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Chapter 1
Introduction

Quantum computing is becoming a more popular topic day after day. The recent
announcements by Google [1] and IBM [2] regarding the creation of novel quantum
devices of unprecedented computing capabilities brought the attention of academy
and companies. Still far from being a reality, algorithms designed to work on quan-
tum machines are currently a test bench for the abilities of this technology. Particu-
lar interest resides in the possibility of facing problems considered as untreatable by
classical computers. Well-known examples are combinatorial optimization problems,
in which the computational cost diverges exponentially, with increasing complexity.
In this work, we considered a set of quadratic unconstrained binary optimization
(QUBO) [3] problems, more specifically max-cut problems. Given a non-directed
graph with n vertices and m edges, the purpose of max-cut problems consists in
finding the two complementary subsets of vertices such that the number of edges
connecting vertices of different subsets is maximal. For our research, we considered
a slightly more general formulation, in which each edge has an arbitrary weight, and
the objective function to maximize is the weight of edges connecting the two vertices
subsets.
Using the Ising formulation [4], it is possible to map a QUBO problem into the
Hamiltonian H of a quantum system, with energy states corresponding to the ob-
jective function values. It is then possible to find the max-cut problem solution by
finding the quantum state that maximizes the energy of the quantum system. To
map a max-cut problem into a Hamiltonian, each vertex of the graph is associated
with a quantum bit. Quantum bits are the basic pieces of quantum computers, and
can be in any superposition of a fundamental state |0⟩ and excited state |1⟩. In our
mapping, a quantum bit in the fundamental state means that the corresponding
vertex is assigned to the first of the two complementary subsets, while a quantum
bit in the excited state means that the vertex is in the second subset.
For this work, we used circuit-based quantum computers. They change the qubits
states using quantum logic gates, that act as unitary operators. A set of qubits
and quantum gates coherently arranged is called a circuit. To solve the problems,
we used the variational quantum eigensolver [5] (VQE) algorithm and the quantum
approximate optimization algorithm [6] (QAOA). They are hybrid quantum-classical
algorithms and use parameterized quantum circuits C(θ) to generate a wave func-

5



6 CHAPTER 1. INTRODUCTION

tion |ψ(θ)⟩ that encodes the state of the system [7]. Employing a quantum device
to evaluate the system energy state and a classical optimizer to tune the circuit
parameters θ, hybrid quantum algorithms aim to find the optimal solution to the
problem.
Key questions regarding quantum computing concern not only the reliability of the
provided solutions but also if it can solve optimization problems faster than clas-
sical approaches. One crucial parameter of VQE and QAOA affecting both topics
is the number of circuit evaluations N needed to get a reliable estimation of the
system’s expected value, since each circuit measurement returns only one of the
possible energy states of the system. For the classical optimizer to choose the cor-
rect set of parameters θ maximizing the system energy, it is necessary to have a
good knowledge of its mean value for a given parameters choice. If on one hand,
large N helps the classical optimizer to precisely measure the objective function,
on the other hand, it can also affect the algorithm efficiency, as the computational
time is proportional to the number of circuit evaluations. To quantitatively study
the effect of varying N , we designed several max-cut problems, changing the num-
ber of vertices and edges of the corresponding graphs. We then use the VQE and
QAOA algorithms to solve them, observing how the choice of N affects the quality
of the solution obtained, compared with the optimal solution computed through an
exhaustive search. Our results indicate that for very low N , the algorithms can-
not find a sensible solution, just returning random values. Once a certain thresh-
old, only slightly affected by the problem characteristics, is overcome, the accuracy
of the solution improves as the square root of N , reaching the exact solution for
N → ∞. All the pieces of code implemented for this work are available on github
at: https://github.com/NTrevisani/TFM. The production of all the numerical
simulations presented in this work used the open-source library Qiskit [8] developed
by IBM. They are stored in Zenodo at: http://doi.org/10.5281/zenodo.4013213



Chapter 2
Combinatorial optimization and Quantum
Mechanics

Combinatorial optimization is the task of finding the optimal solution to a problem
among a finite set of possible solutions. In many cases, the set of possible solu-
tions is so big that an exhaustive search is not viable, and it is more convenient
to approximate the optimal solution. In this chapter, we will introduce quadratic
unconstrained binary optimization (QUBO) [3] problems, as examples of problems
requiring approximate resolution algorithms, and their parallelism with quantum
systems. We will focus in particular on the max-cut problem, that we used as a
benchmark in this work, presenting examples to ease the discussion.

2.1 Max-cut problem
Quadratic unconstrained binary optimization (QUBO) problems are typical exam-
ples of problems requiring combinatorial optimization. The target is to maximize
an objective function:

F (x) =
n∑

i,j=1

xiQijxj (2.1)

where Q is a matrix defined by the problem and x ∈ {0, 1}n. It is easy to show that
the total number of possible solutions to a QUBO problem is 2n so that it rapidly
diverges when the problem size increases.
Among the many QUBO problems, we focused on the max-cut, as it is easy to
visualize, implement, and customize. To define it, let’s consider a non-directed
graph with n vertices and m edges. The max-cut problem aims to find the two
complementary subsets of vertices such that the number of edges connecting vertices
of different subsets is maximal. In a slight variation, we can consider that each edge
has a weight, so that we want to maximize the sum of the weights given by edges
connecting vertices of different subsets. If we define a n × n matrix, in which the
entry (i, j) corresponds to the weight of the edge connecting the i and j vertices, we
obtain the Q matrix associated to the max-cut problem. Each vertex is assigned a
position in a string of bits and its belonging to one of the groups is determined by

7



8CHAPTER 2. COMBINATORIAL OPTIMIZATION AND QUANTUM MECHANICS

Figure 2.1: On the left, a non-directed graph with 5 vertices and 6 edges. Each
edge has been assigned a random weight, shown on the right in the matrix. Vertices
of different colors belong to different subsets, according to the solution of the max-
cut problem associated to the graph. The solution to this specific problem is x =
{(0,1,0,1,0),(1,0,1,0,1)}, giving a cost function of 32. In general, a max-cut problem
has at least two symmetric solutions, as completely exchange the vertices subsets
does not change the objective function value.

the value of the bit. Figure 2.1 illustrates an example of a max-cut problem:

• on the left, the non-directed graph, with 5 vertices and 6 edges;

• on the right, the Q matrix with the edges weights;

• the solution is presented on the left, where vertices of different colors belong
to different subsets.

