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ERROR ESTIMATES FOR THE NUMERICAL APPROXIMATION
OF SEMILINEAR ELLIPTIC CONTROL PROBLEMS
WITH FINITELY MANY STATE CONSTRAINTS*

EpuarRDO CAsas!

Abstract. The goal of this paper is to derive some error estimates for the numerical discretization
of some optimal control problems governed by semilinear elliptic equations with bound constraints on
the control and a finitely number of equality and inequality state constraints. We prove some error
estimates for the optimal controls in the L° norm and we also obtain error estimates for the Lagrange
multipliers associated to the state constraints as well as for the optimal states and optimal adjoint
states.
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1. INTRODUCTION

In this paper we study an optimal control problem governed by a semilinear elliptic equation, the control being
distributed in €2. Bound constraints on the control and finitely many equality and inequality state constraints
are included in the formulation of the problem. Integral constraints on the state falls into this formulation. The
aim is to consider the numerical approximation of this problem by using finite element methods. We prove that
under certain assumptions the discrete problems have optimal solutions. We also prove that these solutions
converge uniformly towards solutions of the infinity dimensional problem. By making a qualification assumption
we deduce the existence of Lagrange multipliers associated with the state constraints for the continuous and
discrete problems. These Lagrange multipliers are unique and the discrete ones converge to the continuous
ones. In order to derive the order of these convergences, the sufficient second order optimality conditions for
the control problem are required. We prove that any local solution of the continuous control problem which
is qualified and satisfies the sufficient second order optimality conditions can be uniformly approximated by
discrete controls which are qualified local solutions of the discrete problems. Finally we obtain the order of
these approximations.

First and second order optimality conditions play a crucial role in the numerical analysis of the control
problems. Meanwhile the first order optimality conditions are known from long time ago, the second order
conditions for optimal control problems governed by partial differential equations is a topic still under study,
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with some recent advances, but with a lot of work to be done yet. For this question the reader is referred
to [4,5,7-11,16,21].

There are no many papers devoted to the study of error estimates for the numerical discretization of control
problems governed by partial differential equations. Let us mention two early papers devoted to linear-quadratic
control problems by Falk [14] and Geveci [15]. A significant change when studying control problems with a
nonlinear equation or a non quadratic functional is the necessity of using the sufficient second order optimality
conditions to derive these error estimates. Recently Arada et al. [1] followed this procedure to get the error
estimates for the same problem studied in this paper except by the fact that there were no state constraints.
They derived the same L* error estimates than we obtain here. However in some cases they could take
advantage of the absence of these constraints to deduce stronger L? error estimates than in this paper. This
paper continues the research started in [1] by adding many finitely state constraints to the control problem. It
is well known that this introduces a big difficulty in the approximation of the control problem and much extra
work is necessary to deal with the state constraints. An essential assumption in this study is the qualification
hypothesis (3.1) first used by Casas and Troltzsch [8].

With respect to the optimality of the error estimates for the control, we can say that they seem to be optimal
in the case of two dimensional domains, or in dimension three if the triangulation is of nonnegative type; see
the final comments of the paper. To achieve these good estimates we have extended an idea of Malanowski
et al. [18], also used in [1]. This idea leads to the definition of a variational inequality (6.27) close enough to
that satisfied by the optimal control which appears in the first order optimality conditions. This variational
inequality is compared with the one satisfied by the discrete optimal controls also deduced from the first order
optimality conditions. See for instance [2] for a different method overestimating the error. In this paper the
definition of the variational inequality (6.27) has required some new ideas and some extra work because of the
presence of the state constraints.

The plan of the paper is as follows. In Section 2 the control problem is defined and the assumptions are
listed. Also we summarize the differentiability results of the functionals involved in the problem. In Section 3
the first and second order optimality conditions are given without proofs. Some references are provided to
check the proofs. The finite dimensional approximating problem is formulated in Section 4. In this section we
prove that qualified controls for the continuous problem can be approximated conveniently for feasible discrete
controls. The existence of solutions for the final dimensional control problems is proved, whose main difficulty
lies in proving that the set of feasible controls is non empty. First and second order optimality conditions for
the discrete problems are stated in Section 5. Finally Section 6 is devoted to the study of the convergence of the
discretization. The main results of the paper are presented in Section 4 and Section 6, in particular Theorem 6.8
is the main goal of this work.

2. THE CONTROL PROBLEM

Let Q be an open convex set in R” (n = 2 or 3), I' its boundary of class C*! and A an elliptic operator of
the form

N
Ay = - Z axj [azjaxly] + apy,

ij=1
where the coefficients a;; € C%1(Q) satisfy
Ml € S ay(@)6g ¥ € R and ¥a € Q
ij=1

for some Agq > 0, and ap € L>®(2), with ag(z) > 0. Let f : Q xR? - Rand L : Q x R? — R be
Caratheodory functions. Given nonnegative integers n, and n;, for every 1 < j < n. +n; we consider a function
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F; : C(Q) — R. The control problem is formulated as follows

minJ(u) = [, L(z,yu(x), u(x)) dz

subject to (yu,u) € (C(Q) N HY()) x L=(£),
P)S a<u(z)<p ae z€Q,

Fj(yu) =0, 1<j<ne,

Fj(yu) <0, ne+1<j<ne+mn,

where —o00 < a < 8 < 400 and y, is the solution of the state equation

Ayu+f(ayu):u in Qa
Yu =0 on I

Let us state the assumptions on the functionals F}, L and f.

(A1) f is of class C? with respect to the second variable,
0
L0 L@, Swyzo

and for all M > 0 there exists a constant C'r ps > 0 such that

2

0? 0?
‘a—y‘];(xaQQ) - a—é(x,yl)

< Crmly2 — 1| for |ya],|y2] < M and z € Q.

(A2) L:Q xR xR — Ris of class C? with respect to the second and third variables, L(-,0,0) € L*(£2), and
for all M > 0 there exist a constant Cr s > 0 and a function ¢y € LP(2) (p > n) such that

§ wM(x)7 HD(Qy,u)L(x7y7u)|| § CL7M7

oL
la_y(m7yau)

oL oL
—(z2,y,u) — —(21,y,u)| < CL w2 — 1],
ou ou

||D(2y,u)L(x7y2)u2) - D(Qy,u)L(x’yl’ul)H S CL,M(':UQ - y1| + |’LL2 - Ull),

for a.e. x,z; € Q and |y|, |yil, |ul, |u;| < M, i = 1,2, where D(Qy u)L denotes the second derivative of L with
respect to (y,u). Moreover we assume that there exists Ay > 0 such that

0?L

w(m,y,u) >\, ae x€Qand (y,u) € R

(A3) For every 1 < j < n, +n;, Fj is of class C? in C(Q); Fi(y) € LP(Q) for every y € C(Q), for p > n fixed;
and for every M > 0 there exists Cjn > 0 such that for every 1 < j <ne +n; and ||yi|lcq) <M (i=1,2)

1 Fj(y2) — Fi(y)ller) + 1F] (y2) = F} (y)ll < Ciallyz — vill o
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Typical state constraints defined by the functions F; are the integral constraints

Fj(y):Agj(x,y(x))dx.

Under the previous assumptions it is easy to prove the existence of a solution of Problem (P) assuming that the
set of feasible controls is not empty. In the proof it is essential the convexity of L with respect to the control.
In (A2) we have assumed that L is strictly convex with respect to u, which will be useful to prove the strong
convergence of the discretizations. Therefore this strong convexity is not a too restrictive assumption if we want
to have a well posed problem in the sense that it has at least one solution. However there is a situation which
is interesting in practice and it is not included in our formulation. This is the case of a function L depending
only on the variables (x,y), but not on u. The optimal control problem is typically bang-bang in this situation.
It is an open problem for us the derivation of the error estimates in the bang-bang case.

Among the functionals included in our problem, we can consider those of the type L(z,y,u) = g(z,y) + h(u),
with h”(u) > Ar. For instance, the classical example L(x,y,u) = (y — ya(x))? + Nu?, with N > 0 is of this
type.

We finish this section by recalling some results about the differentiability of the functionals involve in the
control problem. For the detailed proofs the reader is referred to Casas and Mateos [5].

Theorem 2.1. Suppose (A1) holds. Then for every u € L>(Q), the state equation (2.1) has a unique solution
Yo in the space W2P(Q) and the mapping G : L>®(2) — W2P(Q), defined by G(u) = y, is of class C2.
Moreover for all v,u € L>®(Q), 2z, = G'(u)v is defined as the solution of

of .
Az, + = (2,yy)zy =v in Q
é?y( b (2.2)

2z, =0 onlT.

Finally, for every vi,va € L®(Q), 2zy,0, = G (u)v1v2 is the solution of

0% f
+ =5 (2, Yu) 20, 20, =010 Q
8y2( b (2.3)

Zoyuy, = 0 on T,

5]
Azyy vy + 8_;; (x, yU)Z'UlU2

where z,, = G'(u)v;, 1 =1,2.

