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Abstract

Floods are among the most common and destructive natural disasters, directly and indirectly
affecting human life and property. Improving the assessment and management of flood risks
is therefore a major priority, and it is a challenge for the scientific and technical communities
to address these needs. Within this context, improved forecasting of flood volumes is of great
assistance to authorities in taking the most appropriate protection measures.

This report begins with a compilation of the most important concepts and results of the
Extreme Value Theory, including proofs of some of the most relevant ones. In the second
part, the previous theory will be applied to the expected flood levels in the river Oñati, in
the Basque Country. These predictions have been made using several available libraries in
the programming language R.

Keywords: Basque Country, Extreme Value Theory, Floods, Rivers,

Resumen

Las inundaciones se encuentran entre las catástrofes naturales más comunes y destructivas,
afectando directa e indirectamente a la vida humana y a la propiedad. Por lo tanto, mejorar
la evaluación y la gestión de los riesgos de inundación es una prioridad para la sociedad.
Dentro de este contexto, la mejora de las predicciones de los volúmenes de crecidas de los ŕıos
es de gran ayuda para la adopción por parte de las autoridades de las medidas de protección
más adecuadas.

Este trabajo comienza haciendo una recopilación de los conceptos y resultados más im-
portantes de la Teoŕıa Estad́ıstica de los Valores Extremos, incluyendo las demostraciones de
algunos de los más relevantes. En la segunda parte se aplicará la teoŕıa anterior a la evalu-
ación de los niveles de crecida esperables en la cuenca fluvial del ŕıo Oñati, en el Páıs Vasco.
Estas predicciones se han realizado usando libreŕıas previamente disponibles en el lenguaje
de programación R.

Palabras clave: Inundaciones, Páıs Vasco, Ŕıos, Teoŕıa de Valores Extremos
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Introduction

When you have excluded the
impossible, whatever remains, however
improbable, must be the truth.

Arthur Conan Doyle

Extreme Value Theory may be defined as the branch of Statistics that deals with extreme
percentiles of a distribution. Being interested in extreme values of a distribution is as old as
statistics itself. In 1709 Nicholas Bernoulli poses a problem on finding the expected lifetime
of the last survivor among a group of men with the same age. Later on, in the 19th century,
astronomers were interested in finding criteria for assessing whether an extreme value is an
outlier or not.

Let X1, · · · , Xn be independent and identically distributed (iid) random variables (rv’s)
with distribution F , and suppose we are interested in knowing how the rv Mn := max({X1,
. . . , Xn}) behaves the bigger n gets. Clearly, the cumulative distribution function (cdf) of
Mn is, for each n, Fn. However, most of the times F is unknown, and even though it can
be estimated from the empirical cdf F̃ , the difference between F̃n and Fn is likely to be
large. On the other hand, it can be proved ([LLR83, Corollary 1.5.2]) that Mn converges to
xF := sup{x ∈ R∪{∞} : F (x) < 1} almost surely. Unfortunately, this only shows something
that we already suspected, but it does not let us extract more information about the behaviour
of F. There are several things about F that we may be interested in knowing. For example,
the return period of an extreme value, which is the estimated time that we have to wait for
that extreme value to occur (in formal terms, if u is the extreme value, then its return period
is (1−F (u))−1), or the return level associated to a period, which are inverse concepts. Many
security protocols are based on return periods/levels. For example, assume X1, · · · , Xn ∼ F
describe the mean sea level of a particular place in the year n. Then, the return level for
the period of 100 years is the value u such that (1− F (u)) = 1

100 , that is, the value that we
expect to see exceeded once every 100 years. When building a dike, clearly it is not feasible
to ensure that it prevents any flood; the best we can do is to prevent very rare ones. That is
why its height is sometimes determined because it is the return level of a big period of time.
The tools developed by Extreme Value Theory allow us to estimate quantities like these.

Extreme Value Theory was not born until the 1920’s. The first results of the decade were
only concerned with large values of the normal distribution. For example, in 1925 Leonard
Tippett studies the distribution of the largest values of samples coming from the normal
distribution for different sample sizes. The first important result is dated from 1927: Maurice
Fréchet identifies a possible asymptotic family of distributions for large values, and realizes
that extreme values from different distributions can follow the same asymptotic distribution.
He is also aware that the limit distributions must meet a certain condition, namely, the max-
stability condition, which will be introduced in time. However, his work was overshadowed by
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2 INTRODUCTION

the research of Fisher and Tippett, who got the same conclusions a year later, while figuring
out two other limit distributions. In 1936 Richard von Mises gives sufficient conditions for
a distribution to have extreme values following one of the three limit families, and in 1943
Boris Gnedenko gives necessary and sufficient conditions to this. The result stating that
the asymptotic distribution of the normalized maximum, if non-degenerate, is restricted to
only three different families, is now known as the Fisher-Tippett-Gnedenko theorem, and
such distributions are called the Gumbel, Fréchet and Weibull families. The Fisher-Tippett-
Gnedenko theorem is arguably the most important result of Extreme Value Theory, because
the way of dealing with extreme values of a distribution is, essentially, dealing with the
limit distribution. The first book on Extreme Value Theory, as it known today, and which
gave raise to the discipline, is Gumbel’s Statistics of Extremes, published in 1958 [Gum58].
It contained all the knowledge to the date, and gave several applications on, for example,
engineering, climatology or hydrology. These fields still rely on Extreme Value Theory for a
multitude of problems.

These are the main results of Classical Extreme Value Theory, which only deals with real
valued, independent and identically distributed observations. However, they are also worth
to mention: 1) the advance concerning more complex conditions than the ones stated by
von Mises and Gnedenko, which have been called second order conditions, and are based
on the theory of regularly-varying functions. 2) Pickands-Balkema-de Haan theorem, which
approximates the distribution of the exceedances of a variable following a distribution with
a non-degenerate limit distribution for its extremes. This theorem may be regarded as the
second most important result of Extreme Value Theory.

The second half of the 20th century was focused on studying the behaviour of the extreme
values of a distribution when the data in the sample are not independent. Of course, this is
motivated by the fact that in practice, it is virtually impossible to have such independent data.
The most natural generalization of a sequence of iid rv’s is a stationary series: stationarity is
considerably more realistic. In general, the Fisher-Tippett-Gnedenko theorem does not hold:
consider, for example, the stationary process Xn = X1 for n ∈ N. However, under rather
general dependence conditions, extremes of sequences behave roughly as in the independent
case. This makes the first results still very useful and applicable. See, for instance, [LLR83].

Nowadays, Extreme Value Theory is not reduced to the univariate case. Multivariate
Extreme Value Theory has also been a topic of interest for a long time. For example, in
1964 Gumbel and Goldstein studied the maximum annual discharge of the Ocmulgee River
measured at two different stations [GG64]. Multivariate Extreme Value Theory has been
thoroughly studied; however, it is significantly more complicated. Observe that there are
problems from the very beginning: for example, what is a multivariate extreme value? In
addition, the results reached are not nearly as satisfying as in the univariate case. For
instance, now we do not have a finite number of possible limit distributions. A possible
reference for this topic is Chapter 8 of [BGT04] or Part II of [HF06]. Extreme values for
infinite-dimensional observations have also been studied. For reference, see Part III of [HF06].

In this dissertation, we will discuss the basic results of Univariate Extreme Value Theory,
and then we will apply them to a real dataset. In the first part, the Fisher-Tippett-Gnedenko
and the Pickands-Balkema-Theorem will be proved, and general results on a distribution to
have extreme values belonging to one of the three limit distributions will also be shown.
Following Gumbel’s motto, no distribution is stated without an explanation of how the pa-
rameters may be estimated : regrettably, the limit distributions to be dealt with have several
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complications when trying to estimate their parameters. The moments of a distribution, for
example, may be infinite, and this may have an influence on the estimation method to be
used or, in general, on how to deal with the distribution. As a consequence, part of our
effort will be devoted to the estimation issue. To this end, there are two approaches: the
Block Maxima and the Peak-over-Threshold methods, each of which are motivated by the
important aforementioned theorems. We will delve into both. Eventually, Extreme Value
Theory deals with the prediction of high quantiles, so we will also talk about that. We will
also discuss how some of the results still hold when we allow the sequence to be stationary
along with a condition that weakens the dependence of the observations the more separated
they are.

The results of Extreme Value Theory refer to both large and small values of a distribu-
tion. However, in practice, only one of the situations is discussed, because of the evident
relation between the maxima and the minima of observations. As a consequence, results for
the maximum (respectively, minimum) can be deduced from results for the minimum (re-
spectively, maximum). We have chosen the maxima approach, which is far more common in
the literature.

In the second part of the dissertation we will estimate extreme discharge levels of the
river Oñati, in the Basque Country, measured at a gauging station. These data have never
been analyzed using these tools before.

It can be claimed that Extreme Value Theory is not an easy discipline, which is expected:
the difficulty of predicting extreme values and quantiles come from the fact that it is difficult
to obtain samples because they themselves are very difficult to observe. As cited in Gumbel’s
book: however big floods get, there will always be a bigger one coming. The results that we
are going to present give us a framework to draw conclusions on higher percentiles than the
ones we have observed, and we cannot expect these to be easy.

Given the restrictions on the length of the report, the proofs which are shown in detail
are not too long, with the exception of the Fisher-Tippett-Gnedenko theorem, because of
its unquestionable importance. We aim to find a proper balance between a self-contained
yet rigorous theoretical introduction to Extreme Value Theory and an application which
attempts to solve an existent problem. Data used have been made available to me thanks to
the Instituto de Hidráulica Ambiental, part of the University of Cantabria.

Both parts include tables, images and figures. Some of them have been included in the
appendix. Unless stated otherwise, they are my own creation, and have been made using the
programming language R and already existent packages. The code is available in https://

github.com/senaspablo/TFM_StatisticalExtremeValueTheory_BasinsBasqueCountry.

https://github.com/senaspablo/TFM_StatisticalExtremeValueTheory_BasinsBasqueCountry
https://github.com/senaspablo/TFM_StatisticalExtremeValueTheory_BasinsBasqueCountry
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Chapter 1

Statistical Extreme Value Theory

1.1 Fisher-Tippett-Gnedenko theorem

Let X1, · · · , Xn be iid with distribution F . As we mentioned earlier, Fn converges to xF
almost surely, so this path gets nowhere if we want to get some insight on how large values
of F behave. A possible alternative is to consider linear normalizations, that is, to study the
limit of P(an(Mn − bn) ≤ x) = Fn(a−1n x+ bn) for suitable sequences an > 0 and bn ∈ R. As
we will see, this gives us very interesting results.

Example 1. Let F (x) = exp(− exp(−x)) for x ∈ R. Then Fn(x) = exp(− exp(−x+log(n))),
that is, Fn(x+ log(n)) = F (x), and taking an = 1 and bn = log(n) we get:

P(an(Mn − bn) ≤ x) = P(Mn ≤ x+ log(n)) = Fn(x+ log(n)) = F (x)

The distribution of the last example is the standard Gumbel distribution: its general form
is Fµ,σ(x) = exp(− exp(−x−µ

σ )), with µ ∈ R and σ > 0. This distribution has a main role in
this theory, along with the Fréchet and the Weibull distributions, with cdf’s exp(−(x−µσ )−α)
(for x ≥ µ) and exp(−(−x−µ

σ )α) (for x ≤ µ), where µ and σ are as before and α > 0.

The starting point and keystone to the Extreme Value Theory is the Fisher-Tippett-
Gnedenko theorem (see Theorem 1.1.1). The result as we know it today is due to Boris
Gnedenko, who proved it in 1943 ([Gne43]). In this section we will expose one of the proofs
and some of its implications. The theorem can be informally stated as follows:

Theorem 1.1.1 (Fisher-Tippett-Gnedenko theorem). Let X1, · · · , Xn be iid with distribution
F and assume there exist sequences {an} ⊂ R+ and {bn} such that P(a−1n (Mn−bn) ≤ x)

w→
n→∞

G(x), where G(x) is a non-degenerate cdf. Then G(x) is the cdf of a Gumbel, a Fréchet, or
a Weibull distribution.

Remark. As every distribution of the theorem is continuous in R, then the convergence is
actually pointwise.

Observe that the theorem already assumes that P (an(Mn − bn) ≤ x)
w−→

n→∞
G(x). We will

also see necessary and sufficient conditions to determine if this happens. These conditions
are, however, not always easy to apply.

1.1.1 Proof of the Theorem

We follow the first chapter of [LLR83]. We will first need to introduce several preliminary
notions and results.

5



6 CHAPTER 1. STATISTICAL EXTREME VALUE THEORY

If F is an increasing right-continuous function, we define its generalized inverse with
domain (inf{F (x)}, sup{F (x)}) (with one of the endpoints closed if the corresponding in-
fimum/supremum is reached) as F−1(y) := inf{x : F (x) ≥ y}. Note that if F is a cdf,
then F−1 is the quantile function of the distribution. These are some basic properties of
generalized inverse functions:

Lemma 1.1.2. Let F (x) be an increasing right-continuous function.

1 Let a > 0, b, c ∈ R and H(x) = F (ax+b)−c. Then H(x) is increasing, right-continuous
and H−1(y) = a−1(F−1(y + c)− b).

2 If F−1 is continuous, then for all x ∈ R F−1(F (x)) = x.

3 If F is a non-degenerate cdf, then there exist y1, y2 ∈ R such that y1 < y2 and −∞ <
F−1(y1) < F−1(y2) <∞.

4 If F is a non-degenerate cdf and there exist a, α > 0, b, β ∈ R such that for all x ∈ R
F (ax+ b) = F (αx+ β), then a = α and b = β.

In our way to proving Fisher-Tippett-Gnedenko theorem we need an important result
whose proof would deviate us from our topic of interest. Several preliminary results are
needed and, as a consequence, we will just formulate it. For a complete proof we refer the
reader to [CM90].

Proposition 1.1.3 (Law of convergence of types). Let {Fn}, G be cdf’s, where G is non-
degenerate, and {an} ⊂ R+ and {bn} are sequences such that

Fn(anx+ bn)
w−→

n→∞
G(x)

Then there exists a non-degenerate cdf G∗ and sequences {αn > 0}, {βn} with

Fn(αnx+ βn)
w−→

n→∞
G∗(x)

if and only if the limits a := limn a
−1
n αn and b := a−1n (βn − bn) are finite and a > 0.

Furthermore, when this happens, for all x ∈ R G∗(x) = G(ax+ b).

Definition 1.1.1. Let G be a non-degenerate cdf. We say that:

1. G is max-stable if for all n ∈ N and for all x there exists {an} ⊂ R+ and {bn} such
that for all x ∈ R Gn(anx+ bn) = G(x).

2. If F is a cdf, then F is in the domain of attraction (for maxima) of G, and it is written
F ∈ D(G), when there exist sequences {an} ⊂ R+ and {bn} such that Fn(anx+bn)

w−→
n→∞

G(x).

3. If G∗(x) is another non-degenerate cdf, we say that G and G∗ have the same type if for
all x there exist a > 0 and b ∈ R such that for every x ∈ R G∗(ax+ b) = G(x).

Remark. The Proposition 1.1.3 is also known as Khintchine’s Theorem, and it can be rewrit-
ten in terms of the last definition as:
Fn(anx + bn)

w−→
k→∞

G(x) and Fn(αnx + βn)
w−→

k→∞
G∗(x) for sequences {an} ⊂ R+, {αn > 0},

{bn} and {βn} and non-degenerate cdf’s G(x) and G∗(x) if and only if G(x) and G∗(x) have
the same type, an

αn
→ a > 0 and βn−bn

an
→ b ∈ R.
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The next result is an immediate consequence of the Convergence of Types theorem. We
will express it as a proposition to stress it.

Proposition 1.1.4.

� If G1(x) and G2(x) are two non-degenerate cdf’s of the same type, then D(G1) = D(G2).