The objective function (or cost function) for the max-cut problem is slightly different
with respect to the general F (x) defined in equation 2.1, and takes the form:

Fmax−cut(x) =
n∑

i,j=1

xiQij(1− xj) (2.2)

where we can see that if two vertices belong to the same subset, the contribution to
the cost function is 0 (at least one of the two terms xi or (1 − xj) is 0), while for
vertices belonging to complementary subsets, the contribution is Qij.

2.2 The Ising formalism
As we want to solve QUBO problems using quantum devices, it is useful to know
that there is a direct correspondence between the Q matrix of a QUBO problem
and the Hamiltonian representing a quantum system whose energy states are the
possible values of the objective function. This alternative formulation of optimiza-
tion problems was first described by Ising [4]. Given the cost function of a QUBO
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problem (see equation 2.1), the corresponding Ising Hamiltonian is given by:

Ĥ =
n∑

i<j

J ′
ijσ

z
i σ

z
j +

n∑
i=1

J ′′
i σ

z
i (2.3)

where:
J ′
ij = −Qij

J ′′
i = −

n∑
j=1

Qij
(2.4)

and σz
i is the Pauli operator acting on the quantum state of the i-th vertex:

σz
i =

[
1 0
0 −1

]
i

(2.5)

Note the minus signs in equation 2.4: in the Ising formulation, and from this point
on, the problem solution will correspond to the state giving the minimum energy of
the system, and we will find it by minimizing the objective function.
Operatively, given the objective function (equation 2.2) of a max-cut problem, to
get its corresponding Ising Hamiltonian:

• we promote xi to the operator:
xi →

1

2
(1i + σz

i ) =
1

2

([
1 0
0 1

]
i

+

[
1 0
0 −1

]
i

)
=

[
1 0
0 0

]
i

• consequently:
(1− xi) →

([
1 0
0 1

]
i

−
[
1 0
0 0

]
i

)
=

[
0 0
0 1

]
i

• for every entry of the original n × n Q matrix, we take the entry (i, j) and
multiply it by the tensor product from 1 to n of 2 × 2 identities, with the
exception of the i-th and j-th terms of the product, which are the 2 × 2
matrices corresponding to xi and (1 − xj). The sum of all these products is
a diagonal 2n × 2n matrix, whose entries are the possible objective function
values and corresponds to the Ising Hamiltonian associated to the problem.

The result is shown in Figure 2.2, presenting the Ising Hamiltonian corresponding
to the max-cut problem defined in Figure 2.1.
If we now want to know to which vertices-subset configuration each Ĥ entry corre-
sponds:

• we choose a possible solution (i.e. x = (1, 0, 1, 0, 1));

• for each xi ∈ x, we promote:
xi = 0 →

[
0
1

]
;

xi = 1 →
[
1
0

]
;
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• we compute the tensor product x′ =
n⊗

i=1

xi, obtaining a vector of length 2n;

• the matrix product (x′∗)T Ĥx′ returns the desired value.

Since it is widely used in quantum mechanics and quantum computing, let’s conclude
this chapter introducing the Dirac bra-ket notation:

• vectors are labelled as kets: xi → |xi⟩

• vectors conjugate transpose are labelled as bras: (x′∗i )
T → ⟨xi|

• the matrix product previously introduced can be written as ⟨xi| Ĥ |xi⟩ and
takes the name of expectation value.
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Figure 2.2: The Ising Hamiltonian associated to the max-cut problem defined in
Figure 2.1. It is a (32 × 32) diagonal matrix, with entries corresponding to the
possible objective function values.
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Chapter 3
Quantum computing

As quantum mechanics is the underlying law governing natural processes, it has
long been considered a sensible way to describe and simulate them [9]. Despite
that, only thanks to the most recent technological advances, it has been possible
to develop quantum machines whose computational power cannot be reached by
classical computers [1, 2]. These machines, however, are not able to radically change
informatics right away [10]. Instead, they can help in developing new algorithms
and, used in association with classical computers, test the real power of quantum
technology. In this chapter, we will present the basic concepts of quantum computing
and describe the quantum algorithms we used. The primary reference for this chapter
is the Qiskit Textbook [11].

3.1 Quantum bits, circuits, and measurements
The quantum bit, or qubit, is the fundamental piece of a quantum computer. It is
analogous to the bit in a standard computer, with the difference that while a bit
can assume values 0 or 1, a qubit has two levels |0⟩ and |1⟩ and can be in any state
which is their linear superposition. From a quantum mechanical point of view, |0⟩
is the fundamental state and |1⟩ the first excited state. In the canonical base, they
can be expressed as:

|0⟩ =
[
1
0

]
(3.1a)

|1⟩ =
[
0
1

]
(3.1b)

As said, a qubit state |ψ⟩ is the superposition of |0⟩ and |1⟩:

|ψ⟩ = α |0⟩+ β |1⟩ (3.2)

where α and β are complex coefficients that satisfy the relation:

|α|2 + |β|2 = 1. (3.3)

When performing a measurement on a qubit state, the probability:

13



14 CHAPTER 3. QUANTUM COMPUTING

Figure 3.1: The Bloch sphere, representing a general qubit state.

