automated testing requires from an extensive knowledge in the partic-

ular technologies or frameworks that are available for programming languages.

During INDIGO, a handful of development teams lacked from the necessary

technical skills to profit from these tools, which challenged the application of

134

6. Developing quality software from its origin: the INDIGO-DataCloud project

the relevant SQA baseline requirements. Just as education is essential towards

the increase of quality in the research software, the demonstration of the imme-

diate benefits that these type of tools bring along is crucial to stimulate their

adoption.

In this regard, the INDIGO SQA process enlightened developers not familiar

with DevOps-driven quality approach to software, proved by the fact that they

outlived the INDIGO project. But software engineers in charge of the core

products were not the only benefactors of the DevOps culture. The delivery

of two applications from the INDIGO use cases were also managed through

CI/CD pipelines that, unlike the core products, achieved the provision of the

application’s artefacts to production repositories through a previous validation

of the preview artefacts.

The INDIGO SQA process persisted once the project concluded, laying out

the grounds of foregoing projects, as it will be discussed in the next chapter.

The new software development initiatives contributed to the INDIGO process

with a special focus on the inclusion of the use case applications, whose first

steps had already being taken.

135

136

7
Tailoring software to user needs: the

DEEP-HybridDataCloud project

The DEEP Hybrid-DataCloud (DEEP) relied on INDIGO-DataCloud (IN-

DIGO) software products to build a comprehensive cloud-based solution that

eased the development, training and exploitation of Machine Learning (ML)

applications. The project’s goal was to extend the limits of automation to cope

with a continuous deployment scenario for such applications that accelerated the

readiness of the incoming software releases, in order to be used by researchers

via ML inference.

Similarly, the Software Quality Assurance (SQA) process continues its own

evolution throughout DEEP project, evolving towards the Pipeline as Code

137

7. Tailoring software to user needs: the DEEP-HybridDataCloud project

(PaC) capabilities provided by Jenkins.

7.1 Moving towards a Pipeline as Code environ-

ment

The INDIGO Continuous Integration and Delivery (CI/CD) pipelines consisted

in server-side definitions set up by the SQA team, composed through a graphical

interface provided by Jenkins. As a result, the pipelines’ definition were tied

to a specific Jenkins instance, and thus, with a very limited capacity of being

migrated. This fact proved to be a major drawback when it comes to preserve

the SQA outcomes beyond the short-term –commonly no longer than three

years– duration of projects like DEEP or INDIGO.

Box 1.1: Benefits of Pipeline as Code

Versioning Probably the most relevant benefit is that the Jenkinsfile, or code

pipeline, is added to the source code repository, and thus, it is versioned,

profiting from all the characteristics provided by a Source Code Manager

(SCM) system, as described in “Requirement I: Create versions of the

source code”.

Active maintenance As the code pipeline is now placed alongside the source

code, the developer is quite more involved in the maintenance and en-

hancement of the pipeline.

Portability Code pipelines enable the seamless operation of the same pipeline

in a different Jenkins server, thus enabling the preservation of the software

quality advancements over the lifespan of the software. In research soft-

ware, this means that the operation of the pipelines is no longer dependent

on the project duration.

Reuse Just as with the source code, the entire code pipelines, or sections

thereof, can be easily reused.

138

7. Tailoring software to user needs: the DEEP-HybridDataCloud project

The PaC feature extended the Jenkins pipelines so that they could be defined

using a Groovy’s domain-specific language (DSL) [144] and placed in a specific

file named Jenkinsfile. The code pipeline technology, although it may seem

negligible at first glance, has been a game-changer not only for the outcomes of

DEEP project, but also for the future developments, bringing along a number

of advantages enumerated in Box 1.1.

Structure of the code pipelines

The code pipelines split the work into stages. Within each stage, a particular

action is tackled, which may be required to be completed before the subsequent

stages take over. Parallel stages can be defined as well, but the bottom line

is that the Jenkins pipelines shall perform a sequential type of work. It is

important then to sort those stages according to the overall logic and their

individual priority.

#!/ usr/bin/groovy

@Library (['github.com/indigo -dc/jenkins -pipeline -
library@release /1.4.0 ']) _

pipeline {

agent {

label 'python3 .6'
}

stages {

stage('Style analysis ') {

steps {

checkout scm

ToxEnvRun('pep8')
}

post {

always {

WarningsReport('Pep8')
}

139

7. Tailoring software to user needs: the DEEP-HybridDataCloud project

}

}

stage('Security scanner ') {

steps {

checkout scm

ToxEnvRun('bandit -report ')
}

post {

always {

HTMLReport('/tmp/bandit ', 'index.html', '
Bandit report ')

}

}

}

}

}

Listing 7.1: Simplified version of a Jenkins’ PaC implementation for the DEEP-

as-a-Service (DEEPaaS) software component, developed as part of the DEEP

solution. The jenkins-pipeline-library is loaded with the @Library macro so

to import the available methods. Library methods are highlighted in blue, within

the stage declaration.

#!/ usr/bin/groovy

/**

* Run Tox's test environment.

*

*/

def call(String testenv , String filename=null) {

opts = ['-e '+testenv]
if (filename) {

opts += '-c '+filename
}

cmd = ['tox'] + opts

sh(script: cmd.join(' '))

140

7. Tailoring software to user needs: the DEEP-HybridDataCloud project

}

Listing 7.2: The definition of the ToxEnvRun method from the

jenkins-pipeline-library.

Library for the code pipelines

As the code pipelines herein discussed implement the criteria from the SQA

baseline, it is commonplace to have very similar definitions for the different

software repositories, only varying on programming language specifics. Keeping

in line with the do-not-repeat-yourself (or DRY) principle, Jenkins allows to

load custom definitions by means of a shared library.

Leveraging this feature, the main functionalities required to implement the

SQA baseline criteria, and other convenient features of CI/CD environments,

have been progressively added to an ad-hoc library coined as jenkins-pipeline-

library [145]. Following the collaborative mandate, of “Requirement II: Use

public forges to distribute your work”, and based on the fact that most of

the SQA baseline criteria are commonplace in other SQA environments, the

jenkins-pipeline-library has been made publicly available and open to ex-

ternal collaboration since its inception.

Listing 7.1 presents a simplified version of a code pipeline used for a DEEP

software component. The library is loaded before the pipeline definition so that

the methods can be subsequently used within the stages. Each stage represents

a unit of work within the pipeline, usually tackling one requirement from the

SQA baseline. One of the library methods used in the pipeline is showcased in

Listing 7.2. As it can be noted, the use of the library reduces the size of the

pipeline and improves the overall readability.

141

7. Tailoring software to user needs: the DEEP-HybridDataCloud project

7.2 Stage composition of Continuous Integra-

tion and Delivery code pipelines

As in the case of INDIGO, DEEP is committed to fulfill the SQA baseline

criteria for any software development effort within the core components of the

DEEP solution. Building on the work started in INDIGO, all the DEEP use

cases, i.e. the DEEP-ML applications, implemented, in a first iteration, a similar

approach as the one described in the previous chapter for the two INDIGO use

cases. Hence, the Continuous Integration (CI) part was more relaxed than the

core components, yet still more advanced than the previous INDIGO use cases.

Agile integration of the continuous releases

The code pipelines for the core components were similar, in terms of require-

ments, as their counterparts in INDIGO. The most noticeable improvement is

done at the integration-time takeover. At INDIGO, there existed a misalign-

ment among the automated and manual phases –i.e., when the preview artefacts

are delivered to be validated in the testbed–, manifested by a communication

gap that prevented from a more agile validation of the incoming artefacts.

To mitigate this gap, as shown in Figure 7.1, the DEEP approach is to ex-

tend the CI/CD pipeline with a new notification stage. This stage leverages the

DEEP project management tool in order to automatically create an issue for

every new release. The issue includes all the relevant information including the

release tag and the artefacts location. The preview testbed manager is imme-

diately notified when the issue is created, so the communication breach is cut

down. Additionally, the pipeline also added as issue watchers the representa-

tives of the user communities present in the project, so as to be aware and try

by themselves the new release of the component once integrated in the testbed.

142

7. Tailoring software to user needs: the DEEP-HybridDataCloud project

Integration
testingDEEP JIRA

project
management

Continuous
integration

(CI)

Code
style

Unit
testing

Funct.
testing Security Metrics

Artefact
build

Repo
update

Continuous
delivery

(CD)

DEEP
software
repositry

Notification

User
communities

Testbed
manager

Figure 7.1: Pipeline for the core components in DEEP, where the notification stage is
highlighted. Once the preview artefacts are uploaded to the repositories, the pipeline
creates a new issue through the Application Programming Interface (API) exposed
by the JIRA project management tool. Stakeholders are then immediately notified of
every successful software delivery done by the CI/CD pipelines.

Interplay of code pipelines for the delivery of DEEP-ML applications

DEEP solution was designed to deal only with Docker containers, so accord-

ingly, applications are only distributed as Docker images. The instructions to

build these Docker images –compiled in a Dockerfile– are maintained in an

individual code repository, thus decoupling the CI and CD pipelines, and simul-

taneously, the application code from the delivery settings. In particular, the CD

pipeline does not only implements the Docker image management, but also the

identification of the given DEEP-ML application in the project’s marketplace

or DEEP Open Catalogue (DEEP-OC). As such, it will be referred throughout

the document as DEEP Open Catalogue application (DEEP-OC-app).

The rationale behind this layout lies on the need of rebuilding the DEEP-ML

applications not only as a result of changes in the source code, but most impor-

tantly, in the event of new releases of the DEEPaaS component. The DEEP-

143

7. Tailoring software to user needs: the DEEP-HybridDataCloud project

Continuous
integration

(CI)

Code
style

Unit
testing

Funct.
testing Security Metrics

Docker
build

Docker
deliver

Continuous
delivery

(CD)

DEEP
Docker Hub

ML
application
developersTrigger

DEEP-
OC

pipeline

Email
notific.

Continuous
Delivery

(CD)

... PyPI
delivery

DEEPaaS
Python's PyPI

Trigger
DEEP-

OC
pipeline

ML app
DEEP-OC

DEEPaaS

ML app (CI)

Figure 7.2: Interplay between the three code pipelines in order to deliver DEEP-
ML applications. Decoupling the Continuous Delivery (CD) phase, represented in
the figure as ML app DEEP-OC, facilitates its activation by the DEEPaaS pipeline
whenever new releases of this component are delivered. When this happens, the new
version of DEEPaaS is automatically pushed to Python’s PyPI repositories, which is
subsequently used to rebuild the DEEP-ML Docker image.

aaS software provides the RESTful API through which the main functionalities

are made available, and accordingly, when the DEEPaaS API changes, all the

Docker images of the DEEP-ML applications shall be updated. Figure 7.2 illus-

trates the pipeline breakdown, together with the automated interactions among

them.

144

7. Tailoring software to user needs: the DEEP-HybridDataCloud project

7.3 Extended automation beyond Continuous

Integration and Delivery environments

The adoption of the PaC, or code pipelines, described in the previous section,

brings along the demonstrated benefits enumerated in Box 1.1. In this section,

the most significant new breakthroughs, enabled by the use of this technology,

are presented. They harness automation to advance towards more sophisticated

DevOps models, i.e the continuous deployment of DEEP-ML applications, seam-

lessly accessible through the DEEP-OC.

7.3.1 Automated generation of Open Catalogue’s content

As in the case of the European Open Science Cloud (EOSC) portal, from Chap-

ter 4 “Software Quality to drive the delivery of services in the European Open

Science Cloud”, marketplaces are the access points for customers to be informed

of the new developments and make use of the services. The DEEP-OC presents

an updated view of the available DEEP-ML applications, with related informa-

tion, and the guidelines to run, train and use them.

The website is rendered using a static site generator that significantly sim-

plifies the management of the content. The entire website is version-controlled

and managed with a Jenkins code pipeline. Accordingly, upon modification, the

HyperText Markup Language (HTML) content is automatically rebuilt by the

site generator, and right after, the new changes are displayed in the website. To

avoid dealing with HTML code, the applications’ description are maintained in

individual Markdown files, showcasing their background, motivation and usage.

Metadata for DEEP-ML applications

The aforementioned process was simple enough for the reduced set of pilot

applications gathered around the project’s proposal, but it required application

maintainers to create a new Pull Request (PR) in the catalogue’s repository for

every single modification in the description of the application. Hence, in light of

145

7. Tailoring software to user needs: the DEEP-HybridDataCloud project

forthcoming requests from external research communities to join the DEEP-OC,

the need of separating the descriptions of the DEEP-ML applications

from the website itself became clear, thus giving the developers full control

and accountability of such descriptions.

To this end, the structure of the DEEP-ML application’s description needs to

be defined through a schema. A schema enables the representation of structured

data, by means of formatting rules that define fields are expected, and how the

corresponding values can be provided. The developed DEEP schema [146] relies

on JSON schema implementation [147].

Once having the schema, the JSON metadata was composed with the accu-

rate description of each application. The metadata was added to each DEEP-

OC-app code repository. Hence, the application developer is able to manage

any prospective modification through version control, and the results will be

readily displayed in the DEEP catalogue as described below.

Open Catalogue content

Three main actions were needed in order to adapt the DEEP-OC to the new

demands. First, the metadata must be validated before being subsequently

processed. Second, this metadata is required to be converted into Markdown

format that, as explained in the introduction of this section, is the human-

readable format provided by the web framework. As a last step, a registry shall

be maintained, in order to manage the right set of applications that shall be

accessible through the DEEP-OC. Evidently, any modification to this registry

must be reviewed and approved by the DEEP-OC manager as a precautionary

step to avoid undesired applications being accessible through the catalogue.

Box 3.1 summarizes the solutions adopted for each action.

The new scenario required an increased amount of interactions among the

code pipelines. Now the website content is spread over the DEEP-OC-app

repositories, which required an additional stage in order to trigger a website

rebuilding each time their own metadata changes. Moreover, the DEEP cata-

logue’s pipeline manages the registry of production applications so it needs to

146

7. Tailoring software to user needs: the DEEP-HybridDataCloud project

implement the logic to react to changes in this file. Figure 7.3 schematizes how

the different workflows are triggered by the Jenkins pipelines involved in this

scenario, i.e. both the DEEP-OC’s and the DEEP-OC-app repositories.

Box 3.1: Implementation of the catalogue requirements

Metadata validation . The DEEP validator [146] uses Python’s jsonschema

module [148] to validate to the JSON’s Draft 7 specification [149] used by

the DEEP schema.

Metadata to Markdown . JSON-formatted metadata is converted to Mark-

down format by means of a templating script added to the DEEP-OC’s

code repository [150].

DEEP application’s registry . The registry file is YAML-based file, coined

as MODULES.yml, that contains the list of DEEP-OC-app repositories that

ought to be accessible through the DEEP-OC. Accordingly, the registry

is also managed through the catalogue’s repository [150]. This repository

is protected from direct modifications, following the “Good practice VIII:

Protect your long-term branches from direct modifications”, and thus, a

change in the registry file must go through code review.

7.3.2 Continuous Deployment for machine learning infer-

ence

As briefly introduced in the previous section, the DEEPaaS component pro-

vides the DEEP-ML applications with a ready-to-use RESTful API that enables

training or inference –where the prediction of a trained model comes into play–

operations through Hypertext Transfer Protocol (HTTP) calls. The DEEPaaS

component is an integral part of the overall DEEP solution.

The DEEP-ML applications deploy the DEEPaaS component as part of the

Docker image building process. If the dockerized application is available as a

long-running service, it would need to be re-deployed every time the image is

147

7. Tailoring software to user needs: the DEEP-HybridDataCloud project

rebuilt, according to the pipeline workflows described in Figure 7.2. This task is

efficiently tackled, through rolling updates or restarts, by nowadays’ container

orchestration frameworks.

The view of having the last stable versions of all the DEEP-ML applications,

available through the DEEP-OC, continuously running and automatically up-

dated every time a new version of the application was released, appeared as an

apparent but challenging step forward. The process would involve to extend the

current workflow defined in the code pipelines to invoke the rolling update op-

eration for the list of production DEEP-ML applications accessible for inference

through the catalogue.

Rolling update through Function as a Service (FaaS)

To this end, a FaaS was set up so that the DEEP-ML applications could be

accessed through a single DEEPaaS endpoint [151]. The FaaS exposes an update

function that will take care of performing the rolling update in the orchestration

framework.

Box 3.2: Criteria for adding/removing ML applications

1. The DEEP-ML application must be part of the DEEP-OC. Accordingly, if

an application accessible through the FaaS is removed from the catalogue,

it will be removed as well from the DEEPaaS endpoint.

2. The DEEP-ML application must be compatible with the DEEPaaS API

version deployed in the DEEPaaS endpoint.

3. The DEEP-ML application must be trained.

The DEEP-OC code pipeline is the one in charge of triggering the FaaS up-

date function. But before, the pipeline has to handle yet another file, this time

the FaaS configuration file, containing the list of DEEP-ML applications avail-

able for model inference. The apps available for inference through the DEEPaaS

endpoint might not necessarily be the same as the complete list of applications

148

7. Tailoring software to user needs: the DEEP-HybridDataCloud project

accessible through the DEEP-OC. The application readiness is governed by the

criteria in Box 3.2.

Figure 7.3 depicts the new stages of the DEEP-OC pipeline, including the

two main improvements being described in the above sections, i.e. both the

management of the catalogue registry and the FaaS configuration file for the

DEEPaaS endpoint. Furthermore, the figure illustrates the interplay with the

DEEP-OC-app repository pipeline, as one of the possible ways to trigger the

DEEP-OC pipeline.

7.4 Conclusion

The DEEP project represents a continuation of the work initiated within IN-

DIGO project with regards to the establishment of the quality habits in software

production, both through the maintenance and enhancement of the SQA base-

line and its practical application. In this regard, the adoption of the Jenkins’

PaC technology enabled the decoupling of the pipeline definitions from server-

side, moving them alongside the repository of code. As the pipelines are now

owned by software developers, these latter become more aware and commit-

ted to the realisation of SQA practices. Furthermore, as pipelines are no

longer dependant of the given Jenkins instance where they were defined, the

software is now safe from the discontinued operation of short-lived de-

velopment projects. The quality assessment is continued beyond the project

the software was first implemented, contributing to its long-term sustainability.

The pipeline definition has been simplified, as well as its readiness improved,

through the implementation of the jenkins-pipeline-library. The library

aims primarily at fulfilling the common operations required by the practical im-

plementation of the requirements coming from the SQA baseline, but eventually

extended functionality was added. The library is publicly available in order to

contribute to applied SQA realisation.

But the major breakthrough, in terms of software quality realisation, refers

to the advancement in extending the previously reached limits of software au-

149

7. Tailoring software to user needs: the DEEP-HybridDataCloud project

https://marketplace.deep-
hybrid-datacloud.eu

https://jenkins.indigo-datacloud.eu

https://github.com/deephdc

...
Validate
Metadata

Trigger
catalogue

Get
apps
from

registry

App registry
MODULES.yml

Fetch
app

repos
Validate
Metadata

Metadata
to

Markdown

DEEP
Catalogue

Generate
Catalog

FaaS config file
manifests.yml

App
description

metadata.json

FaaS
rolling
update

push

push

ML app
DEEP OC

https://deepaas.deep-
hybrid-datacloud.eu

clone

commit

commit

up
da
te

pu
sh

Figure 7.3: A comprehensive illustration of the pipelines (and stages) that manage
the generation of both the DEEP-OC content and the applications available through
the DEEPaaS endpoint. This pipeline is not only triggered by modifications in the
DEEP-OC repository, but also as a result of changes in the DEEP-ML applications’
metadata.

tomation and DevOps culture, putting the focus on improving the user ex-

perience through the continuous deployment of the services being offered to

researchers. This fact was motivated by the improved flexibility of the code

150

7. Tailoring software to user needs: the DEEP-HybridDataCloud project

pipelines, which enable the realisation of more complex tasks. Based on the

described milestones, the pipelines drive the life-cycle of the DEEP-ML appli-

cations, covering the i) development –carrying out the quality Verification and

Validation (V&V) processes–, ii) the delivery as Docker images, iii) the pub-

lication in the DEEP-OC, and, as the final element in the equation, iv) the

application deployment. The first two phases within the DEEP application life-

cycle built on INDIGO outcomes, but the last two capture the very essence of

what was contributed by the DEEP project.

On the one hand, the DEEP-OC is fully managed with a Jenkins code

pipeline. The applications accessible through the catalogue are described by

their owners through a metadata file –compliant with a custom DEEP JSON

schema– located in the application code repository. Application developers are

then responsible for the appearance of the application within the catalogue, but

nevertheless, the ultimate decision about their availability is managed through

the catalogue’s registry. Any change to this registry is reviewed by the DEEP-

OC’s manager so that, on approval, the catalogue’s pipeline is triggered in

order to re-generate the website. Additionally, this pipeline can be triggered by

changes on the applications’ metadata.

On the other hand, the last stable versions of the DEEP-ML appli-

cations are readily available for model inference through the DEEPaaS

endpoint. By leveraging a FaaS solution, the pipelines maintain the list of

inference-ready applications that the FaaS framework uses for the deployment.

Consequently, in the event of changes in this file –induced by previous changes on

the catalogue’s registry or in the application’s metadata– the catalogue pipeline

triggers the FaaS in order to make it aware of the new changes. FaaS then takes

care of deploying the right versions, through rolling updates. The DEEPaaS

endpoint for each application is accessible through the DEEP-OC.

