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Abstract

This work is framed in the context of a muography experiment, a safe, non-destructive testing technique
allowing to study the internal properties of physical objects. This method is emerging in the industry,
for instance, to study the degradation of industrial equipment such as pipes, furnaces or cauldrons.

This project aims at developing a new framework that allows to perform a maximum likelihood
estimation method on relevant geometrical parameters of such equipment, focusing on a particular
case: gas pipes. In this context, a new C++ framework has been developed in order to i) recreate the
geometry associated to the problem, ii) study the results of a muography experiment from a statistical
point of view, and iii) define a coherent way to estimate the optimal geometry. In particular, once
defined and fully tested, this framework allows us to determine the thickness of steel pipes with a
precision of the order of 1 millimeter.

Key words : cosmic muons, muography, statistics, geometry, scattering, likelihood

Resumen

Este trabajo se enmarca en el contexto de un experimento de muograf́ıa, una técnica de testado no
invasivo que permite estudiar el interior de objetos f́ısicos. Este método está actualmente emergiendo
en la industria, por ejemplo, para estudiar la degradación de diferentes equipos industriales como
tubeŕıas, hornos o calderas.

Este proyecto tiene como objetivo el desarrollo de un framework que permita realizar una estimación
de máxima verosimilitud sobre parámetros relevantes de dicho equipamiento industrial, centrándose
en un caso particular: tubeŕıas de gas. En este contexto, un nuevo framework en C++ ha sido
desarrollado con el objeto de i) recrear la geometŕıa asociada al problema, ii) estudiar los resultados
del experimento de muograf́ıa desde un punto de vista estad́ıstico, y iii) definir un modo coherente de
estimar la geometŕıa óptima. En particular, una vez programado y testado, el framework nos permite
determinar el espesor de una tubeŕıa de acero con una precisión del orden de 1 miĺımetro.

Palabras claves : muones cósmicos, muograf́ıa, estad́ıstica, geometŕıa, dispersión, verosimilitud
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Chapter 1

Introduction

Muon tomography (MT), or simply Muography, is an active field of research nowadays since it provides
a non-destructive technique (NDT) allowing to map the inside of large objects where the access is
difficult and/or dangerous, without any contact or damage, and without even having physical access
to them. To do so, this technique uses cosmic muons, elementary particles similar to electrons but with
a much greater mass, which allows them to penetrate much deeper and probe matter in a more efficient
way, since they suffer less from the bremsstrahlung radiation affecting all leptons. This technology
is relatively well-know and presents several advantages over other similar techniques such as X-ray
imaging since it is globally safe, clean by definition (it uses natural radiation) and provides an excellent
penetration power in matter.

In particular, such technology will be used to probe pipes in the context of typical gas-transporting
pipes in a refinement plant, with the target of determining their inner properties and study their
degradation. This is the main objective of the company called Muon Systems, founded in 2015 and
based in Bilbao.

This company already built powerful muon detectors allowing to perform this task and developed
over the years a powerful framework allowing to study the degradation of pipes using convolutional
neural networks. However, this method is limited in the sense that training such networks is computing
intensive and time consuming, and therefore does not allow to study several properties and geometrical
parameters of such pipes at once. In this work, an alternative method based on a statistical analysis of
the problem is presented, allowing for a greater generalization of the previous method to other object
geometries and to a higher dimension parameters phase space.

This project is highly relevant in today’s society because it allows to combine data science algorithms
and high-performing statistical methods that have been developed in this context to solve this partic-
ular MT problem, putting such methods in practice in an actual industry.
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Chapter 2

Muons and muography

The basic physics principles used in the muography technique will be briefly introduced in Section 2.1
of this Chapter. Muons are particles produced naturally by cosmic rays, themselves introduced in
Section 2.2 and, once produced, they interact when crossing the atmosphere and matter in ways
described in Section 2.3. These processes need to be understood extremely well for the MT process,
introduced in Section 2.4, to be useful and applicable to the industry. Finally, the actual experimental
setup used for this work will be described in Section 2.5.

2.1 Particle physics and muons

Particle physics is the field which studies the matter surrounding us, along with the fundamental
interactions between the particles. In this context, the Standard Model of particle physics [1] is
nowadays the most accepted mathematical model used to describe the elementary particles and three
of the four fundamental forces of nature (electromagnetic, weak and strong interactions, while the
gravitational interaction is out of reach of this model). Even though quite simple in concept, it
has been able to describe most of the phenomena observed in nature so far with an incredible level
of precision, and has made a lot of predictions that have now been proven to be true, such as the
discovery of the top quark [2] in 1995, the tau neutrino [3] in 2001 and the Higgs boson itself [4, 5],
the last missing piece of the Standard Model, announced at CERN in July 2012.

According to this model, 12 different fermions (along with their 12 corresponding anti-particles) exist
in nature, as shown in Figure 2.1, most of them being unstable. These fermions can be divided into
two fundamentally different categories, the quarks and the leptons, containing each 6 particles and
sensitive to different forces. Even though quite interesting, the quarks do not play a fundamental
role in the muon tomography detailed in this work, so only leptons will be considered from now on.
In particular, leptons can be divided even more into three different generations of particles, and the
muon, one particular lepton belonging to the second generation, will be the main focus of this work.

Muons µ− are therefore fundamental particles having a negative charge and quite similar in nature
to electrons, even though they have a higher mass (200 times larger than the electron), which implies
that they are not stable particles: they have a lifetime of approximately 2.2µs, and typically decay
into an electron and a pair of neutrinos. However, this lifetime is actually quite long with respect to
other fundamental particles and muons are on average able to travel more than 700 meters, allowing
us to consider them to be stable particles in many processes, such as the one presented in this work.
Muons also have a relatively small interaction cross-section with ordinary matter, even though they
do interact with baryonic matter by several processes described in Section 2.3.
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Figure 2.1: Representation of the 12 fermions of the Standard Model [6] along with the main force
carriers and the Higgs boson, discovered in 2012 and completing this model.

2.2 Cosmic rays

Being unstable by nature, once produced, muons decay almost instantly by a weak process into an
electron and a pair of neutrinos. However, it is possible to observe them in nature, since they are
continuously produced, mainly thanks to cosmic rays, a constant flux of high energy particles (mostly
protons and atomic nuclei) coming from many different sources, including supernovae explosions and
AGN emissions, and reaching the Earth every day. Indeed, as they impact our atmosphere, these
particles start a chain reaction, as shown in Figure 2.2: first of all, several neutral and charged pions
are produced, decaying themselves into a pair of photons (and, later on, electron and positron pairs)
and muons and neutrinos, respectively.