The W?2P(Q) regularity is an immediate consequence of our assumptions; see Grisvard [17]. The rest can be
obtained by using the implicit function theorem.

Theorem 2.2. Let us suppose that (A1) and (A2) hold. Then the functional J : L=(Q) — R is of class C2.
Moreover, for every u,v,v1,vs € L*(Q)

J(u)v = /Q (g—i(x,yu,u) + gaou> vdz (2.4)

and
9L 0%L
J”(U)U1U2 = /Q |:a—y2(x7yu7u’)zvlz1)2 + m(%ymu)(zulw + val)

2L 82
—l—W(I,yu, w)v U2 — @Oua—zjé(x,yu)zvlzw} dz (2.5)
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where y, = G(u), You € W2P(Q) is the unique solution of the problem

. of oL |
A%+ Ay (:E7yu)50* Ay (:c,yu,u) in

=0 onl,

(2.6)

where A* is the adjoint operator of A and z,, = G'(u)v;, i = 1,2.
This theorem follows from Theorem 2.1 and the chain rule.

Theorem 2.3. Let us suppose that (Al) and (A3) hold. Then for each j, the functional G; = Fj o G:
L*(2) — R is of class C?. Moreover, for every u,v,vi,vs € L>(Q)

G (u)v = /Q juvdz (2.7)

and
G =F! 1 d 2.8
j (w)vrv2 = j (Yu) 20, 20, — o (pjua—yg(x?yu)zﬂlzv2 €L (2.8)

where y, = G(u), @j, € W2P(Q) is the unique solution of the problem

. 0 :
A*p + a—f(ac,yu)go = Fi(yu) in Q
Y
p=0onT,
and zy, = G'(u)v;, i = 1,2.

3. FIRST AND SECOND ORDER OPTIMALITY CONDITIONS

We start this sections by reformulating problem (P) with the help of the functionals G; = F; o G introduced
in Theorems 2.1 and 2.3.

Minimize J(u),
(P) a<u(z) <P ae x €,
G](u) =0, 1<7 < ne,
G](’U,) go; ne+1 S] < ne + Ny

In order to state the optimality conditions for a local solution of (P) we introduce some notation. Fixed a
feasible control @ and given € > 0, we denote the set of e-inactive constraints by

Q={reQ:at+e<ulz)<pg-c}-
We say that a feasible control @ is regular if the following assumption is fulfilled

Jeg > 0 and {w;}jer, C L>(Q), with suppw; C €2, such that
G;(Q)w] = (5@‘, 1,7 € I,

where

Io={j <ne+n;|Gj(u)=0}-
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Iy is the set of indices corresponding to active constraints. Following lemma proves that functions {w;};er, can
be chosen of class C'*.

Lemma 3.1. Let us assume that @ is continuous in Q and satisfies (3.1), then for any € < e there exist some
functions {W;};er, C C>°(Q) with support in Q. such that Gj(@)w; = J;;.

Proof. Let ¢ < €5, then by extending the functions {w;};cs, given in (3.1) by zero to R™ and making the
convolution with a regularizing sequence we get functions {w;;}5>, C C*>°(R"™), for every j € Iy, converging to

[¢]
w; in LP(Q). Moreover, since @ is continuous we have that Q.. CQ. and then for k large enough supp(w,x) C ..
Since wjr — w; in LP(Q2), we deduce from (2.7) that G}(a)w;x — Gj(@)w; for every i,j € Iy. Denoting by
m the number of elements of Iy and using this convergence, we can deduce the existence of kg such that

1
[0y — Gi(@wje| < — Yk >k and i,j € Io. (3.2)

From these inequalities we deduce that the vectors {(G} (@)W, )ier, }jer, C R™ are linearly independent. Indeed
let us take scalars {c;};jer, such that

Z ¢; (G (@) wjk)icr, = 0.

j€lo
Let |¢;| = max{|c;| : j € Io}. Then
> (G )ier, = —a(G (W) D) ier, -
J€lo,j#l
Assuming ¢; # 0, from this identity and (3.2) it follows

1 —1
(15) lal < laGi@onl < Y llGH@m < lal™ =,

Jj€lo,j#l

which is a contradiction, therefore ¢; = 0. Consequently we have that the linear mapping S; : R™ — R™
defined by

Sk(c) = | Gi(u) E CjWjk
elo i€lo

is an isomorphism. Therefore if we denote by {e;};er, the canonical base of R™, then we deduce the existence
of vectors ¢, = (c%y)jer, such that Sk(c;,) = ;. Now setting

Wik = Z C;'kwjk
j€lo
we have that G} (@)W, = §;; and {wW,, }jer, satisfies the requirements of the lemma. O
Associated with problem (P) we consider the usual Lagrangian function £ : L>(2) x R"%*" — R given by

Ne+n;

L(u,\) = ZAG
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Obviously (3.1) is equivalent to the linear independence of the derivatives {G’(@)}jer, in L'(Q,). Under this
assumption we can derive the first order necessary conditions for optimality in a qualified form For the proof
the reader is referred to Bonnans and Casas [3] or Clarke [13]; see also Mateos [19].

Theorem 3.2. Let us assume that @ is a local solution of (P) and (3.1) holds. Then there exist real numbers
{)\j}?j{m such that

A >0 and NG;(w) =0, if ne+1<j<n.+n; (3.3)
gﬁ( AN (u—a) >0 forall a<u<p. (3.4)
u

Denoting by o and @; the solutions of (2.6) and (2.1) corresponding to % and setting

Ne+n; B
p=@o+ > Xi®i, (3.5)
j=1

we deduce from Theorems 2.2 and 2.3 and the definition of £ that

%(a,X)v—/ <g§< )+<po>vdx+n€f7 /sogvdw
= [ (Getwsm + o) var = [ at@to) we =),

where § = G(u) = yz and

From (3.4) we deduce that
0 for a.e. z € Q where a < a(x) < g,
dz)=4¢ >0 fora.e. z € where @(z) = «, (3.7)
<0 for ae. z € Q where u(z) = 3.

Remark 3.3. From (3.4, 3.7) and assumption (3.1) we get

[ (Gt gt ) + eule) ) wy oo + 4 = G (@ Ay = (35)

which implies the uniqueness of the Lagrange multipliers provided in Theorem 3.2.

Associated with d we set
={zeQ:|d(z)| >0} - (3.9)
Given {); }”””’ by Theorem 3.2, we define the cone of critical directions

CY = {v e L*(Q) satisfying (3.11) and v(z) =0 for a.e. z € Q°} (3.10)
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with

G (w)v = 0 if (j < ne) or (j > ne, G;(@) =0 and A; > 0)

G(@)v <0 if (j > ne, Gj(u) =0 and A; = 0) (3.11)

[ >0 ifa(z) =«
“(””)_{ <0 if u(z) = 8.

Now we are ready to state the second order necessary optimality conditions.

Theorem 3.4. Let us assume that @ is a local solution of (P), equation (3.1) holds and {); }iLy are the Lagrange
multipliers satisfying (3.3) and (3.4). Then the following inequality is satisfied

2
%(ﬂ,X)vQ >0 Yoell (3.12)

For the proof see Casas and Tréltzsch [9] and Casas and Mateos ([5], Th. 3.3 and Prop. 3.6). The sufficient
optimality conditions can be formulated as follows:

Theorem 3.5. Let u be an admissible control for problem (P) satisfying the regularity assumption (3.1)
and (3.8-8.4) for some A;, j=1,...,n; +ne. Let us suppose also that

%L

W(ﬂ, M2 >0 for all v € C2\ {0} - (3.13)

Then there exist € > 0 and i > 0 such that J(@) + f|lu — ﬂ”?’ﬂ(g) < J(u) for all admissible control u with
[u =l (o) <&

Taking into account that the Hamiltonian of problem (P) is

H(l‘ayaua SD) = L(x,y,u) + (p[u - f(l',y)]
and according to the Assumption (A2)

aaTI;[(I,?J(JU)ﬂ(JC),@(I)) = %(m,g(m),ﬂ(m)) >A >0 ae z€Q,

then Theorem 3.5 is an immediate consequence of [5] (Th. 4.3).

The gap between the necessary and sufficient optimality conditions for problem (P) is minimal. In fact,
strictly speaking, there is no gap because whenever @ is a strict local solution of (P) (in the sense of Th. 3.5),
then (3.13) holds. To deduce this it is enough to notice that @ is a local solution of the problem

Minimize J,,(u) = J(u) — pllu — ﬁ||%2(9);
(P.) a<u(z)<fae xzel
w Gj(u):O,lﬁane,
Gj(u) <0, ne +1 <5 < ne +ny,

and to apply Theorem 3.4 to this problem and to use that

2 _ 0L
ou?