As a consequence of the achievement of these two milestones, freshly gener-

ated research value can be readily exploited by the scientific communi-

ties –either internal or external to the project– through an extended continuous

delivery and deployment approach. Therefore, the research value is no longer

151

7. Tailoring software to user needs: the DEEP-HybridDataCloud project

delivered at the end of the research project lifespan –or in a reduced and fixed

basis–, but readily accessible across its duration. Additionally, the uptake of

new research is also empowered by the described process, as the integration

of new DEEP-ML applications in the loop is fully automated upon

approval of the project management.

152

8
Software validation in the European Grid

Infrastructure

Part of this chapter has been published as:

Pablo Orviz Fernández, Joao Pina, Álvaro López Garćıa, Isabel Campos Plasencia,

Mario David, and Jorge Gomes. “umd-verification: Automation of Software

Validation for the EGI Federated Infrastructure”. In: Journal of Grid Computing

16.4 (2018). Quartile: Q1, JIF Percentile: 76.452, pages 683–696. DOI:

1 0 . 1 0 0 7 / s 1 0 7 2 3 -0 1 8 -9 4 5 4 -2

From an e-Infrastructure perspective, the operational stability of the ser-

vices being offered to researchers is the most outstanding objective. Therefore,

in the DevOps culture, the e-Infrastructures, such as the European Grid Infras-

153

https://doi.org/10.1007/s10723-018-9454-2

8. Software validation in the European Grid Infrastructure

tructure (EGI), become the Ops while the previous DEEP Hybrid-DataCloud

(DEEP) and INDIGO-DataCloud (INDIGO) projects are the Devs. In antic-

ipation to these circumstances, the Software Development Life Cycle (SDLC)

adopted throughout DEEP and INDIGO project was purposely oriented to meet

the DevOps principles, and thus, really emphasizing the processes that fostered

the accurate operation of the services once deployed on these e-Infrastructures.

However, although the described Software Quality Assurance (SQA) pro-

cesses are based on state-of-the-art software engineering methodologies, trans-

parent and trustworthy, the e-Infrastructures cannot completely rely on those

and need to put in place their own, more lightweight, quality procedures to

secure the operation of the incoming software. In this chapter, the focus is set

on the software validation within the EGI e-Infrastructure, as a previous step

before being deployed as services within the federated resource providers. As

the driving force of this thesis, automation plays a central role in the practical

implementation of the validation strategies put in place under the EGI Software

Provisioning Process (EGI SWPP).

8.1 Software distribution in the European Grid

Infrastructure: the Software Provisioning

Process

As introduced in Chapter 4 “Software Quality to drive the delivery of services in

the European Open Science Cloud”, EGI started off from the previous work in

Enabling Grids for E-sciencE (EGEE) project, whose grid-based e-Infrastructure

was relying at that time on the gLite middleware distribution [153]. Middle-

ware was the term used to describe the set of software components that enable

the federation of the distributed and heterogeneous resources of a grid at the

computing, data management and security levels.

154

8. Software validation in the European Grid Infrastructure

Unified Middleware Distribution

One of the foundations of the EGI paradigm shift was the establishment of

a joint grid middleware consortia that eventually gave rise to the European

Unified Middleware Distribution (UMD) [154]. UMD supplies grid middleware

developed by external Technology Providers (TPs) in order to enhance the oper-

ation of the e-Infrastructure. During the first years of operation, the European

Middleware Initiative (EMI) [155] –which included the principal European grid

middleware providers, such as gLite, UNICORE and ARC– was the central TP

of UMD. Once the EMI project ended, several technologies were no longer sup-

ported, while others maintained individual support. UMD was first released

in July 2011, by means of UMD-1.0.0, delivering around 30 grid middleware

products.

Cloud Middleware Distribution

Since its inception, EGI has adapted its service offerings to the new computing

models beyond the traditional grid technology. In 2014, the EGI Federated

Cloud [156] was officially launched, with an architecture based on Infrastructure

as a Service (IaaS) cloud service model. In order for cloud providers to join the

federation, additional services are needed beyond the ones of the underlying

IaaS framework 1.

These services encompass both computing and data management, as well

as federation-enabling services, such as authorization and authentication, mon-

itoring, accounting or information discovery. The Cloud Middleware Distribu-

tion (CMD) [157] was launched on December 2016 –through the Openstack’s

(sub-)distribution CMD-OS-1.0.0 release– containing the software components

required for the federation of cloud providers within the EGI Federated Cloud.

1EGI FedCloud started off with support both for OpenStack and OpenNebula cloud man-
agement frameworks, but at the time of writing, OpenNebula support has been almost de-
commissioned.

155

8. Software validation in the European Grid Infrastructure

 Criteria
 Validation

 Stage
 Rollout Delivery Prod

 e-Infra
 Release
 Setup

Quality
Criteria

Criteria
Definition

Repositories and Tools

EGI
Federation

Tecnhology
Providers

Figure 8.1: The EGI SWPP.

The EGI Software Provisioning Process

UMD and CMD release software that is potentially interesting for the EGI in-

terests, thus motivated by both user and operational requirements. The SQA

processes that guided the SDLC of the services are not under the control nor

monitored by EGI, so accordingly, there is no guarantee that the software is

reliable enough for a production infrastructure. The EGI SWPP [158], schema-

tized in Figure 8.1, validates the incoming software in order to lessen the odds

of disruption once it is in production.

The EGI SWPP encompasses the i) validation of the conformance criteria,

the ii) staged rollout phase, which takes over the deployment and user-level test-

ing on production facilities, and, finally, the iii) release to production, resulting

in the software release preparation and delivery. During the validation of the

conformance criteria phase, every piece of software is deployed and tested to

detect any malfunction or deviation from the design specification. The proce-

dure of validation is governed by the Quality Criteria (QC) definition, which

enforces the quality requirements that any software released under UMD and

CMD distributions must comply.

The validation phase appears as the most time-consuming task within the

156

8. Software validation in the European Grid Infrastructure

EGI SWPP since a major effort is spent on dealing with the deployment pecu-

liarities of each software component, as well as in ensuring a minimal testing

coverage of the expected functionalities. The next two sections present the

two subsequent iterations towards the modernisation of the EGI SWPP, and in

particular, within the validation of the conformance criteria phase.

8.2 Phase 1 of the Software Provisioning Pro-

cess modernization: boosting the software

validation

8.2.1 Statement of the problem

Figure 8.2: Trend graph showing the number of products supported in the EGI pro-
duction repositories (UMD and CMD). The incremental trend is interrupted by the
end-of-life (EOL) cycles, which are rapidly recovered as a result of the parallel start of
the subsequent major release version. At this point in time, the incoming UMD major
release progressively adopts, following the validation process, the products previously
existing (source: repository.egi.eu).

157

8. Software validation in the European Grid Infrastructure

An analysis of the evolution of EGI software product catalogue, outlined in

Figure 8.2, shows a growing trend in the number of products being sup-

ported since the first major release of the UMD distribution, UMD1. The under-

lying reasons behind this growth are mainly the evolving technology demands

coming from the scientific communities leveraging the EGI e-Infrastructure.

More recently, as cloud computing became more popular, these user require-

ments resulted in the advent of the CMD distribution, which increased consid-

erably the number of products supported, and thus, the equivalent amount of

validations 2

Addressing the growing needs with the former validation process resulted

in delays within the EGI SWPP chain, leading to extreme situations where a

product release was disregarded and superseded by a subsequent release while

queued at this stage. According to [158], the validation of the conformance

criteria phase was driven by a team of 15-20 testers, each taking over the prod-

uct validation process based on their expertise. The process was fully manual,

with a typical estimated time completion of 1 or 2 working days for each soft-

ware validation. Thereby, the traditional approach of the EGI Quality Criteria

(EGI QC) validation is only sustainable as long as the manpower:number of

products ratio remains balanced, which is likely to become unsustainable over

time, based on the trend discussed above.

8.2.2 Automation of the Quality Criteria requirements

The adoption of automation seems to be an obvious choice to address the pre-

viously identified delays within the validation phase, based on the arguments

enumerated in Box 2.1. However, the first step is to assess the feasibility of

the automated validation of the requirements that indicate the viability of the

product to be deployed in the EGI e-Infrastructure.

2It is important to underline that Figure 8.2 only shows the total products, not the actual
validations being performed. These value increases according to the number of operating
systems being supported by each product. Appendix C.1 details the evolution of the operating
systems being supported within UMD and CMD.

158

8. Software validation in the European Grid Infrastructure

Box 2.1: Fundamental arguments to automate the EGI SWPP

Manpower Taking into consideration the above-mentioned fact of requiring 2

working days for each product:OS validation, in the likely event of having

20 queued products supported in 2 different Operating Systems (OSs),

approximately 80 working days would be needed to complete their vali-

dation. Distributing the load among the 15-20 testers, the process would

take roughly a full-time week of work for all the members in the validation

team.

Expert dependence Whilst the good progress of a manual software validation

is driven by seasoned teams, the programmatic implementation of a prod-

uct validation would only require from expert knowledge the first time it

is set up. Once in place, the process could be taken over by non-expert

testers since most of the complexity is hidden.

Human factor In the context of mechanical or repetitive processes, the likeli-

hood of human error is substantially higher than when the same process

is performed in an automated environment. Whilst automated processes

are predictable, humans are not able to work with the same level of con-

sistency.

Time efficiency Automation streamlines the time required to complete a task.

Time efficiency is usually associated with automation since it allows to

meet strict deadlines or even increase the number of tests that could be

performed in the same time slot, resulting in higher test coverages.

The EGI QC document [94] drives the validation of software products within

the EGI SWPP workflow. In a much lightweight fashion than the criteria pre-

sented for the SQA baseline in Chapter 5 “Wrapping-up: The definition of a

Software Quality Assurance baseline for Research Software”, the EGI QC crite-

ria defines the quality requirements that a given product has to fulfill in order

to be considered ready for the subsequent staged rollout phase. The readiness

of the EGI QC criteria to be automated is summarized in Table 8.1, which lists

159

8. Software validation in the European Grid Infrastructure

those quality requirements, their associated criticality and the possibilities of

automation.

8.2.3 The umd-verification tool

Run fab
task.run()

Product (Fabric) task
task=base.Deploy()

Need SSL?
cert=True

Validation results
task.show_results()

Self-signed
cert auth

(CA)
creation

Public &
Private
keys

issuing

CCA installation

cfgtool.deploy()

Pre-config actions
execution

cfgtool.pre_config()

Config actions
execution

cfgtool.config()

Config actions
execution

cfgtool.config()

X.509 cert
support

SHA-2 cert
support

RFC proxy
support

World
writable

files

Passwords
in world
writable

files

Uses
information

system?
infomodel=True

GLUE schema
support

Middleware
version

Pre-validation
actions execution

task.pre_validate()

Validation actions
execution

task.validate()

Post-validation
actions execution

task.post_validate()

YES
task.infomodel()

YES

NO

NO

Installation

Security &
operations

task.security()

Information model

Specific QC
criteria

Figure 8.3: Product validation workflow in umd-verification.

In order to automatize the software validation process within EGI, the es-

160

8. Software validation in the European Grid Infrastructure

ID Check Critical Automated

Documentation

QC DOC 2 User documentation 3 7

QC DOC 3 API documentation 7 7

QC DOC 4 Admin documentation 3 7

QC DOC 5 Software license 3 3

Installation

QC DIST 1 Binary distribution (RPM, DEB) 3 3

QC UPGRADE 1 Upgrade previous working version 7 3

Security

QC SEC 1 X.509 certificate support 3 3

QC SEC 2 SHA-2 certificate support 3 3

QC SEC 3 RFC proxy support 7 3

QC SEC 4 ARGUS auth integration 7 3

QC SEC 5 World writable files 3 3

QC SEC 6 Passwords in world readable files 3 3

Information Model

QC INFO 1 GLUE schema 1.3 support 7 3

QC INFO 2 GLUE schema 2.0 support 3 3

QC INFO 3 Middleware version 7 3

Operations

QC MON 1 Service probes 7 3

QC ACC 1 Accounting records 3 3

Support

QC SUPPORT 1 Bug tracking system 3 3

Specific QC

QC FUNC 1 Basic functionality test 3 3

QC FUNC 2 New feature/bug fixes test 7 3

Table 8.1: EGI QC (v7) requirements. In terms of automation capability, the only
requirements that need human interaction are the ones related to the analysis of the
documentation (QC DOC x): one could address programmatically the existence of the
required documentation, but not the suitability of its content.

161

8. Software validation in the European Grid Infrastructure

sential component would be a general purpose tool that programatically iterates

over the EGI QC requirements, executing the appropriate tasks for analysing

their compliance, allowing the process to stop according to the level of critical-

ity. This tool shall rely on Continuous Configuration Automation (CCA) tools

to automatically deploy the candidate software products, and eventually ran the

tests that ensure the minimal functional feasibility.

The umd-verification tool [159] is the solution proposed for the auto-

mated, sequential validation of the requirements defined in the EGI QC docu-

ment. The tool is written using the Python’s Fabric library [160] that provides

a convenient way to issue high-level system calls. Besides, fabric-ed applications

are organized in tasks that can be mapped to the validation of the individual

EGI software products, and subsequently called via the built-in command-line

fab tool.

Listing 8.1 shows an example of a Fabric’s CMD software product task. Such

a task inherits from the base.Deploy class that implements all the different

execution blocks that encompass the validation of a product according to the

EGI QC requirements.

from umd import base

from umd.base.configure.ansible import AnsibleConfig

cloud_info_provider = base.Deploy(

name = "cloud -info -provider",

doc = "cloud -info -provider deployment using Ansible.",

cfgtool = AnsibleConfig(

role = "https :// github.com/egi -qc/ansible -role -cloud -

info -provider",

checkout = "umd",

tags = ["untagged", "cmd"]),

162

8. Software validation in the European Grid Infrastructure

qc_specific_id = "cloud -info -provider")

Listing 8.1: A task definition for the validation of the CMD’s cloud-info-

provider product. The task relies on an Ansible role for the deployment and

subsequent execution of the functional tests. These tests are defined in a separate

configuration file, identified by the label pointed by the qc specific id attribute.

Behind the scenes

Figure 8.3 shows the tool’s workflow. As introduced above, the base.Deploy

class implements the four major execution blocks highlighted in the figure, i.e.

the i) installation and configuration, ii) security and operations, iii) information

model, and iv) specific QC. Note that, as already discussed, documentation

requirements need of human revision and thus are not being validated by the

umd-verification tool.

The first block, Installation, addresses the deployment of the product using

a CCA module. The base.Deploy. deploy() method first installs the CCA

tool and sets the required environment, such as managing the module –and

associated dependencies– installation and generating the input parameter files

needed for the module execution. The deployment is then triggered through the

base.Deploy.config() method, with optional pre- and post-steps that could

have previously defined at instantiation time.

The Security and Operations block is comprised of a set of basic security

assessments. This phase is specially significant for the secured products since

it checks the compliance with X.509 cryptographic standard and SHA-2 signa-

tures [161].

Workload orchestration within EGI e-Infrastructure relies on the resource

information published by the providers. The Information Model block ensures

the presence of published resource information, in GLUE format [162] As not

all the supported products in UMD and CMD publish GLUE data, the class

attribute has infomodel signals when this requirement should be checked.

163

8. Software validation in the European Grid Infrastructure

The last block, Specific Quality Criteria, covers the functional and/or inte-

gration testing of the product. Here, basic operation and new features and/or

bugfixes included in the release are tested. The class attribute qc specific id

maps to the set of tests, in the form of scripts, that must be executed. In

the subsequent product validations, these checks eliminate the regression risk

as they are re-executed to ensure that the previous working functionalities are

kept.

8.2.4 Evidence of the umd-verification adoption

Continuous validation of EGI software

umd-verification is suitable for being used as part of a Jenkins pipeline. The

Jenkins Continuous Integration (CI) system fires up the virtual resource, sets up

the tool, triggers the validation of the candidate software with the appropriate

runtime parameters and, finally, tears down the provisioned resource. Automa-

tion, through the usage of a CI service to take over the validation of products,

notably hides the inner complexity of the validation process –i.e. re-

source provisioning, umd-verification deployment and execution–, allowing

a non-expert usage.

Time efficiency for the validation process

The paramount benefit of automating the validation process via the

umd-verification application is the time efficiency. Combined with the au-

tomated resource provisioning, provided by the CI implementation previously

described, this efficiency raises even higher. As it was mentioned in the state-

ment of the problem in Section 8.2.1, back in the days of the manual validation

process, a common completion time was estimated to be 1 or 2 days. With the

new approach the validation process takes a few minutes, although this duration

is tightly related to the deployment requirements of each software component,

as some products need additional services for the testing phase.

164

8. Software validation in the European Grid Infrastructure

Figure 8.4: Automated vs Manual validation process times. Time values on the ver-
tical axis use a logarithmic scale to better showcase the important differences of time
completion for both types of validation processes.

The data displayed in Figure 8.4 compares the validation time of both ap-

proaches for a set of UMD products, showcasing the profit percentage obtained

with the automated process. The results show an average factor of 32 in

the time efficiency of the validation process with the adoption of the

automation process described throughout this paper.

CCA knowledge base

One of the requirements imposed when supporting a new product validation

in the umd-verification application is the usage of an CCA solution for its

deployment. Since the adoption of automation, the EGI validation team main-

tains a public repository [165] with a collection of Ansible and Puppet modules,

summarized in Figure 8.5, resultant from the validation process.

These CCA modules can be then reused by the site operators within

the EGI e-Infrastructure once the software is released through UMD and

165

8. Software validation in the European Grid Infrastructure

Figure 8.5: CCA modules being maintained, forked and published in the official repos-
itories by the EGI validation team. Maintained refer to CCA modules created and
supported by the EGI validation team, forked are the modules modified and con-
tributed to upstream, and published considers the modules contributed to the official
Ansible [163] and Puppet [164] community repositories.

CMD repositories. This contrasts with the previous manual procedure, where

the work done at the validation stage was not as profitable, having the only

reference of a sometimes non-structured documentation being included in the

validation report.

8.3 Phase 2 of the Software Provisioning Pro-

cess modernization: DevOps adoption

The EGI SWPP is set out as an independent process, removed from the previous

SDLC step, based on the impossibility of governing, or even monitoring, every

SDLC implementation for the whole set of products that are distributed through

the EGI repositories. As such, the TPs announce each new release of their own

products, and EGI takes care of the remaining activities through the EGI SWPP

operation.

166

8. Software validation in the European Grid Infrastructure

Consequently, the EGI SWPP prevents, to a certain extent, the implementa-

tion of a real DevOps process, as the TP –the Dev in this case– is disconnected

from the operational part. Once tackled the automation of validation process in

previous 8.2 section, the most costly step in the EGI SWPP, the second phase

of the modernisation of the EGI SWPP entails the achievement of continuous

validation process, having the TP as the driver.

8.3.1 From release preparation to stage rollout

The EGI SWPP from Figure 8.1 includes a release preparation step, prior to

the execution of the previously automated validation process, where all the

necessary resources are predisposed according to the announcement of a new

release by the TP through the EGI helpdesk. TPs are requested to provide

all the necessary information about the release –including location of Linux

packages, release notes and documentation links–. The EGI helpdesk is the

communication link between the TP and the operators of the EGI SWPP, and

thus, each release issue remains open until the candidate software product has

been successfully integrated in the EGI repositories.

The next step requires that the release manager elaborates the release meta-

data, based on the information provided by the TP, needed to create the valida-

tion repositories for that specific version. These repositories have a temporary

duration and are bound to a specific operating system and architecture. For

the EGI SWPP operation, an independent issue tracking system is used that

is accountable to trigger the setup of those validation repositories. This step

is automatically performed as a result of attaching the corresponding metadata

file to the issue.

The EGI SWPP issue tracking system provides a handful of status, sequen-

tially going through Unverified, In verification and Stage Rollout. At

the unverified and stage-rollout stages, an ad hoc repository is created in order

for the validation team and the candidate resource providers, respectively, to

test the software. Only when those activities are successfully completed, the

167

8. Software validation in the European Grid Infrastructure

internal issue can be closed and thus notify back to the TP through the EGI

helpdesk.

8.3.2 Statement of the problem

The formerly described process is a routine exercise triggered every time a new

release is required for any of the products of the EGI software stack. In ad-

dition, as explained in the previous section, since an individual internal issue

is created per each supported Linux operating system, the number of times

this process is being executed gets increased by the number of Linux

distributions supported by the given software product.

Furthermore, from the TP standpoint, the described process lacks trans-

parency and hinders the traceability, as two different helpdesks are used,

one of those not publicly accessible. The EGI SWPP actors, i.e. the release

manager and the validation team, are requested to update regularly the issue

in the EGI helpdesk, but as the actual work is being carried out in the inter-

nal issue tracking system, this endeavour has proven cumbersome in practice,

leading to a black box-like experience of the EGI SWPP by the TP.

8.3.3 Setting up a DevOps-like continuous validation pro-

cess

As it happened with the first phase, automation is a fundamental ally to address

the issues and bottlenecks in mechanical or repetitive tasks within the EGI

SWPP. The aim at this second phase of the EGI SWPP modernisation is not

only to automatize the release preparation step, but ultimately to involve the

TP into the EGI SWPP, moving towards a more accurate DevOps realisation

since the TP is the driver of the process. Through a TP-centric approach, the

noted lack of transparency of the EGI SWPP can be finally removed.