� If F1(x) and F2(x) are two cdf’s of the same type and F1 ∈ D(G) for some non-
degenerate cdf G, then F2 ∈ D(G).

The converse of the former property holds, as easily seen, but not the other one. Later on,
we will see that the exponential and normal families belong to the same domain of attraction
and they are not of the same type.

Now, the theorem that we want to prove can be formulated as follows: if G is a non-
degenerate cdf such that D(G) 6= ∅, then G is the cdf of a distribution Gumbel, Fréchet
or Weibull. We saw in the Example 1 that, if F (x) = exp(− exp(−x)) (i.e. a Gumbel
distribution), then F ∈ D(F ). Doing that, we also proved that F is max-stable. This is not
a coincidence: the following result points out that these notions are, in a certain way, the
same.

Proposition 1.1.5. Given G a non-degenerate cdf:

1. G is max-stable if and only if there exists a sequence {Fn} of cdf’s and sequences
{an} ⊂ R+, {bn} such that for all k ∈ N

Fn(a−1nkx+ bnk)
w−→

n→∞
G1/k(x)

2. D(G) 6= ∅ if and only if G is max-stable. In that case, G ∈ D(G).

Proof.

1. Let G be a max-stable cdf, and {an} ⊂ R+, {bn} sequences such that for all n ∈
N:Gn(a−1n x+ bn) = G(x). Let Fn := Gn. Then, for all k ∈ N:

F kn (a−1nkx+ bnk) = Gnk(a−1nkx+ bnk) = G(x)

On the other hand, suppose there exist sequences {Fn}, {an} ⊂ R+ and {bn} with

Fn(a−1nkx+ bnk)
w−→

n→∞
G1/k(x)

for all k ∈ N. Since G is non-degenerate, then so is G1/k. Taking k = 1 and k = 2, we
obtain

Fn(a−1n x+ bn)
w−→

n→∞
G(x) and Fn(a−12n x+ b2n)

w−→
n→∞

G1/2(x) for every x ∈ R.

From Proposition 1.1.3, there exist a2 > 0 and b2 ∈ R such that G(a2x+ b2) = G1/2(x).
Analogously, for every k there exist ak > 0 and bk ∈ R with G(akx+ bk) = G1/k(x) or,
equivalently, Gk(akx+ bk) = G(x). Therefore, G is max-stable.
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2. If G is max-stable, then there exist sequences {an} ⊂ R+ and {bn} with Gn(anx+bn) =
G(x), so G ∈ D(G). Now assume F ∈ D(G), and let {an} ⊂ R+ and {bn} be the
sequences corresponding to this condition. It is clear that for all k ∈ N we have
Fnk(ankx+ bnk)

w−→
n→∞

G(x), so

Fn(ankx+ bnk)
w−→

n→∞
G1/k(x)

By the previous result, taking Fn := Fn and a−1nk := ank we conclude that G is max-
stable.

Corollary 1.1.6. Let G be a max-stable cdf. Then there exist functions a(s) > 0 and b(s)
such that for all x ∈ R, for all s > 0, Gs(a(s)x+ b(s)) = G(x).

The Fisher-Tippett-Gnedenko theorem follows immediately from the equivalence between
max-stable distributions and distributions with non-empty domain of attraction, along with
the following result, which states that a max-stable distributions is either a Gumbel, a Fréchet
or a Weibull distribution.

Theorem 1.1.7. If G is a max-stable cdf, then G is of the same type as one of the following:

Type I G(x) = exp(− exp(−x)) (Gumbel)

Type II G(x) =

{
0 x ≤ 0

exp(−x−α) x > 0
(Fréchet)

Type III G(x) =

{
exp(−(−x)α) x ≤ 0

1 x > 0
(Weibull),

where α > 0. The converse is also true.

Proof. Let G be a max-stable cdf, and let a(s) > 0 and b(s) functions such that Gs(a(s)x+
b(s)) = G(x), whose existence is guaranteed by Corollary 1.1.6. Taking logarithms:

− log(− log(G(a(s)x+ b(s)))− log(s) = − log(− log(G(x))). (1.1)

Let Ψ(x) := − log(− log(G(x))), which is increasing and right-continuous, and U(y) :=
Ψ−1(y). It is a small exercise to prove that, since G(x) is max-stable, then U(y) is defined
for every y ∈ R.

Using Equation 1.1, we obtain Ψ(a(s)x + b(s)) − log(s) = Ψ(x), and now by the 1 in

Lemma 1.1.2, U(y) = U(y+log(s)−b(s)
a(s) . Therefore U(y)−U(0) = U(y+log(s))−U(log(s))

a(s) . If we now

consider the change of variables z := log(s), ã(z) := a(exp(z)), Ũ(y) := U(y)−U(0), we get:

Ũ(y) =
Ũ(y + z)− Ũ(z)

ã(z)
(1.2)

We consider two cases:

� ã(z) ≡ 1. Then for all y, for all z ∈ R we have Ũ(y+z) = Ũ(y)+Ũ(z). It is easily proven
(taking y0 with Ũ(y0) 6= 0 and considering that {n1

n2
y0 : n1, n2 ∈ Z} is dense in R) that

Ũ(y) = βy for some β > 0, and therefore U(y) = Ψ−1(y) = βy + U(0). Since Ψ(x) is
continuous at a dense set, then x = Ψ−1(Ψ(x)) = βΨ(x) + U(0), which allows us to

conclude that − log(− log(G(x))) = Ψ(x) = x−U(0)
β and G(x) = exp(− exp(−x−U(0)

β )).
This proves that G is a cdf of Type I.
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� ã(z) 6= 1 for some z. Exchanging y and z in Equation 1.2 and substracting both
expressions, we get

Ũ(y)(1− ã(z)) = Ũ(z)(1− ã(y))⇒ Ũ(y) =
Ũ(z)

1− ã(z)
(1− ã(y))

Let c = Ũ(z)
1−ã(z) . We claim that c 6= 0, or otherwise U(y) would be constant, which is

not possible because G is non-degenerate. Substituting the last expression in Equation
1.2 and simplifying, we obtain ã(y + z) = ã(y)ã(z). With a similar reasoning to the
first case, there exists β 6= 0 such that ã(y) = exp(βy). Threfore, Φ−1(y) = U(y) =
c(1− exp(βy)) + U(0), and with easy manipulations we finally get

G(x) = exp

(
−
(

1− x− U(0)

c

)−1/p) (
1− x− U(0)

c
> 0

)
Assume p > 0. Since U(y) is increasing, then c < 0 (and viceversa). If we change
α := −1/p, z := −cx+U(0)+c, then G(z) = exp(−zα), and G is Type II. Analogously,
if p < 0 then G is Type III.

It is clear how the Fisher-Tippett-Gnedenko theorem (Theorem 1.1.1) follows from the
previous results. It implies that, for n large enough, if F ∈ D(G), then we can approximate
the maximum by a distribution G∗ of the same type as G:

P(a−1n (Mn − bn) ≤ x) ≈ G(x).

Thus P(Mn ≤ x) ≈ G
(
x−bn
an

)
= G∗(x).

1.1.2 Domains of attraction and examples

As observed in the beginning, the Fisher-Tippett-Gnedenko theorem only characterizes dis-
tributions with a non-empty domain of attraction. A different problem is to determine if a
given distribution is in one of the three domains of attraction, and if so, to determine in which
one. We will now give necessary and sufficient conditions to guarantee that this happens.
We recall the notation xF = sup{x ∈ R ∪ {∞} : F (x) < 1}.

Theorem 1.1.8 ([LLR83], Theorem 1.6.2). Let F (x) be a cdf. Then F belongs to the domain
of attraction of Type I, II or III if and only if, respectively,

i There exists a positive function g such that

for all x ∈ R lim
t↑xF

1− F (t+ xg(t))

1− F (t)
= e−x.

ii xF =∞ and for some α > 0

for all x > 0 lim
t→∞

1− F (tx)

1− F (t)
= x−α

iii xF <∞ and for some α > 0

for all x > 0 lim
h↓0

1− F (xF − xh)

1− F (xF − h)
= xα
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Furthermore:

1. if γn := F−1
(
1− 1

n

)
, the following are possible elections of the constants an and bn:

Type I Type II Type III

an g(γn)−1 γ−1n (xF − γn)−1

bn γn 0 xF

2. if F belongs to the domain of attraction of Type I, then
∫∞
0 (1− F (u))du <∞ and one

choice of g is g(t) =
∫ xF
t

1−F (u)
1−F (t) du.

Remark.

1. If X is a non-negative random variable with cdf F , it is well known that E[X] =∫ xF
0 (1 − F (u))du. If F belongs to the domain of attraction of Type I, then, as a

consequence of Theorem 1.1.8, E[X] < ∞ and g(t) = E[X|X ≥ t], where g(t) is the
same as in the theorem.

2. Observe that γn = F−1(1− 1
n) is exceeded with probability 1

n , that is, γn is the return
level associated to a period of n units.

Note that, as a consequence of Proposition 1.1.3, the constants are not unique. Theorem
1.1.8 tells us something which could be expected, and it is that the only thing influencing
that a distribution belongs to some domain of attraction is the right tail, and the behaviour
of the remaining part is irrelevant. Some examples are given below:

Example 2 (Exponential distribution). The exponential distribution belongs to the Type I
attraction domain. Let F (x) = 1− e−x be the cdf of the standard exponential distribution,
and g(t) such that limt→∞ g(t) = 1 (for example, g(t) = 1). Then:

lim
t→∞

1− F (t+ xg(t))

1− F (t)
= lim

t→∞

e−t−xg(t)

e−t
= lim

t→∞
e−xg(t) = e−x.

Furthermore, F−1(y) = − log(1− y), and γn = F−1
(
1− 1

n

)
= − log

(
1
n

)
= log(n).

Example 3 (Cauchy distribution). It is well known that F (x) = 1
2 + 1

π arctan(x) is the cdf
of the standard Cauchy distribution. It can easily be seen that it is in the Type II attraction
domain because

lim
t→∞

arctan(tx)− π
2

arctan(t)− π
2

= x−1.

And we obtain α = 1. Besides, F−1(y) = tan(π(y − 1
2)), and γn = F−1(1− 1

n) = tan(π n−22n ).
On the other hand, bn = 0, so:

P(γ−1n Mn ≤ x) −→
n→∞

e−x
−1

(x > 0)

Example 4. Let K, α > 0, xF ∈ R and F (x) = 1−K(xF −x)α defined in [xF −K−1/α, xF ].
It is easy to check that it is in the Type III attraction domain, because:

lim
h→0

1− F (xF − xh)

1− F (xF − h)
=
K(xF − xF + xh)α

K(xF − xF + h)α
= xα.

We also have that F−1(y) = xF −
(
1−y
K

)1/α
, and γn = F−1(1− 1

n) = xF − 1
nk1/α

, so we have

that:
an = (xF − γn)−1 = (nk)

1
α .
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Example 5 (Uniform distribution). Let a < b and consider the uniform distribution with
parameters a and b. The cdf is F (x) = x−a

b−a in its support. Thus the uniform distribution can
be reduced to the previous example: the theorem holds with α = 1 and a possible election of
the constants is

an = (xF − γn)−1 =
n

a+ b
and bn = b

Many times the computations involved in Theorem 1.1.8 are complex and it is not easy
to compute the corresponding limit. An example of this is the normal distribution, which (as
shown in [LLR83, Theorem 1.5.3] by other means) belongs to the Type I domain of attraction.
A possible choice of the constants is:

an = (2 log(n))−
1
2 and bn = (2 log(n))

1
2 − 1

2
(2 log(n))−

1
2 (log(log(n)) + log(4π))

There are, however, distributions that do not belong to any domain of attraction. In
other words, there are cdf’s F (x) where no pair of sequences {an} ⊂ R+, {bn > 0} can be
chosen, so that Fn(anx + bn) converges to a non-degenerate distribution. Moreover, some
examples of such distributions are very simple, and it is easy to come across them in some
problem. The next few results will provide a condition for a distribution not to belong to
any domain of attraction.

Proposition 1.1.9 ([LLR83], Theorem 1.5.1). Let X1, · · · , Xn be iid with distribution F .
Let τ ∈ [0,∞] and assume there exists a sequence {un} such that

n(1− F (un)) −→
n→∞

τ.

Then, P(Mn ≤ un) −→
n→∞

exp(−τ). The converse also holds (with exp(−∞) := 0).

Proposition 1.1.10 ([LLR83], Theorem 1.7.13). Let F (x) be a cdf, F (x−) := limt↑x F (t),
and X1, · · · , Xn be iid with distribution F . If τ ∈ (0,∞), then there exists a sequence {un}
such that

P(Mn ≤ un) −→
n→∞

exp(−τ)

if and only if

lim
x↑xF

F (x)− F (x−)

1− F (x−)
= 0 (1.3)

In particular, the results just shown ensure that if the above limit is different than 0, then
P(Mn ≤ un) converges to either 0 or 1. As a consequence F does not belong to any domain
of attraction, because the limit in Equation 1.3 does not exist.

Let X ∼ F be an integer-valued random variable such that xF = ∞. Then p(n) =
F (n)− F (n−) = P(X = n). If

lim
n→∞

P(X = n)

1− P(X ≤ n− 1)
= lim

n→∞

P(X = n)

P(X ≥ n)
6= 0,

then F does not belong to any domain of attraction.

Example 6. The Poisson distribution with parameter λ > 0 is an example of such distribu-
tion.

Recall that the Poisson distribution is defined as P (n) = e−λ λ
n

n! . Therefore, we have

P(X = n)

P(X ≥ n)
=

λn

n!∑∞
i=n

λr

r!

=
1

1 +
∑∞

r=n+1
n!
r!λ

r−n
−→
n→∞

1.
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Note that the series goes to 0 because

∞∑
r=n+1

n!

r!
λr−n ≤

∞∑
r=1

(
λ

n

)r
−→
n→∞

0.

Example 7. The geometric distribution with parameter p ∈ (0, 1) does not belong to any
domain of attraction.

P(X = n)

P(X ≥ n)
=

(1− p)n−1p∑∞
k=n(1− p)k−1p

=
(1− p)n−1
(1−p)n−1

p

= p.

1.1.3 Generalized Extreme Value distribution

Gumbel, Fréchet and Weibull distributions, also known as extreme value distributions, can
all be all grouped within a single family. This has been called Generalized Extreme Value
Distribution (GEV distribution), and its cdf is

Gξ,µ,σ(x) =



exp(−e−
x−µ
σ ) ξ = 0

exp

(
−
(
1 + ξ

(x−µ
σ

))− 1
ξ

)
ξ 6= 0, 1 + ξ x−µσ > 0

0 ξ > 0, x−µσ ≤ −
1
ξ

1 ξ < 0, x−µσ ≥ −
1
ξ

(1.4)

The quantile and density functions are, respectively:

G−1(y) =

{
µ+ σ

ξ ((− log(y))−ξ − 1) ξ 6= 0

µ− σ log(− log(y)) ξ = 0
(1.5)

gξ,µ,σ(x) =

 exp(−e
x−µ
σ )e−

x−µ
σ

1
σ ξ = 0

exp

(
−
(
1 + ξ

(x−µ
σ

))− 1
ξ

)
ξ 6= 0

(1.6)

whenever the above expressions make sense. Figure 1.1 shows the pdf and the cdf of distri-
butions of such family.

It is clear that if ξ = 0, G0,µ,σ belongs to the Gumbel family. Furthermore, if ξ > 0 or
ξ < 0, then Gξ,µ,σ belongs to the Fréchet or Weibull family, respectively. There is a very
clear advantage in merging these distributions under just one: in a practical problem, where
we do not know the distribution our data came from. The first step would be choosing one
of the three types, using some rule or technique.