(@ A)o? = 2f1v[|72(q) Vv € Cq.
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In particular we have obtained that condition (3.13) implies that

PL, < o 12 0
Gz (B AV 2 2il|vl[Ta) Vo € Oy

By using Theorem 4.4 of [5], we have even more:

Theorem 3.6. Let @ be an admissible control for problem (P) that satisfies (A1-A3), the reqularity assump-
tions (3.1) and (3.8, 3.4). Then (3.13) is equivalent to the existence of i > 0 and T > 0 such that

%(ﬂ,f\)& > ﬂ|\v||%2(m for allv € CL, (3.14)
where
Cr ={ve L*Q) satisfying (3.11) and v(z) =0 ae. x€Q7},
and

QO ={zeQ:|dx)|>7}-

We finish this section by providing a characterization of the optimal control «.

Theorem 3.7. Suppose that u is a local solution of (P) and assumptions (A1-A3) and (3.1) are satisfied.
Then, for all x € 2, the equation

oL

%(x,yﬂ(x),t) =0, (3.15)

pu(r) +

has a unique solution t = 5(x). The mapping § : Q@ — R is Lipschitz. Moreover @ and 5 are related by the
formula

u(x) = Proji, 5/(5(z)) = max(a, min(8, 5(z))), (3.16)

and @ also belongs to C%1(€).

The proof of the existence and uniqueness of a solution of (3.15) is a consequence of (92L/0u?)(z,y,u)
> A > 0. The Lipschitz regularity of 5 follows from the Lipschitz properties of L (Assumption (A2)) and the
fact that ya, pa € WP(Q) C C%1(Q). For the details see Arada et al. [1].

4. FINITE-ELEMENT APPROXIMATION OF (P)

Here we define a finite-element based approximation of the optimal control problem (P). To this aim, we
consider a family of triangulations {7}, }~0 of Q. This triangulation is supposed to be regular in the usual sense
that we state exactly here. With each element T' € 7},, we associate two parameters p(T") and o(T"), where p(T)
denotes the diameter of the set T and o(T') is the diameter of the largest ball contained in 7T'. Define the size
of the mesh by h = maxper, p(T). We suppose that the following regularity assumptions are satisfied.

(i) There exist two positive constants p and o such that

p(T) h
o) =7 om) =7

hold for all T' € 7, and all h > 0.
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(ii) Let us take Q) = Urer, T, and let € and I'j, denote its interior and its boundary, respectively. We
assume that €, is convex and that the vertices of 7;, placed on the boundary of I', are points of I'. From [20]
(estimate (5.2.19)) we know

10\ Q] < CR. (4.1)

Now, to every boundary triangle T of 7, we associate another triangle T c Q with curved boundary as follows:
the edge between the two boundary nodes of T' is substituted by the part of I' connecting these nodes and
forming a triangle with the remaining interior sides of T'. We denote by 7, the family of these curved boundary
triangles along with the interior triangles to Q of 73, so that Q = UTAEﬁLTA. Let us set

Un ={u€ L=(Q) | uyz is constant on all T e T},
Vi ={yn € C(Q) | Ynir € P1, for all T € 7p,, and yp = 0 on Q\ %},

where P; is the space of polynomials of degree less or equal than 1. For each u € L>®(Q2), we denote by yx(u)
the unique element of Y} that satisfies

a(yh(u),zh)—l—/Qf(x,yh(u))zh(x) dxz/ﬁu(m)zh(ac)dx Vzp € Y, (4.2)

where a : Yy, X Yy, — R is the bilinear form defined by

n

alyn, zn) = > i (2)0x, yn ()0, 20 () + ao(@)yn () zn(x) | da.
Q

ij=1

In other words, y,(u) is the approximate state associated with u. Notice that y;, = 2z, = 0 on 9] \ Q5 hence the
last integral is equivalent to integration on ;. The finite dimensional approximation of the optimal control
problem is defined by

min Jy(up) = [o, L(@,yn(un) (@), un(z)) dz,
subject to (yn(un),un) € Y, x Uy,

(Pr)s a<up(z) <B ae z€Qy,

Fi(yn(un)) =0, 1<j <ne,

Fi(yn(un)) <0, ne+1<j <ne+mn

For every h > 0 let us define G : L>®(Q2) — R and Gp; : L*°(Q) — Y}, (1 < j < ne+n;) by Gr(u) = yn(u)
and Gp;(u) = (Fj o Gp)(u) = F;(yn(u)). Then problem (Pj) can be written as follows

Minimize Jp (up),

up € Up, a <up(x) < P ae x€Qy,
Ghj(un) =0, 1 < j <ne,

Ghj(up) <0, ne+1<j < ne+n;.

(Pr)

We start the study of problem (Pp) by analyzing the differentiability of the functions involved in the control
problem. Let us collect the differentiability results analogous to those of Section 2.

Theorem 4.1. Suppose (A1) holds. Then for every u € L*(R), the problem (4.2) has a unique solution
yn(u) € Yy and the mapping Gp, : L¥(Q) — Yy, defined by Gp(u) = yn(u) is of class C? and for all
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v,u € L*(Q), zp(v) = G}, (uw)v is the solution of

a(zp(v), qn) + /Q g—;(x,yh(u))zh(v)qh dr = /quh dz Vg, €Y. (4.3)

Finally, for every vi,va € L™®(Q), zp(v1,v2) = G (u)v1ve is the solution of
2

a(zn, qn) + /Q g—z(x,yh(u))thh dx + /Q %(xvyh(u))zh(vl)zh(v2)Qh dz =0 Vg, € Yy, (4.4)

where zp(v;) = G (w)v;, i =1,2.

Theorem 4.2. Let us suppose that (A1) and (A2) hold. Then the functional Jy, : L=°(Q) — R is of class C?.
Moreover, for every u,v,vi,ve € L(Q)

Jp(u)v = /Qh (g—i(x,yh(u), u) + @ho(u)) vdz (4.5)
and
Ji (u)vivg = /Q [%(w,yh(u), w)zp (v1)zn(v2) + %(I,yh(u),u)[zh(m)vg + zp(v2)v1]
+T£(I,yh(U),u)U1U2 - @ho(u)g—yg(:v,yh(u))zh(m)zh(m)] dz (4.6)

where yp(u) = Gp(u), eno(u) € Yy, is the unique solution of the problem

alan, ero()) + / g—;”(x,yh(u)mo(u)qhdx: / Z—j@,yh(u),u)qhdx Van € Y, (4.7)

with zp(v;) = G} (w)v;, 1 =1,2.

Theorem 4.3. Let us suppose that (Al) and (A3) hold. Then for each j, the functional Gn; = Fj o Gp:
L*(2) — R is of class C?. Moreover, for every u,v,vi,vs € L>(Q)

ﬁlj(u)v:/gcphj(u)vd:c (4.8)
and
i (wv1ve = F (yn(u))zn(v1)zn(v2) /Q<Phj(u)giy£(ﬂ%yh(u))zh(vl)zh(vz)dﬂ? (4.9)

where yp(u) = Gr(u), onj(u) € Yy is the unique solution of the variational equation

G(CIm%j(u))+/Qg—£($,yh(w)%j(u)% dI:/Q Fi(yn(w))an Yan € Yy (4.10)

and zp(v;) = G (w)v;, i = 1,2.

Our next goal is to study the existence of a solution of (Pp). The difficulty consists in proving that the set
of admissible discrete controls

Uhada ={un € Up:a<up(z) <G ae. x€Qp, Gpj(un) =0, 1 <j <n,,
Grj(up) <0, ne+1<j<ne+n;}
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is not empty. To deal with this question we will use the classical approximation operator Il : L1(Q) — Up,
defined as follows: up = II,u is the element of Uy such that

1
Up|r = m/Tu(x)dx

for every T' € 7;,. Due to the state constraints, we do not have, as usual, that the projections II,u of feasible
controls u for (P) are feasible controls for (Pp). The regularity assumption (3.1) plays an essential role in this
approximation analysis. Another crucial point is the study of the convergence of the discretization of the state
and adjoint state equations. Here we will use the following two results whose proofs can be found in [1] and [6].

Lemma 4.4. Let (v,v) € L®(Q) x Uy fulfill |v||oo.0 + ||vn]lco,0 < M, and suppose that y, and yp(vi) are
the solutions of (2.1) and (4.2) corresponding to v and vy, respectively. Moreover, let pj, and pp;(vy) be the
solutions of (2.6) and (4.7) if j = 0 and (2.9) and (4.10) if 1 < j < ne+n; corresponding to v and vy, respectively.
Then the following estimates hold for every 0 < j < mne+n;

lyo — yn(vr)llzr @) + @0 — ni(n)lm1 @) < C(h+ (v —vallL2()), (4.11)
lye = yn(vr) | 22@) + l@j0 — oni(Wn)ll L2y < C(R* + v — vallL2(0)), (4.12)
1Yo — yn(on)ll Lo (@) + ll@jo — @ni(Wn)llLe @) < C(h7 + (v — vallz2()), (4.13)

where C = C(Q,n, M) is a positive constant independent of h, and o = 1 if the triangulation is of nonnegative
type or 0 = 2 —n/2 in other case.