Figure 8.6 illustrates the different levels of automation among Phase 1 and

Phase 2. In terms of automation, the fundamental improvements boil down to

the management of the metadata and the composition and publication of the

168

8. Software validation in the European Grid Infrastructure

Release
Metadata

Criteria
Validation

Announcement

Validation
report

Stage
rollout

Release
Metadata

Criteria
Validation

Announcement

Validation
report

Stage
rollout

In
 v

er
ifi

ca
tio

n
St

ag
e

ro
llo

ut
U

nv
er

ifi
ed

Rollout
progress

Product released

C
on

tin
uo

us
 v

al
id

at
io

n

Phase 2Phase 1

Automated

Manual

SWPP
team

Technology
provider

Figure 8.6: Comparison between former Phase 1 and the more advanced Phase 2.
Automated steps are highlighted in yellow, while blue is used for the manual ones.
Phase 2 reshapes the interaction with the TP, enabling the continuous validation of
the incoming releases by means of a DevOps approach.

final validation report. Whilst the latter is a simple rendering of the results

using a templating system, handling the metadata requires a deeper analysis.

The release metadata

The release metadata leverages YAML file format to describe the details of the

products to be released. Each product has its own YAML description with all

the information about the last version, such as the links to the documenta-

tion and artefact location or the product description. Most of this information

remains unchanged between releases, as in practical terms only the version num-

169

8. Software validation in the European Grid Infrastructure

ber, the release notes and the package location is strictly required to be provided

for each release. Listing 8.2 shows a sample release metadata file for an UMD

product.

product: "dpm"

technology_provider: "DPM"

tp_short: "DPM"

contact: "hep -service -dpm@cern.ch"

desc: "The Disk Pool Manager (DPM) is a lightweight storage

solution for grid sites."

docs: "http :// lcgdm.web.cern.ch/dpm"

releasenotes: "http :// lcgdm.web.cern.ch/tags/releases"

changelog: "http :// lcgdm.web.cern.ch/tags/releases"

isodate: 20192305

incremental: false

emergency: false

version: 1.12.0

capabilities: [Storage Management]

packages:

- os: "centos7"

arch: "x86_64"

gpgkey: "http :// repository.egi.eu/sw/production/umd/UMD -RPM

-PGP -KEY"

rpms:

- "http ://ftp.fi.muni.cz/pub/linux/fedora/epel /7/ x86_64/

Packages/d/d/dpm -1.12.0 -2. el7.x86_64.rpm"

- "http ://ftp.fi.muni.cz/pub/linux/fedora/epel /7/ x86_64/

Packages/d/d/dpm -libs -1.12.0 -2. el7.x86_64.rpm"

- "http ://ftp.fi.muni.cz/pub/linux/fedora/epel /7/ x86_64/

Packages/d/d/dpm -server -mysql -1.12.0 -2. el7.x86_64.rpm"

- os: "sl6"

arch: "x86_64"

gpgkey: "http :// repository.egi.eu/sw/production/umd/UMD -RPM

-PGP -KEY"

rpms:

- "http ://ftp.fi.muni.cz/pub/linux/fedora/epel /6/ x86_64/

Packages/d/dpm -1.12.0 -2. el6.x86_64.rpm"

170

8. Software validation in the European Grid Infrastructure

- "http ://ftp.fi.muni.cz/pub/linux/fedora/epel /6/ x86_64/

Packages/d/dpm -libs -1.12.0 -2. el6.x86_64.rpm"

- "http ://ftp.fi.muni.cz/pub/linux/fedora/epel /6/ x86_64/

Packages/d/dpm -server -mysql -1.12.0 -2. el6.x86_64.rpm"

Listing 8.2: Release metadata in YAML format. The packages key lists the

required artefacts needed for the deploying the given version of the software,

according to the the operating system –os key– and architecture –arch–. This

specific metadata would require the execution of two validation processes, one

per each type of operating system.

The technology provider as the driver of the software validation

Making the metadata files available through a publicly available code repos-

itory [166] in GitHub, allows the TPs to manage the files relevant to their

software products. Thus, having as a reference the DevOps approaches imple-

mented in the DEEP and INDIGO projects, this repository is connected to the

CI service, so that the criteria validation process, from Phase 1, can be triggered

upon modifications on the EGI software metadata.

Opening up the criteria validation step to the TPs lays out the ground-

work for a EGI’s software validation as a service. The announcement of a

new product release now dismisses the creation of a issue in the EGI helpdesk,

and instead goes directly through the metadata repository. Here, the TP up-

dates the existing metadata with the new data for the release and, according to

“Good practice VII: Use pull requests”, uses a Pull Request (PR) to propose

the inclusion of the new release in the EGI repositories.

The PR automatically triggers the validation of the product in Jenkins CI, by

means of the execution of the umd-verification tool. Once finished, Jenkins

reports back the results to GitHub, being reflected in the PR. If the validation

fails as a result of an error on the TP side, such as malformed artefacts, wrong

metadata, or detected misbehaviours, a corrected version of the release can be

provided until the validation succeeds. This on-demand capacity of continuously

171

8. Software validation in the European Grid Infrastructure

trigger the validation process, without the intervention of the EGI SWPP team,

is what can be seen as the EGI criteria validation as a service. Note that the PR

becomes a crucial step to guarantee that the new release only moves

on to the subsequent stage rollout phase if it is approved by the EGI

SWPP release manager.

But, as it was discussed, the TP is not the only benefactor of this new

DevOps approach. Unless the validation issues are caused by the EGI infras-

tructure, the EGI SWPP team is not involved until the validation of the new

software version is successful, which dramatically reduces the workload.

Technical implementation of the continuous validation process

The creation or any subsequent modification of each PR is notified by GitHub

to Jenkins, which triggers the pipeline that deals with the i) interactions with

the internal tracking system –in order to change the internal ticket status–, and

the ii) execution of the QC validation, reusing the implementation from Phase

1.

Figure 8.7 shows the pipeline implementation, and the series of interactions

both with the metadata repository and the internal issue tracking system, i.e.,

the Request Tracker (RT). As it was introduced, the RT system interfaces with

the EGI repository to create the required testing repositories needed for the

product validation, but it has been purposely ignored in the figure for the sake

of clarity.

The Jenkins pipeline validates the release metadata coming from the TP

(YAML metadata) and, immediately after, converts it to the format required

by RT (XML metadata). Next, the pipeline performs the Hypertext Transfer

Protocol (HTTP) request in order to create the new ticket using the RT Appli-

cation Programming Interface (API). This new ticket will be used to track the

progress throughout the product validation. At this point, the pipeline remains

in a idle status until RT reports back the successful creation of the ticket and,

most importantly, the repository. With the newly created repository in place,

RT delivers a HTTP POST to the URL provided by Jenkins –within the pre-

172

8. Software validation in the European Grid Infrastructure

Panel content

Request Tracker

Downloads XML
metadata

Generates
verification
repository

Callback to
Jenkins

z

Jenkins

Validates YAML

Generates &
Stores

 XML metadata

Generates
HTTP

request
payload

Executes
product

verification

Submits ticket
to RT

Validation
report
upload

Panel content

GitHub

software-releases
repository

EGI
Release
Manager

4. Review
change
[merge]

Technology
Provider

1. Submit change to
product's YAML release file

[pull request]

2. Trigger validation
pipeline [push]

[HTTP
 POST]

JenkinsCallbackURL
[HTTP POST]

ReleaseMetadataURL
[HTTP GET]

3. Report validation
pipeline exit status

Automated step

Manual step

ReleaseMetadataURL

JenkinsCallbackURL

Figure 8.7: A detailed view of the workflow required for implementing the automated
version of the UMD/CMD software validation process

vious HTTP request– and the pipeline continues with the execution of the EGI

QC validation (Phase 1).

Whether the pipeline is successfully completed or it fails during any of the

described steps, the exit status is sent back to GitHub and displayed in the

PR. Hence, the TP is timely informed about the progress of the validation. At

any point, but especially in the event of a failure, the TP is able to re-trigger

173

8. Software validation in the European Grid Infrastructure

the validation process without the intervention of the EGI SWPP team. As

soon as the validation success, the PR is subject to the approval of the release

manager, who is responsible for the review 3. Once approved, the RT ticket

is set to Stage Rollout status, meaning that it is ready for being tested at the

semi-production level in the list of candidate resource providers selected from

the EGI e-Infrastructure.

At the time of writing, Phase 2 is not yet fully in production within the EGI

SWPP.

8.4 Conclusion

Unlike the previous chapters, the EGI SWPP does not implement a complete

DevOps Continuous Integration and Delivery (CI/CD) approach since this pro-

cess is strictly committed to the validation of the software artefacts that are

delivered through the UMD and CMD releases. However, the final EGI SWPP

implementation, in the aftermath of the two incremental phases herein pre-

sented, does indeed implement a DevOps culture by involving the TP in the

operational validation of its software products within the EGI e-Infrastructure.

As a matter of fact, automation is the driving force behind the two incre-

mental improvements. Phase 1 focused on the EGI QC validation, which de-

served prioritised intervention as it was the most time and personnel-consuming

task within the EGI SWPP. The analysis of the EGI QC, in terms of automa-

tion capabilities, opened the door to the design and implementation of the

umd-verification tool, in order to conduct the QC validation. This tool, in

conjunction with CCA solutions and the Jenkins CI service, is able to deploy

and test the incoming candidate software releases, with notable gains in time

efficiency.

Phase 2 extends and complements the outcomes from Phase 1 by reshaping

3Right before the stage rollout phase, the pipeline leverages a template document to fill
in the required information extracted from the EGI QC validation results to compose the
validation report. This is subsequently uploaded to the EGI document database.

174

8. Software validation in the European Grid Infrastructure

the previous steps, before the criteria validation, of the EGI SWPP. The fun-

damental shift is to make the TP the legitimate initiator of the EGI SWPP,

avoiding the repetitive actions done by the release manager at the first stages

of the process. Hence, the TP is accountable for the modification of the release

metadata whenever a new release is due. This task is done by submitting a

change to a publicly accessible code repository, which by means of a PR, trig-

gers the criteria validation from Phase 1. The validation can be rerun as many

times as needed by the TP, constituting an approximation to an EGI’s valida-

tion as a service. Only when the validation is successful and approved by the

release manager, the EGI SWPP goes on to the stage rollout step.

The modernisation of the EGI SWPP, towards a DevOps paradigm, resulted

in the proven benefits of time and manpower efficiency, as well as the trans-

parency and traceability improvements of the EGI SWPP from the perspective

of the TP.

175

176

Act III

Mapping out the Future:

Universalize and Sustain a

Culture of Quality Research

Software

177

9
Incentivize a Software Quality Culture in

the European Open Science Cloud: the

Software Quality Assurance as a Service

Whether in the task of developing software or when validating artefacts for the

operation of a research e-Infrastructure, the previous chapters demonstrated the

impact that the implementation of a Software Quality Assurance (SQA) pro-

cess, according to the DevOps principles and materialised through the use of

Continuous Integration and Delivery (CI/CD) pipelines, has in the final soft-

ware product or service being delivered to the public. However, the design and

implementation of such a SQA process is not straightforward, requiring from

179

9. Incentivize a Software Quality Culture in the European Open Science
Cloud: the Software Quality Assurance as a Service

expert knowledge and guidance in mainstream software engineering practices.

Throughout the past chapters, visible efforts have been promoted to support

and disseminate a culture of software quality. The definition of an crowdsourced

SQA baseline and the design and practical implementation –through the compo-

sition of diverse CI/CD pipeline configurations, and a general purpose library–

of the requirements thereof, are visible evidence of the contribution to the es-

tablishment of this SQA culture within research software.

However, the beneficiaries of such achievements were still responding to a

technical profile, with the exceptions of the specific scientific communities par-

ticipants in the DEEP Hybrid-DataCloud (DEEP) and INDIGO-DataCloud

(INDIGO) projects. Just as their software delivery workflows have been im-

proved, other scientists could benefit as well drawing on the gathered expertise.

In this chapter, all the collected expertise from the realisation of the activ-

ities described in the previous chapters is condensed into the SQA-as-a-service

(SQAaaS) solution. The SQAaaS, being developed at the time of writing within

the framework of the EOSC-Synergy (SYNERGY) project, offers an automated

solution for checking the compliance of the code with the SQA baseline from

Chapter 5 “Wrapping-up: The definition of a Software Quality Assurance base-

line for Research Software”, and the ability to compose on-demand CI/CD

pipelines. Hence, users can exploit the benefits of having a consolidated SQA

baseline assessment without the need of having prior knowledge or skills about

it.

9.1 Framing the Software Quality Assurance as

a Service in the European Open Science

Cloud

Figure 9.1 shows the pipelined approach towards a continuous delivery and de-

ployment of services in the EOSC Portal. In this view, the SQAaaS covers the

verification and validation stages, including the capacity of awarding the qual-

180

9. Incentivize a Software Quality Culture in the European Open Science
Cloud: the Software Quality Assurance as a Service

Version
Control

Build &
Static Tests

(SAST)
Artifact
building Deploy

Dynamic Tests
(DAST)

Badge issuing

Style,Unit tests
& Reports

EOSC
repositories

Security health
& Diagnostics

Acceptance tests

EOSC
marketplace

Software Quality Assurance
baseline

ServicesCode changes

SQA-as-a-Service

Figure 9.1: Scoping the concept of a SQAaaS in the European Open Science Cloud
(EOSC). The figure represents a pipeline that performs the usual CI/CD work, veri-
fying the source code and delivering the resultant artefacts through the EOSC repos-
itories. The software is dynamically tested, covering security and system tests, before
being delivered to the EOSC portal. As an outcome of the SQAaaS execution, quality
badges are issued in order to quantify the compliance of the analysed software with
regards to the SQA baseline discussed in Chapter 5.

ity of the software quality through the issuing of digital badges. The sections

that follow position the SQAaaS into the EOSC context, highlighting how this

service can contribute to improve the current indicators of quality and maturity

in the EOSC ecosystem.

181

9. Incentivize a Software Quality Culture in the European Open Science
Cloud: the Software Quality Assurance as a Service

Technology Readiness Levels

In Chapter 4, it was described how the EOSC implementation was relying on

the Technology Readiness Level (TRL) measurement system to quantify the

maturity of a technology. However, as discussed there, TRLs leave room to

ambiguous interpretations, and thus, EOSC software and services quality and

maturity are usually inaccurately assessed.

With the aid of the SQA baseline, a more representative description of the

quality attributes present in the software that composes those services can be

then provided, contributing to a quantitative assessment of the maturity in

the EOSC services. Needless to say that the SQAaaS does not displace but

complement the TRL definition, by providing a better means to estimate each

level.

Requirements in the SQA baseline shall be mapped with TRLs so that a clear

correspondence is set. The SQAaaS could then serve as an assessment tool to

endorse the assignment of TRLs to software. With a better quantification comes

a greater confidence, which is not really built with the TRL definition by itself.

Award system

By highlighting the achievements, all the EOSC stakeholders –such as develop-

ers, users and funders– are aware of the quality attributes of the software. The

envisaged SQAaaS would provide reports about the level of compliance that a

given software product has with respect to the requirements defined in the SQA

baseline. Furthermore, the quality assessment report shall be completed with

the recognition of a badge to indicate the alignment with SYNERGY project

standards. This outcome will contribute to the attainment of the seal of ap-

proval for EOSC or EOSC-ready certification, as foreseen in the 2nd High Level

Expert Group (HLEG) report of the EOSC implementation [79].

182

9. Incentivize a Software Quality Culture in the European Open Science
Cloud: the Software Quality Assurance as a Service

9.2 Dissemination of a culture of software qual-

ity

According to the positive feedback from the experiences detailed in previous

chapters, transferring this know-how and SQA culture to a broader audience

is a natural step ahead, especially within those scientific environments with a

more evident lack of software engineering processes.

The SQAaaS was conceived under the umbrella of the SYNERGY project,

which has been designed to enable the integration of thematic services and data

repositories in the EOSC. In the sections below, it will be discussed what are

the principal applications of the SQAaaS.

9.2.1 Online Software Quality Assurance baseline assess-

ment

In Chapter 5 “Wrapping-up: The definition of a Software Quality Assurance

baseline for Research Software”, a set of requirements for the adequate man-

agement of the Software Development Life Cycle (SDLC) were presented, and

subsequently applied to the INDIGO and DEEP projects. As described within

the implementation of the SQA process of both projects, the practical imple-

mentation of the SQA baseline involved the definition of CI/CD pipelines for

each software component. Throughout the years and projects, both the SQA

baseline –reaching v3– and the pipelines have evolved to cover new Software

Engineering (SE) methodologies and practices.

The idea of applying these such outcomes to a wider scientific computing

audience was eventually shaped into the SQAaaS definition. Hence, one of its

expected outputs is to assess the quality of a given code repository, according

to the SQA baseline standards. The Online SQA baseline assessment mod-

ule provides a comprehensive assessment of the incoming source code

according to the SQA baseline requirements. The resultant report will con-

tain an enumeration of the fulfilled requirements, which are then characterized

183

9. Incentivize a Software Quality Culture in the European Open Science
Cloud: the Software Quality Assurance as a Service

by a quality badge that determines the level of compliance with the defined

SYNERGY standards.

A key aspect, particularly important when issuing the badge, is to ascer-

tain the uniqueness of the version of the code being analysed by the SQAaaS.

Based on the assumption of source code managed with a Version Control System

(VCS), commit identifiers are a reference to a specific version of the code, but

there is no unique identification of a code repository, and besides, these iden-

tifiers can be easily tampered. Software citation, according to “Requirement

V: Make your software findable, reproducible and citable”, turns out to be a

better approach. The use of Persistent Identifiers (PIDs) guarantee the required

uniqueness. However, this is not yet a widely used practice, and accordingly, so

far the Online SQA baseline assessment module might eventually rely on VCS

commit identifiers in the majority of cases.

9.2.2 Pipeline as a service

Just as the outcome of the previous module is aligned to the certification of

software, the Pipeline as a Service module covers the practical aspects of the

software assessment. In this case the expected result is the generation of

a Jenkins code pipeline, ready to be used in a Jenkins environment.

Consequently, through the Pipeline as a Service users leverage the expe-

rience gathered throughout the series of previously discussed projects

with regards to the implementation of CI/CD pipelines. Hence, any potential

scientist involved in computational programming can readily adopt the resultant

pipelines, which are ready to be added to the repository of code.

In order to eliminate common technical barriers, the Pipeline as a Service

shall allow the composition of the stages in the pipeline following an intuitive

graphical approach. All the functionalities implemented in the already described

jenkins-pipeline-library shall be accessible in order for the user to gener-

ate a customized code pipeline. The SQAaaS shall provide as well the optional

feature of automatically deploying the resultant pipeline in the SYNERGY Jenk-

184

9. Incentivize a Software Quality Culture in the European Open Science
Cloud: the Software Quality Assurance as a Service

ins instance, as a way for users to see the execution output of the brand new

pipeline.

9.3 Architecture of the Software Quality Assur-

ance as a Service

Compose
the

pipeline

SQAaaS
web interface

SQ
A

aa
S

A
PI

Online Quality Assessment
Evaluates the level of compliance of a source code
repository or running service according to the SQA baseline

Pipeline as a Service
Provides custom CI/CD pipelines based on
the quality criteria selected by the user

1

2 3 5

Run the
pipeline

Fetch
per-stage

results

Issue
badges

Create the
report

2 3 4 5

1

2

Badge issuerCI system

4

Pipeline
Stage

composer

Compose
the

pipeline

1

1

Compose
the

pipeline

2

Run the
pipeline

Figure 9.2: High-level overview of the SQAaaS.

Figure 9.2 shows the high-level overview of the SQAaaS architecture accord-

ing to the requirements elicited in the previous section. The steps performed

by the two building blocks of the SQAaaS, the Online Quality Assessment and

the Pipeline as a Service, are sketched in the figure, as well as the components

that carry out each action.

185

9. Incentivize a Software Quality Culture in the European Open Science
Cloud: the Software Quality Assurance as a Service

9.3.1 Integral components

As it can be extracted from the figure, Jenkins appears as the foundational tech-

nology used in the implementation of the SQAaaS modules. Introduced in Chap-

ter 7 “Tailoring software to user needs: the DEEP-HybridDataCloud project”,

these pipelines correspond to the Jenkins code pipelines or Jenkinsfiles, in

order to benefit from their flexibility and the capacity of being tailored pro-

grammatically. The SQAaaS trigger the execution of the pipelines, obtaining

the result of each stage for the eventual display of results.

According to such results, one of the key outcomes of the SQAaaS is the

issue of quality badges, according to the standards defined by SYNERGY. The

SQAaaS relies on the Badge issuer component, which implements the Open-

Badges v2.0 Specification [167], to ship digital badges –portable image files–

that embed the information about the achievements and level of compliance of

a given software according to the quality requirements of the SQA baseline.

Lastly, the Pipeline as a Service building block has the added complexity of

providing an on-demand composition of the pipelines. In this case, a specific

Pipeline stage composer component provides customized code pipelines based

on the inputs obtained by the user.

9.3.2 Automated validation of the Software Quality As-

surance baseline requirements

Whether in the event of validating the entire SQA baseline or a custom selection

of the quality requirements thereof, the SQAaaS needs to extend the existing

programmatic coverage, being built throughout the course of the DEEP and

INDIGO projects.

In Chapter 8 “Software validation in the European Grid Infrastructure”, a

study was carried out to identify the quality requirements from the EGI Quality

Criteria (EGI QC) criteria suitable to be checked programmaticaly. It was

a requirement to prove the extent to which the umd-verification was able

to validate such criteria. Now, the implementation of the SQAaaS requires a

186

9. Incentivize a Software Quality Culture in the European Open Science
Cloud: the Software Quality Assurance as a Service

similar approach.