With the GEV family, the type is determined by ξ parameter. If the estimator for ξ allows
us, for example, to test hypotheses about its value, or to compute confidence intervals, then
we can use these tools to assess which of the families best fits our data. In the next section
we will discuss estimators for ξ, µ and θ.
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Figure 1.1: cdf and density function of the GEV distribution with parameters ξ ∈ {0, 12 ,−
1
2},

µ = 0, σ = 1.

Remark. The definition of the GEV distribution can also be found in the literature exchang-
ing ξ for −ξ. Consequently, all the expressions and formulas derived from this are slightly
different, so special caution should be taken.

1.2 Estimation of the parameters

We can talk about two kinds of methods:

� The block maxima approach. Let us assume we have a sample X1, . . . , Xn be iid with
distribution F , where F is unknown but it is assumed that it belongs to a domain
of attraction. The most rudimentary option would be to divide this collection into m
blocks of the same size that do not overlap, and consider a new collection {Zi}mi=1 where
each Zi is the maximum of the i-th block. Then we would get a new collection of iid
rv’s Z1, · · · , Zm and we assume that their common distribution is Gξ,µ,σ(x) for some ξ,
µ ∈ R and σ > 0. That is, the approximation of the Fisher-Tippett-Glivenko Theorem
is considered exact. From here, (ξ, µ, σ) can be estimated with any of the available
methods.

� The exceedance approach. It may seem that potentially relevant information is lost if
only the maximum is used. Let u ∈ R so that every Xi > u could be considered an
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extreme value. A second option is to study the distribution of the exceedances, Xi−u,
when Xi > u. We will see that if F is in some domain of attraction, then we have an
approximation of the distribution of the excesses that is very manageable.

In the end, our purpose is a problem of estimating quantiles: given a small p, we want to
compute xp so that xp = F−1(1 − p), or the other way around. In the case of the GEV
and the Generalized Pareto distributions (which will be introduced in Subsection 1.2.2), the
quantile function can easily be expressed in terms of the parameters of the corresponding
distributions. On the other hand, we want the estimators we obtain to have desirable proper-
ties; for example, to be asymptotically normal. This not only allows us to obtain confidence
intervals for the estimators, but also for the quantile itself. The justification for this is found
in the Delta method, which, roughly speaking, follows from Taylor expansion.

Theorem 1.2.1 (Delta method). ([Vaa98, Theorem 3.1]) Let Φ : D ⊂ Rk → Rd be a
differentiable mapping at θ ∈ D. If {Tn} ⊂ D, {rn} ⊂ R are sequences such that rn(Tn −
θ)

D→
n→∞

T , where rn →∞, then rn(Φ(Tn)− Φ(θ))
D→

n→∞
Φ′(θ)T .

We also recall the definition of a consistent estimator:

Definition 1.2.1. θ̂n is a strongly (resp. weakly) consistent estimator of θ if θ̂n −→
n→∞

θ

almost surely (resp. in probablity).

1.2.1 Block Maxima approach

This method was the first, historically speaking, and continues to be widely used. Sometimes
their use is mandatory: it may be that the data available are precisely maxima of blocks of
maxima of some process. Moreover, in many cases, the nature of the problem leads to this:
blocks may correspond to natural periods of time of space. However, when this is not the case,
the choice of block size can be problematic: a very small block causes a large bias, because
the approximation by Gξ,µ,σ requires a sufficiently large sample size. On the other hand, a
large block provides little data to make relevant estimates, bringing very high variances.

In the following lines we will describe the most popular procedures based on Block Max-
ima. From now on, assume {Xi}ni=1 is iid with distribution Gξ,µ,γ , for unknown (ξ, µ, σ).

Maximum Likelihood Estimator

Let θ := (ξ, µ, σ) and let gθ be the density function of the GEV distribution (Equation
1.6). Recall that θ̂MLE

n is a maximum likelihood estimator (MLE) if it maximizes
∏n
i=1 gθ(Xi)

or, equivalently,
∑n

i=1 log(gθ(Xi)). In the case of the GEV distribution, the last expression
(the logarithm of the likelihood function, or the log-likelihood function) is:

l(ξ,µ,σ)(X1, . . . , Xn) =

−n log(σ)− ξ+1
ξ

∑n
i=1

[
log
(

1 + ξ
σ (Xi − µ)

)
−
(

1 + ξ
σ (Xi − µ)

)−1/ξ]
ξ 6= 0

−n log(θ)−
∑n

i=1

[
exp

(
−Xi−µ

σ

)
− Xi−µ

σ

]
ξ = 0

(1.7)

It is well known that under some smoothness conditions on the variation of the log-
likelihood with respect to (ξ, µ, σ) (usually known as ’regularity conditions’), the MLE esti-
mator is strongly consistent and asymptotically normal:

θ̂MLE
n

c.s.−→
n→∞

θ,
√
n(θ̂MLE

n − θ) D−→
n→∞

N (0, I−1θ0 ), where Iθ0 = −E
[
∂2

∂θ2
log(gθ(x))|θ = θ0

]
.
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These regularity conditions do not hold in the GEV distribution, and the situation be-
comes problematic. For example, it is always the case that ξ̂MLE

n > −1, so there is no
consistent estimator when ξ̂ < −1 (see [Dom15, Remark 4]). The classical regularity condi-
tions, however, can be relaxed, and the same results can be obtained for some subfamilies of
the GEV distribution. The first results can be found in [Smi85]. A full and detailed discussion
is in [BS17].

Theorem 1.2.2. ([BS17, Proposition 3.3]) The MLE is strongly consistent and asymptoti-
cally normal whenever ξ > −1

2 .

Furthermore, if Γ(x) denotes the Gamma function, Ψ(x) := log(Γ(x))′, γ := −Γ′(1) is the

Euler-Mascheroni constant, p := (1 + ξ)2Γ(1 + 2ξ) and q := Γ(2 + ξ)
(

Ψ(1 + ξ) + 1+ξ
ξ

)
, the

entries of Iθ are ([BGT04, Appendix 5.9.1]):

Iθ(1, 1) =
1

σ2ξ2
(1− 2Γ(2 + ξ) + p)

Iθ(1, 2) =− 1

σξ2

(
1− γ − q +

1− Γ(2 + ξ)

ξ
+
p

ξ

)
Iθ(1, 3) =− 1

σ2ξ
(p− Γ(2 + ξ))

Iθ(2, 2) =
1

ξ2

[
π2

6
+

(
1− γ +

1

ξ

)
− 2q

ξ
+

p

ξ2

]
Iθ(2, 3) =− 1

σξ

(
q − p

ξ

)
Iθ(3, 3) =

p

σ2

Therefore, in order to get the approximated distribution of the MLE, we would replace
the inverse of Iθ for its estimated using the plug-in method. With this we can, for example,
compute confidence intervals or carry out test hypothesis.

The properties of the MLE (asymptotically unbiased, asymptotically efficient or lowest
variace) makes it the preferred method for some people whenever the size sample is large
enoough. When this is not the case, some authors prefer to use other methods.1 However, the
method that we will show next is one of the most popular estimation alternatives, especially
in hydrology.

Method of L-moments

If X is a rv, then we recall that the r-th moment, the r-th centered moment and the r-th
standarized moment are, respectively:

E(Xr), µr := E((X − E(X)r),
µr

µ
r/2
2

.

1There are modifications of the MLE that supposedly solve the problems reported for the MLE when the
sample size is not large, but we will not delve into it. See Coles and Dixon: Likelihood-Based Inference for
Extreme Value Models (1990) https://doi.org/10.1023/A:1009905222644, where they propose a penalizing
factor to the log-likelihood function.

https://doi.org/10.1023/A:1009905222644
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Moments are a way of describing a distribution. The first moment (the mean) gives an
idea of the location of the distribution; the second centered moment (the variance) measures
the dispersion of the distribution with respect to the mean; the third standarized moment
(skewness) measures the asymmetry of the distribution, and the fourth standarized moment
(kurtosis) measures how concentrated the data are in the tails. These are the moments that
are commonly used when describing a distribution, although there are also interpretations
for moments of larger orders.

Historically, the first parameter estimation method is the method of moments: if we have
k parameters to estimate, then the first k moments are matched to the population ones,
obtaining a system of equations according to the parameters. Solving this system we obtain
an estimate of the parameters. One of the advantages of this method is that it is simple
to calculate: the only complication is in solving a system of equations, which is done with
numerical techniques in most cases. However, it has several disadvantages: for example,
sometimes relevant moments do not exist, or the estimators obtained by this method may
not belong to the parametric space, or it may be very biased.

Fortunately, moments are not the only descriptions that exist of a distribution. We will
introduce the L-moments, and then the estimation with them, which has the same spirit as
the method of moments. The L-moments are linear combinations of expectations of the order
statistics.

Definition 1.2.2. We define the r-th L-moment as follows:

λr :=
1

r

r−1∑
j=0

(−1)j
(
r − 1

j

)
E(Xr−j:r),

where Xr−j:r is the (r− j)-th order statistic from a sample of size r. We also define the r-th
standarized L-moment as τr := λr

λ2
.

Remark. The L-moments can also be seen as linear combinations of Probability Weighted
Moments (P.W.M.), which are extensions of moments. Define the quantities:

Mp,r,s = E(XpF (X)r(1− F (X))s), αk = M1,0,k and βk = M1,k,0,

where X ∼ F . Note that Mp,0,0 is the usual p-th moment. It can be checked that:

λr+1 = (−1)r
r∑

k=0

p∗r,kαk =
r∑

k=0

p∗r,kβk, where p∗r,k = (−1)r−k
(
r

k

)(
r + k

k

)
. (1.8)

We will use the second equality to estimate the L-moments, and we will compute the param-
eters of the GEV distribution from the estimation of the L-moments. This was done for the
first time in [HWW85].

The use of L-moments instead of usual moments is not justified if it is not demonstrated
that they have some advantage over them. Furthermore, we want to be able to interpret them
(at least) as well as conventional moments. The following result solves the first problem:

Theorem 1.2.3 ([Hos90], Theorem 1). If the mean of a distribution is finite, then every L-
moment exists and it is finite. Furthermore, if this happens, the distribution is characterized
by its L-moments.
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It is well known that this property is very far from happening to traditional moments.
For example, the distributions defined by the following density functions:

f0(x) =
1

x
√

2π
exp

(
− log2(x)

2

)
and fa(x) = f0(x)(1 + a sin(2π log(x))) (−1 ≤ a ≤ 1)

have the same moments ([Dur19, Section 3.3.5]).

On the other hand, the first L-moments are not hard to interpret. Clearly, λ1 is the mean
(or L-location). Moreover:

� λ2 = 1
2(E(X2:2)−E(X1:2)), or L-scale: the more disperse the distribution is, the bigger

this difference will be. Therefore, this gives an idea of the dispersion of the distribution.
Besides, note that λ2 is always positive (whenever the distribution is non-degenerate).
This is not evident from the definition via P.W.M., which is how they are sometimes
defined.

� λ3 = 1
3(E(X3:3)−2E(X2:3)+E(X1:3)) = 1

3 ·E[(X3:3−X2:3)+(X1:3−X2:3)]: if the left tail
of the distribution is heavier than the right tail, then X1:3 will generally be further from
X2:3 than X2:3 from X3:3, and therefore |E(X1:3−X2:3)| > |E(X1:3−X2:3)|, which means
λ3 < 0. On the contrary, if the right tail is heavier, then λ3 > 0; if the distribution
is symmetric, then λ3 = 0. As a consequence, we can think of λ3 as a measure of the
asymmetry of the distribution, and so is τ3 (or L-skewness).

� λ4 = 1
4(E(X4:4)− 3E(X3:4) + 3E(X2:4)−E(X1:4)) = 1

4 ·E[X4:4 −X1:4 − 3(X3:4 −X2:4)]:
this compares the separation of the extreme order statistics with respect to the central
order statistics. This interpretation is somewhat hard to do. For example, if X is an
uniform random variable, E(Xi:4−Xi−1:4) = E(Xj:4−Xj−1:4) whenever this expression
make sense for i and j, and thus λ4 = 0. This is the limit case, in which the distribution
is ’flat’ (its density function, in its support, is constant). The further the distribution
is from being flat, the further from 0 this quantity is. τ4 is known as the L-kurtosis.

We have just seen how the interpretation of L-moments is not worse than that of the usual
moments, excepting the difficulty of reading L-kurtosis.2 In fact, it could be argued that for
this purpose the L-kurtosis is better: for example, for all r ≥ 3 τr is bounded in absolute
value by 1 (see [Hos90, Theorem 2]). This allows a better interpretation of the L-skewness
compared to the skewness, which is not bounded.

As previously mentioned, the estimators of λr will be derived from the estimators of βk,
applying the plug-in method to Equation 1.8:

λ̂r+1 =

r∑
k=0

pr,kβ̂k. (1.9)

An unbiased estimator for βk is

β̂k :=
1

n

n∑
j=k+1

(
k∏
s=1

(j − s)
(n− s)

)
xj:n. (1.10)

The following estimator, asymptotically biased, is also reported to perform well (see [HWW85]):

β̂k[pj,n] =
1

n

n∑
j=1

pj,nxj:n, where pj,n =
j − α
n+ β

(0 < a < 1).

2However, the interpretation of the usual kurtosis is not very clear either.
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It has been found that whenever estimating the parameters of the GEV distribution and
then estimating high quantiles if the size sample is not large, estimation using P.W.M. (or
L-moments: they enjoy the same properties) performs better than MLE (see, for example,
[HWW85]). It has been reported that the best results were obtained when taking α = 0.35,
β = 0. This result was obtained through simulations (again, see [HWW85]).

However, L-moments do not exist whenever ξ > 1, and they should not be used if there
is evidence that this is the case (in the same way that MLE estimation should not be used if
it may be the case than ξ < −1).

We conclude this section with the equations of the first L-moments for the GEV family.
They have been extracted from [HW97, Appendix A6]. If ξ 6= 0:

λ1 =µ− σ

ξ
(1− Γ(1− ξ)) (1.11)

λ2 =− σ

ξ
(1− 2ξ)Γ(1− ξ) (1.12)

τ3 =2 · 1− 3ξ

1− 2ξ
− 3 (1.13)

τ4 =
5(1− 4ξ)− 10(1− 3ξ) + 6(1− 2ξ)

1− 2ξ
. (1.14)

From the estimator of τ3, ξ̂ can be computed, and with the relations

σ = − λ2ξ

(1− 2ξ)Γ(1− ξ)
and µ = λ1 +

σ

ξ
(1− Γ(1− ξ))

the rest of the estimators can be obtained. In [HWW85] the authors proposed the approxi-
mation

ξ ≈ −7.8590c− 2.9554c2, where c =
2

3 + τ3
− log(2)

log(3)
,

which has an absolute error with an upper bound 9 · 10−4 whenever ξ ∈ [−1
2 ,

1
2 ]. This

approximation avoids solving the system using numerical methods, and as a consequence,
computing the estimators is very fast. On the other hand, when ξ = 0, the expressions above
should be understood as the limit when ξ → 0. The result is:

λ1 =µ+ σγ (1.15)

λ2 =σ log(2) (1.16)

τ3 =
log(9)− log(8)

log(2)
(1.17)

τ4 =
16 log(2)− 10 log(3)

log(2)
. (1.18)

The estimation via L-moments is asymptotically normal if ξ < 1
2 (see [HWW85]. Again,

observe the resemblance with the MLE, which is asymptotically normal for ξ > −1
2). The

expression of the covariance matrix of the estimators via L-moments (denoted by (µ̂L, σ̂L, ξ̂L))
is very difficult to describe. It is derived from the covariance matrix of (β̂0, β̂1, β̂2), which can
be found in [HWW85, Appendix C], and then using the Delta method. It has the form

1

n

σ2w11 σ2w12 σw13

σ2w12 σ2w22 σw23

σw13 σw23 w33

 ,



1.2. ESTIMATION OF THE PARAMETERS 19

where wij depend only on ξ. Some values are shown below ([HWW85, Table 1]):

ξ w11 w12 w13 w22 w23 w33

0.4 1.6637 1.3355 1.1405 1.8461 1.1628 2.9092
0.3 1.4153 0.8912 0.5640 1.2574 0.4442 1.4090
0.2 1.3322 0.6727 0.3926 1.0013 0.2697 0.9139
0.1 1.2915 0.5104 0.3245 0.8440 0.2240 0.6815
0 1.2686 0.3704 0.2992 0.7390 0.2247 0.5633

-0.1 1.2551 0.2411 0.2966 0.6708 0.2447 0.5103
-0.2 1.2474 0.1177 0.3081 0.6330 0.2728 0.5021
-0.3 1.2438 –0.0023 0.3297 0.6223 0.3033 0.5294
-0.4 1.2433 –0.1205 0.3592 0.6368 0.3329 0.5880

Elemental Percentile Method

The Elemental Percentile Method (EPM) was first introduced for the GEV family in
[CH94], although it can be used for other distributions, as we will see. It can be described
as follows:

1. For every combination of indices i < j < k ∈ {1, · · · , n}:

(a) Match empirical and theoretical quantiles for i, j, k, that is, consider the system
{Gξ,µ,σ(Xl:n) = pl,n : l = i, j, k}, where pl,n = l−α

n+β , and 0 < α < 1 and β ≥ 0.

