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Abstract

Systematic biases in climate models hamper their direct use in impact studies

and, as a consequence, many statistical bias adjustment methods have been

developed to calibrate model outputs against observations. The application of

these methods in a climate change context is problematic since there is no

clear understanding on how these methods may affect key magnitudes, for

example, the climate change signal or trend, under different sources of uncer-

tainty. Two relevant sources of uncertainty, often overlooked, are the sensitiv-

ity to the observational reference used to calibrate the method and the effect of

the resolution mismatch between model and observations (downscaling effect).

In the present work, we assess the impact of these factors on the climate

change signal of temperature and precipitation considering marginal, temporal

and extreme aspects. We use eight standard and state-of-the-art bias adjust-

ment methods (spanning a variety of methods regarding their nature—
empirical or parametric—, fitted parameters and trend-preservation) for a case

study in the Iberian Peninsula. The quantile trend-preserving methods

(namely quantile delta mapping (QDM), scaled distribution mapping (SDM)

and the method from the third phase of ISIMIP-ISIMIP3) preserve better the

raw signals for the different indices and variables considered (not all preserved

by construction). However, they rely largely on the reference dataset used for

calibration, thus presenting a larger sensitivity to the observations, especially

for precipitation intensity, spells and extreme indices. Thus, high-quality

observational datasets are essential for comprehensive analyses in larger (con-

tinental) domains. Similar conclusions hold for experiments carried out at high

(approximately 20 km) and low (approximately 120 km) spatial resolutions.
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1 | INTRODUCTION

Bias adjustment (BA) techniques are routinely applied in
sectoral impact studies to calibrate the required (biased)
global and regional model outputs to regional or local
scale, using a particular gridded or point-scale observa-
tional reference (Rojas et al., 2012, Barredo et al., 2016,
Ruiz-Ramos et al., 2016, Casanueva et al., 2018, Reder
et al., 2018, Galmarini et al., 2019). For this purpose, a
number of methods have been developed (see e.g., Lafon
et al., 2013; Räty et al., 2014; Sunyer et al., 2015; Maraun
and Widmann, 2018), from simple methods calibrating
the mean to methods adjusting all quantiles, either para-
metric or empirical, trend-preserving or not, and with dif-
ferent treatment of new extremes and the wet-day
frequency for precipitation.

A number of fundamental limitations and uncer-
tainties of BA methods have been already described in
the literature in recent years (see, e.g., Dosio, 2016, Mar-
aun et al., 2017). Two main sources of uncertainty which
may largely influence the results of these methods are
(a) observational uncertainty (the sensitivity to the obser-
vational reference used for calibration) and (b) resolution
mismatch (the mismatch of the horizontal resolution
between model outputs and observations). Resolution
mismatch typically requires the application of more gen-
eral statistical downscaling techniques, such as regression
or analog based (Gutiérrez et al., 2019) suitable to transfer
coarse model outputs to a higher resolution (Maraun and
Widmann, 2018). The application of BA methods in this
context is subject to several shortcomings (IPCC, 2015),
since the observed higher-resolution signal is simply
imposed on modelled data without any predictive ability
and may produce statistical artefacts and a misrepresenta-
tion of the spatiotemporal structures in an attempt to
explain unexplained smaller-scale variability (Maraun, 2013,
Maraun et al., 2017, Figure 6).

In this paper, we focus on these two aspects and per-
form an intercomparison study of a number of standard
and state-of-the-art BA techniques, including standard
empirical and parametric quantile mapping, and also more
conservative trend-preserving (only for the mean or for the
full distribution—quantiles) methods. The analysis is car-
ried out over the Iberian Peninsula, a region with a large
variety of climatic conditions where high-resolution obser-
vational datasets are available (in particular E-OBS, Hay-
lock et al., 2008, and Iberia01, Herrera et al., 2019a). The
aim is to assess (a) how the different methods may alter the
raw climate change signal (of both global and regional
model outputs), and (b) the influence that the observational
uncertainty and the resolution mismatch may have on the
results. Note that these techniques adjust the (biased) model
values towards the corresponding observed ones and this