Tables 9.1 and 9.2 compile all the criteria from the SQA baseline, identifying

both the viability of automation and the means of verification. For some of them,

the viability is aligned with the particular features that the hosting technology or

platform provides. In the specific case of code management and Verification and

Validation (V&V) requirements, the SQAaaS considers GitHub as the reference

platform, as it has been done throughout the text.

For some criteria, the viability of automation can be partially achieved,

while some requirements need additional feedback from the user in order to

be assessed. However, as it can be seen in the table, current technology and

tools allow to programmatically check most of the criteria included in the SQA

baseline.

9.3.3 Implementation of the workflows

The interactions between the main components of the SQAaaS, already iden-

tified in Section 9.3.1, are depicted in Figure 9.3. This figure shows a more

elaborated view of the different workflows of the two SQAaaS building blocks.

For the sake of simplicity, the SQAaaS frontend was excluded from the previous

high-level architecture figure. Here, it is included to showcase the role of the

user as the initiator of the workflows.

Hence, the web frontend allows the user to select the module, either the

Online Quality Assessment or the Pipeline as a Service, and the required in-

puts. The user selection is then passed to the the SQAaaS director, which is

the fundamental actor responsible of managing the subsequent steps and the

interaction with the backend components by leveraging their APIs.

Online Quality Assessment workflow

As introduced in Section 9.2.1, the goal of the Online Quality Assessment mod-

ule is to gauge the quality achievements of a software component according

to the SQA baseline definition. In that section, it has been also identified the

187

9. Incentivize a Software Quality Culture in the European Open Science
Cloud: the Software Quality Assurance as a Service

SQA criteria Auto Means of verification

Code Accessibility

Requirement IV: Make your code open and
publicly available

3 LICENSE file

Requirement II: Use public forges to distribute
your work

3 Code repository URL

Requirement V: Make your software findable,
reproducible and citable

3 CITATION.json / codemeta.json

file

Requirement III: Make clear your contribution
policy

3 CONTRIBUTION file

Code Management

Requirement I: Create versions of the source
code

3 Code repository URL

Good practice I: Maintain a clean history of
changes

3 VCS history

Good practice II: Use a branching strategy
to separate your development and production
versions

3 GET

/repos/:owner/:repo/branches

Good practice VIII: Protect your long-term
branches from direct modifications

3 GET ../protection

Good practice III: Maintain your long–term
support versions

3 GET

/repos/:owner/:repo/branches

Good practice IV: Use an unambiguous nam-
ing convention for branches

3 GET

/repos/:owner/:repo/branches

Good practice V: Use issue tracking 3 GET

/repos/:owner/:repo/labels

Good practice VII: Use pull requests 3 GET

/repos/:owner/:repo/pulls

Good practice VI: Use semantic versioning for
your releases

3 GET

/repos/:owner/:repo/releases

Table 9.1: Automation capabilities and means of verification for Code management
and Code accessibility categories from the SQA baseline. URL endpoints correspond
to GitHub Application Programming Interface (API).

188

9. Incentivize a Software Quality Culture in the European Open Science
Cloud: the Software Quality Assurance as a Service

SQA criteria Auto Means of verification

Code Verification and Validation

Requirement VI: Test the individual units of
the code

3 Run tests (input needed)

Requirement VII: Address functional require-
ments

3 Run tests (input needed)

Requirement VIII: Check the level of integra-
tion and interconnection with coupled compo-
nents

3 Run tests (input needed)

Requirement IX: Ensure new changes do not
jeopardize the operation of software’s existing
features

Partial Run tests (input needed)

Requirement X: Adhere your code to a code
style standard

3 Run de-facto standards

Requirement XI: Assess the security on your
software

Partial Run common SAST linters

Requirement XII: Broadening the perspective
with peer reviews of the code

3 GitHub’s Protection API

Software Adoption

Requirement XIII: Comprehensive documen-
tation

Partial README file, build documentation

Good practice X: Ease the deployment of your
software

3 Execution of Ansible role / Pup-
pet module

Table 9.2: Automation capabilities and means of verification for Code V&V and Soft-
ware adoption categories from the SQA baseline.

189

9. Incentivize a Software Quality Culture in the European Open Science
Cloud: the Software Quality Assurance as a Service

Pipeline as a
Service

Online Quality
Assessment

get pipeline

fe
tc

h
re

su
lts

get badge
user
input

st
ag

e
re

su
lts

ru
n

pi
pe

lin
e

Je
nk

in
sfi

le report
URL

SQA report generator

Jenkins CI Badge issuerPipeline composer

1

2

1

2
3

4

5

return report

SQ
Aa

aS
 A

PI
return pipeline

display results 3

block selection

payload

SQ
Aa

aS
 w

eb payload

payload

6

st
or

e
re

po
rt

Figure 9.3: Detailed view of the SQAaaS operation. The figure details the steps
required to operate each of the building blocks, i.e., the Online Quality Assurance (in
blue) and the Pipeline as Code (in dark orange).

means of verification of all the requirements and practices set out therein. Based

on this knowledge, the final report showcasing the level of compliance of a code

repository with the SQA baseline, primary output of this module, can be then

obtained.

By design, the SQAaaS operation leverages Jenkins to run the workloads.

On the basis of the results obtained in Chapter 7, code pipelines are used to rep-

resent such workloads, which are generated by means of the Pipeline composer.

190

9. Incentivize a Software Quality Culture in the European Open Science
Cloud: the Software Quality Assurance as a Service

This component uses a template system to create the code pipelines according

to the user preferences. Based on the needs of the Online Quality Assessment

module, where the pipelines are pre-composed according to the programming

language, the work of the Pipeline Composer is reduced to the selection of the

appropriate pipeline according to the user input.

As in the case of the code pipelines elaborated during DEEP project, the

jenkins-pipeline-library is used to perform the work within each pipeline

stage. As it was primarily oriented to CI/CD checks, the last stable version of

the library, v1.4.1 [145], does not cover the complete set of requirements from

the Code Accessibility and Code Management categories listed in Tables 9.1

and 9.2. As it was mentioned in section 9.3.2, the currently identified means of

verification for those category of requirements are tied to GitHub API capabil-

ities. Subsequent improvements might be focused on the support of additional

platforms.

According to what it was discussed, the SQAaaS director will trigger the

pipeline composition based on the provided language. Once the pipeline is

generated by the Pipeline Composer, the director uses the Jenkins API to create

a job to run the pipeline. According to the exit status of the pipeline, the

director either notifies back to the user the unsuccessful execution or, in the

event of successful termination, the results are then analysed by isolating each

stage.

As the pipeline was earlier composed according to the stage:SQA

requirement mapping, the report generation is quite straightforward. The

final step is to issue the corresponding digital badge, according to the results

obtained, that embeds the link to the resultant SQA report. Three badge cat-

egories are foreseen. As Table 9.3 showcases, the first-level badge is used for

software that did not fulfill the mandatory requirements of the SQA baseline.

The second and third-level represent, respectively, the accomplishment of the

minimum requirements and the additional good practices.

191

9. Incentivize a Software Quality Culture in the European Open Science
Cloud: the Software Quality Assurance as a Service

SYNERGY badge SQA baseline criterion type

Bronze Not all the Requirement conventions fulfilled

Silver All the Requirement conventions fulfilled

Gold Silver badge + all or some of the Good Practice

conventions fulfilled

Table 9.3: The three-level badges of software quality issued by SYNERGY project

Pipeline as Code workflow

The Pipeline as Code module follows a simpler approach as it does not need

both the report creation and badge issuing capabilities. Optionally, it might not

even require any interaction with the Jenkins service, but it is good practice to

provide a means for the user to check the execution of the custom pipeline before

adding it to the source code repository. However, in contrast, the Pipeline as

Code module demands the dynamic composition of the pipelines, so no specific

pre-composed templates are allowed here.

The resultant pipeline is rendered according to the user expectations, which

implies that the SQAaaS director passes the user-selected criteria to the Pipeline

Composer. In here, the templating system should consume this input data, and

parameterize the stages according to them. The available features at the dis-

posal of the SQAaaS user consist not only in the criteria that matches the SQA

baseline definition, but also the remaining functionality already implemented in

the jenkins-pipeline-library, such as the software delivery and notifications

capabilities depicted in section 7.2.

9.4 Conclusion

Whilst the outcomes from the projects described in the previous chapters had

limited outreach capacity, the SQAaaS solution, currently being developed

within the framework of the ongoing SYNERGY project, should provide the

definitive push to disseminate, to a wider audience within the EOSC, the gath-

192

9. Incentivize a Software Quality Culture in the European Open Science
Cloud: the Software Quality Assurance as a Service

ered expertise and insights obtained from the implementation and operation

of the EGI Software Provisioning Process (EGI SWPP), DEEP and INDIGO

projects.

The SQAaaS solution harnesses such experience and delivers it in two fun-

damental ways. On the one hand, the assessment of the software in accordance

with the SQA baseline, as described in Chapter 5 “Wrapping-up: The definition

of a Software Quality Assurance baseline for Research Software”. The availabil-

ity of such a tool is not only relevant for any given software product, but in

particular to those involved in the EOSC, as a way to improve the maturity

assessment provided by the TRL system. Hence, the SQAaaS, through its On-

line Quality Assessment building block, provides a full-fledged report reflecting

the level of compliance of a particular version of the software with respect to

each requirement and good practice defined in the SQA baseline. Based on

this result, a digital badge is issued which represents the SYNERGY’s software

quality standards.

On the other hand, the SQAaaS provides an on-demand composition of the

code pipelines. The Pipeline as Code module adds to the SQA baseline criteria

the set of software delivery and notification capabilities implemented through-

out DEEP project in Chapter 7 “Tailoring software to user needs: the DEEP-

HybridDataCloud project”. As a result, any computer scientist can leverage the

SQAaaS solution to compose customized pipelines and use them to implement

their own CI/CD environment.

In result, the SQAaaS promotes the quality of the software at different lev-

els. The pipelines covering the SQA baseline criteria stand for a fairly

complete realisation of quality software, in terms of adoption, code acces-

sibility, management, verification and validation. Besides, the digital badges

provide a categorization of the quality of the software, closely aligned

with the so-called EOSC-ready certification suggested in the EOSC 2nd HLEG

report from Chapter 4 “Software Quality to drive the delivery of services in the

European Open Science Cloud”.

The customized pipelines can be seen as a first approach to the

193

9. Incentivize a Software Quality Culture in the European Open Science
Cloud: the Software Quality Assurance as a Service

adoption of software quality practices in less-aware scientific com-

puting environments. The SQAaaS decouples the need of professional assis-

tance, lowering the barriers of deploying DevOps CI/CD approaches, and thus,

augmenting the outreach capacity of adherence to software quality practices in

the long tail of science.

194

Conclusions

195

Conclusions

9.5 Summary and Contributions

This dissertation presents a manifesto that fosters a culture of quality in the pro-

duction of research software. The Open Science paradigm provides the perfect

context for the establishment and commitment to such a culture that recognizes

the software as a legitimate actor within the computational research. Hence,

this work builds on the first steps taken towards the implementation of the

EOSC, targeted to offer valuable research services for European scientists. The

usability of such services is key to achieve this goal, but usability is heavily

dependant on the quality of the service, not only in terms of stability and re-

liability, but also with regards to the functional suitability –or fit-for-purpose–

that is required to meet the researcher’s expectations.

Coming from an of e-Infrastructure background, where a continuum of state-

of-the-art solutions have been developed and subsequently offered to a plethora

of scientific communities over the years, this work builds on this expertise to

demonstrate the impact that the quality of software has on the usability of the

prospective service. In particular, this work is organised as a story of three

sequential acts, that goes through the definition, implementation, and dissemi-

nation of a SQA process.

In particular, the major contributions laid out throughout this dissertation

can be summarized as follows:

• The formulation of a SQA baseline to conduct the research

197

9. Incentivize a Software Quality Culture in the European Open Science
Cloud: the Software Quality Assurance as a Service

SDLC. Although the original criteria were initially envisaged for guid-

ing the SDLC within European research e-Infrastructure development

projects, the SQA baseline eventually evolved to embrace a comprehen-

sive set of software coding, testing, maintenance and uptake practices for

widespread use within the global academic environment, within reach of

any individual computer scientist or scientific research community. The

SQA baseline has been publicly disclosed, open to external collaboration,

aiming at establishing a sustainable path for collective knowledge building

and transfer that consolidates it as a reference point for the development

of future research software efforts.

In the context of this dissertation, the SQA baseline serves as the foun-

dation for establishing a systematic estimation of the quality of software

in the services delivered through the EOSC. The adoption of the SQA

baseline by the EOSC would contribute to balance out the uneven treat-

ment of software, with respect to data, that prevails in the ongoing EOSC

roadmap, in order to address the shortcomings, in terms of quality and

maturity assessment, currently existing in the service onboarding process.

• The implementation of a SQA process, governed by the re-

quirements defined in the SQA baseline, that builds on the

DevOps culture to develop software with an emphasis on the

prospective operational performance in the target European e-

Infrastructures that are contributing to the EOSC. The initial SQA

process was designed and materialised over the course of the INDIGO

project, and subsequently refined during the ongoing DEEP project. Au-

tomation is the catalyst for driving the SQA process, and key enabler for

the setup of a CI/CD infrastructure, where the software, in compliance

with the SQA baseline criteria, is frequently delivered to be evaluated by

the end users, primarily the research communities involved in the projects.

The essential outcome of such SQA infrastructure is the composition of

code pipelines, which leverage the so-called Jenkins Pipeline-as-Code tech-

198

9. Incentivize a Software Quality Culture in the European Open Science
Cloud: the Software Quality Assurance as a Service

nology, for each software component. The CI/CD pipelines drive the exe-

cution of the SQA baseline requirements for each modification done in the

source code. To this end, the development of a Jenkins pipeline library

ensures the proper fulfillment of those requirements by implementing the

required methods. As a result of this coding approach, both the CI/CD

pipelines and the aforementioned library are reusable outside the SQA

infrastructure, thus preserving the SQA practices and know-how beyond

the lifespan of the individual, commonly short-term, projects.

• The demonstration that the former DevOps approach is not only

applicable to the –usually highly technological skilled– software

engineers that develop software solutions for the operation of the

e-Infrastructures, but it can be also tailored to the needs of the

computer scientists. First prototyped under INDIGO and successively

developed during the development of DEEP, the pipelines are driving

the development and delivery of the research applications, such as the

discussed Machine Learning (ML) applications life-cycle.

• The application of automation beyond the bounds of usual De-

vOps practice in order to manage the on-demand delivery of ML

applications through the DEEP Open Catalogue and the readi-

ness for ML inference through the DEEP as a Service (DEEP-

aaS) endpoint.

• The modernization of the EGI SWPP within the EGI Federa-

tion, key e-Infrastructure in the EOSC implementation, to optimize the

reliability of the software being delivered through the two official EGI mid-

dleware distributions: Unified Middleware Distribution (UMD) and Cloud

Middleware Distribution (CMD).. The overhaul of the process included

the gradual adoption of automated practices for the effective realisation of

the EGI QC validation process, and subsequently, the implementation of

a DevOps-like approach to achieve the continuous validation of incoming

software releases, where the technology provider can autonomously trigger

199

9. Incentivize a Software Quality Culture in the European Open Science
Cloud: the Software Quality Assurance as a Service

the EGI QC validation process before the release can proceed to the next

stages within the EGI SWPP.

• The outline of a SQAaaS solution, to be developed as part of the

SYNERGY project, to promote and sustain a culture of quality

in the research software development within the EOSC ecosys-

tem. On the one hand, the SQAaaS leverages the requirements set out in

the SQA baseline criteria to tackle automated assessments of the quality

of research software, recognising the achievements through digital badges,

subject to SYNERGY standards, which set the stage for a prospective

EOSC-ready seal. On the other hand, the SQAaaS provides the capacity

to compose customized, ready-to-use code pipelines in order to drive the

development and delivery of the software.

9.5.1 Role of the author in the reviewed research projects

All the aforementioned contributions correspond to the work led by the author

of this dissertation as a result of his involvement in the operation of the SQA

processes within the INDIGO, DEEP, SYNERGY projects and the European

Grid Infrastructure (EGI) e-Infrastructure. Needless to say that the described

work could not be completely achieved by an individual, only through joint

endeavour, especially with regards to the operational part. The colleagues par-

ticipating in this work are explicitly appointed in the thesis’ acknowledgements.

9.6 Publications

Diverse scientific journal publications and international workshop contributions

have emerged as a result of the work presented in this thesis. In particular:

• Peer-reviewed journals (main author)

– Pablo Orviz Fernández, Mario David, Doina Cristina Duma, Elis-

abetta Ronchieri, Jorge Gomes, and Davide Salomoni. “Software

200

9. Incentivize a Software Quality Culture in the European Open Science
Cloud: the Software Quality Assurance as a Service

Quality Assurance in INDIGO-DataCloud project: a converging evo-

lution of software engineering practices to support European Re-

search e-Infrastructures”. In: Journal of Grid Computing 18.1

(2020), pages 81–98. doi: 10.1007/s10723-020-09509-z

– Pablo Orviz Fernández, Joao Pina, Álvaro López Garćıa, Isabel Cam-

pos Plasencia, Mario David, and Jorge Gomes. “umd-verification:

Automation of Software Validation for the EGI Federated Infrastruc-

ture”. In: Journal of Grid Computing 16.4 (2018). Quartile: Q1,

JIF Percentile: 76.452, pages 683–696. doi: 10.1007/s10723-018-

9454-2

• Peer-reviewed journals (substantial contributions)

– Álvaro López Garćıa et al. “A Cloud-Based Framework for Machine

Learning Workloads and Applications”. In: IEEE Access 8 (2020),

pages 18681–18692. doi: 10.1109/ACCESS.2020.2964386

– Davide Salomoni, Isabel Campos, Luciano Gaido, J Marco de Lucas,

P Solagna, Jorge Gomes, Ludek Matyska, P Fuhrman, Marcus Hardt,

Giacinto Donvito, et al. “Indigo-datacloud: a platform to facilitate

seamless access to e-infrastructures”. In: Journal of Grid Com-

puting 16.3 (2018). Quartile: Q1, JIF Percentile: 76.452, pages 381–

408. doi: 10.1007/s10723-018-9453-3

• International Workshops

– Pablo Orviz Fernández, Mario David, and Cristina Duma. Baseline

criteria for achieving software quality within the European

research ecosystem. Workshop. 10th Iberian Grid Computing

Conference – IBERGRID 2019: University of Santiago (Santiago de

Compostela, Spain), Sept. 23–26, 2019

– Joao Pina and Pablo Orviz Fernández. Best practices for service

deployment and interoperability checks. Workshop. EOSC-

201

https://doi.org/10.1007/s10723-020-09509-z
https://doi.org/10.1007/s10723-018-9454-2
https://doi.org/10.1007/s10723-018-9454-2
https://doi.org/10.1109/ACCESS.2020.2964386
https://doi.org/10.1007/s10723-018-9453-3

9. Incentivize a Software Quality Culture in the European Open Science
Cloud: the Software Quality Assurance as a Service

hub Technical Roadmap Workshop: EGI Foundation (Amsterdam,

Netherlands), June 25–27, 2019

– Mario David and Pablo Orviz Fernández. EOSC, FAIR & Soft-

ware. Workshop. Workshop on Sustainable Software Sustainability

2019 (WOSSS19): Data Archiving, Networked Services (DANS), the

Software Sustainability Institute (SSI), and the Netherlands eScience

Centre (The Hague, Netherlands), Apr. 23–26, 2019

– Mikael Trellet, Pablo Orviz Fernández, and Alexandre M.J.J. Bon-

vin. DevOps adoption in scientific applications: DisVis and

PowerFit cases. Workshop. International Symposium on Grids

& Clouds – ISGC 2018: Academia Sinica Grid Computing Centre

(Taipei, Taiwan), Mar. 16–23, 2018

• Other relevant publications

– Pablo Orviz Fernández, Álvaro López Garćıa, Doina Cristina Duma,

Mario David, Jorge Gomes, and Giacinto Donvito. “A set of common

software quality assurance baseline criteria for research projects”. In:

(2017). url: http://hdl.handle.net/10261/160086

• Software

– [Software Release] Pablo Orviz Fernández and Enol Fernández,

egi-qc/umd-verification version 1.0, Apr. 2020. lic: Apache 2.0.

doi: 10.5281/zenodo.3747669

– [Software Release] Pablo Orviz Fernández, indigo-dc/jenkins-

pipeline-library version 1.4.1, Apr. 2020. lic: Apache 2.0. doi: 1

0.5281/zenodo.3748914

– [Software Release] Pablo Orviz Fernández, deephd-

c/schema4deep version 1.0, Feb. 2020. lic: Apache 2.0.

doi: 10.5281/zenodo.3690697

202

http://hdl.handle.net/10261/160086
https://doi.org/10.5281/zenodo.3747669
https://doi.org/10.5281/zenodo.3748914
https://doi.org/10.5281/zenodo.3748914
https://doi.org/10.5281/zenodo.3690697

9. Incentivize a Software Quality Culture in the European Open Science
Cloud: the Software Quality Assurance as a Service

9.7 Future Work and Perspective

Building on the main contributions summarized in the previous section, the

following two main milestones are envisaged in the immediate future.