(b) Compute solutions ξ̂i,j,k, µ̂i,j,k and σ̂i,j,k of the system (most of the times, via
numerical methods).

2. Apply a centralization and robust function to the collection of estimators and obtain a
final estimator θ̂EPM := {ξ̂EPM , σ̂EPM µ̂EPM}.

Given i < j < k ≤ n, the system to be solved (if ξ 6= 0) for ξi,j,k, µi,j,k and σi,j,k is:

pi:n = exp

(
−
(

1 +
ξi,j,k
σi,j,k

(xi:n − µi,j,k)
)−1/ξi,j,k)

pj:n = exp

(
−
(

1 +
ξi,j,k
σi,j,k

(xj:n − µi,j,k)
)−1/ξi,j,k)

pk:n = exp

(
−
(

1 +
ξi,j,k
σi,j,k

(xk:n − µi,j,k)
)−1/ξi,j,k)

.

Eliminating µi,j,k and σi,j,k, we obtain:

xj − xk
xi − xk

=
(− log(pj,n))−ξ − (− log(pk,n))−ξ

(− log(pi,n))−ξ − (− log(pk,n))−ξ
=

1−A−ξjk
1−A−ξir

,

where Aik = log(pi:n)
log(pk:n)

. The rest of the parameters can be computed using the relations:

σi,j,k = ξi,j,k ·
xi:n − xj:n

(− log(pi:n)−ξ − (− log(pj:n)−ξ
and µi,j,k = xi:n +

σi,j,k
ξi,j,k

(1− (− log(pi:n)−ξ)).

On the other hand, if there is evidence that ξ = 0, then it is enough to consider two indices
i < j and the system is: 

pi:n = exp

(
−e−

xi:n−µi,j
σi,j

)
pj:n = exp

(
−e−

xj:n−µi,j
σi,j

)
.
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In this case, exact solutions can be found for µi,j and σi,j :

σi,j =
xj:n − xi:n

log
(

log(pi:n)
log(pj:n)

) and µi,j = xi:n + σi,j(log(− log(pi:n))).

We now do some remarks on the EPM :

� The main advantage of this method over the MLE and the estimation via L-moments is
that it can be applied regardless of the possible value of ξ (recall MLE nor L-moments
should be applied when ξ < −1 or ξ > 1 respectively). In fact, according to [CH94],
outside of a moderate range of ξ, EPM performs better than the L-moments.

� However, the number of combinations of possible indices i < j < k grows speedily with
n. A possible alternative is fixing k = n: this has the advantage of avoiding inconsistent
estimators with the data whenever the right tail is finite (ξ < 0), which is a reported
problem of the L-moments ([ZBK10]). To further accelerate the process, i = 1 can also
be fixed.

� The estimators we get are weakly consistent, but we lack results concerning asymptotic
normality. A possible alternative to this, as suggested in [CH94], is to use confidence
intervals based on parametric bootstrap.

1.2.2 Exceedance approach

The methods that we will introduce in this section are commonly known as Peak-over-
Threshold (POT) methods. Its use requires to handle the so-called Generalized Pareto
distribution.

Definition 1.2.3. We define the Generalized Pareto (GP) distribution as the one with cdf:

Hξ,σ(x) =


0 x ≤ 0

1− exp(−x
σ ) ξ = 0, x > 0

1− (1 + ξ xσ )−1/ξ ξ 6= 0, 1 + ξ xσ > 0

1 ξ < 0, x ≥ σ
|ξ|

We show the cdf and the density functions of GP distributions in Figure 1.2.

Remark.

� As particular cases of the GP distribution, we find the exponential distribution when
ξ = 0, the uniform distribution when ξ = −1 or the Pareto distribution if ξ < 0.

� It is very common to find the GP distribution defined with −ξ instead of ξ, similarly to
what happened to the GEV distribution. It can also be found defined with a localiza-
tion parameter, exchanging x for x − µ (and the support of the distribution changing
accordingly). However, in Extreme Value Theory, the GP distribution is used because
of Theorem 1.2.4, which makes clear why this location parameter is not necessary.
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Figure 1.2: Cumulative distribution and density functions of the GP distribution with pa-
rameters ξ ∈ {0, 1,−1}, σ = 1.

As mentioned in the introduction, if X is a rv with distribution belonging to some domain
of attraction, and u is large enough (in terms which we have not specified yet) then the dis-
tribution of the exceedances X−u can be approximated by a GP distribution. Furthermore,
the parameters are very related to the ones from the GEV distribution.

Theorem 1.2.4 (Pickands–Balkema–de Haan theorem). Let X1, · · · , Xn be iid with distri-
bution F such that F ∈ D(G) for some G. Then for large enough u there exist ξ and σ̃ such
that

P(X − u ≤ y|X > u) ≈ Hξ,σ̃(y).

Sketch of proof. Let us compute the value of

P(X − u > y|X − u > 0) =
1− F (u+ y)

1− F (u)
.

As already mentioned, for large enough n we can accept the approximation Fn(x) ≈ Gξ,µ,σ(x)
for all x ∈ R and some ξ, µ ∈ R, σ > 0. Therefore,

log(F (x)) ≈ 1

n
log(Gξ,µ,σ(x))
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whenever Gξ,µ,σ(x) 6= 0. If u ∈ R is such that F (u) ≈ 1, then log(F (u)) ≈ −(1 − F (u)),
which implies

1− F (u) ≈ 1

n
log(Gξ,µ,σ(u)) =

1

n

(
1 +

ξ

σ
(u− µ)

)−1/ξ
.

Analogously, if y ∈ (0, xF − u):

1− F (u+ y) ≈ 1

n
log(Gξ,µ,σ(x)) =

1

n

(
1 +

ξ

σ
(u+ y − µ)

)−1/ξ
.

Finally, dividing, we obtain:

1− F (u+ y)

1− F (u)
=

(
1 +

ξ

σ̃
y

)−1/ξ
σ̃ = σ + ξ(u− µ)

and we conclude that P(X − u ≤ y|X − u > 0) ≈ Hξ,σ̂(y).

Remark. A detailed proof can be found in [Pic75].

Compared to parameter estimation methods for the GEV distribution, there is many
literature studying the estimation of parameters for the Generalized Pareto distribution,
specially in this context.3 An exhaustive comparison of many estimation methods within
the POT approach can be found in [ZBK10]. We will now briefly discuss the estimators
introduced in the block maxima approach. Assume ξ 6= 0, or otherwise the GP distribution
reduces to the exponential distribucion, which can be estimated by any means (for example,
the MLE and the estimator via L-moments is the same).

� MLE. Its theoretical behaviour is very similar to the MLE for the GEV distribution:
it exists whenever ξ > −1 and it is asymptotically normal when ξ > −1

2 ([Dom15]).
According to [ZBK10], MLE it is the best method for estimating the parameters when
the sample size is large enough and ξ belongs to (−1

2 ,
1
2). The log-likelihood function

is:

l(x1, · · · , xn; ξ, σ)(X1, · · · , Xn) =

{
−n log(σ)−

(
1
ξ + 1

)∑n
i=1 log

(
1 + ξ

σXi

)
ξ 6= 0

−n log(σ)− 1
σ

∑n
i=1Xi ξ = 0

(1.19)

And the asymptotic covariance matrix is ([BGT04, p. 162]) is

Iθ =
1

2σ + 1

[
2
ξ+1

1
(ξ+1)σ

1
(ξ+1)σ

1
σ2

]
I−1θ = (1 + ξ)

[
1 + ξ −σ
−σ 2σ2

]

� L-moments: as we already mentioned, they enjoy the same properties as the PWM.
For the latter, it has been reported (see [ZBK10]) that they perform better than the
rest of the estimators if ξ is in the range (0, 12), regardless of the sample size. However,

3This can be due to the majority opinion that the excedance approach is better than the block maxima
approach, mainly because they use more data. However, this has been questioned: for a detailed discussion,
see Bücher, Zhou: A horse racing between the block maxima method and the peak-over-threshold approach
(2020). Statistical Science. To appear.
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L-moments are only defined for ξ < 1. Below we can find the first four L-moments for
the GP distribution, as reported in [HW97, Appendix A5]:

λ1 =
σ

1− ξ
(1.20)

λ2 =
σ

(1− ξ)(2− ξ)
(1.21)

τ3 =
1 + ξ

3− ξ
(1.22)

τ4 =
(1 + ξ)(2 + ξ)

(3− ξ)(4− ξ)
, (1.23)

The calculation of the estimators ξ̂L and σ̂L from the estimators of the L-moments
(shown in Equations 1.9 and 1.10 or in any of the variants following these equations) is
simply: a closed expression of ξ̂L can be found from Equation 1.22, and then use 1.20
or 1.21 to compute σ̂L. The estimators are asymptotically normal when ξ < 1

2 , and the
covariance matrix of (ξL, σL) is [BGT04, Section 5.6]:

1−2ξ
3−2ξ

[
(1− ξ)(2− ξ)2(1− ξ + 2ξ2) −σ(2− ξ)(2− 6ξ + 7ξ2 − 2ξ3)

−σ(2− ξ)(2− 6ξ + 7ξ2 − 2ξ3) σ2(7− 18ξ + 11ξ2 − 2ξ3)

]
(1.24)

� Elemental Percentile Method: as explained, this method is able to perform where the
MLE and the estimator using L-moments cannot be used, as it is defined for every ξ.
Since we only have two parameters, then we only need to pick two parameters.

In this setting, if δ := σ
ξ , given i < j ≤ n the system to be solved is:pi:n = 1−

(
1 + xi:n

δi,j

)−1/ξi,j
pj:n = 1−

(
1 +

xj:n
δi,j

)−1/ξi,j
Eliminating ξi,j we get the following equation for δi,j :

log(1− pi:n) log(1 +
xj:n
δi,j

) = log(1− pj:n) log(1 +
xi:n
δi,j

),

and, using the relations

ξi,j =
log
(

1− xi:n
δi,j

)
log(1− pi:n)

and σi,j = δi,jξi,j .

we can compute the estimators ξ̂i,j and σ̂i,j .

Once again, to compute the variance estimators of ξ̂EPM and σ̂EPM and to obtain confidence
intervals, parametric bootstrap is suggested [CH97]. It is also advisable to fix j = n to reduce
the computational cost of the estimation, and to ensure that the estimator is consistent with
the observed data, which may be a problem if ξ < 0.

If the block maxima methods entail a tradeoff regarding the block size, the POT approach
has an analogous problem with the choice of the threshold u: if u is too small, then the
approximation log(F (u)) ≈ −(1 − F (u)) is poor, and the corresponding approximation of
the exceedances by a GP distribution is very weak. On the contrary, if u is very large, then
the approximation is valid but we may end up with too few data to make the pertinent
estimations. To help us make the choice, there are several methods available, as we show
now.
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Choosing the threshold4

There are several heuristic formulas that are used in practice, even though they lack, to a
greater or lesser extent, formal arguments supporting them. One example are percentile rules:
when doing this, generally the 0.9 quantile is chosen as a threshold. Upper order statistics

are also considered: and usual elections k =
√
n or k = n

2
3

log(log(n)) . A detailed discussion on

different ways to choose the threshold can be found in [SM12].

We will use graphical methods, which allow us to assess in every situation which the
better option is. A drawback of this approach is that sometimes plots are not easy to read.
We first note that if Y ∼ Gξ,σ, then E[Y ] = σ

1−ξ if ξ < 1 (and ∞ otherwise). Now, if u0 is
a valid threshold (in the sense of being large enough), and Yu0 = X − u0 is an exceedance
of u0, where X ∼ Gξ,µ,σ, then E[Yu0 ] = σ0

1−ξ , where σ0 = σ + ξ(u0 − µ). Besides, since u0 is
valid, then every u > u0 is a valid threshold as well. If Yu is an exceedance of u, with the
conditions just imposed, we have the relation:

E[Yu] =
σ + ξ(u− µ)

1− ξ
=
σ0 + ξ(u− u0)

1− ξ
,

and this expression is linear in u. As a consequence, if we plot the points
u, 1

#{i : Xi > u}
∑

i:Xi>u

(Xi − u)

 : u < Mn)

 ,

then for some u the plot should start to look like a straight line, and any of these values of
u could be an adequate election of a threshold. This plot is called the mean residual life plot
(see, for reference, [GR10]). Moreover, since the parameters of the line are related to the
parameters of the GP distribution, one could think of doing linear regression on the part of
the plot that could be identified as a good option as a way to estimate them. This has been
done in [ZW07], where they find good results. It has also been used in [CH97] to measure the
goodness of fit of the EPM estimator. It is usual to plot the mean residual life plot along
with confidence intervals based on asymptotic normality of the sample mean. Both things
are easy to compute since, for a given threshold, it only involves computing the mean and
the stadard deviation of the exceedances over that threshold.

Another option to choose the threshold is based on the idea that the quantities ξ and
σ∗ := σu − ξu, where σu is the second parameter of the GP distribution with threshold u,
do not depend on u when it is a valid threshold. As a consequence, if we plot these values
against u, the plots should begin being constant at some point. Confidence intervals can
be computed as well: confidence intervals for ξ̂ depend on the estimation method that has
been used, whereas confidence intervals for σ̂∗ require the Delta method. These plots are
sometimes referred to as parameter stability plots.

The last option is considerably more expensive, because it requires fitting the model
several times and compute the corresponding confidence intervals. However, the mean life
residual plot may not be easy to read for extreme values of u, because the lack of points
above those thresholds may increase the variance of the sample mean. As a consequence, this
option may be helpful if the first interpretation gets difficult. Note that these methods can
also be useful for evaluating the goodness of the fit and not only for choosing the threshold.

4For this discussion, we have followed Section 4.3 of [Col01].
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1.2.3 On the value of ξ

The importance of ξ is evident: it is the parameter that determines the shape of the GP and
the GEV distributions and, especially, it has a great influence on the right tail. When ξ < 0
the right tail is bounded; when ξ = 0 it decreases exponentially, and if ξ > 0 it decreases
polynomially, that is, the distribution is a heavy-tailed distribution.

We have also seen how, depending on the value of ξ, some estimation methods are more
appropriate than others. As a consequence, it is very important to have a preliminary idea
of its value. There are several ways to achieve this:

Depending on the the problem, some values are more expected than others. For example,
according to [HWW85], in 1975, the fitting of 32 annual flood series belonging to the Natural
Environment Research Council database found ξ to be in the range (−0.48, 0.32), and in
more general settings it belongs to (−0.5, 0.5): that is why the MLE or the estimation via
L-moments are considered most of the times. However, the estimation of the extreme values
of sea waves measured in Bilbao in 1997 is far from that range: ξ goes from −0.682 to −1.271
(see [CH97]).