• of observing it in the state |0⟩ is |α|2;

• of observing it in the state |1⟩ is |β|2.

Due to the unitarity relation already introduced for the coefficients, the sum of the
two probabilities is 1.
An alternative qubit state representation uses the probability p of measuring the
qubit in the |0⟩ state and the qubit phase ϕ as parameters:

|ψ⟩ = √
p |0⟩+ eiϕ

√
1− p |1⟩ (3.4)

Being a probability, 0 ≤ p ≤ 1, bringing us to a commonly used form to express the
qubit state:

|ψ⟩ = cos(θ/2) |0⟩+ sin(θ/2)eiϕ |1⟩ (3.5)
where now:

• 0 ≤ θ ≤ π;

• 0 ≤ ϕ ≤ 2π.

With this new representation, the qubit state becomes a point on a sphere in R3,
known as the Bloch sphere, shown in Figure 3.1. The Bloch representation is so
popular since it allows defining a general operator U , able to change the qubit state
from any state |ψ⟩ to another state |ψ′⟩:

|ψ′⟩ = U |ψ⟩ . (3.6)

U has to be unitary:
UU † = 1 (3.7)
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and assumes the form:

U(ϑ, φ, λ) =

[
cos(ϑ/2) −eiλ sin(ϑ/2)
eiφ sin(ϑ/2) ei(λ+φ) cos(ϑ/2)

]
(3.8)

Where ϑ is a rotation of the Bloch Sphere polar angle (the θ defined in Figure 3.1
and equation 3.5) and λ and φ are phases rotations that affect differently the funda-
mental and excited state coefficients. It is important to note here that in quantum
mechanics, only phase differences have physical meaning. In other words, even if
equation 3.5 has two parameters (θ and ϕ), and U has three (ϑ, φ, and λ), we are not
introducing additional parameters. Instead, the coefficients phases can always be
re-defined so that their difference is preserved, but the fundamental state coefficient
has phase 0.
Circuit-based quantum computers change qubits state using logic gates known as
quantum gates, and circuits are sets of quantum gates acting on one or more qubits.
Quantum gates are no more than the U operator implementation, with particular
parameters’ choice. The most common ones and those used in this work are listed
here.

Hadamard gate The Hadamard gate acts as the operator:

H =
1√
2

[
1 1
1 −1

]
(3.9)

corresponding to U(π
2
, 0, π). It represents a rotation of π

2
around the y-axis of the

Bloch Sphere, bringing a qubit from the fundamental state |0⟩ to the positive su-
perposition state |+⟩:

H |0⟩ = |+⟩ = |0⟩+ |1⟩√
2

(3.10)

or from the excited state |1⟩ to the negative superposition state |−⟩:

H |1⟩ = |−⟩ = |0⟩ − |1⟩√
2

(3.11)

X gate The X gate acts as the operator:

X =

[
0 1
1 0

]
(3.12)

corresponding to U(π, 0, 0). It represents a rotation of π around the y-axis of the
Bloch Sphere, bringing a qubit from the fundamental state |0⟩ to the excited state
|1⟩ or vice-versa.

Z gate The Z gate acts as the operator:

Z =

[
1 0
0 −1

]
(3.13)

corresponding to U(0, π, 0). It introduces a phase φ = π, changing the sign of the
excited state coefficient.
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U1 gate The U1 gate acts as the operator:

U1(λ) =

[
1 0
0 eiλ

]
(3.14)

corresponding to U(0, 0, λ). It introduces a phase λ for the excited state coefficient.

U2 gate The U2 gate acts as the operator:

U2(φ, λ) =

[
1 −eiλ
eiφ ei(λ+φ)

]
(3.15)

corresponding to U(π
2
, φ, λ). It introduces different phases for the fundamental and

excited state coefficients.

U3 gate The U3 gate acts as the U operator, where the three parameters ϑ, φ,
and λ can be independently changed.

RX gate The RX gate acts as the operator:

RY (ϑ) =

[
cos(ϑ/2) −i sin(ϑ/2)

−i sin(ϑ/2) cos(ϑ/2)

]
(3.16)

corresponding to U(ϑ, 3π
2
, π
2
). It rotates the qubit state around the x-axis of the

Bloch Sphere.

RY gate The RY gate acts as the operator:

RY (ϑ) =

[
cos(ϑ/2) − sin(ϑ/2)
sin(ϑ/2) cos(ϑ/2)

]
(3.17)

corresponding to U(ϑ, 0, 0). It rotates the qubit state around the y-axis of the Bloch
Sphere.

CNOT gate The CNOT gate is the basic 2-qubits gate. Given a target qubit
and control qubits, it applies an X gate to the target qubit if and only if the control
qubit is in the |1⟩ state. It acts on the tensor product of the control and target
qubits states as the operator:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (3.18)

This gate is essential to create entangled states between two qubits. Entanglement
is a fundamental property of quantum mechanics, with no classical analogy. A set
of quantum particles (or qubits, in our case) which are put and kept in a coherent
(entangled) state can behave in a strongly correlated way, even if they are too far



3.2. QUANTUM ALGORITHMS 17

(a) (b)

Figure 3.2: A simple, 1-qubit circuit, with just one Hadamard gate and the corre-
sponding measurement frequencies.

apart to let any classical local theory explaining that. In other words, the elements of
an entangled quantum system do not behave independently. Instead, two entangled
qubits will give correlated results when measured. In more mathematical terms, the
state of an entangled system cannot be factorized as the product of single qubits
states. Using the CNOT gate, any other controlled gate can be built. To avoid
overloading the discussion, we will skip listing them all.