Figure 2.2: Typical chain of decays induced by highly energetic cosmic rays when reaching the Earth’s
atmosphere and colliding with an atmosphere molecule.
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Muons are the most abundant charged particles produced by these processes actually reaching the sea
level, as shown in Figure 2.3. Even though they are unstable and have a limited lifetime, around 0.06%
of muons produced by such processes do manage to reach the sea level thanks to the time dilation
induced by their high energy and relativistic speed. As a rule of thumb, one can expect to observe
10.000 muons per square meter and per minute at the sea level. Muons were actually discovered
thanks to cosmic rays in 1936 [7].

Figure 2.3: Abundance of particles due to cosmic rays and observed at the sea level [8].

The existence of these cosmic rays is critical for this work, since they play the role of the source able
to give us the muons we need in order to perform our tomography experiment.

2.3 Muons interaction with matter

Most of the muons originating from cosmic rays interact with ordinary matter through two main
processes: ionization and multiple scattering, both resulting in different effects on the incident particle.

2.3.1 Ionization process

First of all, cosmic muons can interact with matter through ionization, when the incident muon
collides and gives some of its energy to the electrons of the absorber. This process is well described by
the famous Bethe-Bloch formula shown in Equation 2.1 [9], relating the average loss of energy over a
distance dE

dx (typically referred to as the mass stopping power) of material with several parameters,
such as the charge number of incident particle z (for cosmic muons, z = 1), the atomic mass and
charge of absorber A and Z, the relativistic factors β and γ, the maximum possible energy transfer to
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an electron in a single collision Wmax and the mean excitation energy I.

−
〈dE
dx

〉
= Kz2

Z

A

1

β2

[
1

2
ln

(
2mec

2β2γ2Wmax

I2
− β2 − δ(βγ)

2

)]
(2.1)

This previous equation gives an accuracy of a few percent in the range 0.1 < β = v
c < 1000 and we

can easily see that the quantity of energy lost by a muon when crossing any given medium actually
depends on the energy of the incident muon, as shown in Figure 2.4. In practice, this means that
cosmic muons, having a mean energy of a few GeV, have mean energy loss rates actually close to the
minimum: they are usually called for this reason minimum ionizing particles or MIPs. Energy losses
of muons due to this ionization process are for this reason quite small and difficult to detect, so this
interaction process will not be considered in this work.

Figure 2.4: Mass stopping power of copper, or energy lost by a muon in copper due to the ionization
process, with respect to its momentum [9].

2.3.2 Multiple scattering process

Muons also interact with matter through another process, called multiple scattering. Since muons
have a negative electric charge, by getting close to the nuclei of the absorber, they are suffering from
Coulomb scattering. Given the high number of nuclei in matter, this process is repeated many times,
deflecting each time the muon by a small angle in a stochastic way, meaning that there is no way of
calculating this deviation exactly, but only using probabilities and the so-called theory of Molière [10].

According to this theory, the central 98% of the projected angular distribution due to Coulomb
scattering can be described with a Gaussian function, whose width is given by the θ0 parameter
shown in Equation 2.2 [11], where p is the momentum of the incident particle and X0 is the radiation
length, defined as the characteristic amount of matter traversed by the incident particle for a particular
interaction. Such dependence on both these parameters has several physical consequences: a muon
with a higher momentum (larger β) will be statistically less deflected, while a muon crossing a medium
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more dense will be statistically more deflected.

θ0 =
13.6 MeV

βcp

√
x

X0

[
1 + 0.038 ln

(
x

X0β2

)]
(2.2)

This formula, whose second term is actually typically neglected, being much smaller and therefore
having a small impact on the final results obtained, is expected to be valid for distances up to ∼ 100X0,
giving an error smaller than 11%. Corrections do exist though in order to get slightly better results,
especially in the tails of the distribution, but this theory is precise enough for our needs, given the
small deviation angles we expect to observe for the experimental conditions considered.

Figure 2.5: Schematic representation of the deviation induced by an absorber to an incident muon
because of the multiple scattering effect [11].

Even though this deviation angle is the most important parameter when considering the multiple
scattering, the lateral displacement yplane (the distance between the exit point and the exit point
assuming a straight propagation) also contains information about the properties of the material.
Figure 2.5 shows a sketch of the relation between the angular deviation and lateral displacement.
It can be proved that the RMS associated to the lateral displacement is correlated with the angular

deviation in such a way that yplane =
θplanex√

3
and ρθplane,yplane =

√
3/2. Therefore the pairs (θplane, yplane)

are approximately distributed by a bi-dimensional Gaussian distribution with a covariance given by:

Cov(θplane, yplane) =

 θ20 θ20x
2

θ20x
2

θ20x
2

3

 (2.3)

2.4 Muon tomography

Given Molière’s theory, it is obvious to see that, instead of calculating the expected deviation of a
muon crossing a given material, we can instead try and measure it, by inverting the two previous
relations. Since this deviation depends on several parameters related to the absorber itself, such as its
thickness and radiation length X0, we can then infer such parameters experimentally and determine
the properties of the medium crossed by cosmic muons. This is the main objective of the so-called
muon tomography technique, or muography.
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Muography is therefore a NDT producing a density map of the inside of an object by measuring
a flux of muons. Such method presents many different advantages over other imaging techniques
such as X-rays, since it usually uses natural cosmic rays to make the measurements, being therefore
completely safe. Additionally, muons interact lightly with matter, meaning that they typically have
high penetrating capabilities and can therefore probe even large and/or dense objects. Muography
can in this sense be applied to many different fields: it has for example even been used in 1970 in
order to try and find hidden cavities of pyramids in Egypt [12] and can also be used to characterize
nuclear waste [13] and is even often used in volcanology, to determine whether a pocket inside of a
volcano is empty or full of lava [14], among many other practical applications.

Such imaging techniques can be divided into two categories:

• Absorption muography. In this case, the observed muon flux in a given direction is compared
to what is expected to be seen from cosmic rays, trying to interpret the discrepancies between
these two values in order to determine the inner structure of the absorber. Only one detector
is needed in this case, therefore reducing the cost and making this technique useful mostly to
study large objects, even though the low energy loss rates of relativistic cosmic muons imply
that such measurements typically take really long, lasting sometimes up to a few months.