A more rigurous alternative, if possible, would consist in having a preliminary estimation
of ξ using an easy-to-compute estimator to have a preview of the shape of the distribution,
and ideally to do hypothesis testing. This would allow us to best decide which methods can
be used. Fortunately, there exist estimators as described. They are based on more complex
conditions for a distribution to belong to a domain of attraction that the ones we have seen.
We will settle for just describing the estimators.

Pickands and moment estimator

The Pickands estimator is one of the most simple estimators available. A complete dis-
cussion with the results that we are going to mention can be found in [DH89]. It is defined
as:

ξ̂P,kn := (log(2))−1 log

(
Xn−k+1:n −Xn−2k+1:n

Xn−2k+1:n −Xn−4k+1:n

)
,

where k = k(n). An explanation of the origin of this estimator can be found in [BGT04]. It

can be proved that the Pickands estimator is weakly consistent if k(n) → ∞ and k(n)
n → 0,

and strongly consistent if, in addition, k(n)
log(log(n)) → ∞. Furthermore, under considerably

more complicated conditions, stated in Theorem 2.3 and Theorem 2.5 of the aforementioned
paper, ξ̂P,kn is unbiased and asymptotically normal with variance

ξ2(22ξ+1 + 1)

(2(2ξ − 1) log(2))2k(n)
.

One drawback of the Pickands estimator is the fact that only 4 values are used, which
undoubtedly seems like a waste of information. This may explain why the variance is so
high. However, it is very valued for its simplicity. An alternative which has been observed to
perform better than the Pickands estimator, while having similar properties, is the moment
estimator.

Consider first M
(1)
n := 1

k

∑k−1
i=0 log(Xn−i:nXn−k:n

). This is known as the Hill estimator, which

historically speaking is the first estimator based on the underlying conditions used by the
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estimators that we are mentioning. It is easy to observe that it only makes sense when
ξ > 0. It enjoys very similar properties to the Pickands estimator, while the variance when

it is asymptotically normal is ξ2

k(n) , which is considerably smaller. Now, define the following
quantities:

M (2)
n :=

1

k

k∑
i=0

log2
(
Xn−i:n
Xn−k:n

)
and ξ̂M,k

n := M (1)
n + 1− 1

2

[
1− (M

(1)
n )2

M
(2)
n

]−1
.

The statistic ξ̂M,k
n is known as the moment estimator. It has the following properties:

� Weakly consistent if xF > 0, k(n)
n → 0 and k(n)→∞.

� Strongly consistent if the previous condition hold and k(n)
log(n)δ

→∞ for some δ > 0.

� Under the same conditions as the Pickands estimator, asymptotically normal with vari-
ance 

1+ξ2

k(n) if ξ ≥ 0
(1−ξ)2(1−2ξ)

k(n)

(
4− 8(1−2ξ)

1−3ξ + (5−11ξ)(1−2ξ)
(1−3ξ)(1−4ξ)

)
if ξ < 0.

The previous results can be found in [DEH89]. Computationally speaking, it is not signifi-
cantly more involved than the Pickands estimator and, as mentioned, it is found to perform
better. A possible inconvenience is the requirement that xF > 0. However, it can be easily
solved by doing a proper shift of the data.

To sum up, any of these estimators are appropriate enough for our purpose, which is to
do a preliminary study on the shape of the distribution. Finally, we will introduce graphical
methods on the right tail of the distribution, to try and get more additional information on
this topic.

Graphical methods: P-P Plot

The P-P plot, along with the Q-Q plot, is one of the most used graphical methods to
evaluate how feasible it is for a sample to come from a given parametric family of distributions
{Fθ, θ ∈ Θ}. The idea consists of looking for transformations g of (0, 1) and h of the sample
space such that

g(Fθ(x)) = ah(x) + b,

where a and b may depend on θ. As a consequence, if we have a sample X1, · · · , Xn identically
distributed and F̃ is its empirical cdf, then the points{

(h(Xi), g(F̃ (Xi)) : i ∈ {1, · · · , n}
}

should resemble a straight line when Xi ∼ Fθ. We can use this procedure to evaluate which
one of the domains of attraction best fits our data, and have a preliminary idea on what we
can expect, and what methods we can use.

Recall that the cdf of the Gumbel distribution (the subfamily of the GEV distribution
corresponding to ξ = 0) is Fµ,σ(x) = exp(− exp

(
−x−µ

σ

)
). Taking logarithms, we obtain:

− log(− log(F (x))) =
1

σ
x− µ

σ
,
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so if g(F (x)) = − log(− log(F (x))) and h(x) = x we have the desired transformations.

On the other hand, if Gξ,µ,σ(x) is the cdf of the GEV distribution (Equation 1.4), derivat-
ing g(G(x)) twice we get:

g′′(G(x)) =

{
−ξ

(σ+ξ(x−µ)2 ξ 6= 0

0 ξ = 0

If we have a sample from a distribution F and we consider the Gumbel P-P plot, we can
argue that:

� If the right tail looks like a straight line (g′′ = 0), we have a hint that F belongs to the
Type I domain of attraction.

� If the right tail looks convex (g′′ > 0), we have a hint that F belongs to the Type II
domain of attraction.

� If the right tail looks concave (g′′ < 0), we have a hint that F belongs to the Type III
domain of attraction.

Quantiles

g
(G

(x
))

x95 x99

Normal (Type I)

Cauchy (Type II)

Uniform (Type III

Figure 1.3: Gumbel P-P Plot where the right tail of the Normal ([LLR83, Theorem 1.5.3]),
Cauchy (Example 3) and Uniform (Example 5) distributions have been plotted. The pa-
rameters of the distributions have been adjusted so that the quantiles (0.95, 0.999) are the
same.
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1.3 Results under dependence conditions

The theoretical results that we have seen so far rely on the observations being iid. However,
in the vast majority of practical situations this is not the case, and therefore it is of great
interest to know what happens if we relax this condition in some way. For instance, the
observations being identically distributed may be a resonable assumption, but independence
is very rarely the case. For example, in real-life problems extreme values tend to come along
with others (we say that they are clustered). In this section we will first prove a result giving
conditions under which the possible limit distributions for the normalized maxima are the
same, that is, GEV distributions. Later on, we will see that, in terms yet to be defined, we
can use the same tools as in the iid case.

The technique to prove the more refined version of the Fisher-Tippett-Gnedenko theorem
will be different from the iid case. We want to prove that if {Xn : n ∈ N} is a sequence
of rv’s with certain dependence conditions, and there exist sequences {an} ⊂ R+ and {bn}
such that if P(an(Mn − bn) ≤ x) converges to a non-degenerate cdf, then that distribution is
max-stable (or, equivalently, GEV).

From the characterization of max-stable distributions in Proposition 1.1.5, it can be de-
duced that G is max-stable if and only if there exist sequences {an} ⊂ R+ and {bn} such
that for every k ∈ N:

P(ank(Mn − bnk) ≤ x)
w−→

n→∞
G1/k(x).

Now, assume P(an(Mn − bn) ≤ x)
w→

n→∞
G(x). Note that, for any fixed k ∈ N, the

convergence still holds changing n for nk. It is clear to see that G is max-stable if, under the
previous assumption, for all k ≥ 2:

P (ank(Mnk − bnk) ≤ x)− Pk (ank(Mn − bnk) ≤ x) −→
n→∞

0, (1.25)

and this is what we will prove. We will now settle the terminology we will use in this section.

Definition 1.3.1.

� If i1, · · · , ir is a set of indices, Fi1,··· ,ir(x1, · · · , xr) will denote the joint cdf of the random
vector (Xi1 , · · · , Xir). If x1 = · · · = xr = x, we will write Fi1,··· ,ir(x).

� If j1 ≤ j2, then [j1, j2] will denote the set {j ∈ N : j1 ≤ j ≤ j2}. Its length is j2− j1 +1.
If [j1, j2] are [j3, j4] intervals, we say they are separated by m if j3 − j2 = m.

� If E = {i1, · · · , ir} ⊂ N is a set of indices and {Xn : n ∈ N} a sequence of rv’s,
M(E) := max{Xij : j ∈ [1, r]}.

The first condition that we impose to the process is stationarity: recall that the sequence
{Xn : n ∈ N} is stationary if for every combination r, s ∈ N, i1, · · · , ir ∈ N, Fi1,··· ,ir =
Fi1+s,··· ,ir+s. From now on, every process will be stationary, unless specified.

Definition 1.3.2. Let {un} be a real sequence. We say that the condition D(un) holds for
the process {Xn : n ∈ N} if for every chain i1 < · · · < ip and j1 < · · · , jp′ ≤ n such that
j1 − ip ≥ s,

|Fi1,··· ,ip,j1,··· ,jp′ (un)− Fi1,··· ,ip(un)Fj1,··· ,jp′ (un)| ≤ αn,s,

where αn,s decreases in s and for all λ > 0, limn αn,[nλ] = 0.
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In the last expression, the left hand side is 0 if the rv’s {Xn : n ∈ N} are independent.
If D(un) holds, then the dependence for events of the form Xi ≤ un decreases the more
separated the corresponding index collections are. In real problems, this translates into the
dependence becoming weaker the more separated the measures are, for instance, space or
time-wise. The condition D(un) is, as a consequence, a formalization of a dependence that
turns out to be very natural and feasible in lots of situations. We will show that under this
condition, the Fisher-Tippett-Gnedenko theorem still holds.

Lemma 1.3.1. Let {un} be a sequence such that D(un) holds for a sequence {Xn : n ∈ N}
of rv’s, and let n, r, k ∈ N and E1, · · · , Er be subintervals of [1, n] pairwise separated by, at
least, k. Then ∣∣∣∣∣∣P (∩rj=1{M(Ej) ≤ un}

)
−

r∏
j=1

P({M(Ej) ≤ un})

∣∣∣∣∣∣ ≤ (r − 1)αn,k

Proof. We apply induction on r. Let Aj := {M(Ej) ≤ un} for j = 1, · · · , r.

� r = 2: |P(A1 ∩A2)− P(A1)P(A2)| = |FE1E2(un)− FE1(un)FE2(un)| ≤ αn,k.

� First, observe that∣∣∣P(∩rj=1Aj

)
−
∏r
j=1 P(Aj)

∣∣∣ ≤ ∣∣∣P(∩rj=1Aj)− P(∩r−1j=1)P(Aj)
∣∣∣+ P(Ar)

∣∣∣P(∩r−1j=1Aj

)
−
∏r−1
j=1 P(Aj)

∣∣∣
By induction assumption, the second term of the right hand side can be bounded by
(r − 2)αn,k. On the other hand, if Ēr = ∪r−1j=1Ej and Ār = {M(Ēr) ≤ un}, then the

first term can be written as |P(Ār ∩Ar)−P(Ār)P(Ar)|, which can be bounded by αn,k,
because D(un) holds.

For large n, let k < n and n′k :=
[
n
k

]
. Assume that there exists m ∈ N such that

k < m < n′k, which is the case if n is large enough. Define:

Ij := [n′k(j − 1) + 1, jn′k −m], I∗j := [jn′k −m+ 1, jn′k] (j ∈ [1, k])

Ik+1 := [(k − 1)n′k +m+ 1, kn′k], I∗k+1 := [kn′k + 1, kn′k +m].

Note that the only interval which is not contained in [1, n] is I∗k+1. Besides, the intervals
I1, I

∗
1 , · · · , Ik, I∗k are consecutive, and their lengths are n′k −m and m respectively.

Lemma 1.3.2. Under the previous previous notation, let {un} be a sequence such that D(un)
holds for the sequence of rv’s {Xn}. Then

1. 0 ≤ P(∩rj=1{M(Ij) ≤ un})− P(Mn ≤ un) ≤ (k + 1)P(M(I1) ≤ un < M(I∗1 )).

2.
∣∣∣P(∩rj=1{M(Ij) ≤ un})− Pk(M(I1) ≤ un)

∣∣∣ ≤ (k − 1)αn,m.

3.
∣∣∣Pk(M(I1) ≤ un)− Pk(Mn′k

≤ un)
∣∣∣ ≤ kP(M(I1) ≤ un < M(I∗1 )).

Proof. We note that the probabilities P(M(Ij) ≤ un) and P(M(Ij) ≤ un ≤ M(I∗j )) do not
depend on the value of j because of the stationarity of the process. The first two results
follow easily from this observation. The latter also follows taking into account that

P(M(I1) ≤ un)− P(Mn′k
≤ un) = P(M(I1) ≤ un < M(I∗1 )),

and also that yk − xk ≤ k(y − x) whenever 0 ≤ x ≤ y ≤ 1.
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From the previous results we can deduce the inequality∣∣∣P(Mn ≤ un)− Pk(Mn′k
≤ un)

∣∣∣ ≤ (2k + 1)P(M(I1) ≤ un < M(I∗1 )) + (k − 1)αn,m, (1.26)

adding and substracting P(∩kj=1{M(Ij) ≤ un < M(I∗j )}) and Pk(M(I1) ≤ un) and doing the

proper reorderings. Observe that if un = a−1n x + bn for some x ∈ R, changing n for nk and
n′k for n, the expression that we are bounding in absolute value is the left hand side of (1.25).
Since αn,m goes to 0, it is enough to conveniently bound P(M(I1) ≤ un < M(I∗1 )) to finish
our task:

Proposition 1.3.3. Under the previous previous notation, if D(un) holds for some sequence
{un} and r,m meet n ≥ (2r + 1)mk, then

P(M(I1) ≤ un < M(I∗1 )) ≤ 1

r + 1
+ 2rαn,m.

Proof. Define Ej := [2(j − 1)m + 1, (2j − 1)m] for j ∈ [1, r]. Since n′k ≥ (2r + 1)m, then
E1, · · · , Er is a collection of subintervals of I1 pairwise separated by m and separated by at
least m from I∗1 . Note that for every j ∈ [1, r] P(M(Ej) ≤ un) = P(M(I∗1 ) ≤ un) =: p. On
the other hand:

P(M(I1) ≤ un < M(I∗1 )) ≤P(∩rj=1{M(Ej) ≤ un}, {M(I∗1 ) > un})
=P(∩rj=1{M(Ej) ≤ un})− P(∩rj=1{M(Ej) ≤ un}, {M(I∗1 ) ≤ un})

The last expression can be bounded in absolute value by pr − pr+1 − 2rαn,m adding and
substracting pr − pr+1 and using the Lemma 1.3.1. The result follows now observing that
pr − pr+1 ≤ 1

r+1 (which can be proved from the geometric series expression of (1− p)−1).

It is now easy to put the pieces together to prove the Fisher-Tippett-Gnedenko theorem
for stationary sequences with the D(un) condition for some un.

Theorem 1.3.4. Let {Xn : n ∈ N} be a stationary sequence {Xn} of rv’s and {an} ⊂ R+,
{bn}, sequences such that P(an(Mn − bn) ≤ x) converges to a non-degenerate cdf G(x). If
D(un) holds for every sequence of the form un = a−1n x + bn, then G(x) is the cdf of a GEV
distribution.

Proof. As already discussed, it suffices to show that for all k ≥ 2∣∣∣P(Mn ≤ un)− Pk(Mn′k
≤ un)

∣∣∣ −→
n→∞

0.

Combining (1.26) and Proposition 1.3.3 we have:∣∣∣P(Mn ≤ un)− Pk(Mn′k
≤ un)

∣∣∣ ≤ 2k + 1

r + 1
+ (2r(2k + 1) + k − 1)αn,m,

and this goes to 0 letting first n and then r go to ∞.