Circuit measurement

Given the probabilistic nature of quantum mechanics, if we want to know the state
of a circuit of one or more qubits, we have to measure it several times. The state
of a qubit is the superposition of the fundamental and excited states, but when we
measure it, we can find it either in the |0⟩ or in the |1⟩ state, with a probability equal
to the square module of the corresponding coefficient. As an example, in Figure 3.2,
a simple circuit, made by one Hadamard gate acting on a single qubit, is shown
together with the relative frequencies obtained measuring it 1024 times. As expected,
the relative frequencies are very close to 1

2
, meaning that α = β =

1√
2

. Performing
more measurements would have reduced the difference between the expected and
observed frequencies, but on the other hand, it would have taken more time. As
we already mentioned and will see in more detail later, this is a crucial aspect to
estimate the efficiency of quantum algorithms.

3.2 Quantum algorithms
The circuit-based quantum computers currently available belong to the noisy
intermediate-scale quantum era [10]. The best available qubits today [12, 13] are
noisy, meaning that quantum gates have a non-negligible probability of produc-
ing the wrong output. This probability is of the order of per-mill, meaning that
circuits must contain a limited number of gates to give reliable results. While error-
correction techniques exist, they require more qubits than available in intermediate-
scale devices. Hybrid quantum-classical algorithms fix this situation. They use the
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ability of quantum computers to efficiently measure the state of a circuit, working
together with a classical computer to iteratively tune the circuit parameters and
minimize the objective function. Thanks to this continuous interaction, the algo-
rithms use small quantum circuits, and possible errors are less relevant.
In this work, we considered the variational quantum eigensolver (VQE) [5] algo-
rithm and the quantum approximate optimization algorithm (QAOA) [6]. In both
cases, the classical optimizer was the Constrained Optimization BY Linear Approx-
imation (COBYLA) algorithm [14]. It applies linear approximations of the cost
function, sampling it to estimate its gradient when it is not known a priori.

3.2.1 Variational quantum eigensolver
To understand the idea behind VQE, we start by introducing the concepts of eigen-
value and eigenvector (or eigenstate), defined through the following relation:

H |ψi⟩ = λi |ψi⟩ (3.19)

where H is the matrix describing the Hamiltonian, λi is an eigenvalue, and |ψi⟩ is
an eigenvector. In our case, H is the Ising Hamiltonian associated to the problem,
the eigenvalues its diagonal entries (and correspond to the possible cost function
values), and the eigenstates are the vectors representing the possible states of our
system:

|ψi⟩ = {|00000⟩ , |00001⟩ , |00010⟩ , |00011⟩ , ...}. (3.20)

Here, each |ψi⟩ is the tensor product of the vertices states, as explained in section 2.2.
In the same way as to each possible solution to a QUBO problem corresponds one
objective function value, to each eigenstate correponds one eigenvalue. So, if we
express an optimization problem in terms of a quantum system, its solution will be
the eigenstate associated with the minimum eigenvalue. In general, any other state
or superposition of states:

|ψ⟩ =
N∑
i

αi |ψi⟩ (3.21)

will give an expected value larger than the minimum eigenvalue:

λmin = ⟨ψmin|H|ψmin⟩ ≤ ⟨ψ|H|ψ⟩ =

=

(
N∑
i

⟨ψ|i αi

)
H

(
N∑
i

αi |ψi⟩

)
=

=
N∑
i

|αi|2 ⟨ψi|H|ψi⟩ =
N∑
i

|αi|2λi

(3.22)

The VQE algorithm starts with a reasonable ansatz for |ψ⟩ and iteratively changes
its eigenstates composition, using the classical optimizer to find the combination
that minimizes the cost function.
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Ansatz selection

In general, a valid ansatz has to fulfill two requisites:

• cover the largest possible number of states → many parameters;

• have a small number of gates, to avoid errors and ease the convergence → few
parameters.

Among the several possibilities, we chose the RY-ansatz. To change the single qubits
states and consequently the eigenstate composition of the quantum state, it uses only
rotations around the Bloch sphere y-axis. Operatively, it consists of:

1. putting all the qubit in the |+⟩ = |0⟩+ |1⟩√
2

state through rotations of π
2

around
the y-axis of the Bloch sphere. This is done using RY-gates and ensures that
the initial choice of |ψ⟩ is the superposition of all the possible eigenstates with
the same coefficient. The rotation angles start in π

2
but can be modified during

the optimization;

2. connecting different qubits, introducing entanglement among them. In our
implementation, we connected nearest neighbor qubits, using controlled Z-
gates;

3. introducing for each qubit an additional rotation around the y-axis of its Bloch
sphere. As in step 1., RY-gates perform the rotations, but in this case the
initial rotation angle is 0. The angles are free parameters to be adjusted
during the optimization process;

4. repeating steps 2. and 3. for a chosen number of times, keeping in mind
that more layers mean more parameters for the optimizer and more gates.
In our implementation, we selected a circuit depth of 2, in agreement with
reference [7].

An example of a VQE circuit with 5 qubits and a depth of 2 layers and prepared in
the RY initial state is show in Figure 3.3. The result of measuring the circuit 1024
times are shown in Figure 3.4. As the circuit corresponds to a quantum state where
all the eigenstates |ψi⟩ are present with the same coefficient αi, they all appear with
similar frequencies.