• Scattering muography. On the other hand, the multiple scattering of muons can be used,
by placing one detector on each side of the object being studied to determine the deviation in
the direction of the flux of incoming muons. The denser and the thicker the material put in
between the detectors is, the larger the observed deviation will be, as shown in Equation 2.2.
This technique is mostly used to study smaller objects and is able to make quick measurements.

In this particular work, scattering muography is being applied to industry in order to try and determine
the degradation of the interior of industrial equipment such as steel pipes, as we will now see, starting
by a description of the experimental setup that was used with this objective in mind.

2.5 Experimental setup

2.5.1 Muon detectors

If we want to work with cosmic muons, we need to be able to build devices able to detect them
and measure properties such as their energy and/or direction of propagation. Many different tech-
nologies exist nowadays in order to detect muons but in this particular case, the typical multi-wire
proportional chambers have been used.

Invented at CERN in 1968, these detectors use an array of high-voltage wires (playing the role of
the anode), running through a chamber filled with gas and whose walls are typically grounded (the
cathode), as shown in Figure 2.6. Such an experimental setup therefore creates an electric field inside
of the chamber, that needs to be tweaked to be as large and uniform as possible.

When a charged particle such as a muon crosses this chamber, it will ionize the gas of the chamber and
leave small electric charges along its path which will start to drift until reaching one of the wire. This
drift induces an electric signal proportional to the ionisation effect in the different wires surrounding
the particle path, and the combination of all the signals collected by the different wires is able to give
information regarding the actual path followed by the incoming particle.

Several properties are extremely important when designing a detector:
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Figure 2.6: Schematic representation of a wire chamber muon detector.

• First of all, the spatial resolution, the precision by which we can tell the position of the muon,
should be ideally as small as possible, depending on the actual problem faced. This can typically
be achieved simply by increasing the number of wires in the muon chamber.

• We also typically want the detector to be large enough to avoid any acceptance issues.

• Finally, the efficiency is also an important parameter, since we want to be able to detect as
many muons as possible, to make the measurement faster and more precise.

2.5.2 Working setup

For this particular work, four muon chambers of 1 meter by 1 meter have been build using these
principles, as shown in Figure 2.7. As we can see, more than 200 wires connected to the high voltage
and made out of gold and tungsten have been placed every 4 mm in two different planes rotated by
90 degrees, to measure the x and y position of cosmic muons.

These chambers, filled while a mixture of Argon and CO2, are then setup in pairs above and below
the object being studied, in order to determine the position and the direction of the incoming and
outgoing cosmic muon. This setup allows to measure with a good spatial resolution the deviation of
muons, to determine as precisely as possible the properties of the object put in between both detectors.

2.5.3 Data flow

Once collected, the data needs to be passed through several different layers in order to convert electric
signals into files that can be processed, as shown on Figure 2.8. As we can see, the data follows a
different path depending on its nature, if it has been collected by the detector or if we are considering
Monte-Carlo simulations that will be described in details in the next Chapter.

The stream of data on one hand is collected by a simple USB, and then sent to a DAQ/DQM system
and to an unpacker, which takes into account the detector geometry and translates into a physical
position the information received from the DAQ, typically only telling that a certain wire has been
activated. On the other hand, the stream for Monte-Carlo, which will be mostly used in this work,
relies first of all on CRY [15], a cosmic ray generator able to simulate reliably the incident cosmic
muons, and then on Geant4 [16], a toolkit developed by CERN in order to simulate the passage of
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Figure 2.7: Actual working setup used for this work, with two multi-wires muon chambers of 1m2

placed on each side of the object being studied.

particles through matter and through the detectors, by including at this point as well a calibration
step related to the expected detector response.

Both streams then join at the 1D histogram format level, gathering a collection of all the hits measured
for every event. All these hits are then processed and reconstructed into two trajectories, one above
and one below the object, using advanced techniques that will also be described in next Chapter.
Finally, 4D segments are made available from this reconstruction process, containing all the position
and direction information needed, from which the actual analysis can take place.

Figure 2.8: Schematic representation of the detector data flow.
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Chapter 3

Statistical basis of the algorithm

The main goal of this work is to find a way to estimate the geometrical parameters of a physical object
using a MT technique (in particular, we will focus on the estimation of the thickness of a steel pipe
for simplicity). To reach this goal, an algorithm based on a Maximum Likelihood Estimation method
in which the inner radius of the pipe is the parameter and described in Chapter 4 has been developed,
in order to estimate the interaction between the cosmic muons and the object under investigation to
determine its inner properties.

By nature, this algorithm heavily relies on several important statistical concepts that therefore needs
to be described first. In this context, concepts such as the probability and kernel density functions (de-
scribed in Sections 3.1 and 3.2 respectively), Monte-Carlo simulations (in Section 3.3), the probability
values (in Section 3.4) and the likelihood function (in Section 3.5) will now be described.

3.1 Probability density functions

The probability density functions, or PDF, are mathematical expressions defining probability distri-
butions which represent the likelihood of any given outcome. Depending on the problem considered,
they are typically represented as curves as shown in Figure 3.1, in which the total area below the
curve in an interval can be interpreted as the value of the probability of a random variable occurring.

Figure 3.1: Schematic representation of a random PDF [17].

The famous Gaussian distributions are in this sense probability density functions which have a particu-
lar expression shown in Equation 3.1, where σ is the so-called standard deviation of the distribution,
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representing its width: a low σ indicates that the values of the distribution tend to be close to its
mean value µ, while a high σ indicates that the values are spread out over a wider range.

f(x) =
1√
2πσ

e−
1
2(x−µσ )

2

(3.1)

These definitions are important because we already know that the multiple scattering process which
affects the incident cosmic muons is a stochastic process: this means that two muons having similar
incident kinematics can leave the detector with very different output positions and directions, whose
actual distribution can be approximated by a Gaussian function for small enough deviation angles
(at larger angles, the distribution is behaving like Rutherford scattering, with slightly larger tails),
according to the multiple scattering theory.