may indirectly affect the trends and the resulting climate
change signal (Maraun, 2013). This could be justified in
some cases, for instance, for highly biased climate indices
such as those defined using absolute thresholds, where the
raw signal is not reliable (e.g., Dosio, 2016). However, pre-
serving the trends of the basic distributional statistics (mean
and quantiles) is desirable in general if there are no physical
mechanisms justifying a modification. Here, we present an
intercomparison study of standard and trend-preserving
methods focusing on a number of validation indices
encompassing marginal, temporal and extreme aspects. The
goal here is to assess these differences, and the influence of
observational uncertainty and resolution mismatch, in
order to facilitate an informed choice of methods based on
the required behaviour.

The paper is structured as follows: First, Section 2
presents the data and methods considered in this study,
including the gridded observational datasets, the global
and regional climate models, the BA methods, experi-
mental framework and the validation indices used. Sec-
tion 3 presents the main results. Finally, the main
conclusions and discussions are detailed in Section 4.

2 | DATA AND METHODS

The Iberian Peninsula is located in southwestern Europe,
in the transition zone between extratropics and subtrop-
ics, spanning a region with complex orography
influenced by both the Atlantic and Mediterranean cli-
mates. The resulting local climate variability ranges from
temperate climates with regular precipitation spread over
the whole year with more than 1,000 mm�year−1 in the
north, to dry (semiarid) climates with areas with less
than 100 mm�year−1 in the southeast. This large variabil-
ity of climatic conditions makes the Iberian peninsula a
good candidate to test the performance of different BA
techniques.

2.1 | Observational gridded datasets for
the Iberian Peninsula

Two regional observational gridded datasets have been
used in this work, the pan-European E-OBS v19e
(Haylock et al., 2008, Cornes et al., 2018, herein only the
ensemble mean values1 are considered) and the recently
developed Iberia01 (Herrera et al., 2019a) covering only
the Iberian Peninsula. Both provide daily precipitation
and temperature (mean, minimum and maximum
values) on a 0.1� regular grid for the common period
1971–2015. Note that 0.1� is a nominal resolution and
that the representation of the true climate depends on
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station density, which varies largely between and within
countries. E-OBS builds upon 208 stations in continental
Spain and 17 (8) for precipitation (temperatures) in Por-
tugal. Iberia01 is based on a quality controlled observa-
tional network of 3487 and 276 stations for precipitation
and temperature, respectively, from the Spanish Agency
of Meteorology (AEMET), the Portuguese Institute for
Sea and Atmosphere (IPMA) and the Portuguese Envi-
ronmental Agency (APA). Iberia01 was produced follow-
ing previous efforts in Spain (Herrera et al., 2016) and
Portugal (for precipitation only, Belo-Pereira et al., 2011).
In this work the two observational datasets are upscaled
from 0.1� to a 0.2� grid which matches the original grid at
the grid cell boundaries (i.e., each 0.2� grid cell contains
exactly four 0.1� grid cells). The main reason for this
upscaling is that E-OBS effective resolution is coarser than
0.1� due to the stations' density (especially for precipita-
tion) and any comparison at such a high resolution could
rely on statistical artefacts; 0.2� could be considered a good
candidate for a fairer comparison.

Herrera et al. (2019a) characterised the systematic dif-
ferences between these two datasets, which are particu-
larly relevant for extreme indices (see also Figure S1 for
the indices considered in the present work).

2.2 | Climate model simulations

From the different Global Climate Model (GCM) simula-
tions available within the Coupled Model Intercomparison
Project Phase 5 (CMIP5, Taylor et al., 2012), in this work
we consider a GCM, EC-EARTH (r12i1p1), that has been
shown to consistently reproduce the key large-scale pro-
cesses influencing the European climate, in particular
storm tracks (Lee, 2014; Zappa et al., 2015). This allows us
to test BA methods in optimum conditions, that is, with
no large (incorrigible) systematic biases for key processes.
Temperature and precipitation raw outputs of EC-EARTH
are available at the original 1.125� horizontal resolution.
In addition, we also use results from the RACMO22E
Regional Climate Model (RCM) from the EURO-CORDEX
ensemble (see Kotlarski et al., 2014), driven by the above-
mentioned EC-EARTH simulation. RACMO22E outputs
are available at a 0.11� resolution.