The reader is referred to Ciarlet [12] for the definition and properties of triangulations of nonnegative type.

Lemma 4.5. Let up, — u weakly in LY(Q), with a < up < B for every h > 0, then yn(up) — y. and
onj(up) — ju in Hi(Q) N C(Q) strongly for every 0 < j < ne 4+ n;. Moreover J(u) < liminfy,_o Jy(up).

The next theorem establishes that Uy,q is non empty for every h small enough and that the regular controls
4 can be approximated by elements of Upag.

Theorem 4.6. Let us assume that i € C%1(Q) is a feasible control of problem (P) for which (3.1) holds. Then
there exist hg > 0, a sequence {unp}o<h<hy, With up € Unad, and a constant C' = C(Q,n, ||t cor(q)y) such that

||’l_l,7uhHLoo(Q) < Ch?, (414)

where o is as in Lemma 4.4.
We state two lemmas before proving this theorem.

Lemma 4.7. Let u € C%Y(Q) and let {w};c, be given by (3.1). Then there exists a family {wn;};je1, C U
uniformly bounded in L*(S2), with supp (whj) C Q. /o for h < hy, such that wp; — w; in L™(Q) for every
1 <r < 4o00. Moreover if the functions {w}jcr, C C*H(Q), then there exists C = C(Q,n) such that

||7I}j — U}thLoo(Q) < ChHU}cho,l(Q) Vi € Ip. (4.15)

Proof. Let us define wy; = lpw;. It is well known that wp; — w; in LI(Q) when h — 0. Moreover it is obvious
that {wn;}jer, is uniformly bounded in L>(Q), then wy; — w; in L™(2) for every 1 < r < oco. Since 4 is
Lipschitz in , then there exists ¢ > 0 such that |u(z2) — @(x1)| < €|y — 21| for every z2, 71 € Q. Let us take
h1 > 0 such that ¢max{p(T): T € T} < €4/2 for h < hy.
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Let x € Q such that @(z) > 8 —&;/2 and let T € T, with h < hyq, such that € T. For any 2/ € T we have
u(z') = u(z) + (u(2') —u(x)) > B —ea/2 —cla’ — x| > B —ea/2 —cp(T) > B — ea,

therefore w;(z’) = 0 for every 2’ € T and every j € Iy, consequently wy i = 0, in particular wy;(z) = 0 for
every j € Iy.

Analogously we can prove that if @(z) < a4 €5/2, then wp;(z) = 0 for all h < h; and every j € I.

Finally, if w; € C%1(Q), then it is well known [12] that

@ — Ty || L@y < Chllwjllconqy,

which concludes the proof. O

Lemma 4.8. Letu € C%Y(Q) be a feasible and regular control of (P) and let uy, € Uy, such that o < uy, < 3 and
up — @ in LP(Q). Then there exist ho > 0 and {Wp;}jer, such that wp; — w; in LP(Q), supp (Wn;) C Qe /2
N . /a for all j € Iy and h < ho, and GY,;(up)Wn; = 6i5, 1,5 € Iy, where

Qh,aa/4 ={reQ:a+ez/4<up(z) <0 —egz/4}-
Moreover if up, — @ in L>(N2), then we can take {wn;}jer, C Un in such o way that

||’LT1j — 'lI]thLoe(Q) <C {h + ||’ﬁ — uhHL2(Q)} vy € Ip. (4.16)

Proof. Let {wp;};e1, be the family obtained in Lemma 4.7. We set for every j € I

oy wng(x) i e Qs
wnj(w) = { 0 otherwise.

Then the support of each wp; is contained in €2 /2 N Qp e, , as required. It is clear that

€a

4}:Xh'

SUpp(Whj — waj) C Qeyyo N [Q\ Qp e, /4] C {93 € Q:fu(z) — un(z)| >

Since uj, — @ in LP(§2), we have that the Lebesgue measure of X}, tends to zero when h — 0. On the other hand,

{wn;}n>0 is uniformly bounded in L*°(Q2), therefore (wp; — wp;) — 0 in L"(Q) for all r < +o00. Consequently
for every j € Iy wp; — w; in L"(£2) too.

Since up, — @ in LP(Q), from Lemma 4.5 it comes that yn(up) — § = yaz and @p(up) — @ = @g in

H(Q) N C(Q). Now from (4.8) we have that G}, (up)wn; — GL(w)w; = 6ij, i, € Ip. We can argue as in the

proof of Lemma 3.1 to deduce the existence of ho > 0 such that the linear mapping Sy : R™ — R™ defined by

Sn(e) = | Ghilun) | Y cjin

i€lo i€lp

is an isomorphism for every h < hy. Therefore if we denote by {e;};ecr, the canonical base of R™, then we
deduce the existence of vectors ¢j, = (¢},;)je1, such that Sp(c},) = e;. Now setting

— 'L ~
Wh; = E chjwhj
j€lo
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we have that G}, (un)Wn; = d;; and using the convergence S;, — Identity we deduce that
cz = S,:l(ei) — e,

which proves that wp; — w;, for every j € Iy. Thus {ws;}jer, satisfies the requirements of the lemma.

Let us prove the last part of Lemma. Since @ € C(Q2), by using Lemma 3.1, we can assume that {w;}jer,
c 0%(Q) in (3.1). The convergence up — % in L% (£2) implies that Q.2 C Qpeyya for b small enough,
therefore supp (wn;) C Qcp/2 = Qey2 N Qpe,ya and Wp; = wpj. On the other hand, taking into account
Lemma 4.4, we have that

|G (@)vn, — Gl (un)vn| < /Q l@ia — @ni(un)||vnl dz < C(h + @ — unllL2)) |vnll L2 (@)

From this inequality and (4.15) we get
|GG (@)w; — Gy (up)ins| < |Gi(w) (w5 — ng)| + |Gi(@)ibn; — Gl (un)wny|
< C(h+ |[a —unllL2(@)ll-

If we set S(c) = (G3(W)[>_ 1, ¢jWjl)icr,, then (3.1) implies that S coincides with the identity in R™. Therefore
from the above inequality we deduce

1S5 — Identity|| < C (h + [|a — unl|L2(0)) -
From here we deduce that
ek, = eill < C" (h+ 1@ = unllr2(e)) -
This estimate along with Lemma 4.7 lead to

[ @; — Wil ooy <11 — EilllWill oo () + 16l 105 — Dl oo ()

+ > leilldnllLe@ < C (h+ 16— unllL2@) -
i#i. 5€lo
O

Proof of Theorem 4.6. Let us apply Lemma 4.8 to the functions u; = IIpu. Let us take hy > 0 satisfying
that hs < min{hq, he}, with hy and hy given in Lemmas 4.7 and 4.8 respectively, and such that ¢max{p(T) :
T € Ty} < eg/4 for every h < hs. Since

Wpj(z) =0 if pa(r) < a+eg/4 or Ipu(x) > [ —egz/d
we deduce the existence of € > 0 such that

aSHha—i-chwhj <B Ve, ce B(0) and h < hg, (4.17)
j€lo

where B.(0) is the ball of R™ of center 0 and radius ¢ and ¢ = (¢;)jer,, m being the cardinal of I.
Let us consider the functions ¥, ¥y, : R™ — R™ defined by

Ue)= |G |a+ Z CjW; and Up(c) = | Gp; [ Hpu+ Z CjTh;

j€lo j€lo

i€ly icly
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It is immediate that ¥;, — ¥ and D), — DV uniformly over compact subsets of R™. Furthermore D¥(0)
= Identity, then taking e sufficiently small we can assume that ¥ : B.(0) — ¥(B(0)) is a diffeomorphism.
Therefore ¥y, : B, /5(0) — Wp(B./2(0)) is also a diffeomorphism if h < hy < hg for some hy small enough.
From the definition of Iy and ¥ we know that ¥U(0) = 0, then it is easy to deduce that there exists a unique
cn € Bey2(0) such that Wy (cp) = 0 for every h < hs < hy, with hs > 0 small enough. Moreover we have that
¢p, — 0. This along with (4.17) imply that

up = TRt + Y cpjin (4.18)
j€lo

belongs to Upaqg for every h < hg, assumed that 0 < hg < hs has been chosen in such a way that Gp;(up) < 0
for every j & Iy and h < hg, which is obviously possible.