The probability density function is an important concept in this work since the multiple scattering
process of muons is given by a bi-dimensional Gaussian distribution whose covariance depends on the
geometrical parameters of the eventual object put between the two detectors, as shown in Figure 3.2.
This means that, in first approximation, the thicker and denser the object investigated is, the higher
the expected deviation will be and this simple observation will actually be used as the driving process
of the statistical study performed in this work.

Figure 3.2: Schematic representation of the deviation expected for an incoming muon and PDF asso-
ciated without (on the left) and with (on the right) an object placed between the detectors.

3.2 Kernel density estimations

In statistics, the kernel density estimation is a method allowing to estimate the shape of the density
probability f , the PDF defined in Section 3.1, of a random variable x, from N observations drawn
from this unknown function PDF. The usual way to proceed is to place each observation made in
an histogram, where the density in each point x can be therefore be estimated as the proportion of
observations close enough to x. However, this method depends strongly on the binning used and the
function obtained by this process is non-continuous by definition. The kernel method has been
developed in this context, to try and solve the non-continuity of the observed frequency histogram,
by simply using various continuous functions instead of bins. This process allows to create a smooth
curve given a set of data, which will be something of great interest in this work.
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Mathematically, we can define a function called the density estimator of f , f̂h(x), defined as the
sum of general functions K over the number of observations drawn, as shown in Equation 3.2.

f̂h(x) =
1

Nh

N∑
i=1

K

(
x− xi
h

)
(3.2)

In this last equation, two parameters that need to be defined by hand before using this method are
actually extremely important:

• First, the kernel K, is a non-negative window function defined depending on the problem, as
the ”building block” of the final function that needs to be estimated: indeed, as we can see, the
function f̂h(x) will be given as a simple sum of these kernels. In most of the problems, including
this work, a standard Gaussian kernel is used, taking the shape shown in Equation 3.3.

K(x) =
1√
2π
e−

1
2
x2 (3.3)

• The so-called bandwidth or smoothing parameter h is another interesting parameter, affect-
ing mainly the final smoothness of the resulting curve obtained. The optimal selection of such
parameter is not obvious at all [18] but, as a rule of thumb, it can be shown that for Gaussian
kernels of standard deviation σ, it should be approximately equal to 1.06 σN−1/5 in order to
minimize the mean integrated square error obtained.

A comparison of the different methods so far and different possible is shown in Figure 3.3.

Figure 3.3: Comparison of the histogram and the kernel density estimations methods for different
kernels in order to estimate a PDF [19].
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In summary, this method is used in order to model the distribution of an arbitrary input dataset as a
superposition of Gaussian kernels, one for each data point, each contributing 1/N to the total integral
of the PDF. This method allows us to construct continuous functions and recover for the eventual
low statistics and possible gaps in the bi-dimensional histograms for the position and direction of the
muons obtained in x and y, following the method that will be described in Chapter 4.

3.3 Monte-Carlo simulations

Monte-Carlo simulations are generated from algorithms developed in order to compute approximate
numerical values associated to stochastic problems using random processes and advanced probabilistic
techniques. In this particular case, such computation methods apply extremely well since, by being
a stochastic process, the actual probability density function associated to a given geometry cannot
be computed analytically (and if we were able to do it, a simple gradient descent method would be
enough to solve this problem and find the optimal parameters {θi} of the object).

The only way available to actually estimate these parameters is by using thousands of Monte-Carlo
simulated toys, simulating thousands of different incident muons for different geometries. The principle
is simple: for each incident muon measured, a large number NMC of Monte-Carlo simulations will be
performed, propagating the muon using an algorithm described in Chapter 4 until reaching the lower
detector. Repeating this experiment over and over again always gives different results, giving us the
opportunity to build the expected PDF for a given object geometry and for the incident muon that
has been measured and that will be used later on.

At the end of the day, the main objective of this process is to be able to estimate the probability
of observing a certain deviation given an object geometry and the input trajectory of the muon,
P (deviation|input) in simulation. Once done, this process can then be reversed using actual data in
order to try and obtain the geometry of the object from the actual measurement of the input and
output muon trajectories and positions, using a likelihood minimization method.

3.4 Probability values

So far, we developed a technique allowing us to reconstruct the expected probability density function
for a given incident muon using Monte-Carlo techniques. However, we still need a way to estimate the
goodness of the actual measurement with respect to this simulated PDF. This is where the so-called
p-values enter, a key ingredient for this work since they allow to relate the two main parts of the
problem: the simulations performed and the actual data collected.

Probability values, or p-values, are based on the concept of the null hypothesis H0, a general state-
ment or default position telling that there is no actual relationship between two measured phenomena
and assumed to be true until an evidence indicates otherwise. This hypothesis is then typically op-
posed to the alternative hypothesis H, usually more interesting by being the interesting hypothesis
of the experiment being performed. The main goal is to compare the data with both hypotheses: if
the data is consistent with H0, then the null hypothesis can simply not be rejected. However, we can
reject H0 (and therefore accept H, its exact opposite) if the data collected is significantly unlikely to
have occurred if the null hypothesis were to be true, according to a certain confidence level.

From these definitions, a p-value is then defined as the probability for a variable to be observed equal
or more extreme (lower or higher, depending on the problem) than the actual value x observed under
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the null hypothesis. This definition, can be represented in a schematic way in Figure 3.4.

Figure 3.4: Schematic representation of the statistical concept of p-value.

In general, a smaller p-value indicates us that the hypothesis H under consideration may not ade-
quately explain the observation. At the end of the day, the null hypothesis can be rejected only if the
p-value obtained is smaller than a previously defined, arbitrary and fixed threshold α, the so-called
level of significance of the experiment. This parameter can take a large range of values, typically
ranging from 0.05 to 0.001.

This work will not directly estimate p-values. Instead the values of the generated PDF, as explained
later, will be evaluated and used to produce a likelihood function with the goal of estimating the
parameters that maximize it. Once this likelihood function is understood, the p-values could be used
to create confidence intervals on the measurements, although this study is not included in this work.

3.5 Likelihood

So far, we have been able to generate thousands of different Monte-Carlo experiments for a given muon
and for a given object geometry, but we still need to find a way to reverse this process to estimate the
geometry of the object from a given measurement.

This is where the likelihood becomes useful, defined as a function that measures the goodness of a
fit with respect to a sample of data, for several unknown parameters of a mathematical model. In
general, this function can be defined in Equation 3.4, where θ ={θ1, ..., θi} are the parameters of the
model and x is the actual measurement of a random variable X following a density function f .