Service quality baseline

As discussed in Chapter 4 “Software Quality to drive the delivery of services

in the European Open Science Cloud”, the TRL scale is currently the de-facto

standard for measuring the maturity of the technologies within the Horizon

2020 work programmes, and as a result, the reference system for the EOSC

services. According to the hypothesis of this study, and adequate development

of the underlying software is of definitive importance to deliver reliable and fit-

for-purpose EOSC services. Chapter 5 “Wrapping-up: The definition of a Soft-

ware Quality Assurance baseline for Research Software” presented concrete and

comprehensive guidelines for accomplishing this objective, subsequently imple-

mented in diverse EC-funded projects, and ultimately being offered as a service,

through the SQAaaS solution, as a means to provide a tool to automatically

assess and award the software of the EOSC services.

Hence, the quality and maturity of the technology can be adequately accom-

plished and measured using the tools and processes implemented as part of this

thesis, complementing to a large extent the TRL system. However, there is still

room for improvement in what regards to the assessment of the service opera-

tion, once being delivered by following the DevOps processes herein presented.

Following a similar approach by compiling criteria for a service quality base-

line, can help to ensure the adequate performance of the service at runtime,

seen here as the specific instance that is running the underlying quality-assured

software. Criteria that shall be covered ranges from monitoring to customer

and infrastructure-oriented arrangements, such as service and operational level

agreements.

203

9. Incentivize a Software Quality Culture in the European Open Science
Cloud: the Software Quality Assurance as a Service

EOSC certification

In Chapter 9 “Incentivize a Software Quality Culture in the European Open

Science Cloud: the Software Quality Assurance as a Service”, the architec-

ture of a prospective SQAaaS solution is presented. The SQAaaS provides an

awarding mechanism, based on the issuing of digital badges according to the

OpenBadges specification, of the quality achievements compiled in the SQA

baseline. The available badges are defined according the SYNERGY standards,

currently comprised by a three-level scale.

As indicated in Chapter 4 “Software Quality to drive the delivery of services

in the European Open Science Cloud”, the 2nd HLEG report, elaborated as

part of the EOSC consultation process, fostered the establishment of an EOSC-

ready certification system in order to “promote the long-term sustainability

of the EOSC operation and give credit to innovative software developments”.

Consequently, the SQAaaS is filling this gap, currently not being considered in

the preliminary steps of the EOSC implementation.

The adoption of the SQAaaS solution by the EOSC shall be considered not

only as a means to certify and award software, but also to provide guidance

and regulation for prospective research software development and maintenance

efforts through the SQA baseline criteria. This latter aspect was already covered

for the research data through the Findability, Accessibility, Interoperability and

Re-usable (FAIR) principles, now the software shall take its rightful place.

204

Bibliography

[1] UNESCO Takes the Lead in Developing a New Global

Standard-setting Instrument on Open Science. 2020. url: http

s://en.unesco.org/news/unesco-takes-lead-developing-new-glo

bal-standard-setting-instrument-open-science.

[2] Technology OECD Science and Industry Policy Papers. ““Making open

science a reality”, OECD Science”. In: 25 (2015). doi: 10.1787/5jrs2f

963zs1-en.

[3] Carlos Moedas. “Open Innovation, Open Science and Open to the World–

A Vision for Europe”. In: Luxembourg: Publications Office of the

European Union (2016).

[4] Brian Nosek et al. “Transparency and openness promotion (TOP) guide-

lines”. In: (2016).

[5] Benedikt Fecher and Sascha Friesike. “Open science: one term, five

schools of thought”. In: Opening science. Springer, 2014, pages 17–

47. doi: 10.1007/978-3-319-00026-8_2.

[6] Rubén Vicente-Sáez and Clara Mart́ınez-Fuentes. “Open Science now: A

systematic literature review for an integrated definition”. In: Journal

of business research 88 (2018), pages 428–436. doi: 10.1016/j.jbus

res.2017.12.043.

205

https://en.unesco.org/news/unesco-takes-lead-developing-new-global-standard-setting-instrument-open-science
https://en.unesco.org/news/unesco-takes-lead-developing-new-global-standard-setting-instrument-open-science
https://en.unesco.org/news/unesco-takes-lead-developing-new-global-standard-setting-instrument-open-science
https://doi.org/10.1787/5jrs2f963zs1-en
https://doi.org/10.1787/5jrs2f963zs1-en
https://doi.org/10.1007/978-3-319-00026-8_2
https://doi.org/10.1016/j.jbusres.2017.12.043
https://doi.org/10.1016/j.jbusres.2017.12.043

Bibliography

[7] UNESCO Recommendation on Open Science. 2020. url: https:

//en.unesco.org/science-sustainable-future/open-science/con

sultation.

[8] Luis Ibáñez, Rick Avila, and Stephen Aylward. “Open source and open

science: how it is changing the medical imaging community”. In: 3rd

IEEE International Symposium on Biomedical Imaging: Nano

to Macro, 2006. IEEE. 2006, pages 690–693. doi: 10.1109/ISBI.200

6.1625010.

[9] Paola Masuzzo and Lennart Martens. Do you speak open science?

Resources and tips to learn the language. Technical report. PeerJ

Preprints, 2017.

[10] Mick Watson. “When will ’open science’ become simply ’science’?” In:

Genome biology 16.1 (2015), pages 1–3. doi: 10.1186/s13059-015-0

669-2.

[11] Directory of Open Access Journals. Directory of Open Access Jour-

nals. 2020. url: https://doaj.org/.

[12] Bo-Christer Björk and David Solomon. “Open access versus subscription

journals: a comparison of scientific impact”. In: BMC medicine 10.1

(2012), page 73. doi: 10.1186/1741-7015-10-73.

[13] European Commission. “Guidelines to the Rules on Open Access to Sci-

entific Publications and Open Access to Research Data in Horizon 2020”.

In: (2017).

[14] Eric Raymond. “The cathedral and the bazaar”. In: Knowledge, Tech-

nology & Policy 12.3 (1999), pages 23–49. doi: 10.1007/s12130-999

-1026-0.

[15] Sourceforge. The Complete Open-Source and Business Software

Platform. 2020. url: https://sourceforge.net/.

[16] GitHub. GitHub. 2020. url: https://github.com/.

206

https://en.unesco.org/science-sustainable-future/open-science/consultation
https://en.unesco.org/science-sustainable-future/open-science/consultation
https://en.unesco.org/science-sustainable-future/open-science/consultation
https://doi.org/10.1109/ISBI.2006.1625010
https://doi.org/10.1109/ISBI.2006.1625010
https://doi.org/10.1186/s13059-015-0669-2
https://doi.org/10.1186/s13059-015-0669-2
https://doaj.org/
https://doi.org/10.1186/1741-7015-10-73
https://doi.org/10.1007/s12130-999-1026-0
https://doi.org/10.1007/s12130-999-1026-0
https://sourceforge.net/
https://github.com/

Bibliography

[17] Xiaoli Chen et al. “Open is not enough”. In: Nature Physics 15.2

(2019), pages 113–119. doi: 10.1038/s41567-018-0342-2.

[18] Christine Borgman. “The conundrum of sharing research data”. In:

Journal of the American Society for Information Science and

Technology 63.6 (2012), pages 1059–1078. doi: 10.1002/asi.22634.

[19] Virginia Gewin. “Data sharing: An open mind on open data”. In: Nature

529.7584 (2016), pages 117–119. doi: 10.1038/nj7584-117a.

[20] Erin McKiernan et al. “Point of view: How open science helps researchers

succeed”. In: Elife 5 (2016), e16800. doi: 10.7554/eLife.16800.

[21] Mark Wilkinson et al. “The FAIR Guiding Principles for scientific data

management and stewardship”. In: Scientific data 3 (2016). doi: 10.1

038/sdata.2016.18.

[22] K Vermeir, S Leonelli, A Shams Bin Tariq, et al. Global Access to

Research Software: The Forgotten Pillar of Open Science Im-

plementation. A Global Young Academy Report. 2018.

[23] European Commission. “Turning FAIR into reality”. In: (2018). doi:

10.2777/1524.

[24] Lorena Barba. “Reproducibility PI Manifesto”. In: (2012).

[25] Alyssa Goodman et al. “Ten simple rules for the care and feeding of

scientific data”. In: PLoS computational biology 10.4 (2014). doi:

10.1371/journal.pcbi.1003542.g001.

[26] European Commission. “Open Science Policy Platform Recommenda-

tions”. In: (2018).

[27] Paul Ayris et al. “Open Science and its role in universities: A roadmap for

cultural change”. In: Leuven: League of European Research Uni-

versities (LERU) Office 13 (2018).

[28] Carole Goble. “Better software, better research”. In: IEEE Internet

Computing 18.5 (2014), pages 4–8. doi: 10.1109/MIC.2014.88.

207

https://doi.org/10.1038/s41567-018-0342-2
https://doi.org/10.1002/asi.22634
https://doi.org/10.1038/nj7584-117a
https://doi.org/10.7554/eLife.16800
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.2777/1524
https://doi.org/10.1371/journal.pcbi.1003542.g001
https://doi.org/10.1109/MIC.2014.88

Bibliography

[29] Judith Segal and Chris Morris. “Developing scientific software”. In:

IEEE software 25.4 (2008), pages 18–20. doi: 10.1109/MS.2008.85.

[30] Udit Nangia and Daniel Katz. “Understanding software in research: Ini-

tial results from examining Nature and a call for collaboration”. In: 2017

IEEE 13th International Conference on e-Science (e-Science).

IEEE. 2017, pages 486–487. doi: 10.1109/eScience.2017.78.

[31] Simon Hettrick et al. “UK research software survey 2014”. In: (2014).

doi: 10.5281/zenodo.14809.

[32] Udit Nangia, Daniel Katz, et al. “Track 1 paper: surveying the US Na-

tional Postdoctoral Association regarding software use and training in

research”. In: Workshop on Sustainable Software for Science:

Practice and Experiences (WSSSPE 5.1). 2017. doi: 10.5281/ze

nodo.814103.

[33] Arne Johanson and Wilhelm Hasselbring. “Software engineering for com-

putational science: Past, present, future”. In: Computing in Science

& Engineering (2018). doi: 10.1109/MCSE.2018.021651343.

[34] Rob Baxter et al. “The research software engineer”. In: Digital Re-

search Conference, Oxford. 2012, pages 1–3.

[35] Daniel Katz et al. “Research Software Development & Management

in Universities: Case Studies from Manchester’s RSDS Group, Illinois’

NCSA and Notre Dame’s CRC”. In: 2019 IEEE/ACM 14th In-

ternational Workshop on Software Engineering for Science

(SE4Science) (2019). doi: 10.1109/se4science.2019.00009.

[36] Hooman Hoodat and Hassan Rashidi. “Classification and analysis of risks

in software engineering”. In: World Academy of Science, Engineer-

ing and Technology 56.32 (2009), pages 446–452.

[37] Omar Badreddin, Wahab Hamou-Lhadj, and Swapnil Chauhan.

“Susereum: towards a reward structure for sustainable scientific research

software”. In: 2019 IEEE/ACM 14th International Workshop

208

https://doi.org/10.1109/MS.2008.85
https://doi.org/10.1109/eScience.2017.78
https://doi.org/10.5281/zenodo.14809
https://doi.org/10.5281/zenodo.814103
https://doi.org/10.5281/zenodo.814103
https://doi.org/10.1109/MCSE.2018.021651343
https://doi.org/10.1109/se4science.2019.00009

Bibliography

on Software Engineering for Science (SE4Science). IEEE. 2019,

pages 51–54. doi: 10.1109/SE4Science.2019.00015.

[38] Steve Easterbrook. “Open code for open science?” In: Nature Geo-

science 7.11 (2014), page 779. doi: 10.1038/ngeo2283.

[39] Peter Ivie and Douglas Thain. “Reproducibility in scientific computing”.

In: ACM Computing Surveys (CSUR) 51.3 (2018), pages 1–36. doi:

10.1145/3186266.

[40] Jörg Fehr et al. “Best practices for replicability, reproducibility and

reusability of computer-based experiments exemplified by model reduc-

tion software”. In: arXiv preprint arXiv:1607.01191 (2016). doi:

10.3934/Math.2016.3.261.

[41] Pierre Bourque, Richard Fairley, et al. Guide to the software engi-

neering body of knowledge (SWEBOK (R)): Version 3.0. IEEE

Computer Society Press, 2014. doi: 10.1109/52.805471.

[42] Stephen Crouch et al. “The Software Sustainability Institute: changing

research software attitudes and practices”. In: Computing in Science

& Engineering 15.6 (2013), pages 74–80. doi: 10.1109/MCSE.2013.1

33.

[43] Caroline Jay et al. “Theory-Software Translation: Research Chal-

lenges and Future Directions”. In: arXiv preprint arXiv:1910.09902

(2019). url: https://arxiv.org/abs/1910.09902.

[44] William Wong. A management overview of software reuse. US

Department of Commerce, National Bureau of Standards, 1986. doi: 10

.6028/NBS.SP.500-142.

[45] Mike Jackson, Steve Crouch, and Rob Baxter. “Software evaluation:

criteria-based assessment”. In: Software Sustainability Institute

(2011).

209

https://doi.org/10.1109/SE4Science.2019.00015
https://doi.org/10.1038/ngeo2283
https://doi.org/10.1145/3186266
https://doi.org/10.3934/Math.2016.3.261
https://doi.org/10.1109/52.805471
https://doi.org/10.1109/MCSE.2013.133
https://doi.org/10.1109/MCSE.2013.133
https://arxiv.org/abs/1910.09902
https://doi.org/10.6028/NBS.SP.500-142
https://doi.org/10.6028/NBS.SP.500-142

Bibliography

[46] José Miguel, David Mauricio, and Glen Rodŕıguez. “A review of soft-

ware quality models for the evaluation of software products”. In: arXiv

preprint arXiv:1412.2977 (2014). doi: 10.5121/ijsea.2014.5603.

[47] ISO Central Secretary. Systems and software engineering —

Systems and software quality requirements and evaluation

(SQuaRE) — Measurement of quality in use. en. Standard

ISO/IEC 25022:2016. International Organization for Standardization,

2016. url: https://www.iso.org/standard/35746.html.

[48] Michael Woelfle, Piero Olliaro, and Matthew Todd. “Open science is a

research accelerator”. In: Nature Chemistry 3.10 (2011), page 745.

doi: 10.1038/nchem.1149.

[49] Il-Horn Hann et al. “Why do developers contribute to open source

projects? First evidence of economic incentives”. In: 2nd workshop on

open source software engineering, Orlando, FL. 2002.

[50] Cristina Rossi and Andrea Bonaccorsi. “Intrinsic vs. extrinsic incentives

in profit–oriented firms supplying Open Source products and services”.

In: First Monday 10.5 (2005). doi: 10.5210/fm.v10i5.1242.

[51] Guido Hertel, Sven Niedner, and Stefanie Herrmann. “Motivation of soft-

ware developers in Open Source projects: an Internet-based survey of

contributors to the Linux kernel”. In: Research policy 32.7 (2003),

pages 1159–1177. doi: 10.1016/S0048-7333(03)00047-7.

[52] Jymit Khondhu, Andrea Capiluppi, and Klaas-Jan Stol. “Is it all lost? A

study of inactive open source projects”. In: IFIP international con-

ference on open source systems. Springer. 2013, pages 61–79. doi:

10.1007/978-3-642-38928-3_5.

[53] Eirini Kalliamvakou et al. “The promises and perils of mining GitHub”.

In: Proceedings of the 11th working conference on mining soft-

ware repositories. 2014, pages 92–101. doi: 10.1145/2597073.25970

74.

210

https://doi.org/10.5121/ijsea.2014.5603
https://www.iso.org/standard/35746.html
https://doi.org/10.1038/nchem.1149
https://doi.org/10.5210/fm.v10i5.1242
https://doi.org/10.1016/S0048-7333(03)00047-7
https://doi.org/10.1007/978-3-642-38928-3_5
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1145/2597073.2597074

Bibliography

[54] Jef Raskin. “Comments are more important than code”. In: Queue 3.2

(2005), pages 64–65. doi: 10.1145/1053331.1053354.

[55] Kent Beck et al. “Manifesto for agile software development”. In: (2001).

url: https://agilemanifesto.org/.

[56] Cem Kaner, Jack Falk, and Hung Nguyen. Testing computer soft-

ware. John Wiley & Sons, 1999. doi: 10.1002/smr.4360060306.

[57] William Perry. Effective methods for software testing: Includes

complete guidelines, Checklists and Templates. John Wiley &

Sons, 2007.

[58] Edward Kit. Software testing in the real world: improving the

process. Addison-wesley, 1995.

[59] Chin-Yu Huang and Michael Lyu. “Optimal release time for software

systems considering cost, testing-effort and test efficiency”. In: IEEE

transactions on Reliability 54.4 (2005), pages 583–591. doi: 10.110

9/TR.2005.859230.

[60] James Bullock. “Calculating the Value of Testing From an executive’s

perspective, software testing is not a capital investment in the physi-

cal plant, an acquisition, or another readily accepted business expense.

A Quality Assurance Manager describes how to present testing as a

business-process investment”. In: Software Testing and Quality En-

gineering 2 (2000), pages 56–63.

[61] Roberto Di Cosmo and Stefano Zacchiroli. “Software Heritage: Why and

How to Preserve Software Source Code”. In: iPRES 2017: 14th In-

ternational Conference on Digital Preservation. Kyoto, Japan,

Sept. 25, 2017. url: https://www.softwareheritage.org/wp-conten

t/uploads/2020/01/ipres-2017-swh.pdf%20https://hal.archives

-ouvertes.fr/hal-01590958. published.

211

https://doi.org/10.1145/1053331.1053354
https://agilemanifesto.org/
https://doi.org/10.1002/smr.4360060306
https://doi.org/10.1109/TR.2005.859230
https://doi.org/10.1109/TR.2005.859230
https://www.softwareheritage.org/wp-content/uploads/2020/01/ipres-2017-swh.pdf%20https://hal.archives-ouvertes.fr/hal-01590958
https://www.softwareheritage.org/wp-content/uploads/2020/01/ipres-2017-swh.pdf%20https://hal.archives-ouvertes.fr/hal-01590958
https://www.softwareheritage.org/wp-content/uploads/2020/01/ipres-2017-swh.pdf%20https://hal.archives-ouvertes.fr/hal-01590958

Bibliography

[62] Fernando Almeida, José Oliveira, and José Cruz. “Open standards and

open source: enabling interoperability”. In: International Journal

of Software Engineering & Applications (IJSEA) 2.1 (2011),

pages 1–11. doi: 10.5121/ijsea.2011.2101.

[63] Michael Ryan and Louis Wheatcraft. “On the Use of the Terms Ver-

ification and Validation”. In: INCOSE International Symposium.

Volume 27, 1. Wiley Online Library. 2017, pages 1277–1290. doi: 10.10

02/j.2334-5837.2017.00427.x.

[64] IEEE Computer Society. “IEEE Standard for System and Software Verifi-

cation and Validation”. In: IEEE Std 1012-2012 (Revision of IEEE

Std 1012-2004) (2012), pages 1–223. doi: 10.1109/IEEESTD.2012.62

04026.

[65] Ivo Babuska and Tinsley Oden. “Verification and validation in computa-

tional engineering and science: basic concepts”. In: Computer methods

in applied mechanics and engineering 193.36 (2004), pages 4057–

4066. doi: 10.1016/j.cma.2004.03.002.

[66] Francesca Saglietti and Florin Pinte. “Automated unit and integration

testing for component-based software systems”. In: Proceedings of the

International Workshop on Security and Dependability for Re-

source Constrained Embedded Systems. ACM. 2010, page 5. doi:

10.1145/1868433.1868440.

[67] Elfriede Dustin, Jeff Rashka, and John Paul. Automated software

testing: introduction, management and performance. Addison-

Wesley Professional, 1999.

[68] Dudekula Mohammad Rafi et al. “Benefits and limitations of automated

software testing: Systematic literature review and practitioner survey”.

In: Proceedings of the 7th International Workshop on Automa-

tion of Software Test. IEEE Press. 2012, pages 36–42. doi: 10.1109

/IWAST.2012.6228988.

212

https://doi.org/10.5121/ijsea.2011.2101
https://doi.org/10.1002/j.2334-5837.2017.00427.x
https://doi.org/10.1002/j.2334-5837.2017.00427.x
https://doi.org/10.1109/IEEESTD.2012.6204026
https://doi.org/10.1109/IEEESTD.2012.6204026
https://doi.org/10.1016/j.cma.2004.03.002
https://doi.org/10.1145/1868433.1868440
https://doi.org/10.1109/IWAST.2012.6228988
https://doi.org/10.1109/IWAST.2012.6228988

Bibliography

[69] Kristian Wiklund et al. “Impediments for software test automation: A

systematic literature review”. In: Software Testing, Verification and

Reliability 27.8 (2017). doi: 10.1002/stvr.1639.

[70] Ossi Taipale et al. “Trade-off between automated and manual software

testing”. In: International Journal of System Assurance Engi-

neering and Management 2.2 (2011), pages 114–125. doi: 10.1007

/s13198-011-0065-6.

[71] Agile Infrastructure: A Story in Three Acts. Agile Velocity 2009.

June 25, 2009. url: https://www.slideshare.net/littleidea/agil

e-infrastructure-velocity-09 (visited on 02/06/2020).

[72] Youssef Bassil. “A simulation model for the waterfall software develop-

ment life cycle”. In: arXiv preprint arXiv:1205.6904 (2012). url:

https://arxiv.org/abs/1205.6904.

[73] Nicole Forsgren et al. Accelerate: State of DevOps 2019. Technical

report. 2019.