Finally, let us prove the estimate (4.14). By using Lemma 3.1, we can assume that {w;},cz, € C%*(Q2), then
Lemma 4.8 applied to the sequence {II,u}~0 implies that

[0 = @njll Lo (@) < C{h+ [|a — Tyl o)} < Ch Vj € L. (4.19)
Using the definition of u, (4.18), it is clear that (4.14) follows from the estimates
lenj| < Ch? Vj € Io.
In order to prove these estimates, we first notice that (2.7, 4.8, 4.19, 4.11) and (4.13) lead to

sup ||D¥(c) — DU(c)|| < Crh and sup ||[¥(c) — ¥u(e)| < C-h7 (4.20)
c€B.(0) ceB(0)

for every r > 0. Let us take r < ¢/2. Second relation of (4.20) implies that
@R (0)]] = [[¥a(0) = W(0)|| < CA7. (4.21)
On the other hand, for every i € Iy we apply the mean value theorem
Uri(0) = Wpi(0) — Wpicn) = —DWpi(Onicn)cn. (4.22)

Now defining M}, as the matrix having the rows DWp,;(0p;cr), we deduce that My, is invertible for h small enough
and M), — Identity when h — 0. Therefore M/ M}, is a symmetric positive definite matrix with a minimum
eigenvalue pp, — 1. Then (4.22) and (4.21) lead to

pnllenl? < e My Myen = [|[W,(0)]]* < Ch*,

which proves ||cx|| < Ch? as required. O

As an immediate consequence of Theorem 4.6 we get that if (P) has a regular control u € C%1(Q), then (P)
has feasible controls for every h small enough and consequently (Pj) has at least one solution because Upaq is
a nonempty compact set and J, is continuous in Up,.

Analogously to (3.1), we will say that a discrete control @, € Upaq is regular if

{ Jea, > 0 and {wn;}jer, C Up such that (4.23)

supp wp; C Qe,, and G, (Un)wn; = 5, ,j € Ino,
where

Ino ={j < ne+n; | Gpj(ap) =0} -
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Lemma 4.8 states that if u € C%!(Q) is a regular feasible control of (P) and u, — u in LP(L), then uy, is a
regular control of (Py) for every h small enough. Indeed it is sufficient to notice that the convergence uj, — @
implies that I C Iy for every h small enough and to extract the functions {wpn;}er,, from the family provided
by Lemma 4.8. The next theorem summarizes the results obtained in this section.

Theorem 4.9. If i € C*1(Q) is a feasible and regular control for problem (P), then there exist hg > 0 and
controls {Up}h<n, such that @y € Unaq is a regular control for problem (Py) and (4.14) holds. Moreover (Pp)
has at least one solution for every h < hy.

It is easy to prove that the existence of a feasible regular control u € C(Q) implies the existence of feasible
regular controls in C%1(Q) close to .

5. CHARACTERIZATION OF SOLUTIONS OF (P)

The aim of this section is to characterize the solutions of problem (Pj) similarly as we did in Section 3 for
problem (P).

In the rest of the section @, will denote a local solution of (Pp) which is regular in the sense of (4.23). We
define the Lagrangian function associated with (Pj) by

Ne+n;

Ln(u,N) = Jn(u) + D AjGhj(u).

Analogously to Section 2 we have the following results:

Theorem 5.1. Let us assume that up, is a local solution of (Pr) and (4.23) holds. Then there exist real numbers
{/\hj}?;‘{m such that

Anj >0 and ApjGrj(un) =0, if ne+1<j<ne+mn; (5.1)
%(ah, An)(un —an) 20 for all a < up < B. (5.2)
h

Denoting by ¢ro and @p; the solutions of (4.7) and (4.10) corresponding to @y and setting
Ne+n; B
Bh=@no+ > Ani®nj, (5.3)
j=1

we deduce from Theorems 4.2 and 4.3 and the definition of £ that

Ne+n;

—— (Wp, Ap)vp = —(x, Yn, un) + vp dr + b vp do
8uh( hy AR )UR o, 5y, (L2 Uns Un) + Pho ) vn ; h J, Pravh
oL, _ _ -
:/ a—(%yh,uh)-i-tph vhdxz/ dp(z)vp(z) Yo, € Uy,
Qn u Qn

where g, = Gp(un) = yn(un) and

dp(z) = (@, 9n(z), un(x)) + Pn(w). (5.4)
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From (5.2) we deduce that
0 ifac< Up| < I}
/ dp(z)da = >0 if Up|T = O (5.5)
T

<0 ifupr=7

for every T € Tj,.
Remark 5.2. From (5.2, 5.5) and assumption (4.23) we get

oL - oL _
/Q (%(-ﬁayh; 'ah) + SDhO) Whj dz + )‘hj = a—uh(ah, )‘h)whj =0, (56)

which implies the uniqueness of the Lagrange multipliers provided in Theorem 5.1.

Associated with dj, we set

’ThO{TETh:

/Tdh(:n)d:c > 0}~ (5.7)

Given {S\hj }?;‘{m by Theorem 5.1, we define the cone of critical directions
Ci(un) = {vn € Uy satisfying (5.9) and vy =0 for T € 7,3, (5.8)
with
hj(@n)vn = 0if (j < ne) or (j > ne, Gj(an) = 0 and Ay > 0)
ﬁlj(ﬂh)vh <0 if (j > Ne, Ghj(ﬂh) =0 and j\hj = 0)

o ZO if’&h‘T:Oé
YT = <0 if anyr = 6.

Now we are ready to state the second order necessary and sufficient optimality conditions.

Theorem 5.3. Let us assume that Gy, is a local solution of (Py), equation (4.23) holds and {\n;}7-, are the
Lagrange multipliers satisfying (5.1) and (5.2). Then the following inequality is satisfied
%Ly,

W(ﬂh,j\h)vi >0 VYo, € Cg(ﬂh) (5.10)
h

Theorem 5.4. Let iy, be an admissible control for problem (Py) satisfying the reqularity assumption (4.23)
and (5.1-5.2) for some Apj, j =1,...,n; +ne. Let us suppose also that

2
8652}1 (Up, S\h)v% >0 forallv e C,?(ﬂh) \ {0} - (5.11)
h

Then there exist &y, > 0 and fip, > 0 such that Jp(tn) + fn||un —ah||%2(m < Jp(up) for all admissible control up
with Huh — ’ﬁhHLoo(Q) < ép.

We finish this section with a result analogous to Theorem 3.7.
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Theorem 5.5. Suppose that up, is a local solution of (Pr) and assumptions (A1-A3) and (4.23) are satisfied.
Then, for all T € T, the equation

[ [ertma + Grwm@e.o] aw=o (5.12)
T

has a unique solution t = 57. The mapping 5, € Uy, defined by 5,7 = 57, is related to uy, by the formula

up(z) = Projj, g(5n(2)) = max(a, min(B, 5,(2))). (5.13)

6. CONVERGENCE RESULTS

In this section we will prove that the solutions of discrete problems (Pj) converge strongly in L?(2) and
L>°(Q) to solutions of problem (P). Also we will see that any regular local minimum of (P) satisfying the
sufficient optimality conditions can be approximated by regular local minima of the problems (P},). Finally we
study the order of the approximations of these regular local minima. Now we have the first result of the section.

Theorem 6.1. Let us assume that (P) has at least one regular solution (in the sense of (3.1)) and let {ap}r>0
be any sequence of solutions of (Pr,). Then there exist weakly®-converging subsequences in L () (still indexed
by h). If the subsequence {Up}r>0 is converging weakly* to u, then @ is a solution of (P) and

lim Jj () = J (@) = inf (P Jim ||7 — 7 —0. 1
h:nlth(uh) J(@) =inf(P) and h:n10||u UnllL2) = 0 (6.1)

Furthermore if @ is a regular control of (P), then there exists hg > 0 such that uy, is regular for (Py) for each
h < hg and

}ILILI%) lla — ahHLoo(Q) =0 and }{LIIB A = 5\, (6.2)
where N\, and X are the Lagrange multipliers obtained in Theorems 5.1 and 3.2 respectively.

Proof. The existence of subsequences weakly* convergent in L°°(2) is an obvious consequence of the fact that
—0 < a < up, < B < 400 for every h. Any limit point w satisfies @« < w < ( and, using Lemma 4.5,
F;(ya) = limp—0 F;(yn(an)) = 0 for every 1 < j <n. and < 0 for n.+1 < j < n.+n;. Therefore @ is a feasible
control for problem (P). Let @ be a regular solution of problem (P). From Theorems 3.7 and 4.6 we obtain a
sequence {upo<h<hg, With up € Upaq and up, — @ in L°(§2). Then using Lemmas 4.4 and 4.5 along with the
fact that @y, is solution of (Py), up € Unag and @ is a feasible control for (P), we get

J(u) < 1i£nigf Jn(@p) < limsup Jp(ap) < limsup Jy(up) = J(@) = inf (P) < J(a),
- h—0 h—0

which proves that u is a solution of (P) and the first convergence of (6.1). The second limit can be obtained
from the hypothesis (92L)/(0u?)(x,y,u) > A, > 0 assumed in (A2) in the same way than in the proof of [6]
(Th. 12).