L(θ|x) = fθ(x) = P (X = x|θ) (3.4)

It is important to note at this point that the likelihood is a function of the parameters θ but not
a probability density function itself. Additionally, it should in general not be confused with the
probability p(θ|x) since it is equal to the probability of observing a given outcome x when the true
values of the parameters are θ: this means that the likelihood is equal to a probability density over
the outcome x, not over the set of parameters θ.
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To understand this concept better, the simple example of an unfair coin toss can be considered, where
the fairness of the coin is the parameter of the model, represented by the probability of obtaining head
pH and taking values between 0 and 1 (for a regular coin, pH = 0.5). The likelihood is then defined
from a given observation, such as obtaining two heads in a row HHT in the following way:

L(pH |HHT ) = P (HHT |pH) = P (H|pH) · P (H|pH) · P (T |(1− pH)) (3.5)

For each value of pH , the value of the likelihood can then be computed and ultimately plotted, as
shown in Figure 3.5, showing a minimum value for a particular value of pH . Often, the log-likelihood
l(θ|x) = −2 log(L(θ|x)) is actually used instead, being a bit more convenient to deal with the special
part concavity plays in the maximization process. Given the properties of the logarithm, maximizing
the likelihood is equivalent to minimizing this particular log-likelihood

Figure 3.5: Likelihood (on the left) and log-likelihood (on the right) obtained for our particular
example of the fairness of a coin given the observation HHT .

The likelihood is in this sense interesting because it can be described as an hypersurface whose peak
gives the optimal set of parameters maximizing the probability of drawing the actual sample measured.
Another important property of the likelihood that will be used extensively and already assumed in
the previous example is the fact that, for two independent measurements, the likelihood of both
measurements is equal to the product of both likelihoods independently computed for each event.

In this work, the objective is to estimate how likely it is that we observed a given set of measurements
for a particular pipe geometry. This is done by computing the PDF of the positional and angular
deviation of cosmic muons from Monte-Carlo simulations and by then evaluating the actual PDF
value for a given measurement along both the x and y axes, the total likelihood being defined as
the product of such values obtained for the thousands of muons collected for a given geometry. A
general maximum likelihood estimation method is then used, which consists in finding the best possible
estimator, referred to as θ̂, by minimizing the log-likelihood obtained by considering several different
object geometries put between the detectors, allowing us to find the optimal set of parameters (such
as the thickness of the pipe) able to describe in the best way possible this object. Indeed, from the
definition of the likelihood in Equation 3.4, we can see that the θ̂ which maximizes the likelihood will
also maximize the probability of observing the data measured for a given geometry.
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Chapter 4

Algorithm implementation

The algorithm we developed to solve this particular problem has been written in C++ and can be
divided in three categories. First of all, we have the so-called PipeReconstructor (Section 4.1), a
set of classes able to perform several tasks:

• Define the geometry of the problem (the detector, and the volume under investigation are there-
fore defined using the smallest possible set of parameters at this stage);

• Compute the different intersection points of an incident cosmic muons with our geometry;

• Propagate the muons through the different medium of interaction encountered along their path
using the Molière’s theory of multiple scattering;

• Calculate the likelihood of a given measurement for a given volume;

• Finally, probe different volumes and perform a descent method in order to minimize the likelihood
encountered and find the optimal volume to solve our problem given the measurements collected.

This class is complemented with the Generator (Section 4.2), a small class allowing us to generate
muons by simulating our actual experiment, using some of the functions of the PipeReconstructor.
Usually, the Monte-Carlo simulation and event reconstruction is performed using the Geant4 toolkit,
a reliable method able to describe precisely the interaction between the detector and the incident
muons. However, this process is quite slow and in this work, we then developed this Generator as an
alternative faster reconstruction method that will be thoroughly validated in Chapter 5.

Finally, a Plotter (Section 4.3) comes in play, allowing us to plot the different interesting variables
such as the likelihood curves for different geometries, a crucial step of the minimization process.

4.1 PipeReconstructor

The PipeReconstructor is a set of classes allowing us to define different kind of physical and statistical
objects essential to solve the original problem.

4.1.1 MuonState

First of all, a muon is defined from the MuonState class and from 7 parameters: 3 parameters
(x, y, z) representing the position of the muon, 3 additional parameters (vx, vy, vz) representing its
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three-dimensional direction, and the actual value of its momentum. The measurement performed at
the top detector will be labelled with the index 1 (x1, y1, z1, vx1, vy1, vz1, p1) while the measurement
performed by the lower detector will take the index 2.

4.1.2 Surfaces and volumes

Surfaces and Volumes are virtual classes allowing us to define general surfaces (their spatial position
and their geometrical center) and volumes, defined as vectors of several surfaces: a general volume is
in this sense defined by its surfaces, central position and global density. Defining such virtual classes
is extremely important since it would allow us to consider different geometries, not just a pipe put
in between the two detectors. The constant size (1m2) and z position of both the lower and upper
detectors (-37 and 37 cm, respectively) are also defined as constants at this stage.

4.1.3 Cylinders and pipes

Cylinders and Pipes are particular subclasses of the virtual classes previously defined in order to
define the geometry of this particular problem. A pipe is in this sense defined as a set of two cylinders
and from 7 different parameters: its central position (x, y, z), along with its density, the radii r and
R of both cylinders and its length along the y-axis L, as shown in Figure 4.1. For simplicity, the pipes
considered in this work are therefore assumed to have a constant density.

Figure 4.1: Schematic representation of the pipe considered in this work and its geometric parameters.

One method computing the exact cut point between a muonState and a Cylinder has been defined
at this point as well, from the general equation of a cylinder of radius R centered in (X, Y = 0, Z)
(given the fact that the y-axis is defined along the cylinder, we can assume that the cylinder is actually
centered in Y = 0 without any loss of generalization).