[74] Jenkins CI. 2020. url: https://jenkins.io/.

[75] A Digital Single Market Strategy for Europe. European Commis-

sion. June 5, 2015. url: https://eur- lex.europa.eu/legal- con

tent/EN/TXT/PDF/?uri=CELEX:52015DC0192&from=EN (visited on

02/06/2020).

[76] e-IRGSP5 project. Guide to e-Infrastructure Requirements for

European Research Infrastructures. Technical report. e-IRG, Mar.

2017. url: http://e-irg.eu/documents/10920/363494/2017-Suppor

tdocument.pdf.

[77] Integrating and managing services for the European Open Sci-

ence Cloud (EOSC-hub). 2020. url: https://cordis.europa.eu/p

roject/id/777536.

[78] Paul Ayris et al. “Realising the European Open Science Cloud”. In:

(2016). doi: 10.2777/940154.

213

https://doi.org/10.1002/stvr.1639
https://doi.org/10.1007/s13198-011-0065-6
https://doi.org/10.1007/s13198-011-0065-6
https://www.slideshare.net/littleidea/agile-infrastructure-velocity-09
https://www.slideshare.net/littleidea/agile-infrastructure-velocity-09
https://arxiv.org/abs/1205.6904
https://jenkins.io/
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52015DC0192&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52015DC0192&from=EN
http://e-irg.eu/documents/10920/363494/2017-Supportdocument.pdf
http://e-irg.eu/documents/10920/363494/2017-Supportdocument.pdf
https://cordis.europa.eu/project/id/777536
https://cordis.europa.eu/project/id/777536
https://doi.org/10.2777/940154

Bibliography

[79] Prompting an EOSC in practice. European Commission. Nov. 20,

2018. url: https://ec.europa.eu/info/publications/prompting-e

osc-practice_en (visited on 02/06/2020).

[80] EOSC Declaration. European Commission. June 12, 2017. url: http

s://ec.europa.eu/research/openscience/pdf/eosc_declaration

.pdf (visited on 02/06/2020).

[81] Implementation Roadmap for the European Open Science

Cloud. European Commission. Mar. 14, 2018. url: https://ec.eur

opa.eu/research/openscience/pdf/swd_2018_83_f1_staff_workin

g_paper_en.pdf (visited on 02/06/2020).

[82] European Open Science Cloud (EOSC) Strategic Implementa-

tion Plan. European Commission. June 1, 2019. url: https://ec.eur

opa.eu/info/publications/european-open-science-cloud-eosc-s

trategic-implementation-plan_en (visited on 02/06/2020).

[83] European Open Science Cloud (EOSC) Work Plan 2019-2020.

European Commission. Aug. 1, 2019. url: https://op.europa.eu/es

/publication-detail/-/publication/3c379ccc-ee2c-11e9-a32c-0

1aa75ed71a1 (visited on 02/06/2020).

[84] Horizon 2020, Work Programme 2014–2015. European Commis-

sion. July 22, 2014. url: https://ec.europa.eu/research/particip

ants/data/ref/h2020/wp/2014_2015/main/h2020-wp1415-intro_en

.pdf (visited on 02/06/2020).

[85] ITIL Official-Site. ITIL glossary and abbreviations. ITIL official-

site. 2011.

[86] Standards for lightweight IT service management. Part 0: Overview

and vocabulary. Technical report. 2016. url: https://wiki.eosc-hu

b.eu/download/attachments/26413993/FitSM-0_Overview_and_voc

abulary.pdf?version=1&modificationDate=1530097800882&api=v2.

214

https://ec.europa.eu/info/publications/prompting-eosc-practice_en
https://ec.europa.eu/info/publications/prompting-eosc-practice_en
https://ec.europa.eu/research/openscience/pdf/eosc_declaration.pdf
https://ec.europa.eu/research/openscience/pdf/eosc_declaration.pdf
https://ec.europa.eu/research/openscience/pdf/eosc_declaration.pdf
https://ec.europa.eu/research/openscience/pdf/swd_2018_83_f1_staff_working_paper_en.pdf
https://ec.europa.eu/research/openscience/pdf/swd_2018_83_f1_staff_working_paper_en.pdf
https://ec.europa.eu/research/openscience/pdf/swd_2018_83_f1_staff_working_paper_en.pdf
https://ec.europa.eu/info/publications/european-open-science-cloud-eosc-strategic-implementation-plan_en
https://ec.europa.eu/info/publications/european-open-science-cloud-eosc-strategic-implementation-plan_en
https://ec.europa.eu/info/publications/european-open-science-cloud-eosc-strategic-implementation-plan_en
https://op.europa.eu/es/publication-detail/-/publication/3c379ccc-ee2c-11e9-a32c-01aa75ed71a1
https://op.europa.eu/es/publication-detail/-/publication/3c379ccc-ee2c-11e9-a32c-01aa75ed71a1
https://op.europa.eu/es/publication-detail/-/publication/3c379ccc-ee2c-11e9-a32c-01aa75ed71a1
https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/main/h2020-wp1415-intro_en.pdf
https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/main/h2020-wp1415-intro_en.pdf
https://ec.europa.eu/research/participants/data/ref/h2020/wp/2014_2015/main/h2020-wp1415-intro_en.pdf
https://wiki.eosc-hub.eu/download/attachments/26413993/FitSM-0_Overview_and_vocabulary.pdf?version=1&modificationDate=1530097800882&api=v2
https://wiki.eosc-hub.eu/download/attachments/26413993/FitSM-0_Overview_and_vocabulary.pdf?version=1&modificationDate=1530097800882&api=v2
https://wiki.eosc-hub.eu/download/attachments/26413993/FitSM-0_Overview_and_vocabulary.pdf?version=1&modificationDate=1530097800882&api=v2

Bibliography

[87] EOSC-hub project consortium. Deliverable 4.1: Operational re-

quirements for the services in the catalogue. Technical report.

2018. url: https://documents.egi.eu/secure/ShowDocument?do

cid=3342.

[88] FitSM. 2020. url: https://apmg-international.com/product/fits

m.

[89] John Shepherdson. CESSDA Software Maturity Levels. Version 3.

Mar. 2019. doi: 10.5281/zenodo.2614050.

[90] UNESCO and Software. 2020. url: http://www.unesco.org/new/e

n/communication-and-information/resources/news-and-in-focus

-articles/in-focus-articles/2004/unesco-and-software/.

[91] EGI Federation. 2020. url: https://www.egi.eu/federation/.

[92] Enabling Grids for E-sciencE (EGEE). 2020. url: https://cord

is.europa.eu/project/id/222667.

[93] A Candiello et al. “A business model for the establishment of the Euro-

pean Grid Infrastructure”. In: Journal of Physics: Conference Se-

ries. Volume 219. 6. IOP Publishing. 2010, page 062011. doi: 10.1088

/1742-6596/219/6/062011.

[94] EGI Quality Assurance team. EGI Quality Criteria 7th release. ht

tp://egi-qc.github.io/. Online; accessed April 1st, 2018. 2018.

[95] UMD product ID cards. 2020. url: https://wiki.egi.eu/wiki

/UMD_products_ID_cards.

[96] CMD products. 2020. url: https://wiki.egi.eu/wiki/EGI_Cloud

_Middleware_Distribution_products.

[97] Davide Salomoni et al. “Indigo-datacloud: a platform to facilitate seam-

less access to e-infrastructures”. In: Journal of Grid Computing 16.3

(2018). Quartile: Q1, JIF Percentile: 76.452, pages 381–408. doi: 10.10

07/s10723-018-9453-3.

215

https://documents.egi.eu/secure/ShowDocument?docid=3342
https://documents.egi.eu/secure/ShowDocument?docid=3342
https://apmg-international.com/product/fitsm
https://apmg-international.com/product/fitsm
https://doi.org/10.5281/zenodo.2614050
http://www.unesco.org/new/en/communication-and-information/resources/news-and-in-focus-articles/in-focus-articles/2004/unesco-and-software/
http://www.unesco.org/new/en/communication-and-information/resources/news-and-in-focus-articles/in-focus-articles/2004/unesco-and-software/
http://www.unesco.org/new/en/communication-and-information/resources/news-and-in-focus-articles/in-focus-articles/2004/unesco-and-software/
https://www.egi.eu/federation/
https://cordis.europa.eu/project/id/222667
https://cordis.europa.eu/project/id/222667
https://doi.org/10.1088/1742-6596/219/6/062011
https://doi.org/10.1088/1742-6596/219/6/062011
http://egi-qc.github.io/
http://egi-qc.github.io/
https://wiki.egi.eu/wiki/UMD_products_ID_cards
https://wiki.egi.eu/wiki/UMD_products_ID_cards
https://wiki.egi.eu/wiki/EGI_Cloud_Middleware_Distribution_products
https://wiki.egi.eu/wiki/EGI_Cloud_Middleware_Distribution_products
https://doi.org/10.1007/s10723-018-9453-3
https://doi.org/10.1007/s10723-018-9453-3

Bibliography

[98] Pablo Orviz Fernández et al. “Software Quality Assurance in INDIGO-

DataCloud project: a converging evolution of software engineering prac-

tices to support European Research e-Infrastructures”. In: Journal of

Grid Computing 18.1 (2020), pages 81–98. doi: 10.1007/s10723-02

0-09509-z.

[99] Álvaro López Garćıa et al. “A Cloud-Based Framework for Machine

Learning Workloads and Applications”. In: IEEE Access 8 (2020),

pages 18681–18692. doi: 10.1109/ACCESS.2020.2964386.

[100] Pablo Orviz Fernández et al. “A set of common software quality assur-

ance baseline criteria for research projects”. In: (2017). url: http://hd

l.handle.net/10261/160086.

[101] INtegrating Distributed data Infrastructures for Global Ex-

plOitation (INDIGO-DataCloud). 2020. url: https://cordis.eu

ropa.eu/project/id/777435.

[102] Jorge Gomes et al. INDIGO-DataCloud Deliverable 3.1: Initial

Plan for WP3. Technical report. INDIGO-DataCloud project, June

2015. url: https://www.indigo-datacloud.eu/documents/initial-

plan-wp3-d31.

[103] Designing and Enabling E-infrastructures for intensive Pro-

cessing in a Hybrid DataCloud (DEEP-Hybrid-DataCloud).

2020. url: https://cordis.europa.eu/project/id/777435.

[104] eXtreme DataCloud. 2020. url: https://cordis.europa.eu/proje

ct/id/777367.

[105] [Software Release] Pablo Orviz Fernández et al., indigo-dc/sqa-

baseline version v3.0, Feb. 2020. lic: CC-BY-SA-4.0. doi: 10.5281/ze

nodo.3673956.

[106] Scott Bradner. Key words for use in RFCs to Indicate Require-

ment Levels. BCP 14. RFC Editor, 1997. url: http://www.rfc-edit

or.org/rfc/rfc2119.txt.

216

https://doi.org/10.1007/s10723-020-09509-z
https://doi.org/10.1007/s10723-020-09509-z
https://doi.org/10.1109/ACCESS.2020.2964386
http://hdl.handle.net/10261/160086
http://hdl.handle.net/10261/160086
https://cordis.europa.eu/project/id/777435
https://cordis.europa.eu/project/id/777435
https://www.indigo-datacloud.eu/documents/initial-plan-wp3-d31
https://www.indigo-datacloud.eu/documents/initial-plan-wp3-d31
https://cordis.europa.eu/project/id/777435
https://cordis.europa.eu/project/id/777367
https://cordis.europa.eu/project/id/777367
https://doi.org/10.5281/zenodo.3673956
https://doi.org/10.5281/zenodo.3673956
http://www.rfc-editor.org/rfc/rfc2119.txt
http://www.rfc-editor.org/rfc/rfc2119.txt

Bibliography

[107] Jon Loeliger and Matthew McCullough. Version Control with Git:

Powerful tools and techniques for collaborative software devel-

opment. ” O’Reilly Media, Inc.”, 2012.

[108] Nayan B Ruparelia. “The history of version control”. In: ACM SIG-

SOFT Software Engineering Notes 35.1 (2010), pages 5–9. doi: 10

.1145/1668862.1668876.

[109] Victoria Stodden. “Reproducible research for scientific computing: Tools

and strategies for changing the culture”. In: Computing in Science &

Engineering 14.4 (2012), page 13. doi: 10.1109/MCSE.2012.38.

[110] Jeff Kreeftmeijer. Using git-flow to automate your git branching

workflow. 2015.

[111] Tom Preston-Werner. “Semantic Versioning 2.0.0”. In: Semantic Ver-

sioning. Available: https://semver.org/.[cited 18 Apr 2018]

(2013). url: https://semver.org/spec/v2.0.0.html.

[112] Valerio Cosentino, Javier Cánovas Izquierdo, and Jordi Cabot. “A sys-

tematic mapping study of software development with GitHub”. In: IEEE

Access 5 (2017), pages 7173–7192. doi: 10.1109/ACCESS.2017.268232

3.

[113] Laura Dabbish et al. “Social coding in GitHub: transparency and collab-

oration in an open software repository”. In: Proceedings of the ACM

2012 conference on computer supported cooperative work. ACM.

2012, pages 1277–1286. doi: 10.1145/2145204.2145396.

[114] Linus Nyman and Juho Lindman. “Code forking, governance and sustain-

ability in open source software”. In: Technology Innovation Manage-

ment Review 3.1 (2013). doi: 10.22215/timreview/644.

[115] Andrew Silver. “Microsoft’s purchase of GitHub leaves some scientists

uneasy”. In: Nature 558.7710 (2018), pages 353–354. doi: 10.1038/d4

1586-018-05426-0.

217

https://doi.org/10.1145/1668862.1668876
https://doi.org/10.1145/1668862.1668876
https://doi.org/10.1109/MCSE.2012.38
https://semver.org/spec/v2.0.0.html
https://doi.org/10.1109/ACCESS.2017.2682323
https://doi.org/10.1109/ACCESS.2017.2682323
https://doi.org/10.1145/2145204.2145396
https://doi.org/10.22215/timreview/644
https://doi.org/10.1038/d41586-018-05426-0
https://doi.org/10.1038/d41586-018-05426-0

Bibliography

[116] Sam Ricketson and Jane C Ginsburg. International copyright and

neighboring rights: the Berne convention and beyond. Oxford

University Press, 2006. url: https://scholarship.law.columbia.ed

u/books/96.

[117] Andrew Morin, Jennifer Urban, and Piotr Sliz. “A quick guide to soft-

ware licensing for the scientist-programmer”. In: PLoS computational

biology 8.7 (2012), e1002598. doi: 10.1371/journal.pcbi.1002598.

[118] Joseph Feller, Brian Fitzgerald, et al. Understanding open source

software development. Addison-Wesley London, 2002.

[119] OpenStack Foundation. LegalIssuesFAQ. 2020. url: https://wiki.o

penstack.org/wiki/LegalIssuesFAQ#Copyright_Headers.

[120] Arfon M Smith, Daniel S Katz, and Kyle E Niemeyer. “Software citation

principles”. In: PeerJ Computer Science 2 (2016), e86. doi: 10.771

7/peerj-cs.86.

[121] Matthew B Jones et al. “CodeMeta: an exchange schema for software

metadata”. In: KNB Data Repository (2016). doi: 10.5063/schema

/codemeta-2.0.

[122] Elsevier. SoftwareX journal. 2020. url: https://www.journals.els

evier.com/softwarex.

[123] Arfon et al. Smith. “Journal of Open Source Software (JOSS): design

and first-year review”. In: PeerJ Comput. Sci. (2018). doi: 10.7717

/peerj-cs.147.

[124] Qian Yang, J Jenny Li, and David M Weiss. “A survey of coverage-based

testing tools”. In: The Computer Journal 52.5 (2009), pages 589–597.

doi: 10.1145/1138929.1138949.

[125] Ankunda R Kiremire. “The application of the pareto principle in software

engineering”. In: Consulted January 13 (2011), page 2016.

218

https://scholarship.law.columbia.edu/books/96
https://scholarship.law.columbia.edu/books/96
https://doi.org/10.1371/journal.pcbi.1002598
https://wiki.openstack.org/wiki/LegalIssuesFAQ#Copyright_Headers
https://wiki.openstack.org/wiki/LegalIssuesFAQ#Copyright_Headers
https://doi.org/10.7717/peerj-cs.86
https://doi.org/10.7717/peerj-cs.86
https://doi.org/10.5063/schema/codemeta-2.0
https://doi.org/10.5063/schema/codemeta-2.0
https://www.journals.elsevier.com/softwarex
https://www.journals.elsevier.com/softwarex
https://doi.org/10.7717/peerj-cs.147
https://doi.org/10.7717/peerj-cs.147
https://doi.org/10.1145/1138929.1138949

Bibliography

[126] Shin Yoo and Mark Harman. “Pareto efficient multi-objective test case

selection”. In: Proceedings of the 2007 international symposium

on Software testing and analysis. 2007, pages 140–150. doi: 10.11

45/1273463.1273483.

[127] James Williams and Anand Dabirsiaghi. “The unfortunate reality of in-

secure libraries. Aspect Security”. In: Inc., March (2012).

[128] OWASP Secure Coding Practices Quick Reference Guide. The

Open Web Application Security Project. 2011. url: https://www.owa

sp.org/images/a/aa/OWASP_SCP_Quick_Reference_Guide_SPA.pdf

(visited on 2020).

[129] J Williams. “OWASP Code Review Guide”. In: OWASP Foundation

2.0 (2013). url: https://owasp.org/www-pdf-archive/OWASP_Alpha

Release_CodeReviewGuide2.0.pdf.

[130] James D Herbsleb and Deependra Moitra. “Global software develop-

ment”. In: IEEE software 18.2 (2001), pages 16–20. doi: 10.1109

/52.914732.

[131] Steven Rakitin. “Manifesto elicits cynicism”. In: IEEE computer 34.12

(2001), page 4.

[132] Read the Docs. Read the Docs. 2020. url: https://readthedocs.or

g/.

[133] Gitbook. Gitbook. 2020. url: https://www.gitbook.com/.

[134] [Software Module] DeHaan, Michael, Ansible, Ansible Inc. / Red

Hat Inc. lic: GNU. url: https://www.ansible.com/.

[135] [Software Module] Puppet, Puppet Enterprise. lic: Apache 2.0.

url: https://www.puppet.com/.

[136] [Software Module] Chef, Chef Community. lic: Apache 2.0. url:

https://www.chef.io/.

[137] [Software Module] Hykes, Solomon, Docker, Docker, Inc. lic:

Apache 2.0. url: https://www.docker.com/.

219

https://doi.org/10.1145/1273463.1273483
https://doi.org/10.1145/1273463.1273483
https://www.owasp.org/images/a/aa/OWASP_SCP_Quick_Reference_Guide_SPA.pdf
https://www.owasp.org/images/a/aa/OWASP_SCP_Quick_Reference_Guide_SPA.pdf
https://owasp.org/www-pdf-archive/OWASP_AlphaRelease_CodeReviewGuide2.0.pdf
https://owasp.org/www-pdf-archive/OWASP_AlphaRelease_CodeReviewGuide2.0.pdf
https://doi.org/10.1109/52.914732
https://doi.org/10.1109/52.914732
https://readthedocs.org/
https://readthedocs.org/
https://www.gitbook.com/
https://www.ansible.com/
https://www.puppet.com/
https://www.chef.io/
https://www.docker.com/

Bibliography

[138] OpenStack Foundation. OpenStack. 2020. url: http://www.openstac

k.org%20http://openstack.org.

[139] GitHub. GitHub API v3 — GitHub Developer Guide. 2019. url:

https://developer.github.com/v3/.

[140] GCP Van Zundert and Alexandre MJJ Bonvin. “DisVis: quantifying and

visualizing accessible interaction space of distance-restrained biomolec-

ular complexes”. In: Bioinformatics 31.19 (2015), pages 3222–3224.

doi: 10.1093/bioinformatics/btv333.

[141] Gydo Cp van Zundert and Alexandre Mjj Bonvin. “Fast and sensitive

rigid-body fitting into cryo-EM density maps with PowerFit”. In: AIMS

Biophysics 2.2 (2015), pages 73–87. doi: 10.3934/biophy.2015.2.73.

[142] indigo-dc Ansible Galaxy. 2020. url: https://galaxy.ansible.co

m/indigo-dc/.

[143] GitBook’s indigo-dc organization. 2020. url: https://www.gitbo

ok.com/@indigo-dc.

[144] Jenkins. Pipeline Syntax. 2020. url: https://jenkins.io/doc/book

/pipeline/syntax/.

[145] [Software Release] Pablo Orviz Fernández, indigo-dc/jenkins-

pipeline-library version 1.4.1, Apr. 2020. lic: Apache 2.0. doi: 10.52

81/zenodo.3748914.

[146] [Software Release] Pablo Orviz Fernández, deephdc/schema4deep

version 1.0, Feb. 2020. lic: Apache 2.0. doi: 10.5281/zenodo.3690697.

[147] JSON Schema. JSON Schema. 2020. url: https://json-schema.or

g/.

[148] [Software Module] Julian Berman, An implementation of JSON

Schema validation for Python, 2020Python Package Index. lic:

MIT. url: https://pypi.org/project/jsonschema/.