Remark. The condition D(un) feels like an unnecesary restriction, considering that in most
real-life processes the dependence decreases the more separated the variables are, regardless
of its actual values. As a consequence, the following definition captures more suitably the
notion of dependence we want:
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Definition 1.3.3. We say that the condition D holds for the process {Xn : n ∈ N} if for
every chain i1 < · · · < ip and j1 < · · · < jp′ such that j1 − ip ≥ l and every u ∈ R:

|Fi1,··· ,ip,j1,··· ,jp′ (u)− Fi1,··· ,ip(u)Fj1,··· ,jp′ (u)| ≤ g(l),

where g(l) −→
l→∞

0.

Once we have found out conditions under which the non-empty domains of attraction are
the same, it is interesting to know the influence of these conditions on the limit distribution,
compared to the process being iid.

For a stationary process {Xn : n ∈ N} it is now useful to define the iid process {X̃n : n ∈
N} with the same marginal distributions as {Xn : n ∈ N}. The following theorem relates the
convergence of the normalized maximum of {X̃1, · · · , X̃n}, denoted as M̃n, which we already
know, with the convergence of the normalized Mn.

Theorem 1.3.5 ([BGT04], Theorem 10.4). Suppose P(a−1n (M̃n − bn) ≤ x)
w→

n→∞
G̃(x) for

sequences {an} ⊂ R+, {bn} and a non-degenerate cdf G̃(x). If D(un) holds for every sequence
of the form un = anx+ bn such that G̃(x) > 0 and P(a−1n (Mn − bn) ≤ x) converges for some
x, then there exists θ ∈ [0, 1] such that

P
(
Mn − bn

an
≤ x

)
−→
n→∞

(G̃(x))θ.

The constant θ is called the extremal index of the process {Xn : n ∈ N}. One of the
possible interpretations of the extremal index is the following: it is the inverse of the ex-
pected number of observations over a threshold in a cluster containing at least another ex-
ceedance. Therefore, the bigger the extremal process, the less clusterized the extremal values
are. Clearly, if the process is independent then θ = 1, although the contrapositive proposition
is not true: see, for example, [LLR83, Theorem 3.5.2]. On the other hand, under very relaxed
conditions ([BGT04, Condition 10.8]) the extremal index is strictly positive.

Estimation of the parameters

If we were to use the techniques described in the previous section, in which we are treating
our sample as iid, then we would be estimating G̃(x) (actually, G̃(anx+bn), which belongs to
the same family as G̃(x)), but we are interested in estimating G(x). To do this, it is necessary
that we estimate θ. If we do not do it, we are overestimating the quantiles we are interested
in (or, equivalently, we are underestimating the probabilities of events), because:

G−1(q) = G̃−1(q
1
θ ) ≤ G̃−1(q).

Its estimation is itself a wide topic, and we do not aim to delve into it, but to have a way
of estimating it. The following is one of the possible estimators, which is based on the
interpretation of θ we have seen.5 If u is a threshold and r < n, we define

θ̄Rn (u; r) =
n
∑n−r

i=1 1(Xi > u,M([i+ 1, i+ r]) ≤ u)

(n− r)
∑n

i=1 1(Xi > u)

As it can be seen from the last paragraphs, the Block Maxima approach is unaffected by
the conditions we have imposed to the process for two reasons: first, taking blocks it is very

5Which is not the only one. See, for example, (10.10) in [BGT04].
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likely that we are getting rid of the clusters by taking just one value per block; second, we
can assume that the block maxima are independent. This assumption is reasonable if the
length of the blocks is large enough, as a consequence of the long-range dependence being
weak (as formalized by the condition D, which most of the times holds). This implies that
we can use the described tools to estimate G̃. As a consequence, to estimate the joint cdf G,
the only thing left to do is estimating the extremal index. It is worth noting that depending
on the nature of the problem, a cluster may belong to different blocks, but this issue is
easily solvable. For example, in hydrology. when studying floods, the water year (starting in
October 1 and finishing in September 30) is taken instead of the usual year; this solves the
potential problem of a flood occurring in late December and early January.

However, the Peak-over-Threshold approach must be reconsidered. This is because, in
order for the exceedances over a valid threshold to follow a GP distribution, these exceedances
had to be independent. As we have already mentioned, most of the times they are clusterized.
As a consequence, this approach requires a way of declusterizing, that is, localice the clusters
and pick the maxima of each cluster. From here, the GP distribution can be fit. Independence
of the cluster maxima is also a reasonable assumption, as proposed by [Col01].

Having a methodical way of declustering is, as estimating the extremal index, a deep
issue, and we do not intend to focus here. A simple way of achieving this, used by [Haa90],
is the following: given i ∈ N, select only the values larger than both the i preceding and the
i following observations over a threshold.



Chapter 2

River floods in the Basque Country

We know that records must be broken in the future, so if a flood design is based
on the worst case of the past then we are not really prepared against floods.
Materials will fail due to fatigue, so if the body of an aircraft looks fine to the
naked eye, it might still suddenly fail if the aircraft has been in operation over an
extended period of time. Our theory has by now penetrated the social sciences,
the medical profession, economics and even astronomy. We believe that our field
has come of age. ([GLS94])

Introduction

Extreme Value Theory is greatly used in different disciplines of knowledge. For example,
if we look at recent publications of the journal Extremes (electronic ISSN 1572-915X, see
https://www.springer.com/journal/10687 for information), we not only find theoretical
research on topics we have briefly mentioned; we can also see applications of this framework
to engineering, risk theory, environmental or social sciences.1

The first application of Extreme Value Theory dates from 1938, when Gumbel studied
radioactive emissions. However, he would soon direct his interest in applying these tools to
hydrology, namely, to the study of floods, to which he was devoted in the 1940s. This would
be a recurrent topic in his career: recall that he was the first in applying multivariate extreme
value techniques, and he did it in 1964 with the level of water measured at two different points
of the same river. Since then, hydrology has benefited much from using these methods.

In the following pages we will use Extreme Value Theory tools to study and get insight
on the floods of the river Oñati, in the Basque Country. As already mentioned, I have had
access to the data thanks to Instituto de Hidráulica Ambiental of the University of Cantabria.
As far as I am concerned, this is the first time that Extreme Value Theory is used to handle
this data.

2.1 Motivation

The Basque Country is a region where the risks of floods is inherently high. This is because of
the occupation of alluvial plains (the surroundings of rivers or, more general, streams, which
are very likely to be affected if the volume flow of the stream increases) to economic and

1For the latter, see the very interesting [RZ17].

33

https://www.springer.com/journal/10687


34 CHAPTER 2. RIVER FLOODS IN THE BASQUE COUNTRY

social activities. For example, the city center of Vitoria-Gasteiz is built on the alluvial plain
of the river Zadorra. However, the most illustrative example is Bilbao, the cornerstone of the
Basque economy (see [MM20]). Bilbao was built in the place of confluence of the Cantabrian
Sea with the river Ibaizabal2, and some parts of the Estuary of Bilbao, where the Ibaizabal
and the river Nervion meet, is navigable by big ships. This was one of the keys of the big
economical development that Bilbao still has. Of course, this is not free of risks: in 1983 an
event of ’cold drop’ occurred in the Basque Country, Cantabria and eastern Asturias, but had
its strongest effect in Bilbao, where the river Ibaizabal overflowed (in some points, up to 5m).
The aftermath: 34 deaths and material damages worth 200.000 million pesetas (Spanish old
coin; 1200 million euros, not taking inflation into account) and the industry of the region,
main economic force of the Basque Country, completely shut down.

In a setting like this, great and damaging floods are not a possibility, but a certainty. It
is important to be prepared in two ways. It is needed:

� An emergency plan to know how to proceed when a catastrophe happens along with a
prediction system to foresee potentially harmful events. For example, in the disaster
of 1983 autonomous communities in Spain were just born (the Statute of Autonomy of
the Basque Country dates from 1979), so the organisms which should take care of these
policies were not fully prepared. As a consequence, their emergency plan was untested
and improvable. Their current emergency plan can be found in [URA15].

� Some knowledge on the behaviour of these disasters and their frequency to happen.
This is commonly expressed in terms of return levels and return periods, which are
good ways of describing extreme-value distributions.

Both things are connected, and in particular the first one is dependent on having some insight
on the frequency of events whose consequences we want to reduce as much as possible. There
is more than one way to proceed on this. At first, hydrological models for floods were built by
simple interpolation from observed values. As stated by Gumbel in [Gum41]: “these formulas
are sometimes constructed ad hoc [...] and have no general meaning. Most of them are rather
complicated.”

Later on, proper statistical distributions appeared with the purpose of trying to fit extreme
values. For instance, a widely used distribution is the log-Pearson type III (that is, a random
variable X follows a log-Pearson type III if log(X) follows a Pearson type III), which is
recommended by the United States Geological Survey in their Bulletin 17, or Guidelines
for Determining Flood Flow Frequency ([ECF19]); another distribution is the 5-parameter
Wakeby distribution. These are specific approaches. We will use the more general framework
provided by Extreme Value Theory. Next, we will provide some information of the context
of floods in the Basque Country.

Floods in the Basque Country

Floods are fundamentally caused by precipitations, although the morphology of the river is
also a factor to take into account. We can find two types of rivers in the Basque Country,
depending whether the river merges with the Cantabrian Sea or with the Mediterranean Sea.
These types of rivers are very different:

2In Basque, wide river.
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� Rivers merging with the Cantabrian Sea are generally short with big slopes, which in-
creases the speed of the water. This makes the flood appear very quickly. Furthermore,
these basins are prone to carry solid sediments, so the danger of these floods as greater.

� Rivers merging with the Mediterranean Sea3 usually receive less precipitations in their
basins, which are longer and not very steep.

As a consequence, the first rivers are more likely to overflow, but they are not the only ones:
some Mediterranean rivers lack of enough drainage. This issue causes flows at certain places
for two reasons: precipitations occurring in that place and the rise of rivers passing over
there. An example of this is the river Zadorra.

From a meteorological point of view, these are the main sources of floods in the Basque
Country:

1. Very intense and short duration storms. The pluviometer in storms like these can
measure more than 10 l/m2 every 10 minutes. Fortunatelly these storms usually last
20 or 30 minutes at most. They can cause important problems in urban areas and roads
due to the lack of drainage.

2. Stationary storms and cold drops.4Stationary storms are due to a front between cold
and warm air masses, when neither of them can replace the other and they do not
move or move very slowly (stationary front). The storm generated is very intense and
usually lasts for several hours. Big basins are also affected by these precipitations and
the floods can be devastating. They generally happen in summer.

3. Stationary and occluded fronts. An occluded front appears when a cold air mass re-
place the warm mass. The passing of stationary and/or occluded fronts in Winter and
Autumn can leave moderate but extended precipitations, and can last several days.

Floods can cause severe dangers to the population, goods and services. To minimize this
risk, an emergency plan dictating systems of prediction, vigilance and action is currently
in motion. There is a progression of four tracking status which indicates the danger of an
adverse meteorological event:

� Green: there is no risk.

� Yellow: there is no risk for the population but some particular activities may be
affected in some way.

� Orange: in some cases the damage may be important and life of people may be in
danger. This is when the alert is declared.

� Red: the risk of a meteorological adverse situation is extreme and the damages could
be great, both for people and material elements. In this case, an alarm is declared.

There is a continuous monitoring of meteorological phenomena that allows the Basque
government to declare the emergency state in real time. The criteria for changing the status
depends on both return periods associated to the phenomenon observed and how endangered
and disrupted the population may be. For example, yellow code is expected to be declared

3Actually, the only river merging with the Mediterranean Sea is the river Ebro; the rest of the rivers are
tributary of the Ebro.

4Cold drop is Spanish terminology. A proper translation could not be found.
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many times over a year, whereas orange code should happen few times. On the other hand,
the return period associated to a red code phenomenon is several years, so we should not
expect that to happen often.

This progression is specialized in different ways for different phenomena, such as raining,
wave heights or discharge of rivers. In the last case, which is the one we will focus on, the
orange code is related to the river overflowing in few and separated regions, without much
harm involved. In the red code, the flooded areas are important, and great damages to
people, infrastructure and industry may occur. Obviously, for different rivers the particular
criteria are different.

2.2 Methodology

When have encountered several problems, some of which we have already mentioned. Some
of them are easily solvable, whereas others require more thinking and inevitably sacrificing
the extent of the conclusions we can reach.

� In the Block Maxima approach, since the blocks will coincide with years, we will have
as many data as years available, which implies that the quality of the estimation of
the GEV distribution may not be great. This is a very common problem in Extreme
Value Theory, because the ability to systematically take (reliable) measurements, and
the interest in doing so, is new. On the other hand, we already know that some methods
work better than others when the sample size is small, so we will take this into account.
There is also a ’minor’ problem with the assumption that the annual block maxima
are iid, which is generally accepted. A way of enforcing this hypothesis is using water
years instead of the usual years, which capture better the behaviour of precipitations
and discharges if we want to compare them from year to year. Apart from doing this,
we will not pay any more attention to this issue.

� For the river Oñati, we have data measured every 10 minutes, which is a double-edged
sword. On the one hand it is always desirable to have as many data as possible; even
though in this particular case having a large sampling rate may seem unnecessary,
it can serve useful purposes (for example, identifying invalid measurements). On the
other hand, when using the Peak-over-Threshold approach, we first need to decluster
our data.5 As a consequence, we need to find a way of doing this. An easy way was
described at the end of the previous chapter, but more options may be available.

� The mentioned issues are the least of our worries if the data cannot be assumed to be
stationary. While it is true that non-stationary extreme value theory exists (the idea
can be summarized saying that the parameters of the GEV distribution are functions
of the time), there are some reasons why we will not used them.6 This is an important
issue, since we face non-stationarity because of two different reasons:

1. Clearly, in the course of a year, our measurements cannot be considered stationary,
as the precipitations behave differently in winter than in summer, for example.
Our solution will be to keep only the winter values. This partially solves the
problem, because while it is reasonable enough to claim that winter precipitations,

5Recall that this is to be done in such a way that the exceedances over a good threshold can be decently
assumed to be independent.

6The main reason is the fact that these tools would have required a huge prior theoretical treatment, which
is not feasible in this context.
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and as a consequence (as long as nothing happens to a basin) discharges, are
stationary, the biggest floods do not always occur during winter. In fact, recall the
Bilbao catastrophe happened in August of 1983. Stationary storms and DANAs,
as mentioned above, are more likely to happen in summer. However, it can be
argued that using only winter months is good enough for our purpose: only 3 out
of the 15 biggest floods from 2011 to 2018 did not happen in winter, as reported by
[URA18]. As a result, we will not be studying all kinds of floods, just the winter
ones.

2. Another issue is the potential effect of climate change in precipitations and floods
in the Basque Country. Two studies have been carried out and they can be found
summarized in [URA18]. The studies differ in some things, but they agree that
one of the potential consequences of climate change may be the increase in the
100 year-return level. Although one of them also claims changes in return levels
associated to periods of less than 100 years, the other do not. Both studies have
been done taking into account two levels of the Representative Concentration
Pathway (RCP), which aims to describe different possible scenarios. RCP 4.5
(intermediate) and RCP 8.5 (the worst scenario) were considered, and while no
relevant outcome would come out under the former, under RCP 8.5 the 100 year-
return level for precipitations is expected to increase in the range 33− 47%. This
problem is not really something we can tackle, we just have to be aware that this
is another source of uncertainty in the predictions.

We will now summarize the steps we will follow in our procedure, taking into account the
aforementioned problems and other issues that appeared along the way:

1. Preprocess the original data and remove invalid data, obvious outliers, etc.

2. For the Block Maxima approach:

(a) Extract annual maxima with water year instead of the usual year.

(b) Fit a GEV distribution to the annual maxima, with a suitable method for estima-
tion of parameters.