(x−X)2 + (z − Z)2 = R2 (4.1)

From this, computing the intersection between such cylinder and a general MuonState (x0, y0, z0, vx,
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vy, vz, p) is trivial, since a MuonState can be represented with a straight line:


x = x0 + λvx

y = y0 + λvy

z = z0 + λvz

(4.2)

By putting this into the equation of the cylinder, we get the following expressions:

(x−X)2 +

(
z0 +

vz
vx

(x− x0)− Z
)2

= R2 (4.3)

Once both the squared values applied, we get an equation having the shape Ax2 +Bx+C = 0, where

both cutting points will be given therefore by x+/− = −B±
√
B2−4AC
2A :



A =

(
1 +

(
vz
vx

)2
)

B = −2X − 2x0

(
vz
vx

)2

+ (2z0 − 2)

(
vz
vx

)
C = X2 + Z2 + z20 − 2z0Z + x20

(
vz
vx

)2

+ x0(2Z − 2z0)

(
vz
vx

)
−R2

(4.4)

Finally, one method allowing us to determine whether a muon state is inside or outside of the pipe
have also been written, taking into account the particular geometry of such objects. This is important
mainly because the equation for the multiple scattering process highly depends on the density of
the medium of propagation, which changes by a factor ∼ 104 depending on whether the muon is
propagating through the steel pipe or air.

4.1.4 Propagator

A Propagator is then defined as the object allowing us to propagate a MuonState through a general
Volume. The way it works is quite simple:

• First of all, the distance between the initial MuonState and all the surfaces of the Volume
considered is computed and the first intersection point is kept.

• The muon is then propagated in a distance corresponding to 90% of the total distance to this
first cut point by taking into account the multiple scattering effect and the Molière theory, and
a new MuonState is therefore obtained. We cannot propagate the muon 100% of the distance
immediately to avoid effects related to the actual shape of the Cylinder and due to the fact
that the Equation 2.2 is only valid in case of normal incidence between the MuonState and the
Cylinder, which is typically not verified, as shown in Figure 4.2. Indeed, in this last Figure, we
can see that if the normal incidence is not verified, then the width of pipe will be dependant on
the deviation applied to the muon, which cannot be easily computed.

• This propagation process is then repeated several times, until reaching a position extremely close
to the volume that is being studied (our tolerance parameter has been fixed to 0.1 mm). The
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Figure 4.2: Typical example of two incident muons not respecting the normal incidence required by
the Molière equation for the multiple scattering of muons.

muon is then manually propagated along its direction of propagation along a distance of 0.1mm
in order to force its crossing with respect to the first surface, so that the propagation process
can be repeated for the next surface.

• This whole process is repeated for all the different surfaces encountered by the muon (up to
four times in total for our particular geometry), and one final time until reaching the bottom
detector. At this point, the MuonState obtained is kept as the second measurement (x2, y2, z2,
vx2, vy2, vz2, p2) that will be compared with the simulation using statistical methods.

• Eventual muons which do not actually cross the pipe or which are out of the acceptance of any
of the detectors are of course rejected at this stage and simply not considered.

4.1.5 Likelihood

The Likelihood object itself can then be calculated. This class takes as input a pipe geometry and
a file containing a set of measurements (either obtained from Monte-Carlo or actually measured by
the detectors) and its main objective is to estimate how likely it is that we obtained exactly these
measurements for the geometry given.

To reach this goal, several calculations are performed for each event found in the input file:

• First of all, three MuonStates are computed: the so-called IncomingMuon and OutgoingMuon,
directly read as the measurement at the upper and lower detectors from the input file, and
the IncomingMuonLinearDown, defined as the prolongation along a straight line of the Incom-
ingMuon. Each IncomingMuon is then propagated along the geometry using our Propagator,
defining a fourth and final IncomingMuonDown MuonState, as shown in Figure 4.3.

• From these muonStates, the ∆x, ∆θx, ∆y and ∆θy parameters can easily be computed as the
difference between the positions and angles measured between the IncomingMuonDown and
IncomingMuonLinearDown muonStates. Such parameters are important and will be used a lot
in this work since they represent the actual deviation suffered by the muon.

• This propagation process is repeated multiple times (Nit ∼ 100 − 500 times in total) since we
known that the multiple scattering is a stochastic process. In each iteration of the loop, two
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Figure 4.3: Schematic representation of the 4 four muonStates and main parameters used for the
computation of the likelihood.

bi-dimensional histograms (∆x vs ∆θx and ∆y vs ∆θy) are then filled with the actual values of
the deviation parameters previously obtained.

• Keeping in mind that this process needs to be repeated for every single event found in the input
file, and given the relatively high number of iterations needed to get statistically meaningful
results for each event, the kernel density estimation method introduced in Section 3.2 becomes
really helpful at this point. Indeed, this method allows us to keep the number of iterations (and
therefore the computing time) to a minimum, while still obtaining smooth enough results to
compute p-values in a reliable way.

• At this stage, all the ingredients needed to compute a the likelihood are available. A value for
each IncomingMuon is then computed by using estimating the value of the bi-dimensional PDF
from the histograms previously defined and representing all the possible deviation values for a
single event, and by comparing the actual measurement OutgoingMuon to such distributions.

• Two values, one along each of the x and y axes, are then obtained using this method for each of
the N events found in the input file. The total value returned by this function can then simply
be computed from Equation 4.5.

L =

(
1

N

) N∑
i=1

−2.0 (log(valuex,i) + log(valuey,i)) (4.5)

4.2 Generator

As we have just seen, the computation of the values required for the likelihood takes as input a file
of Monte-Carlo generated events, which needs to be previously produced thanks to Geant4 or to this
Generator, assuming a perfect detector but typically orders of magnitude faster. This class takes
as input one rootfile containing the Monte-Carlo generation of incoming cosmic muons previously
produced by the company using CRY [15], a dedicated generator for cosmic muons. To simplify the
current problem, the goal is then to simply read the input parameters of such muons, such as the
position of their impact with the upper detector, and to propagate them using the previously defined
functions, to generate a distribution of the expected output.

The way this algorithm works is quite simple: a general volume matching the one that needs to be
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studied (in this case, a general Pipe located in the center (0, 0, 0) of the detector, having an inner
radius variable, an outter radius of 20 cm and a length of 50 cm) is first of all defined. Then, for
each event we want to generate (nMC ∼ 10.000), a loop is performed: in each iteration of this loop,
the incident muon is propagated throughout the geometry, histograms for the parameters ∆x, ∆θx,
∆y and ∆θy are obtained and, more importantly, measurements in the lower detector are artificially
generated to test our framework without having to consider detector effects for now.