3.2.2 Quantum Approximate Optimization Algorithm
The QAOA algorithm aims to reproduce Adiabatic Quantum Computation [15]
(AQC) on a circuit-based quantum device. AQC is based on a different quantum
computing paradigm, not built on circuits and gates, and needs two Hamiltonians to
solve an optimization problem [16]: the driver Hamiltonian (HD) and the problem
Hamiltonian (HP ). The driver Hamiltonian has a ground state easy to prepare and
is used as the starting point. The problem Hamiltonian encodes the characteristics
of the problem we want to solve and its ground state (usually unknown) is the so-
lution. The problem Hamiltonian thus corresponds to the Ising Hamiltonian of the
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Figure 3.3: A VQE circuit with 5 qubits and a depth of 2 layers. The first RY
rotations are set to θ = π

2
for all qubits, while the additional gates are set to θ = 0.

All the angles can be freely modified during the optimization.

Figure 3.4: Result of measuring 1024 times the circuit in Figure 3.3. As expected,
all the eigenstates appear with a similar frequency.
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problem. As the Adiabatic Theorem [17] states, if we start from the ground states of
a Hamiltonian (in our case HD) and we operate a slow enough transition to another
Hamiltonian (in our case HP ), we remain in the ground state, which is the solution
we are looking for. More formally, we can summarize the transition from HD to HP

by introducing a smooth function of time s(t) so that:
H(t) = (1− s(t))HD + s(t)HP

s(0) = 0

s(T ) = 1

(3.23)

where T is large enough for the Adiabatic Theorem to hold. The H(t) time evolution
is given by the following operator:

U(t) = τ exp
(
−i
h̄

∫ T

0

H(T )dT

)
(3.24)

The integral in 3.24 cannot be implemented as a quantum circuit. Instead, we can
use the Trotterization technique [18] to discretize it into intervals of ∆t small enough
so that the Hamiltonian is approximately constant over each interval. Using U(b, a)
to represent the time evolution from time a to time b:

U(T ) = U(T, 0) = U(T, T −∆t)U(T −∆t, T − 2∆t)...U(∆t, 0) =

=

p∏
j=1

U(j∆t, (j − 1)∆t) ≈

≈
p∏

j=1

e−iH(j∆t)∆t

(3.25)

where ∆t is chosen as a multiple of h̄ and the approximation improves for larger p
or, equivalently, smaller ∆t. Finally, we can use the approximation:

ei(A+B)x = eiAxeiBx +O(x2) (3.26)

and plug-in the Hamiltonian:

H(j∆t) = (1− s(j∆t))HD + s(j∆t)HP (3.27)

to get an expression for the time-evolution operator that can be implemented as a
quantum circuit:

U(T ) = U(T, 0) ≈
p∏

j=1

exp (−i(1− s(j∆t))HD∆t) exp (−is(j∆t)HP∆t) . (3.28)

We can further simplify the notation by writing the time evolution operator in terms
of two sets of free parameters β = {β1, β2, ..., βp} and γ = {γ1, γ2, ..., γp}:

U(T ) ≈
p∏

j=1

e−iβiHDe−iγiHP (3.29)

Now that we know the parametric expression of the time-evolution operator, we can
select an initial state and apply U(T) to go to the solution state. To translate it
into a quantum circuit:
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Figure 3.5: A QAOA circuit with 5 qubits and a depth of 1 layer. The circuit is
based on the max-cut problem defined in Figure 2.1. Notice that the circuit has only
two free parameters, β and γ. Unlike the VQE circuit of Figure 3.3, the Hadamard
gates do not present freely adjustable rotation angles.

1. define the initial state, by putting all the qubits in the |+⟩ = |0⟩+ |1⟩√
2

state.
Unlike the VQE case, the initial rotation angles are fixed and cannot be ad-
justed during the optimization;

2. introduce the HP rotation gates: for each qubits pair (i, j), if the Qi,j entry is
non-null, insert a controlled U1 gate with rotation angle -2γk ·Qi,j connecting
the two qubits and a U1 gate with rotation angle γk ·Qi,j for each of the two
qubits;

3. introduce the HD rotation gates: add an RX gate with rotation angle 2 · βk to
each qubit;

4. repeat steps 2. and 3. p times, considering that each additional layer intro-
duces two new parameters (γk, βk) and several new gates. In our implemen-
tation, we selected a circuit depth of 2, in agreement with reference [7].

An example of a QAOA circuit based on the problem defined in Figure 2.1, with 5
qubit and depth 1, is shown in Figure 3.5. The γ and β angles are initially set to 0,
so in the corresponding quantum state, all the eigenstates |ψi⟩ appear with the same
coefficient αi. The result of measuring the circuit 1024 times, shown in Figure 3.6,
confirms that all the eigenstates have been sampled with similar frequencies. To
obtain the correct angle values needed to get the optimal solution, we operated as in
the VQE case, measuring the cost function associated to a certain parameter choice
and tune them using a classical optimizer.
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Figure 3.6: Result of measuring 1024 times the circuit in Figure 3.5. As expected,
all the eigenstates appear with a similar frequency
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Chapter 4
Circuit measurement studies

Now that we presented the problem we want to solve in chapter 2 and the algorithms
that we used in chapter 3, we can focus on the main purpose of this work. In this
chapter, we will discuss the details of our research regarding the effect of changing the
number N of circuit measurements, on the convergence of quantum algorithms. We
will list the studies we performed, present the results, and explain our interpretation.