220

http://www.openstack.org%20http://openstack.org
http://www.openstack.org%20http://openstack.org
https://developer.github.com/v3/
https://doi.org/10.1093/bioinformatics/btv333
https://doi.org/10.3934/biophy.2015.2.73
https://galaxy.ansible.com/indigo-dc/
https://galaxy.ansible.com/indigo-dc/
https://www.gitbook.com/@indigo-dc
https://www.gitbook.com/@indigo-dc
https://jenkins.io/doc/book/pipeline/syntax/
https://jenkins.io/doc/book/pipeline/syntax/
https://doi.org/10.5281/zenodo.3748914
https://doi.org/10.5281/zenodo.3748914
https://doi.org/10.5281/zenodo.3690697
https://json-schema.org/
https://json-schema.org/
https://pypi.org/project/jsonschema/

Bibliography

[149] JSON Schema. JSON Schema Draft-07 Release Notes. 2020. url:

https://json-schema.org/draft-07/json-schema-release-notes

.html.

[150] [Software] DEEP-Hybrid-DataCloud Consortium, deephdc/deep-

hdc.github.io, 2020. url: https://github.com/deephdc/deephdc

.github.io.

[151] DEEP-Hybrid-DataCloud. DEEP as a Service. 2020. url: http://d

eepaas.deep-hybrid-datacloud.eu/.

[152] Pablo Orviz Fernández et al. “umd-verification: Automation of Software

Validation for the EGI Federated Infrastructure”. In: Journal of Grid

Computing 16.4 (2018). Quartile: Q1, JIF Percentile: 76.452, pages 683–

696. doi: 10.1007/s10723-018-9454-2.

[153] Erwin Laure et al. Programming the Grid with gLite. Technical

report. 2006. doi: 10.12921/cmst.2006.12.01.33-45.

[154] EGI Unified Middleware Distribution repository. 2020. url: htt

p://repository.egi.eu/sw/production/umd/.

[155] European Middleware Initiative (EMI). 2020. url: https://cord

is.europa.eu/project/id/261611/.

[156] Enol Fernández-del-Castillo, Diego Scardaci, and Álvaro López Garćıa.

“The EGI federated cloud e-infrastructure”. In: Procedia Computer

Science 68 (2015), pages 196–205. doi: 10.1016/j.procs.2015.09.23

5.

[157] EGI Cloud Middleware Distribution repository. 2020. url: http

://repository.egi.eu/sw/production/cmd-os/.

[158] Mario David et al. “Validation of Grid Middleware for the European

Grid Infrastructure”. In: Journal of Grid Computing 12.3 (2014),

pages 543–558. doi: 10.1007/s10723-014-9301-z.

221

https://json-schema.org/draft-07/json-schema-release-notes.html
https://json-schema.org/draft-07/json-schema-release-notes.html
https://github.com/deephdc/deephdc.github.io
https://github.com/deephdc/deephdc.github.io
http://deepaas.deep-hybrid-datacloud.eu/
http://deepaas.deep-hybrid-datacloud.eu/
https://doi.org/10.1007/s10723-018-9454-2
https://doi.org/10.12921/cmst.2006.12.01.33-45
http://repository.egi.eu/sw/production/umd/
http://repository.egi.eu/sw/production/umd/
https://cordis.europa.eu/project/id/261611/
https://cordis.europa.eu/project/id/261611/
https://doi.org/10.1016/j.procs.2015.09.235
https://doi.org/10.1016/j.procs.2015.09.235
http://repository.egi.eu/sw/production/cmd-os/
http://repository.egi.eu/sw/production/cmd-os/
https://doi.org/10.1007/s10723-014-9301-z

Bibliography

[159] [Software Release] Pablo Orviz Fernández and Enol Fernández, egi-

qc/umd-verification version 1.0, Apr. 2020. lic: Apache 2.0. doi: 10

.5281/zenodo.3747669.

[160] Jeff Forcier. “Fabric documentation”. In: Published 26 (2018),

page 2018.

[161] National Institute of Standards and Technology (NIST). “Secure Hash

Standard”. In: Federal Inf. Process. Stds. (NIST FIPS) (2015),

pages 180–4. doi: 10.6028/NIST.FIPS.180-4.

[162] Open Grid Forum. GLUE Specification v. 2. Online; accessed April

1st, 2018. 2020. url: https://www.ogf.org/documents/GFD.147.pdf.

[163] EGI Software Provisioning team. EGI Quality Criteria in Ansible

Galaxy. https://galaxy.ansible.com/egi-qc/. 2020.

[164] EGI Software Provisioning team. EGI Quality Criteria in Puppet-

Forge. https://forge.puppet.com/egiqc/. 2020.

[165] EGI Software Provisioning team. EGI Quality Criteria in GitHub.

https://github.com/egi-qc. 2020.

[166] EGI Software Provisioning team. software-releases. https://github

.com/egi-qc/software-releases. 2020.

[167] IMS Global Learning Consortium et al. “Open Badges v2. 0 IMS final

release”. In: IMS Global Learning Consortium (2018). url: https

://www.imsglobal.org/sites/default/files/Badges/OBv2p0Final

/index.html.

[168] Pablo Orviz Fernández, Mario David, and Cristina Duma. Baseline

criteria for achieving software quality within the European re-

search ecosystem. Workshop. 10th Iberian Grid Computing Conference

– IBERGRID 2019: University of Santiago (Santiago de Compostela,

Spain), Sept. 23–26, 2019.

222

https://doi.org/10.5281/zenodo.3747669
https://doi.org/10.5281/zenodo.3747669
https://doi.org/10.6028/NIST.FIPS.180-4
https://www.ogf.org/documents/GFD.147.pdf
https://galaxy.ansible.com/egi-qc/
https://forge.puppet.com/egiqc/
https://github.com/egi-qc
https://github.com/egi-qc/software-releases
https://github.com/egi-qc/software-releases
https://www.imsglobal.org/sites/default/files/Badges/OBv2p0Final/index.html
https://www.imsglobal.org/sites/default/files/Badges/OBv2p0Final/index.html
https://www.imsglobal.org/sites/default/files/Badges/OBv2p0Final/index.html

Bibliography

[169] Joao Pina and Pablo Orviz Fernández. Best practices for service de-

ployment and interoperability checks. Workshop. EOSC-hub Tech-

nical Roadmap Workshop: EGI Foundation (Amsterdam, Netherlands),

June 25–27, 2019.

[170] Mario David and Pablo Orviz Fernández. EOSC, FAIR & Soft-

ware. Workshop. Workshop on Sustainable Software Sustainability 2019

(WOSSS19): Data Archiving, Networked Services (DANS), the Software

Sustainability Institute (SSI), and the Netherlands eScience Centre (The

Hague, Netherlands), Apr. 23–26, 2019.

[171] Mikael Trellet, Pablo Orviz Fernández, and Alexandre M.J.J. Bonvin.

DevOps adoption in scientific applications: DisVis and Pow-

erFit cases. Workshop. International Symposium on Grids & Clouds –

ISGC 2018: Academia Sinica Grid Computing Centre (Taipei, Taiwan),

Mar. 16–23, 2018.

[172] Greg Wilson. “Software Carpentry: lessons learned”. In:

F1000Research 3 (2014). doi: 10.12688/f1000research.3-62.v2.

[173] Software Sustainability Institute. Manifesto. 2020. url: https://www

.software.ac.uk/about/manifesto.

[174] Greg Wilson et al. “Best practices for scientific computing”. In: PLoS

biology 12.1 (2014). doi: 10.1371/journal.pcbi.1005510.

[175] Greg Wilson et al. “Good enough practices in scientific computing”. In:

PLoS computational biology 13.6 (2017). doi: 10.1371/journal.pc

bi.1005510.

[176] Rafael C Jiménez et al. “Four simple recommendations to encourage

best practices in research software”. In: F1000Research 6 (2017). doi:

10.12688/f1000research.11407.1.

[177] Markus List, Peter Ebert, and Felipe Albrecht. Ten Simple Rules for

Developing Usable Software in Computational Biology. 2017.

doi: 10.1371/journal.pcbi.1005265.

223

https://doi.org/10.12688/f1000research.3-62.v2
https://www.software.ac.uk/about/manifesto
https://www.software.ac.uk/about/manifesto
https://doi.org/10.1371/journal.pcbi.1005510
https://doi.org/10.1371/journal.pcbi.1005510
https://doi.org/10.1371/journal.pcbi.1005510
https://doi.org/10.12688/f1000research.11407.1
https://doi.org/10.1371/journal.pcbi.1005265

Bibliography

[178] Peter Sabev and Katalina Grigorova. A Comparative Study of GUI

Automated Tools for Software Testing. 2017. url: https://www.t

hinkmind.org/download.php?articleid=softeng_2017_1_20_64068.

[179] Shin Yoo and Mark Harman. “Regression testing minimization, selection

and prioritization: a survey”. In: Software testing, verification and

reliability 22.2 (2012), pages 67–120. doi: 10.1002/stvr.430.

[180] Haralambos Mouratidis. Integrating Security and Software Engi-

neering: Advances and Future Visions: Advances and Future

Visions. Igi Global, 2006.

[181] Andrew Stellman and Jennifer Greene. Learning agile: Understand-

ing scrum, XP, lean and kanban. O’Reilly Media, Inc., 2014.

[182] European Cloud Initiative - Building a competitive data and

knowledge economy in Europe. European Commission. Apr. 19, 2016.

url: https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=1

5266 (visited on 02/06/2020).

[183] List of institutions endorsing the EOSC Declaration. European

Commission. June 12, 2017. url: https://ec.europa.eu/research/o

penscience/pdf/list_of_institutions_endorsing_the_eosc_decl

aration.pdf (visited on 02/06/2020).

224

https://www.thinkmind.org/download.php?articleid=softeng_2017_1_20_64068
https://www.thinkmind.org/download.php?articleid=softeng_2017_1_20_64068
https://doi.org/10.1002/stvr.430
https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=15266
https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=15266
https://ec.europa.eu/research/openscience/pdf/list_of_institutions_endorsing_the_eosc_declaration.pdf
https://ec.europa.eu/research/openscience/pdf/list_of_institutions_endorsing_the_eosc_declaration.pdf
https://ec.europa.eu/research/openscience/pdf/list_of_institutions_endorsing_the_eosc_declaration.pdf

Appendices

225

A
Software Quality Assurance

A.1 A representative view of educational initia-

tives for research software development

Software Carpentry is an example of how a successful national training initiative

turns into a worldwide volunteer effort dedicated to teach computing skills to

researchers. Both through in-house workshops and online training materials,

Software Carpentry’s aim primarily focuses on programming, grounded in the

fact that scientists are largely self-taught, but also dives into related aspects

such as scripting or version control [172].

In terms of national efforts, the Software Sustainability Institute (SSI) pro-

227

A. Software Quality Assurance

vides since 2010 educational services for researchers in the United Kingdom

emphasizing the sustainable demands of software in research. The work car-

ried out by the SSI ranges from consultancy services for researchers to lower

the barriers encountered by the software they are using, to software training

through the support to the aforementioned Software Carpentry movement. SSI

also funds advanced training to software research enthusiasts as an strategy to

gather intelligence that can eventually be used for the SSI to develop policy to

influence positive change on software research matters [42].

SSI has been the main driver for the recognition of the Research Software

Engineer (RSE) role in research, being an integral part of its manifesto [173].

Manifestos are common ways to condense policies, aims and beliefs about a

given field or organisation. Software in research has received contributions in

form of manifestos meant to identify the key goals for its better quality, reli-

ability, sustainability and/or reproducibility. Lorena A. Barba coined as the

Reproducibility PI Manifesto [24] a collection of eight practical-oriented recom-

mendations for achieving reproducibility, conveying the importance of focusing

on the V&V processes while developing the code and publishing it at the paper

submission time.

Research publications have also extensively covered the good practices,

recommendations or rules to consider when developing software for scientific

use [174, 175, 176, 177]. These publications focus on the minimal software

quality requirements, usually ranging from four to ten, that a scientific shall

consider when developing software. They result from the experience collected

in diverse scientific domains, and are intended to conduct to a better usability

of the software produced in research.

Lastly, the last cluster covers the Research Infrastructures (RIs), which are

required to guarantee a high level of availability and reliability in the services

they provide to scientists. Especially in the European research ecosystem, sev-

eral RIs came up with criteria to assess the level of quality in the software to

be deployed in such infrastructures. The EGI Federation has defined a quality

criteria document [94] containing the minimum requirements that the software

228

A. Software Quality Assurance

shall fulfill before being distributed and deployed in the underlying federation

of resource providers that conform the EGI infrastructure. The CESSDA RI for

social science has defined ten maturity levels of software [89] so that minimum

levels can be mandated to service providers.

A.2 Test to build trust

Testing is crucial for achieving a good enough level of quality and particularly

for improving the reliability of the system. Far too often, little attention is

dedicated to testing with the premise of being a time-consuming task that does

not pay back the effort delivered. This is partially true since it is impractical

to assess all the potential test cases that might fall into a specific section of the

code. Therefore, such high standards shall not be the target goal, but instead

strive to identify and cover the most-used functional parts of the code that

optimize the rewards obtained. Commonly, this goal is not even considered

and, consequently, a great amount of effort is spent in segments of the code that

are not relevant from a usability perspective.

Static and dynamic testing

A practical way to put V&V into action is referring to the type of testing

associated to each process. Hence, software verification implies the static

analysis of the source code, through the reviews and audit processes [41].

Instead, software validation requires the software to be executable in order

to be tested, so it is identified with the dynamic behaviour of the software.

Consequently, static testing is different from and complementary to the dynamic

testing. Only both combined can cover the testing requirements of the software.

Unit testing

Unit testing is generally considered as the first level of software testing, being

a valuable tool to narrow down where bugs might present in the code. It eval-

229

A. Software Quality Assurance

uates possible flows –according to the test cases– in the internal design of the

code through the identification and isolation of the individual units, which will

be then tested separately. A unit is thereby commonly defined as the small-

est testable piece of source code, usually mapped to classes, functions or even

modules, depending on the programming context (object-oriented, procedural,

etc.). Being a static analysis type of testing, it contributes to uncover source

code flaws early at coding time, before building the software.

Functional testing

Unit testing by itself does not provide an estimation of the quality of the code as

there is no measurement about the completeness of each unit test. Even when

all the statements in the code have been covered, there is no guarantee that

the test cases are complete in terms of either uncovering hidden errors in the

execution or validating the functional requirements. While the former can be

alleviated by identifying the missing test cases in a thorough peer code review,

functional testing helps in extending the scope and the effectiveness of the test

cases.

The functional test cases should tend to cover all the scenarios associated

with the set of requirements outlined in the design specification, and include

failure paths and boundary cases. However, they lack the user component: they

are written and ran by developers in order to check that the software meets its

functional specifications. The heterogeneity of such scenarios is best undertaken

programmatically using diverse frameworks and/or libraries, although in some

cases they might be solely carried out using manual walkthroughs. Graphical

user interfaces (GUIs) are clear examples when it comes to testing functionali-

ties that involve human interactions. Fortunately, the extending capabilities of

software testing frameworks are progressively providing an automated means to

testing most graphical functionalities [[178]]. One such example is the Selenium
1 suite, which automates web applications for testing purposes.

1https://www.seleniumhq.org/

230

A. Software Quality Assurance

Integration testing

Unit and functional testing circumvent the interactions with external compo-

nents by using mocked objects to simulate their operation, as they were irrel-

evant for the purpose of such testing strategies. Integration testing is suited

for the verification of the real interactions among coupled software components

or parts of a system that cooperate to achieve a given functionality. Unlike

unit and functional tests, integration testing exposes the software to an uncon-

trolled environment, where the system may behave in an unpredictable way, not

completely envisaged at development time. It is then a convenient last check-

point to conclude the testing part of the verification phase, safeguarding the

system against software bugs, as ideally the integration tests are executed in an

environment similar to the production one.

Regression testing

There is a shared commonality across the above-described testing strategies,

which implies the successful execution of the existing test cases in the event of

new features being added. Known as regression testing, it has the commitment

of uncovering errors in the new features by preserving the operation of of the

program’s defining functionalities. Identifying those is key to alleviate the incre-

mental growth of regression test cases, as the retest-all approach might lead to

an impractical situation where the effort or time spent on the validation phase

is unacceptable [179].

Code style

Code or programming style can be defined as the set of conventions, attached to

a given programming language, aiming to govern the general practices, structure

and typographical appearance of the source code. Control structure, line length,

indentation or commenting are samples of style factors or characteristics are

involved in the definition of a code style.

231

A. Software Quality Assurance

Security testing

There are two different types according to whether they are applied to the code

or the program, corresponding to the static or dynamic application security

testing, respectively. Education on security is the basis to avoid common un-

safe code statements or being exposed to known vulnerabilities, but, as far as

research software is concerned, there is a general lack of awareness and skills

that is originated from the traditional gap between security and software engi-

neering [180]

Static Application Security Testing (SAST): High severity security issues

might not only have future strong risk implications –if they are not promptly

detected and resolved–, but the task of solving them at later stages usually

becomes increasingly tougher.

Dynamic Application Security Testing (DAST): relies on the black-box meth-

ods used by attackers to compromise the security of online applications, mainly

web-based. Although there is a broad range of abuse cases that aim at chal-

lenging the system operation, the malicious attacks commonly follow the same

pattern, and thus, DAST first and foremost builds protection against those.

Code review

Ideally, code reviewers shall have significant experience with the programming

languages involved and testing background. Usually, code reviews are carried

out by core members, not actually involved in the implementation of the candi-

date change. External or drive-by2 reviews are always welcome, but candidates

are not easy to find. In either case, the amount of revisions ought to be bal-

anced; too few entails the risk of incomplete analyses, while too many might

contribute to unnecessary delays in important feature or bug fix releases. Code

review stage should not be a barrier for the agility of the continuous improve-

ment of the software, and as such, reviewers need to reconcile desired

actions with available effort, by prioritizing them or eventually proposing

2As an analogy to the drive-by commits

232

A. Software Quality Assurance

the division of the change in smaller bits whenever a considerable intervention

is required.

A.3 Agile software development

Unlike the traditional and rigid approaches, the agile development promotes

instead a rapid adaptation to changing requirements, as a result of involving

the end user deeply in the development process (user-centric approach). Several

frameworks have become popular since the advent of the Agile manifesto [55],

in particular Kanban and Scrum [181]. Both approaches share the common goal

of delivering results in the shortest possible time, but while Kanban implements

a continuous workflow, Scrum delivers work in regular batches or sprints. Ac-

cordingly, Kanban is most suitable for software projects with great demands of

flexibility.

To this end, agile frameworks follow an iterative and incremental procedure

where a Minimum Viable Product (MVP) is delivered at each iteration. The

MVP shall be operational enough to be exploited by the user and, thus, ob-

tained useful feedback to be applied in the incoming iteration. Consequently,

agile frameworks seek out for a continuous improvement strategy where new de-

velopments are early validated and delivered to the user, very much in line with

the principles advocated by the DevOps culture or modern testing methodolo-

gies such as Test-Driven Development (TDD).

233

234

B
European Open Science Cloud

B.1 Roadmap towards the implementation of

the European Open Science Cloud

Communication on the European Cloud Initiative: Building a com-

petitive data and knowledge economy in Europe (2016 April 19th)

Although the first references to the term go back to 2015, the Communica-

tion on the European Cloud Initiative [182], released in April 2016, marked the

start of the consultation process in Europe in order to make Open Science a

reality through the EOSC, thus responding to the demands of the Big Data

phenomenon existing in the scientific research.

235

B. European Open Science Cloud

In this document, the EOSC emerges as an all-inclusive, open vir-

tual environment that will offer cloud-based services to 1.7 million

European researchers and 70 million professionals in science and

technology in order to manage, store, share and reuse all publicly

funded research data. The EOSC is one of the two legs within the Euro-

pean Cloud Initiative (ECI), underpinned by the high-bandwidth networks and

super-computing capacity offered by the European Data Infrastructure (EDI).

The need for an ECI is legitimated by the under-utilization of the full poten-

tial of the research data. The EOSC is the response to the existing fragmentation

in the European data infrastructures, and shall provide an unified access and

better sharing of resources through the federation of the computing and data

infrastructures at the national and international level. Box 1.1 summarizes the

requirements that need to be met in order to implement the EOSC. The docu-

ment defines specific actions to promote the fulfillment of those requirements.

Box 1.1: Requirements for realising the EOSC (from [182])

• Make all the scientific data produced by the Horizon 2020 Programme open

by default, promoting FAIR compliance.

• Raise awareness and change incentive structures for data sharing, intended

for academics, industry and public sector.

• Develop specifications for interoperability and data sharing, across disci-

plines and infrastructures.

• Create a fit-for-purpose pan-European governance structure, to federate

data infrastructures, overcoming existing fragmentation in European data

infrastructures.

• Develop cloud-based services for Open Science, being supported by the

EDI.

• Enlarge the scientific user base of EOSC to researchers and innovators

from all disciplines and Member States.

236

B. European Open Science Cloud

First report of the High Level Expert Group: Realising the European

Open Science Cloud (2016 Oct 11th)

The first report of the HLEG was released as part of a consultation exercise

started by the European Commission (EC) to seek expert advice from both the

academia and the industry sector. The HLEG report was a definitive push to

corroborate the need of an EOSC and urged stakeholders to conduct immediate

actions for its implementation 1.

The report highlights the worrying situation of a “clash of cultures” between

domain specialists and e-infrastructure specialists in Europe. Both communi-

ties, while essential to Open Science, have not closely co-evolved. This situation

precludes an agile co-development of core scientific data infrastructures. A side

effect of this issue, as the report concludes, is the alarming shortage of data

expertise in Europe and points it as pressing requirement for the EOSC reali-

sation. This “core data experts” are required to guide researchers in technical

aspects throughout the data discovery cycle.