Let us assume now that % is a regular control of (P). The strong convergence of {us}r>o in L*(Q) and
the uniform boundedness imply the strong convergence in every L"(€2) for r < co. Then the regularity of @y
follows from Lemma 4.8. Therefore there exist real numbers {Ap; }ieg™ such that (5.1) and (5.2) hold. From
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Remarks 3.3 and 5.2 and Lemmas 4.4 and 4.8 we deduce that

L . oL, ]
Lim Apj = — lim o (a(ﬂf,yh,uh) + <Pho(93)) W (z)dw
oL N
—— [ (Fetoata ata) + gale) ) ) do = 3.
Q (3

We conclude the proof by establishing the strong convergence of the discrete optimal controls in L>(Q). Due
to Theorems 3.7 and 5.5, there exist functions 5 € C%1(Q) and 3), € Uy, such that

wﬂ(x)—i—g—i(x,yg(x),g(x)) =0 VazeTl and VT €T, (6.3)
oL
sur=sr. [ (ontn) + 5o (wgm(an)se)do =0 VT T, (64)
T

From (6.4), we deduce that for every T' € 7}, there exists xp € T such that

on(tn)(2r) + Z_i(zTayh(ah)(zT)a 57) =0. (6.5)

Suppose that T' € T}, is fixed, and select an arbitrary « € T. By making the difference between (6.3) and (6.5),
and due to the assumptions made in A2, it follows that

Arfu(z) — un(z)| = Ar|Projis 6)(5(x)) = Projia g(5n(2))| < A|s(z) — 5n(2)|

= Auls(e) 51 < | G 000 (0).5(0)) ~ G 51)

- ‘(%(I) — on(an) (1)) + (g—i(:v,yu(x),sT) — g—i(fﬂyh(uh)(xT)vsT))‘

< lpu(e) = en(an) ()| + Cile — o] + [ya(e) — yn(un)(@r)]} -

We know from the regularity v, oz € W2P(Q) that these functions are Lipschitz, hence

Apla(z) —an(z)| < C(lz — x|+ llea — en(@n)ll ooy + lya — yn(@n) || Lo (1))
< C(h+ llpa — on(@n)llLoe(ry + lya — yn(@n) || L= (1))-
Invoking Lemma 4.4, the convergence A\, — A and the definitions
ne+n; Ne+ng

Yu = po(u) + Nigja  and  on(tn) = eno(@) + Y Anjons (),
j=1

we deduce

@ = UnllLen) = Sup @ = Unllpoe(ry < C(h + [loa = on(Un)l L= (o)
€Thp

+ lya — yn(@n)| L=(0,)) — 0 when h — 0.

Let now take an arbitrary 7' € 875, and let T' € 875, be the corresponding boundary triangle satisfying T > T
(here 97}, and 07}, denote the sets of boundary triangles in 7, and 7). For & € T'\ T let = be its projection on
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the boundary I’y of ;. Taking into account the Lipschitz continuity of %, we obtain

a(2) —un(2)| < lu(@) —u(@)] + a(z) — un(2)| = |u(@) — u(z)] + |u(z) — un(z)|
<l — x|+ ||1u = tnll=(o,) < ch+ |0 —tnllL=(q,)-
Hence
@ —anllLe@\0,) = sup & —tnll oy ry < Ch+ ||t — Unll Lo (q,) — 0,
TedTn
which completes the proof. O

The following theorem proves that the local minima @ of (P) which are regular and satisfy the sufficient
optimality conditions are in somehow attractors. More precisely, there exists a neighbourhood of each one of
these points such that the problems (Pj) have local minima in this neighbourhoods which are regular points
of (Py) and converge uniformly to @. Therefore if we solve numerically the discrete problem (Pj), we can
approximate 4 in the L*°(€2) norm if we start the iterations in the mentioned neighbourhood of @. In the sequel
B, (u) will denote the L>°(§2)-ball of center u and radius p.

Theorem 6.2. Let @ be a local minimum of (P) satisfying the regularity condition (3.1) and the sufficient
optimality condition (3.13). Then there exist p > 0 and hg > 0 such that the problem (Pp) has a local minimum

ap, in B,(@) for every h < hg. Furthermore every Gy, is reqular in the sense of (4.23) and the convergences (6.2)
hold.

Proof. Let € > 0 be given by Theorem 3.5 and for every 0 < p < £ let us consider the problems

minJ(u) = [, L(z, yu(x), u(x)) dz

subject to (yu,u) € (C(Q) NHY(Q)) x B,(u),
(Pp)q a<u(z)<p ae ze€q,

Fj(yu) =0, 1<j < mne,

Fi(yy) <0, ne+1<j<n.+n;

and

min Jy,(up) = [o, L(@, yn(un) (@), un(z)) dz,
subject to (yn(un),un) € Vi x (Un N B,(1)),
(Prp) S a<up(x) < B ae z€Qp,

Fj(yn(un)) =0, 1<j<ne,

Fi(yn(un)) <0, ne+1<j<ne+n;.

According to Theorem 3.5, @ is the unique solution of (P,). From Theorem 3.7, we know that & € C%1(Q)
and Theorem 4.6 states the existence of hg > 0 and a sequence {up}r<n, converging to @ in L>°(€)) and such
that up € Unaq. From the convergence ||@ — up|| =) — 0 we also know that uj, € B,(u) if ho is chosen small
enough. Therefore (Pj,) has feasible controls for h < hy and consequently it has at least one solution u; for
every h < hg. We can argue as in the first part of the proof of Theorem 6.1 to deduce that % — || 2() — 0
when h — 0. Moreover, since {un}nh<n, is uniformly bounded in L>°(2), then the convergence @ — @ holds in
L7 (Q) for all r < co. Let us see that the convergence is also fulfilled in L>°(£2).
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Let {wn;} er, be given by Lemma 4.8 and let us define {wp;} cr, as follows

Wi if Hﬂft_Lh”LooT <p
VT €T Whj|lT = d ()
0 otherwise.

Let us set

Sh={T €T :||u—tp|p~r) =p} and A,= |J T
TeX,

If we prove that |As| — 0 when h — 0, then we will obtain the convergence wp; — wp; — 0 in L™(2) for every
r < +o0o and consequently wy; — w; in L"(Q) for every j € Iy. Here |Ap| denotes the Lebesgue measure of Ay,
Let ¢ be the Lipschitz constant of 4 and let us assume that ho has been chosen satisfying ¢hy < p/2. Thus if
h < ho, T € ¥ and xp € T verifies |u(xr) — Up | = p, then we have for every z € T'

a(z) — un(2)| = |u(zr) — tpr| — |u(zr) —u(z)|] = p—ch > g :
Since 4, — @ in L'(Q), the above inequality implies

1Y _ _ _ _
§|Ah|s/A} |u<x>—uh<:c>|d:cs/§l|u<x>—uh<x>|dwo

)

as required.

Now we can proceed as in the proof of Lemma 3.1 to deduce the existence of a family {ws;}jer, such
that G;(ap)Wr; = 0ij, supp Wn; C Qpe N (2 \ Ap) for some ¢ > 0 and Wp; — w; for every j € Iy. Since
F;(yn(un)) — Fj(ya), then Ing C Iy for h < hg, with ho small enough. Hence @y, is a regular local minimum for
problem (Pp,). Then we can deduce the first order optimality conditions similar to those of Theorem 5.1. So
there exist real numbers {\; ?;‘{”7' such that

j\hj >0 and j\thhj(’ﬁh) =0 if ne+1<j<n.+n,
oLy ,_

a—uh(uh’;\h)(uh —ap) >0 foral a<wu,<pf and wuy € Bp(ﬂ).

Using Remarks 3.3 and 5.2 and arguing as in the proof of the previous theorem, we deduce that A, — X. On
the other hand, if we denote

Uo(x) = max{a,@(z) — p} and wg(z) =min{G,u(z)+ p},

Theorem 5.5 is still valid replacing (5.13) by

up(z) = Projju, (o),us(2)) (5n(2)) = max(ua (), min(ug(z), 51(2))).
Now we can repeat the proof of Theorem 6.1 to deduce that ||@ — @p| 1) — 0 and therefore u;, € B,(u) for
every h smaller than a certain hyg. O

In the sequel, @ will denote a local solution of (P), which is regular in the sense of (3.1) and satisfies the
sufficient optimality conditions (3.13). Let 5 € C%(Q) be given by Theorem 3.7. We also have the sequence
{tn}h<n, of local solutions of (P) provided by Theorem 6.2. Associated to the functions (8, i, up) we define

up(x) = Proj[aﬂ][(ﬂhg)(x)] (6.6)
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and

a(z) ifa(zr)=aoralzx)=p
p(z) =< ap(x) fa<a(x)<BandzeN\Q, (6.7)
() fa<u(xr)<fandz e Q.