4.1 Parameters scan
In this research, both the target problem and the optimization algorithms have pa-
rameters that we adjusted to broaden the validity of our investigation.
To obtain a study as complete as possible, we inspected several different max-cut
problems, obtained changing the number of vertices and the number of vertices con-
nections. We first of all wanted to determine the behavior of the two algorithms
when facing max-cut problems of different size, namely associated to graphs of dif-
ferent number of vertices. As the maximum number of edges for a non-directed
graph of n vertices is:

mmax =
n(n− 1)

2
, (4.1)

to avoid any dependence on the number of edges, the number of vertices connections
was fixed to mmax/2. Additionally, the vertices connected by edges were randomly
selected, as the edges weights. The complete parameters scan for this study is
show in Table 4.1. In the same Table, the mean cost function (the mean of the Ising
Hamiltonian eigenvalues) for each problem is listed, together with the minimum cost
function, corresponding to the minimum eigenvalue. These quantities were obtained
by an exhaustive search of all the possible cost function values. In a second phase,
we focused the attention on the graphs complexity, once fixed the size. In this case,
we selected graphs with 10 vertices, changing the edges number. A summary of the
scan is presented in Table 4.2. In both cases, and for both algorithms, we used the
same set of number of circuit measurements (also called shots) during the circuit
parameter optimization:

shots = [1, 2, 4, 8, 12, 16, 24, 32, 64, 96, 128, 192, 256, 512] (4.2)

25
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vertices edges mean cost function min cost function
10 22 -61.5 -92
11 27 -68.5 -105
12 33 -85.5 -135
13 39 -102 -157
16 60 -171 -249
18 76 -215.5 -309

Table 4.1: Parameter scan for the problem-size study. Together with the number of
vertices and edges, the mean cost function and the minimum cost function of each
problem are shown.

vertices edges mean cost function min cost function
10 10 -28.5 -55
10 15 -42.5 -75
10 20 -55 -88
10 22 -61.5 -92
10 25 -65.5 -99
10 30 -77 -122
10 35 -90.5 -122
10 40 -106.5 -143
10 45 -124 -158

Table 4.2: Parameter scan for the graph-complexity study. Together with the num-
ber of vertices and edges, the mean cost function and the minimum cost function of
each problem are shown.
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For each shot value, the optimization is repeated 100 times and, independently of
the measurements used during the optimization, the final circuit configuration is
evaluated 128 times.

4.2 Results
Several quantities can serve to estimate the performances of the algorithms. To
evaluate the algorithm ability to reach the optimal solution, we focused our attention
on the final cost function value and the fraction of solutions containing the eigenstate
of minimum energy. In particular, we considered the difference between the final
cost function and the eigenvalues mean value, as a function of the 1/

√
shots. As the

number of total circuit evaluations is the key-value to measure the algorithm rapidity,
it was the reference quantity we considered for this purpose. In the following, we
will list the results of the optimizations for the two algorithms and the problem-size
and graph-complexity studies.

4.2.1 VQE results
The results of the problem-size and graph-complexity studies obtained using the
VQE algorithm are presented in this section.

Problem-size study

The VQE performance results for the problem-size study are illustrated in Figure 4.1.
Each point represents the mean value of 100 optimizations and their standard de-
viation, and darker colors refer to problems related to larger graphs. In the left
plot (Figure 4.1a), it can be seen that when the number of shots is small, the algo-
rithm does not manage to properly converge, returning almost random results. Their
mean is simply the ansatz cost function value, with a dispersion that decreases when
the number of shots gets larger. Once a certain threshold is overcome (at around
1/
√

shots = 0.2, corresponding to 25 shots), the final cost function starts to decrease
linearly with 1/

√
shots, reaching the optimal solution for shots → ∞. It is interest-

ing to note that the linear behavior for a large number of shots is independent of
the problem size. Only for the largest shots value, the points start to diverge. Most
probably, the optimization solution is getting close to the true solution and start to
saturate. This can be better understood by looking at the right plot (Figure 4.1b),
where the y-axis is re-scaled so that -1 corresponds to the optimal solution, indepen-
dently of the problem size. It is clear the smallest problems are already very close to
the true solution and the cost function cannot decrease much more. In the bottom
plot (Figure 4.1c), we show the fraction of solutions containing the optimal solution,
as a function of the number of circuit measurements. In this case, the result is a bit
surprising, as we would expect an increasing trend when using more shots, which
is not so evident. According to reference [7], it can be explained considering that
the mean cost function value is not the best possible figure of merit to perform an
optimization. Let’s consider, for example, the results of two optimizations:



28 CHAPTER 4. CIRCUIT MEASUREMENT STUDIES

1. |ψ1⟩ =
|ψmin⟩+ |ψmax⟩√

2

2. |ψ2⟩ = |ψmiddle⟩

where:

• ⟨ψmin| Ĥ |ψmin⟩ = λmin = −100

• ⟨ψmax| Ĥ |ψmax⟩ = λmax = 0

• ⟨ψ2| Ĥ |ψ2⟩ = ⟨ψmiddle| Ĥ |ψmiddle⟩ = λmiddle = −90

In other words, the mean cost function of |ψ1⟩ is -50, while the mean cost function
of |ψ2⟩ is -90. This means that the algorithm would prefer |ψ2⟩ instead of |ψ1⟩,
even if |ψ2⟩ does not contain the optimal solution and |ψ1⟩ does. In reference [7],
an alternative to the mean cost function is presented, but we are not considering
it for the moment. In Figure 4.2, we present the time-of-convergence results. In
the left plot (Figure 4.2a), it can be seen that the number of iterations with the
classical optimizer is larger when the problem size increases. On the other hand,
this quantity only slightly depends on the number of shots. As the total number
of circuit evaluation is the product between the iterations with the classical opti-
mizer and the number of evaluations for each iteration, we show it on the right plot
(Figure 4.2b). As expected, there is an almost linear dependence between the total
circuit evaluations and the number of shots, with a coefficient given by the average
number of iteration with the classical optimizer.