One last important notion to introduce at this point is the difference between the actual measurement
and the Monte-Carlo truth value, that can both be computed by the generator. The existence of both
variables is related to the fact that the detector is made out of 200 discrete wires, each separated by a
distance of 4 mm, meaning that the actual position measured is typically a discrete number. However,
when considering simulation files, both the real and the measured position can be obtained and kept
in different MuonStates labelled as (pxi, pyi, pzi, pvxi, pvyi, pvzi, pi) and (mxi, myi, mzi, mvxi, mvyi,
mvzi, mi) respectively. Depending on whether we are working with Monte-Carlo simulations or data,
one or the other MuonState will then be chosen.

4.3 Plotter

Finally, the last important ingredient of the framework built is the Plotter, allowing us to plot different
results obtained. This part of the framework is therefore able to:

• Simply plot the position, direction and deviation parameters ∆x, ∆θx, ∆y and ∆θy of the
MuonStates measured at the top and bottom detectors, by reading the rootfile containing either
data or Monte-Carlo generated from the Generator.

• Draw on the same canvas all these parameters for two different generators at once, allowing us
to compare the results of our Generator with the results obtained from a full Geant4 simulation,
in order to validate this framework.

• Plot on the same canvas the deviation parameters obtained by considering different pipe geome-
tries to compare them.

• Generate 2D distributions representing the results obtained by the kernel density estimator
method to check them and make sure the smoothing process works as expected.

• Finally, plot all the likelihood curves obtained by considering different input files and pipe
geometries, allowing us to graphically minimize this likelihood and therefore find the most likely
geometry for each of the generated files.

All this framework has been developed internally for the specific use of the company MuonSystems
and is therefore unfortunately not available in a public repository.
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Chapter 5

Results obtained

Now that the experimental setup and main statistical parameters used have been fully described and
that the algorithm developed for this particular exercise has been introduced, we can present the
results obtained. This chapter is divided into several sections: first of all, we are going to mention
the different validation steps performed to make sure that this algorithm’s results can be trusted in
Section 5.1 and then, more general results obtained for different pipe geometries will be presented in
Section 5.2, along with the final likelihood results of this work.

5.1 Generator validation

The validation step consists in comparing the results previously obtained with Geant4, a a toolkit
for the simulation of the passage of particles through matter [16], with a complete and realistic
description of the interaction between the cosmic muons and the detectors, and the ones obtained
with our Generator, assuming a perfect detector but typically orders of magnitude faster.

This step is actually extremely important, because it allows us to guarantee that the results obtained
with the faster, dedicated propagator are compatible with those provided by Geant4, and therefore
justifies its usage as a faster choice that allows to perform a maximum likelihood estimation. In this
context, several files have been generated using both generators and different pipe geometries, allowing
us to perform several different checks. In each case, the objective was to obtain the output MuonState
(x2, y2, z2, vx2, vy2, vz2, p2) after propagating the initial MuonState throughout a given geometry.

For a given pipe having a geometry (r = 17.2 cm, R = 20 cm, L = 50 cm) and located in (0,
0, 0), thousands of muons have then been generated using both Geant4 and our Generator. The
output distributions (the positions x and y and directions vx and vy after propagation, along with
the deviations in position ∆x and ∆y, defined in Equation5.1 where d is the vertical distance between
the two detectors, and the angular deviation ∆θx and ∆θy, defined in Equation 5.2) have then been
obtained in this case in Figure 5.1. All these plots have been normalized to unity in order to account
for the eventual different number of events generated with both generators.

{
∆x = x2 + d(vx2 − x1)
∆y = y2 + d(vy2 − y1)

(5.1)
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
∆θx = arctan

(
vx2
vz2

)
− arctan

(
vx1
vz1

)
∆θy = arctan

(
vy2
vz2

)
− arctan

(
vy1
vz1

) (5.2)

5.2 General results

5.2.1 Pipe geometries impact

Now that we know we can trust the results obtained from the Generator, the next step has then been to
generate 12 Monte-Carlo files with 10.000 to 50.000 events each, using our Generator, corresponding to
9 possible pipe geometries characterized by a constant length L = 50cm, an outer radius of R = 20cm
and different inner radii r, ranging from 16.8 to 19.0cm, by steps of 0.2cm. It took 8 seconds to
produce a file with 50.000 events per geometry considered, almost two orders of magnitude faster than
a file generation using the Geant4 generator.

We can then start comparing the ∆x, ∆y, ∆θx and ∆θy distributions obtained for these different
geometries, as shown in Figure 5.2.

As we can see, the geometry actually has only a little impact on the deviation observed in the position
and direction, along both the x and y axes. We can however observe slightly larger tails for the pipes
having a larger inner width, as expected. The study of these small differences between the different
geometries will be the starting point of the determination of the properties of an unknown pipe placed
between the two detectors using our Likelihood class.

5.2.2 Kernel density functions

As explained previously, we generated between 10.000 and 50.000 events events for each geometry with
our Generator and, for every single event, a likelihood needs to be computed, which involves running
another loop of at least several hundreds of iterations. In each iteration, the value of the deviation
in position and angle between the MuonState obtained with our Propagator and the one defined as
the linearly propagated MuonState to the bottom detector is computed, filling in this process two
bi-dimensional histograms (∆x vs ∆θx and ∆y vs ∆θy) for each input event.

More precise results are expected to be obtained by increasing this number of iterations, but so does
the computing time, so in order to keep the code running time manageable, we decided to use the kernel
density estimation method described in Section 3.2, allowing us to reduce this number of iterations
while keeping the results reliable and smooth. Both the original and the smoothen histograms obtained
for a single event can be found in Figure 5.3.

5.2.3 Likelihood curves

The goal is now to finally estimate the value of the total likelihood obtained for different pipe geome-
tries, characterized by different inner radii, ranging from 16.6 to 19.0cm, by steps of 0.2cm.
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(a) Muon position (on the left) and direction (on the right) along the x-axis at the bottom detector after propagation

(b) Muon ∆x (on the left) and ∆y (on the right) as measured after propagation

(c) Muon ∆θx (on the left) and ∆θy (on the right) as measured after propagation

Figure 5.1: Normalized variables measured on the bottom detector using the Geant4 (in blue) simu-
lation process and our custom Generator (in red).
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(a) Muon ∆x (on the left) and ∆y (on the right) as measured after propagation

(b) Muon ∆θx (on the left) and ∆θy (on the right) as measured after propagation

Figure 5.2: Normalized deviation variables generated using different pipe geometries.
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(a) (∆x vs ∆θx) histogram along the x-axis, without (on the left) and with (on the right) smoothening applied.