Now we take

Qpj = G;(ﬂ)(ﬂh — ﬁh) and up = up — Z QpjWj, (68)

jein
where w; is introduced in (3.1) and

In={1,...,n}U{i>ni: N\j>00r (\;=0,j € Ip and an; > 0)}-

Now we deduce the following lemma from Theorem 3.6:

Lemma 6.3. If hg > 0 is taken small enough, then {up — @pth<n, C CT for some T > 0 and

0L - - . -
w(ﬂ, )\)(’l_l,h - uh)2 > ,LLHUh — uh||i2(9) Vh < ho. (69)

Proof. Thanks to Theorem 3.6, it is enough to prove that @ — @y, € C7 to deduce (6.9). Let us check this
inclusion. If @(z) = «, then w;(z) = 0 for every j € Iy, and consequently (ap — r)(z) = an(z) — u(x)
= ap(xr) — a > 0. Analogously (an — @p)(z) < 0 whenever u(x) = 8. Therefore 4y — uy, satisfies the sign
condition of (3.11). On the other hand, from the definition of aj; and @y, and the property of the family
{w;}jer, we conclude that (u, — @) satisfies all the conditions of (3 11). To conclude the proof we have to
prove that @y — 4, = 0 in Q7. Let us fix £ € Q and take T € Th such that # € T. Let us also consider
T € T, with T C T. From the definitions of d and dj, given in (3.6) and (5.4) respectively, Lemma 4.4 and
the convergences (6.2), we deduce that dj, — d uniformly in . Therefore, by taking hy > 0 small enough and
h < hg, we have

|d(z) — d(z")] <g Vo, 2’ € T and VT € 7,

and

o] N

[d = dnllL=) <
Hence, if d(&) > 7, then dy(&) > 47/5 and
dn(z) = dn(2) + (dn () — d(2)) + (d(z) — d(#)) + (d(Z) — dn(£)) > 7/5 Vo €T.

Therefore [ dp(z)dz > 0. Using (5.5) we deduce that uh(j:) Uy = a. Also we have that d(#) > 0 implies

(%) = a. From the definition of @y, it follows that (%) = @(#) = a too. Collecting all this, we deduce that
(@p — p)(2) = 0. Analogously we can argue in the case of d(Z) < —7 to arrive to the same conclusion, which
completes the proof. O

The next lemma provides an error estimate for the term o — up:
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Lemma 6.4. For every h < hg the following inequalities hold
@ = @nllay < C (b + 3= anll3aq ) (6.10)
and
i = @nllz o) < C (B + 1= @nll3ae ) (6.11)
where o is taken as in Lemma 4.4.

Proof. Let us start proving a estimate for @ — . Using the definition of 4y, the representation of @ provided
by (3.16) and the well known interpolation error estimates in the Sobolev spaces, see Ciarlet [12], we get

@ = dnlloeq,) < 1@ =unlLe@,) = [[Proji 5/(5) — Projia g (Ias) | L@y
< 5 = Tl < Chllnaay (6.12)

The same estimate is obviously fulfilled when the L?(£2,)-norm is used. On the other hand, from (4.1) we get
@ — @l 2@\ < (8 = a)V/IQ\ Q] < Ch. (6.13)
Inequalities (6.12) and (6.13) lead to
|l —in|lL2) < Ch. (6.14)
Let us estimate the terms ay,;. First of all, let us write
ang = G(a)(a — up) + G (@) (an — a). (6.15)
From (6.12) and (6.13) we deduce
lan;| < Clla — 20y + |G (@) (@n — a)| < Ch+ |G)(a)(un — u)]. (6.16)
Making a Taylor development we get
G;(an) = G; () + G (w)(an — ) + %G;’(vhj)(ﬂh —a)p, (6.17)
with vp; = @ + 0p;(u, — @) for some 0 < 0, < 1. If j € I, and j < m;or\j # 0, then Gpj(uy) = 0 for every

h small enough because 1y, is feasible for (Pj,) and either the j-restriction is an equality or it is an inequality
with a positive Lagrange multiplier Ap; — A;. Using this along with (6.17) it comes

o] < O 1G5 (0) — 3G ong)n — 0] < 1G5 m) | + € (4 an — 0320
= |G (n) = G n) | + C (h+ l[an = 32y ) -
By using the error estimates in the approximation yp(un) of v, , see Casas and Mateos [6], we get
g < 15 n ) — Ey )|+ C (b4 in— 30
<C (h + lyn(un) = Yup L) + lan — ﬁ”%%ﬂ))

<C (h"+ | ffaniz(m). (6.18)
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In the case of j € fh, with 7 > ng, 5\]- = 0 and ay,; > 0, we have to distinguish two situations. First we assume
that G (u)(un — ) <0, then (6.14) and (6.15) lead to

lani| = an; < Gj(a)(u —ap) < Ch. (6.19)

In the second situation we assume that G;(u)(un — u) > 0. Since j > n;, we have that Gp;(us) < 0. Using
these two facts, the identity G,;(a) = 0, equations (6.15) and (6.17) obtain

1
|Oéhj| =ap; < Ch + G;(ﬂ)(ﬂh — ’l_l,) =Ch+ Gj(ﬂh) — §G;/(Uhj)(ﬂh — 1_1,)2
1
< Ch+ Gyan) = Giy(an) = 5 G (ong)(n — 0)* < C(h+ llyn(un) = Y L@ + llan = @l 72())
Collecting the inequalities (6.18, 6.19) and (6.20), we deduce that
anl < € (W + i — 2
for every j € I,. Finally, from the definition of @y, the estimates (6.12) and (6.14) and those ones obtained for

ap; we deduce (6.10) and (6.11). O

The next two lemmas are required to prove the error estimates for @ — @j. Their proof is an exercise
which follows easily from the assumptions (A1-A3) along with the expressions for (02£/0u?) and (92Ly,/du?)
obtained from Theorems 2.2, 2.3, 4.2 and 4.3.

Lemma 6.5. For every v € L3(Q), u € L>=(Q), with a <u < 3, M >0 and X € R+ with |\|| < M, there
exists Cpr > 0 such that

02L 02L i
|Gt = G2t ] 2] < ol
h

where o is given as in Lemma 4.4.

Lemma 6.6. For every M > 0, v € L*(Q), u; € L>®(Q) and \; € R with a < u; < 3 and |\ < M,
1 =1,2, there exists Cpr > 0 such that

—— (U1, )\1):| ’U2

< Cut (luz — wal (o) + 1Az = Al + 27) [0 20

where o is given as in Lemma 4.4.

Given uy, by (6.6) and {wp;}jer, by Lemma 4.8, we define \j, € R™ ™

oL

*/ [_(m’yh(uh)auh)+¢h0(uh) wpidx, i € Iy
Qh,

Ani = ou (6.21)

0 otherwise.
From Remark 3.3, Lemma 4.8 and the fact that

1@ = unllL~(@) < Chllullwr~(q) (6.22)
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it follows that

A=Al < Ch. (6.23)
Now we set
oL
dp(z) = a—(ﬂf,yh(uh),uh) + Z Anjonj(un), (6.24)
Up ‘
j€lo
and
Ne+n;

on(un) = ono(un) + Y Anjeon;(un),
j=1

with @po(un) and @p;(up) being the solutions of (4.7) and (4.10) respectively corresponding to u = wy,.
Finally we introduce the function {, € U as follows

1 +
{m/Tdh(:c) dm] if upr=a
Chir = ! T (6.25)
RIT = - m dh(I) dx if U’h\T = ﬁ .
T
1
fm dp(z) dz otherwise.
T
Then we have

¢ llz2) < Ch. (6.26)

Taking into account Lemma 4.4 and the estimates (6.22) and (6.23), the proof follows the same lines as the
corresponding one of [1].
From the definition of A, dp and ( we easily deduce that

?(uh, An) (v —up) + Ch(@)(vp(z) —up(z))de >0 (6.27)
Un Qp

for every vy € Uy with a < v, < f.
We are ready to prove our first error estimate.

Theorem 6.7. Under the assumptions (A1—A83) and supposing that @ is a regular local minimum of (P)
satisfying the sufficient second order optimality condition (3.13), then the following estimate holds

||’U—’ﬁhHL2(Q) < Ch?, (6.28)
where o is given by Lemma 4.4
Proof. Taking v, = up, in (6.27) and making the addition with (5.2) we get

oLy, oL, ,_ -~ _ _
— - — — >
Dy (un, An) D (@n, )\h)] (@, —up) + o Cr(@p — up) dz > 0,
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which can be written

oL oL -
L()T:(um An) — a—u:(ﬂh, )\h):| (up —un) < o Cn(Tn — up) de.

We still add a new term

—h(uh, An) — g—ﬁ(ﬂh, )\h)} (up —ap) < Ch(up — up) de + [%(ﬂh, An) — 8—(% Ah)] (up, — p).