Graph-complexity study

The VQE performance results for the problem-size study are illustrated in Figure 4.3.
They look very similar to the previous ones, and in particular Figure 4.3a shows that
in all cases the algorithm manages to step away from the mean cost function value
of approximately the same quantity for a given number of shots, independently of
the problem. On the other hand, Figure 4.3b shows that the more complex the
problem, the wider is the difference between the mean cost function and the optimal
cost function, so that the convergence to the optimal value is slower for problems
associated with graphs with more edges. In both cases, the typical behavior showing
a threshold in the number of shots for the algorithm to start converging is still
observed. Also Figure 4.3c is similar to Figure 4.1c, showing that the fraction of
solutions containing the optimal solution generally grows with more shots, but can
significantly oscillate. Moving to Figure 4.4a, we can see that the number of classical
optimizer iterations does not depend on the graph complexity, and only moderately
on the number of shots. Again, this translates in the linear dependence between the
total circuit evaluations and the number of shots, as Figure 4.4b shows.

4.2.2 QAOA results
The results of the problem-size and graph-complexity studies obtained using the
QAOA algorithm are presented in this section.
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Figure 4.1: VQE algorithm performance results for the problem-size study. On the
left, difference between the mean cost function (see Table 4.1) and the solution cost
function as a function of 1√

shots . On the right, the same quantity is re-scaled so that
y-axis origin is the mean cost function and y-axis = -1 corresponds to the optimal
solution (equivalent to the minimum cost function). In the bottom plot, the fraction
of solutions including the optimal solution as a function of the number of shots.
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Figure 4.2: VQE time-of-convergence results for the problem-size study. On the left,
number of iterations with the classical optimizer as a function of the number shots.
On the right, the same quantity multiplied by the number of shots, corresponding
to the total number of circuit evaluations.

Problem-size study

The QAOA performance results for the problem-size study are illustrated in Fig-
ure 4.5. Unlike the VQE case, the convergence is pretty poor and the algorithm
does not seem to properly choose the optimization parameters. What we observe
here is similar to what presented in reference [7], particularly for problems involving
10 or more qubits. Even if they do not show plots corresponding to Figure 4.5a
and 4.5b, and their results for the fraction of solutions containing the optimal so-
lution are not completely comparable with Figure 4.5c, they observe significantly
worse results with respect to VQE, suggesting that the optimization is not taking
place. They explain the observation with the small circuit depth: with just 2 trot-
terization steps, the classical optimizer has only 4 parameters, significantly less than
the (depth+1)× nqubits used by VQE. They also suggest that deeper circuits would
introduce non-negligible errors so that using them is not an option. We tried to ex-
plore this possibility, by solving the 10-qubits, 22-edges problem using circuits depth
of 6 and 10. The results are presented in Figure 4.6 and show no improvements. In
Figure 4.7, the time-of convergence results are shown. As in the VQE case, there is
only a limited dependence on the number of shots. The results are also independent
of the problem size, as the number of free parameters is constant.

Graph-complexity study

We show, for completeness, the results of the graph-complexity study for the QAOA
algorithm, in Figure 4.8 and Figure 4.9. They are similar to the results of the
previous section and show that the algorithm is not properly converging towards
the optimal solution.
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Figure 4.3: VQE algorithm performance results for the graph-complexity study. On
the left, difference between the mean cost function (see Table 4.1) and the solution
cost function as a function of 1√

shots . On the right, the same quantity is re-scaled
so that y-axis origin is the mean cost function and y-axis = -1 corresponds to the
optimal solution (equivalent to the minimum cost function). In the bottom plot, the
fraction of solutions including the optimal solution as a function of the number of
shots.
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Figure 4.4: VQE time-of-convergence results for the graph-complexity study. On
the left, number of iterations with the classical optimizer as a function of the num-
ber shots. On the right, the same quantity multiplied by the number of shots,
corresponding to the total number of circuit evaluations.

4.3 VQE threshold effect interpretation
As observed in Figures 4.1 and 4.3, the VQE algorithm needs a minimum amount
of shots to even start converging towards the optimal solution. In both Figures, this
threshold is located at about 1/

√
shots = 0.2, or shots = 25. To understand the

reason for this behavior, we recalled that the COBYLA optimizer does not know a
priori the cost-function gradient direction, and has to build it by sampling the cost
function, starting from a set of input parameters. Our guess is that when the number
of shots is below the threshold, the cost function value obtained is not reliable and
leads to a bad gradient reconstruction, that eventually drives the algorithm towards
a poor or random solution. To test our hypothesis, we proceeded as follows:

• create a random max-cut problem and a VQE circuit to solve it;

• choose a set of parameters for the VQE circuit;

• measure the circuit a large amount of times (i.e. 10000). We considered the
resulting eigenstates distribution as the real eigenstates composition of the
circuit. The cost function obtained was considered as the true cost function;

• measure the same circuit a smaller number of times (i.e. 1, 2, 4, 8, 12, 16,
24, 32, 64, 128, 256). Repeat each measurement 1000 times, considering the
average cost function and comparing it and the eigenstates composition with
the real ones.