Box 1.2 compiles the main requirements s pointed out by the first HLEG

report.

Box 1.2: Main requirements in EOSC from 1st HLEG report

• Policy requirements

– Affirmative and immediate action on the EOSC in close concert with

Member States.

– Frame the EOSC as the European contribution to the Internet of

FAIR Data and Services underpinned with open protocols.

• Governance requirements: should be lightweight, internationally effective

and define the Rules of Engagement for the service provision.

• Implementation requirements:

1In particular, the report encourages “immediate action on kick-starting a preliminary
phase” and to “close discussions about the ’perceived need’ of an EOSC.”

237

B. European Open Science Cloud

– Set the initial guiding principles to kick-start EOSC, endorsing and

implementing the Rules of Engagement and provide a clear schedule

for the preparatory phase of the EOSC.

– Foster training activities to pursue the development of core data

expertise.

– Funding scheme shall be linked to core EOSC areas, rather than

being broad and bottom-up topical calls in order to accelerate the

development of the EOSC.

– Make data stewardship plans mandatory foll all research proposals.

EOSC Declaration (2017 Oct 16th)

Following up on the consultation strategy, the EC determined the level of com-

mitment of the principal European institutions [183] to the implementation of

the EOSC. The resultant EOSC Declaration [80] document, as a result of the

EOSC Summit 2017, reflects the institutional support in the initialisation of the

EOSC process –sustainable in the long-term, in accordance with the 1st HLEG

report– through the articulation of 33 high level statements, summarized in

Box 1.3. Those institutions agree on promptly endorse these practices “in their

respective capacities”.

Implementation Roadmap for the European Open Science Cloud

(2018 Mar 14th)

The financial support needed to implement the EOSC vision shaped up in the

previous documents was targeted to the European Union (EU) Framework Pro-

gramme for Research and Innovation, coined as Horizon 2020, in accordance

with the 2016 Communication, and in particular, through the Horizon 2020’s

2016-2017 and 2018-2020 Work Programmes (WPs). Hence, since 2018 the

specific INFRAEOSC call supports the primary objectives of the EOSC in re-

gards to the federation and integration of services, connectivity of pan-European

research infrastructures (mainly European Strategy Forum on Research Infras-

238

B. European Open Science Cloud

tructures (ESFRI)) and the attainment of the complete adoption of the FAIR

principles.

Box 1.3: EOSC implementation principles from the EOSC Declaration

• Data culture and FAIR data

– Open-access research data is recognised as a significant output of

research, and shall be appropriately managed according to the FAIR

principles. Transition to FAIR data needs to be progressive applied

through adoption plans coordinated by the EC.

– The required cultural change needs to be driven by higher educa-

tion and training, and stimulated through incentives and a reward

structure.

– EOSC realisation requires from trusted (national and European) and

FAIR-certified RIs and data repositories. EOSC shall provide re-

searchers with tools to make data FAIR.

– Data Management Plans (DMPs) are the prerequisite for accurate

data stewardship and must be a mandatory part of any publicly-

funded research project.

– Legal barriers for the FAIR implementation shall be addressed by

the EOSC. International forums (Research Data Alliance (RDA),

Committee on Data for Science and Technology (CODATA)) must

be used to reach consensus.

• Data services and architecture

– EOSC envisaged as a one-stop-shop and user-driven data infrastruc-

ture commons to serve the needs of scientists, where continuous dia-

logue between stakeholders –users, funders, providers– guarantee its

sustainability.

– Criteria definition for establishing a prioritized onboarding of re-

sources, components and initiatives, which incentivise reusability of

239

B. European Open Science Cloud

existing building blocks from past and ongoing projects. Services

shall be offered at the highest maturity or TRL.

– RIs shall improve the utilisation of the EOSC. High Performance

Computing –through the EuroHPC initiative– should provide the

advanced computing requirements of the EOSC.

• Governance and funding

– A sustainable and interdisciplinary EOSC requires representativity,

inclusiveness and transparency, with a 3-layer governance model at

the institutional, operational and advisory levels.

– The funding model shall guarantee the long-term sustainability of

the open research data and data infrastructures through the EOSC.

On the other side, the launch of the EuroHPC Joint Undertaking is meant

to contribute to the EDI in order to provide the High-Performance Computing

(HPC) infrastrucutre to support data computation in the EOSC. In March 2018,

the EC sets out the possible –action lines and timelines– implementation of the

EOSC, as envisaged by the 2016 Communication, through the delivery of the

Implementation Roadmap for the European Open Science Cloud document [81]

. This document relied upon the outcome of the consultation with scientific

stakeholders and builds on the WP 2018-2020 to start implementing the EOSC.

Box 1.4: Six action lines for an EOSC model

• Federated architecture that remedies existing fragmentation in research

data infrastructures:

– Building on the existing and successful federated infrastructures,

such as EGI Federation or EUDAT Collaborative Data Infrastruc-

ture (EUDAT-CDI) (Horizon Work Programme 2016-2017).

– A first phase for building a federated core through the EOSC-hub

project that will provide horizontal services such as a portal, au-

thentication and authorisation and security services.

240

B. European Open Science Cloud

– A second activity for a progressive federation of a large number of

data infrastructures, both EU and national, in terms of resources

and services provided thereof. Minimum commitments are set in the

Rules of Participation (RoP) a only for the specific requirements of

the federation. Data infrastructures will remain having entire control

of their own rules outside those commitments.

• Data stewardship culture through FAIR principles:

– Progressive development of shared resources and tools used by data-

savvy researchers and implemented by the data infrastructures.

– Consultation to a FAIR data HLEG group, that in 2018 delivered

the Turning FAIR into reality [23] report.

• Catalogue of interdisciplinary and borderless user-driven services:

– Including the core or horizontal services, adding services for data

management and analysis.

– Initial catalogue will be based on existing services provided by EGI

or EUDAT-CDI, and specific thematic services, already being inte-

grated through the ongoing EOSC-hub project.

• Access & interface through the EOSC Portal as the universal entry point

for all the potential users: EOSC-hub and eInfraCentral projects are pilot-

ing a first common platform for accessing to the EOSC shared resources.

• Rules of participation for setting out the rights, obligations and account-

ability of the different stakeholders, such as service providers and users.

The EOSCPilot project and the HLEG laid out a preliminary design of

such rules that are evolving through the WP 2018-2020.

• Governance model based on a representative multi-stakeholder approach

that supports the i) long-term sustainability and coordination of the data

infrastructure federation, ii) implementation of catalogue of services, FAIR

241

B. European Open Science Cloud

data, EOSC portal and RoP, iii) definition and monitoring of Key Perfor-

mance Indicators (KPIs) and iv) reporting.

aPreviously known as rules of engagement in the above-reviewed documents, it was
modified according to the military nature of the term

2018 (Nov 21st) - Second report of the High Level Expert Group:

Prompting an EOSC in practice

The second HLEG report [79] came later in 2018 to build upon the strategic

vision provided by the first EOSC HLEG and having the 2018 Implementation

Roadmap “at its very heart”.

Box 1.5: New recommendations from 2nd HLEG

• Implementation

– Presence of KPIs in the new INFRAEOSC project workplan

– Increase the availability and volume of quality & user-friendly scien-

tific information on-line

– Carry out a landscape analysis on a national level within the Member

States

– Separate RoP in two sets in order to differ between users and

providers. For service providers, include a requirement for partic-

ipation demonstrating sustainability and simplify early (beta) par-

ticipation by relaxing initial constraints

– Create a marketplace-like universal entry point to the EOSC to ease

access and promote industry reuse of scientific outputs

– Promote the development of open, sustainable, versioned, docu-

mented and energy consumption aware sofware for all elements of

the EOSC

– Set up an EOSC Helpdesk to lower barriers to entry and ensure

transparency and support to user engagement

242

B. European Open Science Cloud

– Foster EOSC-Public Private Partnership (PPP) to minimise opera-

tional risks in completion of the EOSC implementation vision

• Engagement

– Stimulate the ‘supply side’ to demonstrate the usability and reusabil-

ity of data and services through RIs

– Stimulate the ’demand side’ to demonstrate the Return on Invest-

ment (ROI) via successful in-practice stories

• Steering

– Adopt state-of-the-art technologies that build trust towards a shared

security model in EOSC

– Ensure that the executive board decisions are based on latest scien-

tific and organisational trends

One of the main outcomes is the materialisation of the Minimum Viable

Ecosystem (MVE) of the EOSC to represent the smallest workable system that

complies with the main EOSC expectations, and the realization of an EOSC

governance model to enable the MVE process. The concept of MVE goes in

line with the 2018 Implementation Roadmap, which stated that the EOSC

would be progressively built in stages. The boundaries of the RoP, built on

the FAIR principles and relevant for deliver the EOSC MVE, were defined in

two sets according to the audience, separating users and –data, service and

infrastructure– providers. The governance model of the MVE emphasizes the

3-layer approach of the 2017 Declaration –strategic, executive and stakeholder–

requesting the need of an EOSC board, an Executive board and a Stakeholder

forum accountable for each layer. Different working groups have been defined

within the Executive Board.

243

244

C
European Grid Infrastructure

C.1 Operating system support within the Uni-

fied and Cloud Middleware Distributions

Each UMD or CMD major release supported, on average, two Linux operat-

ing systems that represented RedHat and Debian-like distributions. Table C.1

shows the evolution of the operating systems being supported throughout the

UMD and CMD major releases, which in some cases raised up to 3 different

Operating System (OS) distributions.

245

C. European Grid Infrastructure

Major release Supported OSes

UMD-1 Scientific Linux 5

Scientific Linux 5
UMD-2

Debian Squeeze

Scientific Linux 6

Scientific Linux 5 (*)UMD-3

Debian Squeeze (*)

Scientific Linux 6
UMD-4

CentOS 7

CentOS 7

Ubuntu 18.04

Ubuntu 16.04
CMD-OS

Ubuntu 14.04 (*)

Table C.1: OSes supported throughout UMD and CMD distributions lifetime. The
support for the OSes marked with an ’*’ were dropped during the associated release.

246

Glossary

API Application Programming Interface. 12, 143, 144, 147, 148, 172, 187, 188,

191

CCA Continuous Configuration Automation. 10, 11, 59, 110, 113, 130–132,

162, 163, 165, 166, 174

CD Continuous Delivery. 59, 60, 126, 143, 144

CI Continuous Integration. 10, 59, 60, 121, 122, 124–126, 133, 142, 143, 164,

171, 174

CI/CD Continuous Integration and Delivery. 9, 10, 60, 61, 121–127, 132, 133,

135, 138, 141–143, 174, 179–181, 183, 184, 191, 193, 194, 198, 199

CMD Cloud Middleware Distribution. 10–12, 76, 77, 155–158, 162, 163, 166,

173, 174, 199, 245, 246

CODATA Committee on Data for Science and Technology. 22, 239

CVE Vulnerability and Exposure. 107

DAST Dynamic Application Security Testing. 103, 108, 109, 232

DEEP DEEP Hybrid-DataCloud. 10, 78, 89, 119, 124, 137–143, 147, 149, 151,

154, 171, 180, 183, 186, 191, 193, 198–200

247

Glossary

DEEP-OC DEEP Open Catalogue. 10, 143, 145–151

DEEP-OC-app DEEP Open Catalogue application. 143, 146, 147, 149

DEEPaaS DEEP-as-a-Service. 10, 140, 143, 144, 147–151

DMP Data Management Plan. 30, 239

DOAJ Directory of Open Access Journals. 25

EA Early Adopters Programme. 69

EC European Commission. 22, 26, 30, 64, 65, 67, 69, 72, 73, 237–240

ECI European Cloud Initiative. 236

EDI European Data Infrastructure. 236, 240

EGEE Enabling Grids for E-sciencE. 75, 154

EGI European Grid Infrastructure. 10, 65, 74–77, 121, 123, 132, 134, 153–158,

160, 162–168, 171, 172, 174, 175, 200, 228, 229, 240, 241

EGI QC EGI Quality Criteria. 12, 77, 158, 159, 161, 162, 173, 174, 186, 199,

200

EGI SWPP EGI Software Provisioning Process. 10, 11, 77, 154, 156–159,

166–168, 172, 174, 175, 193, 199, 200

EMI European Middleware Initiative. 155

EOSC European Open Science Cloud. 16–18, 23, 64–68, 70–76, 78–80, 83, 84,

145, 180–183, 192, 193, 197–200, 203, 204, 235–243

ESFRI European Strategy Forum on Research Infrastructures. 238

EU European Union. 29, 63, 238

EUDAT-CDI EUDAT Collaborative Data Infrastructure. 65, 74, 240, 241

248

Glossary

FaaS Function as a Service. 10, 148, 149, 151

FAIR Findability, Accessibility, Interoperability and Re-usable. 29, 30, 204,

236, 237, 239, 241, 243

FLOSS Free/Libre and Open Source Software. 26, 27, 97, 98, 100

FOSS Free and Open Source Software. 27

GUI Graphical user interface. 230

HLEG High Level Expert Group. 67, 73, 74, 182, 193, 204, 237, 238, 241, 242

HPC High-Performance Computing. 240

HTC High-Throughput Computing. 75, 76

HTML HyperText Markup Language. 145

HTTP Hypertext Transfer Protocol. 124, 147, 172, 173

IaC Infrastructure as Code. 59, 113

ICT Information and Communications Technology. 63

INDIGO INDIGO-DataCloud. 9, 10, 65, 74, 77, 78, 88, 89, 119–128, 130–135,

137, 138, 142, 149, 151, 154, 171, 180, 183, 186, 193, 198–200

ITSM Information Technology Service Management. 70

JOSS Journal of Open Source Software. 101, 102

JSON JavaScript Object Notation. 101

KPI Key Performance Indicator. 242

LERU League of European Research Universities. 30

249

Glossary

LTS Long Term Support. 94, 97

ML Machine Learning. 78, 137, 199

MVE Minimum Viable Ecosystem. 74, 243

MVP Minimum Viable Product. 102, 233

NGI National Grid Initiative. 76

OECD Organisation for Economic Co-operation and Development. 22

ORD Open Research Data. 26

OS Operating System. 12, 159, 245, 246

OSPP Open Science Policy Platform. 30, 73

OWASP Open Web Application Security Project. 107, 108

PaC Pipeline as Code. 137, 139, 140, 145, 149

PID Persistent Identifier. 28, 29, 101, 184

PPP Public Private Partnership. 243

PR Pull Request. 98, 99, 103, 108, 112, 122, 124, 131, 145, 171–175

RDA Research Data Alliance. 22, 239

REST Representational State Transfer (REST) is the software architectural

style of the World Wide Web. REST was defined by Roy Thomas Field-

ing [fielding2000architectural]. RESTful systems typically, but not

always, communicate over HTTP using the HTTP verbs GET, POST,

PUT, DELETE, etc. REST systems interface with external systems as

web resources identified by URI. 144, 147

250

Glossary

RI Research Infrastructure. 63–69, 71, 73, 79, 228, 229

ROI Return on Investment. 60, 243

RoP Rules of Participation. 67, 74, 241–243

RSE Research Software Engineer. 34, 228

RT Request Tracker. 172, 174

SAST Static Application Security Testing. 103, 107, 109, 232

SCM Source Code Manager. 91, 93, 94, 97, 99, 112, 113, 138

SDLC Software Development Life Cycle. 42, 44–46, 50, 51, 53, 54, 57, 59, 61,

154, 156, 166, 183, 198

SE Software Engineering. 42–44, 52–54, 56, 61, 183

SQA Software Quality Assurance. 9, 10, 12, 16, 17, 37, 39, 43–46, 49, 52,

53, 55–58, 61, 71, 75, 77, 78, 83, 84, 88–92, 97, 103, 106, 110, 114, 115,

119–122, 124, 125, 127, 129–135, 137, 138, 141, 142, 149, 154, 156, 159,

179–184, 186–193, 197–200, 204

SQAaaS SQA-as-a-service. 11, 18, 79, 180–187, 190–194, 200, 203, 204

SQAP Software Quality Assurance Plan. 53

SSI Software Sustainability Institute. 227, 228

SYNERGY EOSC-Synergy. 12, 78, 79, 180, 182–184, 186, 192, 193, 200, 204

TDD Test-Driven Development. 129, 233

TOP Transparency and Openness Promotion. 23

TP Technology Provider. 65, 155, 166–169, 171–175

TRL Technology Readiness Level. 69–71, 79, 182, 193, 203, 240

251

Glossary

TTM Time to Market. 60

UMD Unified Middleware Distribution. 10–12, 76, 77, 155–158, 163, 165, 170,

173, 174, 199, 245, 246

V&V Verification and Validation. 9, 12, 53–56, 61, 69, 103, 120–122, 124, 134,

151, 187, 189, 229

VCS Version Control System. 91–93, 184, 188

WP Work Programme. 238, 240

XDC eXtreme-DataCloud. 89

252

	Portada
	Resumen global (en español)
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1. Thesis Statement
	2. Present and Future of Software inResearch: the Role of Software in Open Science
	2.1 Ode to Open Science: addressing the repro-ducibility crisis
	2.1.1 The contextualization of the Open Science term
	2.1.2 The Open Science pillars
	2.1.3 The path to reproducibility in Science

	2.2 Research software in Open Science
	2.2.1 Common problems in research software development
	2.2.2 Reproducibility in Software

	2.3 Conclusion

	3. Building a Culture of Software Quality
	3.1 Why quality on research software?
	3.1.1 The de�ning factors of quality in software

	3.2 The path to software quality engineering
	3.2.1 Software Quality Assurance
	3.2.2 Veri�cation and Validation processes

	3.3 The DevOps culture: automation to enable quality
	3.4 Conclusion

	4. Software Quality to drive the delivery ofservices in the European Open Science Cloud
	4.1 Enabling Open Science in Europe: the Eu-ropean Open Science Cloud
	4.1.1 The Horizon 2020 Framework Programme
	4.1.2 The foundational elements of the European Open Science Cloud: e-Infrastructures and Research Infrastructures
	4.1.3 The roadmap to the implementation of an EuropeanOpen Science Cloud

	4.2 Service maturity assessment within the European Open Science Cloud
	4.3 Quality-aware e-Infrastructures as the guid-ance for the European Open Science Cloud implementation
	4.3.1 Software quality for e-Infrastructure operation and exploitation
	4.3.2 The missing element in the European Open Science Cloud equation
	4.3.3 Featured e-Infrastructure enabling initiatives in Horizon 2020 Programme

	4.4 Conclusion

	A Story of Three Acts
	Act I. Laying out the Groundwork: The Definition of a Baseline for Software Quality Assurance
	5. Wrapping-up: The definition of a Software Quality Assurance baseline for Research Software
	5.2 Motivation
	5.3 Essential criteria for quality research software
	5.3.1 Code management
	5.3.2 Collaborative coding
	5.3.3 Code accessibility
	5.3.4 Verification and validation
	5.3.5 Software uptake

	5.4 Conclusion

	Act II. Where Theory Meets Praxis: the Implementation Process
	6 Developing quality software from its origin: the INDIGO-DataCloud project
	6.1 The Software Quality Assurance process
	6.2 Software veri�cation, validation and delivery through DevOps
	6.3 Compliance with the requirements from the Software Quality Assurance baseline
	6.4 Conclusion

	7. Tailoring software to user needs: the DEEP-HybridDataCloud project
	7.1 Moving towards a Pipeline as Code environment
	7.2 Stage composition of Continuous Integration and Delivery code pipelines
	7.3 Extended automation beyond Continuous Integration and Delivery environments
	7.3.1 Automated generation of Open Catalogue's content
	7.3.2 Continuous Deployment for machine learning inference

	7.4 Conclusion

	8. Software validation in the European Grid Infrastructure
	8.1 Software distribution in the European Grid Infrastructure: the Software Provisioning Process
	8.2 Phase 1 of the Software Provisioning Process modernization: boosting the software validation
	8.2.1 Statement of the problem
	8.2.2 Automation of the Quality Criteria requirements
	8.2.3 The umd-verification tool
	8.2.4 Evidence of the umd-verification adoption

	8.3 Phase 2 of the Software Provisioning Process modernization: DevOps adoption
	8.3.1 From release preparation to stage rollout
	8.3.2 Statement of the problem
	8.3.3 Setting up a DevOps-like continuous validation process

	8.4 Conclusion

	Act III. Mapping out the Future:Universalize and Sustain a Culture of Quality Research Software
	9. Incentivize a Software Quality Culture in the European Open Science Cloud: the Software Quality Assurance as a Service
	9.1 Framing the Software Quality Assurance asa Service in the European Open Science Cloud
	9.2 Dissemination of a culture of software quality
	9.2.1 Online Software Quality Assurance baseline assessment
	9.2.2 Pipeline as a service

	9.3 Architecture of the Software Quality Assurance as a Service
	9.3.1 Integral components
	9.3.2 Automated validation of the Software Quality Assurance baseline requirements
	9.3.3 Implementation of the workows

	9.4 Conclusion
	Conclusions
	9.5 Summary and Contributions
	9.5.1 Role of the author in the reviewed research projects

	9.6 Publications
	9.7 Future Work and Perspective

	Bibliography
	Appendices
	A. Software Quality Assurance
	A.1 A representative view of educational initiatives for research software development
	A.2 Test to build trust
	A.3 Agile software development

	B. European Open Science Cloud
	B.1 Roadmap towards the implementation of the European Open Science Cloud

	C European Grid Infrastructure
	C.1 Operating system support within the Unified and Cloud Middleware Distributions

	Glossary