(c) Analyze the goodness of the fit by graphical methods.

(d) Compute the levels for 2-year, 50-year and 100-year periods and return periods for
the three discharges that dictate the declarations of yellow, orange and red code.

3. For the Peak-over-Threshold approach:

(a) Find a good threshold, taking into account the tradeoff between being too small
and, thence, a bad approximation to the GP distribution, or being too big and not
having enough exceedances. We will use the techniques described in Subsection
1.2.2.

(b) Find a way of declustering the data. As our data are split along winters and they
are sufficiently separated, we can assume that these winter blocks are independent
and decluster each of the blocks on their own.

(c) We will fit the exceedances over the chosen threshold with the GP distribution
and the estimation methods we have shown in Subsection 1.2.2. With the best
fitting, we will compute return periods and return levels as in the Block Maxima
approach and compare its results.
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If this process go well (i.e., graphical methods validate what the pertinent estimators say,
Block Maxima and POT approaches allow us to draw similar conclusions, etc) we will also
have validated the theory shown in the previous chapter using a real dataset. This is itself
valuable.

We have written the code in the programming language R for this task, making use of
the the packages:

� extRemes: Extreme Value Analysis [GK16] provides most of the functions we will use.

� EnvStats: Package for Environmental Statistics [Mil13] provides the EPM method for
fitting the GEV distribution.

� Dowd [Ach16] for the Pickands estimator.

� For very specific tasks not covered in any of these packages, functions have been written.
They can be found in the script Functions.R.

2.3 Analysis: river Oñati

In the following pages we will study floods of the river Oñati, both with the Block Maxima
and the Peak-over-Threshold approaches. We have chosen it because it is among the list of
the rivers that the Basque Country marks as relevant, according to mixed criteria on the
amount of people liivng close to them and the potential economic loss of there is a flood.

The river Oñati is born in the Basque town of Oñati, belonging to the province of
Gipuzkoa. It is a tributary of the river Deba, which flows into the Cantabrian Sea, and
it has been historically exploited for industrial purposes. The river Deba has always been
affected by floods, as can be checked in the registry of floods of the Basque Government
([URA18I]), which is dangerous considering the wide occupation of its alluvial planes. The
river Oñati, one of its main tributaries, has also been victim of several floods, and it is impor-
tant because there exist hydroelectric power stations using water from its basin; it also has
rich biodiversity and an appealing landscape, which attracts people from outside the region.7

We will study the discharge of the river Oñati measured at a gauging station which have
been taking measures once every 10 minutes since August of 1989, with the exception of
the time between October of 2002 and July of 2003. In practice, we have 30 years to draw
conclusions. The discharges corresponding to the declaration of yellow, orange and red code,
as decided by the Basque Government, are:

Discharge (m3/s)

Yellow code (Warning) 80.48

Orange code (Alert) 99.48

Red code (Alarm) 120.02

7For example, look at the trail PR-GI 3003: Camino del agua (https://www.turismodebagoiena.
eus/es/que-hacer/uraren-bidea-pr-gi-3003/) or the Arritzutz cave (http://www.onatiturismo.eus/es/
listings/arrikrutz-onatiko-kobak/). Websites last visited on 19/09/2020.

https://www.turismodebagoiena.eus/es/que-hacer/uraren-bidea-pr-gi-3003/
https://www.turismodebagoiena.eus/es/que-hacer/uraren-bidea-pr-gi-3003/
http://www.onatiturismo.eus/es/listings/arrikrutz-onatiko-kobak/
http://www.onatiturismo.eus/es/listings/arrikrutz-onatiko-kobak/
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2.3.1 Block Maxima

As discussed, in practice the Block Maxima approach is highly convenient because in most
cases independence of the maxima can be assumed with no concerns, and it may be one
of the reasons it is still widely used. We have removed some invalid data from the dataset
and have taken annual maxima according to the water year, considering only winter months.
In this context, winter usually has a broader meaning than late December to mid-March.
According to [Cou99]: “winter will in general refer to the entire cool portion of the year, not
just December-February as in much meteorological literature”. We have followed this idea
and we have taken the period from October 1st to March 31th. This is the block maxima we
have obtained for the river Oñati:

Year Discharge (m3/s) Year Discharge (m3/s)
1989 20.28 2004 42.84
1990 53.22 2005 79.55
1991 53.47 2006 63.02
1992 100.10 2007 55.85
1993 79.25 2008 83.50
1994 62.66 2009 73.95
1995 39.63 2010 57.45
1996 65.88 2011 112.13
1997 69.25 2012 77.21
1998 66.04 2013 50.08
1999 35.42 2014 101.09
2000 64.34 2015 79.71
2001 25.48 2016 92.08
2002 39.45 2017 49.52
2003 45.02 2018 85.51

Table 2.1: Annual maxima of discharges of the river Oñati.

Note that according to our data, the red code has never been declared. This is only
partially true: there was a flood in June of 1993 with a discharge of 223 m3/s which was
catastrophic. A picture can be found in the following url: https://www.diariovasco.com/
alto-deba/onati/crecida-onati-desbordamiento-20180413001247-ntvo.html (last ac-
cess on 09/19/2020).

It would be useful to have a preliminary idea on the value of ξ. The Gumbel P-P plot
has been computed (Figure 2.1), with the plotting position F̂ (x) = x

n+1 . It seems to have a
straight trend, that is, we have a clue of the limit distribution being Gumbel (ξ = 0).

Another option is computing the inexpensive Pickands estimator. The Dowd package
has functions named PickandsEstimator and PickandsPlot, although judging by the succint
documentation, it seems to compute the moment estimator. Since this estimator serves a
similar purpose, we have used it. Unfortunately, the results are disappointing (see Figure
2.2): the estimation of ξ under different values of k does not get stable, even though at the
end it could be argued that this happens. However, it is not possible to extend the plot (the
value of k must be less than a quarter of the total sample size) and those values are very
different from the estimations of the GEV distribution we will show next.

This may be due to the fact that these estimators require an iid sample, which is not the
case. Trying to find a getaway from this seems like it does not make up for the gains, so it

https://www.diariovasco.com/alto-deba/onati/crecida-onati-desbordamiento-20180413001247-ntvo.html
https://www.diariovasco.com/alto-deba/onati/crecida-onati-desbordamiento-20180413001247-ntvo.html
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Figure 2.1: Gumbel P-P plot for discharges of the river Oñati.

0 200 400 600 800 1000

-1
.0

-0
.5

0.
0

0.
5

1.
0

Pickands Estimator against Tail Size

Number of observations in tail (k)

P
ic

ka
nd

s 
E

st
im

at
or

Figure 2.2: Shape estimator for discharges of extremes of the river Oñati considering different
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Parameter Method 95% lower CI Estimation 95% upper CI

µ
MLE 47.457 56.092 64.726

L-moments 47.352 55.518 65.200
EPM 55.248

σ
MLE 15.384 21.569 27.753

L-moments 15.526 22.281 29.437
EPM 21.701

ξ
MLE -0.523 -0.260 0.003

L-moments -0.562 -0.234 0.048
EPM -0.263

Table 2.2: Estimation of parameters of the GEV distribution, using MLE and L-moments,
and 95% confidence intervals, for annual block maxima of discharges of the river Oñati.

seems that it is not possible to get a preliminary idea of the value of ξ, and we will go straight
to fitting the GEV distribution.

In order to fit the GEV distribution to the discharges, we have used the function fevd
from the extRemes package for MLE and L-moments and egevd from EnvStats for EPM.
The latter, unfortunately, does not include confidence intervals, and we have not been able
to find a library that does. The results can be found in Table 2.2. For the MLE and the
estimation via L-moments, a 95% confidence interval for each of the parameters is included.
The computation of the covariance matrix of the parameters for the estimation via L-moments
is done through parametric bootstrap, whereas the MLE covariances are computed by default
using the asymptotic normality of Theorem 1.2.2 and the formulas below such theorem.
Confidence intervals have been obtained through the function ci in the package extRemes.

We will disregard two of the methods and work with the remaining. The EPM would be
the choice when ξ is large in absolute value, which does not seem to be the case here. As a
consequence, we are not using it anymore. To decide between the MLE or the estimation via
L-moments, we will look at diagnostic plots generated by the fevd function. By default, it
generates 4 plots: a Q-Q plot with the fitted distribution, another Q-Q plot with simulated
data, a superposition of the density function corresponding to the estimated parameters and
a non-parametric estimation of the density producing the data obtained with the kernel-
smoothing method, and the return level plotted against the return period. The last plot has
been transformed in such a way that when it is convex, it is a possible evidence that the right
tail follows a Weibull distribution (note that this is the opposite of the Gumbel P-P Plot).

We see that both sets of diagnostic plots, displayed in Figures 2.3 and A.1 (the latter can
be found in the appendix), are fairly similar. As we know, the Q-Q plot gives an idea of the
goodness of the fit depending on how close the points are to a straight line (in this case, the
line y = x) plotted on the same graph. In this case, the qualitative differences are nonexistent:
both models give quite a good fit although they slightly overestimate small values (return
levels of periods corresponding to few years) while underestimating large values. This can
also be seen in the last plot, where the L-moments plot seems to be slightly better adjusted
than the MLE; however, this difference is almost imperceptible, and the points lie within
the 95% confidence interval in both cases. On the other hand, it seems like the empirical
quantiles are better adjusted to the quantiles generated from the fitted distribution in the
MLE rather than in the estimation via L-moments. It is necessary to remark that this plot
changes with every call to the plot function because it is based on simulated data, and thus
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Figure 2.3: Diagnostic plots of the GEV fitting via MLE.

this observation is done after several runs to see the general behaviour. Arbitrary plots have
been chosen in both cases. Lastly, it is not clear whether the density plot is better adjusted
at its peak by the MLE plot rather than the L-moments plot, because the latter is not fully
shown. However, at the sides L-moments performs better. In conclusion, it seems that there
is no clear winner between both estimations. Therefore, the selection of one of them will be
done later.

We mentioned in the first chapter that a useful preliminary step is testing the hypothesis
ξ = 0. As we see, in both cases, we cannot reject the hypothesis ξ = 0 with a 0.95 significance
level, even though we are close. In fact, the ML model rejects it with a significance level of
0.948. However, flood risks are huge problems in so many ways that it is not advisable to be
liberal when assessing these risks. This, along with the fact that the qualitative difference of
ξ < 0 or ξ = 0 is huge (in essence, having an upper bound or not on the floods) makes us take
the case ξ = 0 into account. The estimation of the parameters of the Gumbel distribution
using MLE (fevd does not allow to fit a Gumbel distribution using L-moments), along with
a 95% confidence interval, can be found in Table 2.4. The corresponding diagnostic plot can
be found in Figure A.2. As we can see, the parameter estimation is very similar but, at the
same time, more accurate, since Gumbel confidence intervals are narrower. In addition, the
parameters µ and σ when ξ < 0 are greater than those from the case ξ = 0, which makes
sense: since the right tail of the Gumbel is heavier than when ξ < 0, then in order for the
latter to fit large values, µ and σ must increase.

On the other hand, it seems from the diagnostic plots that the Gumbel model performs
worse than both MLE and L-moments, since each of the plots is worse fitted than its analogue
in the other models.

These models are not usually just analyzed by its parameters, since they do not have an



2.3. ANALYSIS: RIVER OÑATI 43

95% lower CI Point estimation 95% upper CI

µ 45.427 53.206 60.906

σ 15.044 20.519 25.996

Table 2.4: Estimation of parameters of the Gumbel distribution, using MLE, along with a
95% confidence interval, for annual block maxima of discharges of the river Oñati.

easy interpretation due to the complex expression of the GEV distribution:8. That is, in part,
why return levels (in the end, quantiles) are commonly used to describe these functions. This
is a sensible choice, considering that sometimes return levels are precisely what we want to
know from a given phenomenon. In Table 2.3 we compute return levels associated to return
periods of 2, 50 and 100 years, using the function return.level, found in the library extRemes.

Period Method 95% lower CI Return level 95% upper CI

2-year
GEV (MLE) 54.740 63.631 72.523

GEV (L-moments) 54.546 63.633 73.107
Gumbel 52.074 60.727 69.380

50-year
GEV (MLE) 92.107 108.950 125.794

GEV (L-moments) 93.243 112.506 133.449
Gumbel 108.233 133.274 158.314

100-year
GEV (MLE) 93.179 113.939 134.699

GEV (L-moments) 95.243 118.261 146.617
Gumbel 118.882 147.601 176.319

Table 2.3: Confidence intervals of 2, 50 and 100 year return-levels as computed with the GEV
(fitted via MLE and L-moments) and Gumbel distribution.

The first observation we make is that MLE and L-moments estimations are pretty similar
in all three periods. It is worth noting that for MLE and L-moments, the 2-year return
level has been exceeded exactly 15 times over the last 30 years, which is an exciting result
for its accuracy. The 50-year and 100-year return levels have not been exceeded, which is
not too surprising taking into account that we only have data for 30 years. Furthermore,
even though their differences increase with the return period, this is not very noticeable
(3.556 years in the 50-year period, and 4.322 years in the 100-year period). MLE estimations
seem more conclusive than estimation via L-moments, since the corresponding confidence
interval is narrower. On the other hand, Gumbel estimations for the return level quickly go
off, even though their estimators are still technichally compatible with the other ones if we
look at confidence intervals. This was already expected from a theoretical point of view, as
mentioned earlier. Besides, it could also be seen from the last of the diagnostic plots (Figures
2.3, A.1 and A.2) that Gumbel estimation of return levels would eventually surpass those
from a bounded GEV distribution. Finally, note that Gumbel confidence intervals are wider
than the other two when the periods are 50 and 100 years.

To end this section, we will compute the return periods of the discharges that mark the
declaration of yellow, orange and red code. These are 80.48m3/s, 99.48m3/s and 120.02m3/s
respectively. This is not directly implemented in the extRemes package, but can be easily

8In spite of µ and σ being location and dispersion measurements of the distribution, they do not coincide
with the mean nor with the standard deviation. Similarly, the precise meaning of σ, even though its sign
determines the boundedness of the right tail, is unknown.
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Return periods

Emergency levels MLE L-moments Gumbel

Yellow 80.48 4.33 4.19 4.29
Orange 99.48 17.77 14.63 10.04

Red 120.02 290.25 126.79 26.45

Table 2.5: Return period (years) of the discharge levels (m3/s) chosen by the Basque Gov-
ernment to declare an emergency situation, using GEV distributions.

computed using pevd function from that library, which computes the cdf of a GEV or GP
distribution. It is shown in Table 2.5.

It was expected that Gumbel estimations were going to be lesser than the other two,
since it gives bigger results for the return levels. However, which we did not expect is the
difference in the estimation of the return period for the red code with MLE and L-moments.
Note that, amongst all the estimations we have shown, this is the first in which they greatly
differ. This illustrates how sensitive extreme value estimation is and the inherent uncertainty
of dealing with extreme values. Recall that red code has never been declared in Winter in
the river Oñati, and it comes as no surprise that we struggle when drawing conclusions from
something we have never seen. Furthermore, the small sample size hinders our task even
more.

2.3.2 POT approach

Selection of the threshold

We now proceed to study the statistical behaviour of exceedances over a valid threshold.
Recall that, by a valid threshold, in theory, we mean a value u such that, if F is our target
cdf, then log(F (u)) ≈ −(1− F (u)). In practice, however, we need to have values larger than
the threshold to fit the GP distribution, so u cannot be very large. There are several ways
to choose this threshold: for example, the threshold of the exceedances series storaged in
the National River Flow Archive, dependent on the UK Centre for Ecology & Hydrology are
taken in such a way that there are, on average, 5 exceedances per year.

We will go ahead with the methods described in the previous chapter. The first one, the
mean life residual plot, relies on the linearity on the set of valid thresholds of the expectance
of the GP distribution.