(b) (∆y vs ∆θy) histogram along the y-axis, without (on the left) and with (on the right) smoothening applied.

Figure 5.3: Original and smoothen bi-dimensional histograms along the x and y axes, obtained for a
single event generated with the Generator class.
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The idea is in this sense to compute the value of the likelihood obtained for each of these geometries by
comparing an actual measurement obtained with our Propagator with these generated files one by one,
in order to estimate the value of the PDF and minimize the likelihood obtained in each case to, at the
end of the day, try to figure out which pipe geometry is more likely to give rise to such measurements.
The results obtained are shown in Figures 5.4 for iterations of computation for the likelihood and with
10.000 events simulated, in Figure 5.5 for 100 iterations and 50.000 events simulated and finally in
Figure 5.6 for 250 computation iterations and 10.000 simulated events. In all these figures, the vertical
red line shows the place where we would expect to see the minimum value.

As we can see in these results, the minimum of the likelihood curve is almost always exactly at the
place where we expected it to be. This means that with this algorithm, we do manage to reach in most
of the cases a precision at least equal to the order of the step chosen, currently set to 2 millimeters. It
also seems that increasing the number of simulated events from 10.000 to 50.000 is interesting, as it
decreases the small fluctuations observed in the first case, resulting in a smoother curve, even though
it also multiplies by a factor 5 the computing time, moving from 20 minutes to produce a single top
to more than an hour. On the other hand, moving the number of iterations from 100 to 250 does not
seem to have much of an impact.

In any case, these last results show that by using the algorithm developed here, we are capable of
determining the actual inner width of a pipe using cosmic muon and without destructing this pipe,
the initial objective of this work, with a precision of the order of 1 millimeter for the experimental
conditions considered, therefore solving the initial problem set.
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Figure 5.4: Likelihood curves obtained by considering different pipe geometries, ranging from 16.8 (on
the top left) to 19.0cm of inner radius (on the bottom right), obtained for 100 iterations and 10.000
simulated Monte-Carlo events.
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Figure 5.5: Likelihood curves obtained by considering different pipe geometries, ranging from 16.8 (on
the top left) to 19.0cm of inner radius (on the bottom right), obtained for 100 iterations and 50.000
simulated Monte-Carlo events.
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Figure 5.6: Likelihood curves obtained by considering different pipe geometries, ranging from 16.8 (on
the top left) to 19.0cm of inner radius (on the bottom right), obtained for 250 computations iterations
and 10.000 simulated Monte-Carlo events.
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Chapter 6

Conclusions

In conclusion, this work was designed with one simple objective in mind: using the detectors already
built by the company Muon Systems and the muon tomography technique in order to determine the
inner properties of a general geometry (considered for this work to be a steel pipe made out of two
cylinders, even though the code has been developed to be able to simply add more complex geometries
in the future), using several statistical concepts and a general Maximum Likelihood Estimate method
to analyze the results obtained. This allowed us to determine the thickness of different pipes using
data science and a natural source of energy, without having to destroy the pipes, which is an extremely
interesting process that can be useful and applied to many different industries.

The principle of this statistical approach presented here is quite simple: in order to study the inner
properties of a steel pipe, we can put a detector above the pipe, measuring the initial position and
directions of cosmic muons, and another detector below the volume considered, to compute the actual
deviation suffered by the cosmic muons when crossing the gap between the two detectors. Since this
deviation in position and angle is expected to be larger when crossing the steel pipe than the air, given
the difference in density of these two medium, we expected to be able to estimate the actual width of
the pipe crossed from such measurements of the positional and angular deviations.

Additionally, we defined in the process a brand new Generator in the process, allowing us to generate
Monte-Carlo simulations of such cosmic muons and to propagate them across our geometry using the
Molière’s theory of multiple scattering. This is interesting in the sense that it allows to remove the
dependence on Geant4, highly reliable but quite slow. This way of generating Monte-Carlo experiments
has been thoroughly check within this work.

At the end of the day, by implementing advanced statistical methods to solve this problem, we managed
to estimate the actual width of such steel pipes with a precision of the order of 1 millimeter, therefore
solving the problem which was originally presented.

6.1 Suggested improvements

Of course, this work is only a first approach to this particular problem, and many different improve-
ments could be added in the future in order to improve and/or generalize the results obtained:

• First of all, as previously stated, this work was focused on a typical approach related to steel pipes
typically used in the industry in general. The framework is ready to include additional and more
exotic geometries to study them as well, even though this has not been done in this particular
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work. Even pipes could be quite easily studied in greater details using this framework, by for
example considering additional parameters to characterize them, such as a possible dependence
of the width of the pipe with respect to the position. Being able to find weak spots in particular
locations in the pipe itself would be something of great value for the industry.

• This work almost exclusively considered Monte-Carlo simulations, but repeating the analysis
with actual data is an important step that needs to be taken in the near future.

• Another interesting idea might be to consider ionization as well, therefore performing an absorp-
tion muography experiment. In this work, we did not consider the loss of energy suffered by a
muon when crossing the volume studied since it is expected to be quite low, but such information
could help us increase the precision of the measurements performed.

• In this work, we did not consider detector effects even though by interacting with the incident
cosmic muons, they have an effect on them, even though this effect is supposed to be quite small.
Simulating in a precise way this interaction could also improve the precision of the method.

• Another limiting factor is the limited spatial resolution of the detector used, with wires placed
every 4 millimeters. Finding techniques to build a detector with an improved spatial resolution
is obviously expected to give better results.

• A detailed study of the errors associated to the method presented here has not been performed.
A further analysis estimating the Hessian of the likelihoods and the impact of systematic uncer-
tainties would definitely improve the algorithm.

• In this work we did not explore yet any automatic method to minimize the log-likelihood.
Given the nature of the algorithm it would however be easy to use well-understood, widely used
algorithms already in the market to perform this task.

• Finally, our results have been quite limited because of the computing power which was available.
Given the fact that the determination of the likelihood required us to do complex and long
calculations, with loops of tens of thousands of elements within each other, we had to limit as
much as possible several parameters, such as the number of iterations performed to compute
the likelihood. Increasing this parameter is expected to give better results, but also increase the
computing time. Running this code on more powerful and/or distributed machines is therefore
also expected to give better results.
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