The results of the study are shown in Figure 4.10 and, particularly for a very low
number of shots, confirm our supposition. The cost function evaluations, for num-
ber of shots between 1 and 16 at least (first two rows), are so dispersed that the
classical optimizer cannot reconstruct the gradient at all. Increasing the number of
measurements, the measured cost function starts to have reasonable compatibility
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Figure 4.5: QAOA algorithm performance results for the problem-size study. On
the left, difference between the mean cost function (see Table 4.1) and the solution
cost function as a function of 1√

shots . On the right, the same quantity is re-scaled
so that y-axis origin is the mean cost function and y-axis = -1 corresponds to the
optimal solution (equivalent to the minimum cost function). In the bottom plot, the
fraction of solutions including the optimal solution as a function of the number of
shots.
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Figure 4.6: Difference between mean cost function and the solution cost function, as
a function of 1√

shots . For the left plot, the optimization used a circuit with 6 trotteri-
zation layers, for the right one, the optimization used a circuit with 10 trotterization
layers.
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Figure 4.7: QAOA time-of-convergence results for the problem-size study. On the
left, number of iterations with the classical optimizer as a function of the number
shots. On the right, the same quantity multiplied by the number of shots, corre-
sponding to the total number of circuit evaluations.
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Figure 4.8: QAOA algorithm performance results for the graph-complexity study.
On the left, difference between the mean cost function (see Table 4.1) and the
solution cost function as a function of 1√

shots . On the right, the same quantity is
re-scaled so that y-axis origin is the mean cost function and y-axis = -1 corresponds
to the optimal solution (equivalent to the minimum cost function). In the bottom
plot, the fraction of solutions including the optimal solution as a function of the
number of shots.
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Figure 4.9: QAOA time-of-convergence results for the graph-complexity study. On
the left, number of iterations with the classical optimizer as a function of the num-
ber shots. On the right, the same quantity multiplied by the number of shots,
corresponding to the total number of circuit evaluations.

with the real cost function, and the algorithm can start converging. At this point,
adding measurements squeezes the distribution, allowing a better convergence, the
improves as 1/

√
shots.
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Figure 4.10: Results of measuring a VQE circuit using a given number of shots. Each
plot shows the results distribution of 1000 repeated measurements. The number of
shots of each measurements increases from top-left to bottom-right. The results
displayed used the following number of shots: {1, 2, 4, 8, 12, 16, 24, 32, 64, 96, 128,
256}.
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Chapter 5
Conclusions

We presented a study on the convergence of hybrid quantum-classical algorithms
applied to the resolution of combinatorial optimization problems. We studied how
the variational quantum eigensolver (VQE) and the quantum approximate opti-
mization algorithm (QAOA) converge to the solution of a set of max-cut problems.
We selected several max-cut problems associated with graphs of different size and
complexity, and use low-depth circuits for their resolution, to cope with the non-
negligible error probability of the currently-available qubits. For the cost function
evaluation, we inspected a large set of shots values, observing how the choice affected
the algorithm convergence. For very low number of shots (up to 24), the VQE al-
gorithm returns random results, but once this threshold is overcome, the solution
mean-cost-function gets closer to the optimal solution cost function as 1/

√
shots.

Despite the promising result, the fraction of solutions containing the eigenstate as-
sociated with the optimal solution does not always increase with the number of
shots. We explain this observation by suggesting that the mean cost function is not
the most appropriate quantity to minimize if the target is to get a larger fraction of
good solutions. On the other hand, the QAOA algorithm does not show any sign of
convergence, neither for low-depth circuits, nor deeper circuits.
Possible developments of this work include the resolution of additional optimization
problems, the inspection of different variables, other than the mean cost function,
for the optimizations process, and use real quantum computers, since currently, all
the results presented were obtained from simulations.
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Appendix A
Summary

Even if the quantum computing popularity has recently grown, the currently-available
technology is not ready for a fundamental revolution of informatics. In this transi-
tion phase, hybrid quantum-classical algorithms can help in understanding the real
power that this novel paradigm can reach in the future. In this work, we tested the
capability of two such algorithms to solve combinatorial optimization problems: the
variational quantum eigensolver (VQE) and the quantum approximate optimization
algorithm (QAOA). We used them to solve max-cut problems, consisting of sepa-
rating the vertices of an undirected graph in two sub-groups so that the number of
edges connecting vertices of different sub-groups is maximal. To do that, we mapped
the problem into a quantum system, using the Ising formalism. In particular, we
investigated the effect of changing the number of measurements of the quantum cir-
cuit associated with the system on the algorithms convergence. A large number of
measurements (or shots) allows a better knowledge of the quantum state, but on the
other hand, increases the convergence time, making the algorithms less competitive
compared to classical techniques. The results showed that VQE needs a minimum
number of measurements to start converging towards the optimal problem solution.
Once this threshold is overcome, the solution improves as 1/

√
shots. QAOA, on the

other hand, does not seem to converge, independently of the number of shots.
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Appendix B
Resumen

Aunque la popularidad de la computación cuántica haya crecido recientemente, la
tecnología actualmente disponible no es todavía suficiente para revolucionar pro-
fundamente la informática. En esta fase de transición, los algoritmos híbridos
cuánticos-clásicos pueden ayudar a comprender el real poder que esta nueva téc-
nica puede alcanzar en el futuro. En este trabajo, estudiamos la capacidad de dos
de estos algoritmos para resolver problemas de optimización combinatoria: el varia-
tional quantum eigensolver (VQE) y el quantum approximate optimization algorithm
(QAOA). Los usamos para resolver problemas de tipo max-cut, que consisten en sep-
arar los vértices de un grafo no dirigido en dos subgrupos de modo que el número
de conexiones entre vértices de diferentes subgrupos sea máximo. Para hacer eso,
mapeamos el problema a un sistema cuántico, utilizando el formalismo de Ising.
En particular, investigamos como cambiar el número de medidas del circuito cuán-
tico asociado al sistema afecta la convergencia de los algoritmos. Un gran número
de medidas (o shots) permite un mejor conocimiento del estado cuántico, pero por
otro lado aumenta el tiempo necesario para converger, haciendo que los algoritmos
sean menos competitivos en comparación con las técnicas clásicas. Los resultados
mostraron que VQE necesita un número mínimo de medidas para comenzar a con-
verger hacia la solución óptima del problema. Una vez que se supere este umbral,
la solución mejora como 1/

√
shots. QAOA, por otro lado, no parece converger,

independientemente del número de medidas.
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