It should be noted that, theoretically, before being able to use the mean life residual plot
properly, the declustering of the exceedances must be done. Obviously, the problem is that
we do not know what those exceedances are before choosing the threshold, so we will be
cautious when drawing conclusions from the plot. According to Figure 2.4, even though we
cannot say anything conclusive, it does seem like valid thresholds are bigger than 20. We
will now draw the parameter stability plot for ξ: if a fitted GP distribution with threshold u
has parameters σu and ξu, if we plot ξu against u, then for valid thresholds the graph should
be constant. In order to fit the GP distribution, we first need to find clusters of exceedances
and pick cluster maxima, which are assumed to be independent. An easy way to do this
has already been described. We will use the decluster function from the package extRemes,
which computes an estimate of the number of clusters, their maxima and an estimation of the
extremal index. It also allows us to separate measures of different years, which are assumed
to be independent and, therefore, that they belong to different clusters. In Figure 2.5 we
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Figure 2.4: Mean Life Residual Plot with 95% confidence interval.

see an example of a declustering. The narrow year corresponds to the period 2002-2003 with
almost no measurements in Winter.

From Figure 2.6 and Figure 2.7, which contain parameter stability plots for ξ using MLE
and L-moments, we get very similar results to Figure 2.4, and we see more clearly that
appropriate values of thresholds start more or less halfway 20 and 40, as the value of ξ̂u is
almost constant. Furthermore, in both plots the 95% confidence interval contains the fitted
value of ξ from the Block Maxima approach, which gives us more evidence. Considering the
mean life residual plot and both parameter stability plots, we have decided to pick u = 30.
This gives us 102 different clusters, which amounts to an average of 3.4 exceedances per year.
In comparison to the aforementioned criterion of having at least an average of 5 exceedances
per year, this is very poor. However, to get this value, the maximum possible threshold would
be close to 22.2, which does not seem like a good choice if we look at the plots.

Fitting the GP distribution

We now turn to estimating the GP distribution of exceedances of discharges over 30m3/s.
This will allow us to answer the same questions than with the previous approach and, hope-
fully, with similar answers.9 We will only use MLE and L-moments, because we are already
confident on where ξ lies, and there is no need to use EPM.

9Recall that both approaches are expected to generate similar results. The Block Maxima is used because
of its convenience, while the advantages of using POT is that the sample size is usually higher. A big drawback
of the latter is that the preprocess of the data is a delicate matter, and the conclusions extracted can be very
sensitive to both the way of finding clusters and the election of the threshold.
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Figure 2.5: Example of output of decluster with the threshold u = 25. Blue vertical lines
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Figure 2.6: Parameter ξ of the fitted GP distribution (using MLE) for different thresholds
with 95% confidence interval (computed through asymptotic normality). The red line denotes
−0.26, the fitted value for ξ in the Block Maxima section.
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Figure 2.7: Parameter ξ of the fitted GP distribution (using L-moments estimation) for
different thresholds with 95% confidence interval (computed through parametric bootstrap).
The red line denotes −0.234, the fitted value for ξ in the Block Maxima section.

Parameter Method 95% lower CI Point estimation 95% upper CI

σ̃
MLE 18.529 25.009 31.489

L-moments 18.443 24.564 33.071

ξ
MLE -0.385 -0.210 -0.034

L-moments -0.452 -0.189 0.008

Table 2.6: 95% confidence level for the parameters of the GP distribution (u = 30) using
MLE and L-moments.

The results appear on Table 2.6. We can make the following remarks:

� The estimation of ξ is perfectly compatible with its estimation when fitting the GEV
distribution. This was already known, since it was an auxiliar reason when choosing the
thresholds. However, we could argue that this estimation is better, since the confidence
intervals are narrower both for MLE and L-moments estimation. Again, comparing
lengths of the confidence intervals, the MLE seems more precise. This is good, because
this estimator is closer to the GEV estimators.

� If we look at the diagnostic plots (Figures A.3 and A.4) of the GP fittings, we find even
less differences than with the previous approach. The implementation in the library
extRemes of the densities plot for the GP fitting had a major flaw that we have fixed.
The issue and our proposed solution is described in Appendix B.

� Recall, from Pickands-Balkema-de Haan Theorem that, if µ, σ and ξ) are the parame-
ters of the GEV distribution and σ̃ is the scale parameter of the GP distribution fitting
exceedances over a threshold u, then σ̃ = σ + ξ(u − µ). If we compute a confidence
interval for σ̃ using this formula, the parameters from the MLE of the GEV distribu-
tion, and Delta-Method, the 95% confidence interval we get is (15.950, 40.766) with a
point estimation of 28.318. It is clearly worse than the other two estimators, since the
confidence interval is considerably wider. This is understandable because two different
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factors are adding uncertainty to the estimation worse: the error from the GEV distri-
bution and the choice of the threshold. Nevertheless, it is interesting to note that both
approaches are compatible.

� Similar conclusions are drawn when testing for ξ = 0 against ξ 6= 0, and we seem to be in
the border of both possibilities, even though this time with MLE we would reject ξ = 0
with a significance level of 0.95. If we fit the exponential distribution (recall, GP with
ξ = 0) for these exceedances, we get an estimation of σ̃ of 20.654 with a 95% confidence
interval of (16.626, 24.682). These results are partially compatible with the estimations
of Table 2.6, since MLE and L-moments confidence intervals contain the exponential
estimator, but the latter does not contain the MLE, and hardly contains the one from
L-moments. Note that in the Block Maxima approach all three estimations are fully
compatible. This may be to be due to the sensitivity of the threshold selection, the
way of clustering data, the small sample size, or perhaps due to the case that extreme
models with ξ = 0 do not fit these data properly. The last one may be the case, since
diagnostic plots for the exponential distribution (Figure A.5) seem to fit worse than the
other two sets of plots (Figures A.3 and A.4).

Just like the GEV distribution, exceedances models are also compared and described by
means of return levels. Table 2.7 shows 2-year, 50-year and 100-year return levels along with
95% confidence intervals. Comparing this table with the analogous for the GEV distribution
(Table 2.3) we find interesting results. While the 2-year level differs from the GEV estimates,
the 50-year and the 100-year levels are more similar. It is surprising, since in case of expect
differences, we would expect them when talking about large return levels, just as happened
in the Block Maxima approach. However, this has not been the case. This is not the only
strange thing going on with the estimation of the 2-year return level under this approach,
since the confidence interval coming from MLE is considerably wider than the L-moments
one. This is the first time we have observed this phenomenon, which does not occur in the
rest of the return levels.

Period Method 95% lower CI Return level 95% upper CI

2-year
GP (MLE) 60.115 69.727 79.338

GP (L-moments) 63.550 69.740 75.322
Gumbel 62.115 69.896 77.676

50-year
GP (MLE) 86.387 108.786 131.186

GP (L-moments) 89.385 110.815 139.846
Gumbel 115.632 136.378 157.124

100-year
GP (MLE) 87.601 114.269 140.938

GP (L-moments) 90.758 116.834 155.523
Exponential 127.156 150.694 174.2325

Table 2.7: Confidence intervals of 2, 50 and 100 year return-levels as computed with the GP
(fitted via MLE and L-moments) and exponential distribution.

Finally, in Table 2.8 we can find the estimates for the return periods of the yellow, orange
and red code, just like we did in Table 2.5 within the Block Maxima approach. Once again, we
observe similar qualitative results in both frameworks. The return periods of the exponential
distribution give lower estimates. Note that this is an expected result on extreme quantities,
since floods within this model are not bounded. It is very interesting to note, on the other
hand, that MLE and L-moments estimation have a similar behaviour in both approaches,
since they have been almost equal up to computing return periods of large discharges.
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Return periods

Emergency levels MLE L-moments Exponential

Yellow 80.48 4.06 3.97 3.38
Orange 99.48 18.93 16.88 8.50

Red 120.02 238.53 152.53 22.98

Table 2.8: Return period (years) of the discharge levels (m3/s) chosen by the Basque Gov-
ernment to declare an emergency situation, using GP distributions.

2.3.3 Conclusion and future lines of work

To conclude, we will now expose several interesting conclusions we have learnt from the study
of the floods of the river Oñati, and possible task that could be done to further refine the
analysis.

First, thorough the Peak-over-Threshold approach we have seen, as a general rule, how
the results coincide with the results extracted from the Block Maxima approach. This is
good news for two reasons: it validates the theory we have developed in the first chapter, and
the elections we have made, such as choosing the clustering technique or the threshold that
would be used to fit the GP distribution. As we have seen, small differences (for example,
in the parameters) become huge when trying to get insight from something extreme, such as
large return levels or periods. However, our results have been consistently compatible using
different methods. This cannot be but a consequence of elections done right.

In this line, it is surprising how reliable graphical methods, such as the mean life residual
plot, or the parameter stability plot, have been. Clearly, they are bound to work from a
theoretical point of view, but we have used them with a real application, and they have
performed meritoriously. Described rules of thumb such as the 0.9 quantile of the dataset
(15.79) or the

√
n-order statistic (0.165), where n is the sample size, would have clearly been

wrong.

There are two things to be discussed. First of all: Block Maxima or Peak-over-Threshold?
If we look at the conciseness of the results, then POT has shorter confidence intervals, and we
can interpret that as having a more conclusive result. This is expected, since we are fitting a
distribution with less parameters and more data at the same time, so our certainty increases.
On the other hand, it is clearly so much harder, due to the already mentioned elections
that have to be done before fitting the GP distribution, and that can end up distorting our
problem. Note, in addition, that we have assessed the quality of the POT methods using
Block Maxima, but otherwise we would not have had any clue on whether we were on the
right path or not. Taking into account how easy the block maxima methods are to set up,
it seems a good idea to use it to validate exceedances thresholds, but use the latter to draw
conclusions.

The other thing to discuss is whether to accept ξ = 0 or not. As we have seen, this
is very relevant when estimating return periods and return levels. While it is true that
diagnostic plots have shown a slightly better performance for full models, it may be better to
adopt this model. The main reason, as we already mentioned, is the fact that ξ = 0 implies
that floods are not bounded. If ξ < 0, then modelled floods are bounded, and this upper
bound is a function of the parameters estimated. This is not only realistically wrong, but
also imprudent if we want to get insight on such a destructive and dangerous event.10 For

10Recall Gumbel’s quote: however big floods get, there will always be a bigger one coming.
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example, even though we can confidently assume that human life is not longer than 200 years,
at this moment we cannot bound winter floods in the river Oñati with the same confidence,
especially considering the flood of 223m3/s in June of 1993. In principle, this could also be
possible in winter.

There are certain things that could extend the work we have done to try and get more
conclusive results:

1. Recall that the variances of L-moments estimations are computed through parametric
bootstrap, while MLE variances are computed through results of asymptotic normality.
However, these results exist for L-moments, although the formulas for Block Maxima
reported in the literature are extremely complicated. It would be interesting to see
the comparison between confidence intervals of MLE and L-moments using the same
procedure, and check if MLE estimators are still more conclusive than L-moments.11

2. Recall that we are only modelling winter floods, since our model required stationarity
of the data. A possible option would be to introduce a non-stationary model. As we
briefly mentioned, these models treat the parameters of the GEV/GP distributions as
functions of the time. The first task would be to see what kind of functional relations
are more adequate and then proceed to fit the model; in this case, seasonality should
also be considered for the election of the function. However, if the small sample size
already seems like a problem, it would be even worse with more parameters to estimate.
In general, note that having a larger sample size would solve most of our problems. For
example, we would have more information on whether ξ = 0 or not, and in general our
estimations would be more precise.

With all the limitations, both theoretical (e.g., need of stationarity) and practical (e.g.,
incomplete data, small sample size,...) we have obtained valuable and consistent results. This
shows the power of Extreme Value Theory.

11For small sample sizes. If the sample size is big, then we already know that the MLE is the way to go.
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Additional figures
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Figure A.1: Diagnostic plots of the GEV fitting via L-moments.
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Figure A.2: Diagnostic plots of the Gumbel fitting via MLE.

●●●●●●●●●●●●
●●●●●●●

●●●●●●●
●●
●●●●●●●●

●●●●●●
●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●
●●●●●

●●●
●●●●●●

●●
●●●

●●
●●●●●

●●

●

● ●

●

40 60 80 100

40
60

80
10

0

Model Quantiles

E
m

pi
ric

al
 Q

ua
nt

ile
s

●●●●●
●●●●

●●●●●●●●
●●●●●●

●●●●●●●●●●●●
●●●●

●●●●●●
●●●●●●●●●●

●●
●●●●
●●●●●●●●●●●

●●
●●
● ●●●●●●

●●
●●

● ●●
●

●
●
●●

● ●
● ●

●

●

40 60 80 100

40
60

80
10

0
12

0

dec( > 30) Empirical Quantiles

Q
ua

nt
ile

s 
fr

om
 M

od
el

 S
im

ul
at

ed
 D

at
a

1−1 line
regression line
95% confidence bands

20 40 60 80 100 120

0.
00

0.
01

0.
02

0.
03

0.
04

Discharges

D
en

si
ty

Modelled
Empirical

2 5 10 50 200 500

60
80

10
0

14
0

Return Period (years)

R
et

ur
n 

Le
ve

l

●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●●●

●●●●●●●●
●●●●●●

●●●●●●●
●●●
●●●●●●

●●
●●●

●●
●●●●●

●●
●

● ●

●

Diagnostic plots for GP fitting with threshold 30 (MLE)

Figure A.3: Diagnostic plots of the GP fitting via MLE.
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Figure A.4: Diagnostic plots of the GP fitting via L-moments.
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Figure A.5: Diagnostic plots of the GP (Exponential) fitting via MLE.
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Appendix B

On the density plot for the GP
fitting

Recall that one of the diagnostic plots available in the GP fitting via the fevd function in
the library extRemes is a superposition of two estimations of the density of the distribution
generating the data. The so-called empirical one makes no assumption on this distribution,
while the model one is based on the assumption that it belongs to the model. According to
the documentation of the library, the empirical density is computed via the density function
found in the base libraries of R. The result of those computations are shown in Figure B.1.
This figure shows that there are some serious issues with that plot. This is for two reasons:

� The empirical density should be 0 below the threshold (30 in this case), precisely because
we are dealing with exceedances above such threshold. Actually, these begin being 0;
however, since density works through kernel estimation, the values above the threshold
are taken into consideration when computing estimations of the density to the left,
what makes this estimation begin strictly positive even for values below 20.

� For the same reason, the first values at the right of the threshold are shrunk as a result
of the kernel estimation and the fact that there are no observations at all at the left of
the threshold T . In fact, the maximum of the density function should be reached at
its threshold, but it is not the case in the plot. This is because it is influenced by the
values at its left.

To solve this, we have decided to do the following. Assume x are the values chosen to
estimate the density function and f(x) their kernel estimations.

1. Consider the vector X− = (x−1 , . . . , x
−
n ) whose components are the values of x at the

left of the threshold in reversed order, i.e., x−1 > x−2 > · · · > x−n .

2. Let X+ = (x+1 , . . . , x
+
n ) the ordered vector composed by the first n values of x at the

right of the threshold and define

f̃(x) =


0 if x ≤ T
f(x+i ) + f(x−i ) for i = 1, . . . , n
f(x) if x > T and x /∈ X+.


The fact that the function density chooses the values x equispaced, makes the new
function f̃ to be a new density function. Moreover, the characteristics of the initial
sample, jointly with the properties of the kernel estimators, makes the function f̃ to
achieve its maximum at the threshold.
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Figure B.1: Density diagnostic plot with the default implementation.

The code of our implementation can be found in the function plotGPDensity of the file
functions.R. Figure B.2 includes a plot of these new points, joined via linear interpolation,
and maintaining the density of the fitted GP distribution.
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Figure B.2: Our density diagnostic plot.
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