Qp

Now using mean value theorem we get for v, = up + 0 (an, — up), with 0 < 0, < 1,

82£h B B oLy, - oLy _
a—u}%(vm)\h)(uh —ay)? < o, Cu(tun — up) de + [a—uh(um)\h) - a—uh(um)\h) (up — p).
From here we deduce
82£h B B oLy, -~ oLy . _ _
a—u%(vm)\h)(uh —un)? < ||Gllp2e |@n — unllz2@) + [a—uh(um)\h) - a—uh(uh, An)| (up — @p).
Taking into account (6.26) it comes
2L, - _ (020, - 0°L - _
G 0 0 = ) + | G (0.%) = S . )] = )
(0L, 0Ly - ,
—_— — —(u — U < —Uu 2
| G0 3) = 0. (i = ) < Ol = 120
[O0L - oL
+ a—u:(’ﬁh, )\h) — a—u:(ﬂh, )\h)] (uh — ’ﬁh). (6.29)

Let us estimate each of the three terms of the left hand side. For the first term we use (6.9) as follows

82_11(1_“ N (g, — p)* + 5oz (1 M) (up — iin)?

+ 255 (@ A)(@n = un)(un = an) 2 Alldn = anlz2)

0L

Gz (O N (up, — ap)* =

= € (Jlun = @l 3y + i = @l 2o llun = a2y ) -
From (6.10) and (6.22) we obtain the estimate
lun = @nllzaey < C (B + 1 = @nll3aq ) (6.30)
which along with the previous inequality and Young’s inequality lead to
0L

™

>

) = @) = i — anlB ey — © (7 + 1 - mll i) -

N =

From inequality (6.10) it follows

llan — anllz2) = o — tnllL2) — C (ho +lu— ﬂh”?ﬂ(m) : (6.31)
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Thus we conclude our first estimate
2L, - fi
_ — N2 — 2 2 4
5 @ N —)? = Lla = wllfaq) = € (17 + 12— nllfa) ) - (6.32)

To get the second estimate we use Lemma 6.5 and the inequality

lun = UnllL2) < llun = ll2(0) + un — Ul L2@) < Ch+ [[un — Ul L2(0) (6.33)
to deduce
2Ly - L _ - _ - _

To obtain the third estimate it is enough to use Lemma 6.6, equations (6.22, 6.23, 6.33) and the definition of
vy, and Ap,

PLu Ay — ZEn 5 in)? > —C l A — M| + A7 tin |2
a—u}%(vhv h)*a—u}gl(u, )| (un —@n)® > =C ([lon = all oo () + 1A = Al + h7) [lun, = @nll72q)

> -C (Hah - UhHLoe(Q) + h+ hg) (h2 + Huh — a||2L2(Q)) : (6.35)

Combining the estimates (6.29, 6.32, 6.34) and (6.35) and taking into account that (6.2, 6.22) and (6.23) imply
that

@ = nll2) — 0 and |lup — tnl|L= @) < l[un — @l Lo (o) + |4 — UnllLo @) — 0
we deduce that for A smaller than a certain hg > 0 we have

. o _ oLy, -~ oLy B
gle— n 72 — Ch** < Chllun — anllL2(0) + [é)—uh(uh’)\h) - 8—%(uh7>\h) (un — un).

Inserting (6.33) in this inequality it follows from Young’s inequality and taking hg small enough that

. _ o _ _ oLy, -~ oLy ,_ _
g”u — Upl|72q) — CP* <Ch(h+ ||u — tn L2() + [a—%(l&m)\h) - 3—1”1(%’)%) (un, — up) < Ch?
B o oLy, < oLy ,_ _
+ gl = anllze(e) + {a—uh(uha)\h) - a—uh(uh; An)| (un — ap)
or equivalently
fi oL < oL
1—H6Hﬂ — |72 () < CR* + {W:(ﬂh, An) — W:(ﬂh, )\h)} (up — up). (6.36)

Finally let us estimate the second summand of the right hand side. First of all, from (6.23) and (6.33) we get

oLy, < oLy ,_ _ oLy, < 0Ly, _ _
Z=h _ = _ < || 2= _Z=h _
G an 2 = G an )] o = )| = || G o ) = G )] = )
oL < oL -
+ ‘ {W:(ﬂh, h) — WZ(E%,)\)] (uh — L_Lh) < Ch(h + Hﬂh — a”L?(Q))

oLy, < oLy ,_ < _
+Ha—%(u}“)\h)_ a—%(uh;)\)} (un — Un)| -
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By subtracting (3.8) and (5.6) and using (4.12) and (4.16) we obtain
1A= Anll < C(h+ 1@ — tn| L2()-

Using (4.12, 6.10, 6.30) and (6.38) in the identity

8—%(%, An) = 5 (@n, A) | (un — un) = ; (Ang = A))Ghj () (un — an)

Ne+n;
= Y Oy = ) {[Gh(an) — G (@) (@i, — )

j=1

+[G) (@) (an — an)] + (Gl (un) (un — an)]}

3£h B % B Ne+n;
0uh

we get
DL )= 20 %) (= )| <CUR =l ™S {lons () = g i —
By, o M) (U h—up)| < h 2 i (Un) — wjallz@)llllun — unllL2()
Ne+ng B B
Hlun = anllpze) } + D 1N = MgllG) (@) (@ — )l
j=1

(6.38)

<C (h+la—1unlL2) { (h* + @ = anllL2@) (h7 + @ — tnl L2(0)

Ne+n;

+ (hg +llu - ah”%?(ﬂ))} + >IN = Al G (@) (@ — )|
j=1

<C (h+||u—an)| 2 (b7 + [a - ah||%2(m)

Ne+n;
+ >IN = Ansl|G (@) (@ — ).

j=1

(6.39)

It remains to estimate the terms |A; — Ap;||G’(@)(@n — @s)|. According to Lemma 6.3, all these terms are zero
except for those j > n,, such that G;(@) = 0, \; = 0 and Ap; > 0. In this case it follows from (5.1) that

Ghj(an) = 0. By using a Taylor development we get
1
Gj(un) = Gj(u) + G (u)(an — @) + EG;’(ah)(ah —a)?,
and thanks to (4.13)
1
G (@) (@ — )| < G (@n) — Gy ()] + | 5.GY (on) (an uF\ <O (h7 + llin — @l ) -

Therefore

|G (@) (@n — un)| < |G5(@)(@ — an)| + |G (@) (@n — )] < C(AT + [lan — all 20y + lan — ull 1))

<0 (h + an — e ) -



ERROR ESTIMATES FOR THE NUMERICAL APPROXIMATION OF ELLIPTIC CONTROL PROBLEMS 373

Using once again (6.38) it turns out

Ne+n;

S° 1R = Ml G @) an — a)| < C (bt = all ey (57 + o — al3aqq )
j=1

Finally (6.36, 6.37) and (6.39) along with the above inequality lead to (6.28). O

We finish by proving the error estimates for the Lagrange multipliers as well as for the controls in the L ()
norm.

Theorem 6.8. Under the assumptions of Theorem 6.7, then the following estimate holds
A= Anll + @ — tnl () < Ch, (6.40)
where o is given by Lemma 4.4

Proof. First of all let us notice that the estimate for the Lagrange multipliers follow from (6.38) and (6.28).
Let us derive the error estimates in the L°° norm for the controls. The following inequalities were stated in the
proof of Theorem 6.1

1@ = anl L0,y < C (h+llpa = en(@n)ll,) + 1va — yn(@n)llL=(0u))
and
@ = @nllL@0n) < Ch+ ||t — tnl[L=(0,)-
Therefore
@ = unllpe @) < C(h + loa — on(@n)llr=(0,) + 1ya — yn(@n)l L= (0n))- (6.41)
From (4.13, 6.28) and the estimates already proved for the Lagrange multipliers we get

Ne+n;

lpa — e (@)l (o) < llvon — ero(@n)llL=@n + > I1X@ja — Mnj@n; (@n)llL=(n)
j=1
Ne+n;

< llpoa — no(@n) =) + Y {IA = Mnsllejall L)
j=1

Hnjlllesa — @i (@n)llz~ ()} < C(A7 + ||t — tin]|L2(0)) < OB
Using once again (4.13) we deduce (6.40) from (6.41) and the above inequality. O

In the proof of the previous Theorem we have used the estimate
1 — Unll Lo ) < Ch7,
which follows from Lemma 4.4 and (6.28). Above we have also proved that
|9 — @ullr=) = ¢ — @ullLe(n) < Ch7.
Now using once again Lemma 4.4 and (6.28) it comes

19 = Ynllzrr @) + 10 — nllai (@) < Ch7.
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Finally let me say that the error estimates seem to be optimal in the cases where ¢ = 1. This opinion is based
on the fact that the interpolation error of functions of C%1(£2) by piecewise constant functions is of order h. For
o = 1/2 we do not know if the estimates can be improved. The difficulty appears when studying the L error
estimates of the approximations of the state equations by finite element methods; see Casas and Mateos [6].
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