2.3 | Experimental framework

In this paper we build on the EURO-CORDEX
intercomparison framework for (statistical) downscaling
methods, which is a follow-up of the VALUE (Validating
and Integrating Downscaling Methods for Climate Change
Research) initiative (Maraun et al., 2015). VALUE

conducted a first intercomparison experiment for assessing
the relative merits and limitations of the different down-
scaling approaches (including BA) with perfect (reanalysis)
predictors (see Gutiérrez et al., 2019). A second follow on
experiment has been proposed (http://www.value-cost.eu/
validation#Experiment_3a) to analyse the extrapolation
capability of these methods using (global and regional) cli-
mate model projections from historical and future scenar-
ios, in particular using the datasets described in Section 2.2.
The methods are first trained over the historical period
(1981–2010) using GCM/RCM outputs and observational
datasets and, then, applied to the future GCM/RCM out-
puts for the 2071–2100 period under the RCP8.5 scenario.

In order to test the influence of observational uncer-
tainty and resolution gaps between models and observa-
tions, we perform two experiments using two different
resolutions for the target observational datasets (Iberia01
and E-OBS): (a) 0.2� high resolution and (b) 1.125� coarse
resolution of the GCM. For the latter experiment, in
which both model and observed data have the same hori-
zontal resolution, observations (and RCM outputs for the
case of RCM bias adjustment) are upscaled from their
original resolution to the coarse (GCM) counterpart using
conservative remapping (using the Climate Data Opera-
tors, CDO, Schulzweida, 2019).

2.4 | Validation indices

We have selected a number of indices proposed in the
VALUE initiative to validate different aspects of downscal-
ing methods (Maraun et al., 2015). Table 1 describes the
indices considered and the particular aspects assessed
(M = marginal, T = temporal, E = extremes, see their
observed climatology as given by the observational datasets
in Figure S1). In this work we are interested in assessing
the effect of the BA methods on the raw (from both global
and regional models) climate change signal (defined as the
difference, or delta, between future projections and histori-
cal climate) intercomparing methods with and without
trend preservation. Note that, by construction, some indices
(mean temperature, percentiles) are directly adjusted by
some methods, which should be taken into account in the
frame of a fair comparison (Casanueva et al., 2016). For
instance, for some indices (e.g., the mean climate change
signal) some BA methods (e.g., ISIMIP1) are expected to
preserve the raw trend (to avoid statistical artefacts intro-
duced by the adjustment method with no physical justifica-
tion). However, there are other indices largely affected by
model biases, for example, threshold-based indices, here
specifically FA20 (tasmin), where the raw model signal may
be unreliable and, therefore, adjusted trends may not neces-
sarily indicate a bad performance of the method (see
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discussion in Dosio, 2016). The goal here is to assess these
differences in order to facilitate an informed choice of
methods based on the required behaviour.

2.5 | Bias adjustment methods

In this work, we compare a selection of BA methods,
including some contributing to the VALUE intercomparison
experiment (Maraun et al., 2015; Gutiérrez et al., 2019) and
four additional trend-preserving methods, as shown in
Table 2.

The main characteristics of these methods are
described below:

• Empirical quantile mapping (EQM): Empirical method
where a transfer function calibrated over the control
period is used to map quantiles from the empirical
cumulative distribution function of the model output
onto the corresponding observed distribution. The for-
mulation considered in this work is implemented in
the climate4R tools (Iturbide et al., 2019; Bedia
et al., 2020). Unlike the method used in the Cost
Action VALUE (Gutiérrez et al., 2019), which fits
99 empirical percentiles, it calibrates all experimental
quantiles. It uses constant extrapolation (first and last
corrections for values below and above the calibration
range, respectively) for out-of-sample values, as the
implementation used in VALUE. It adjusts wet-day

TABLE 1 Diagnostic indices used in this work

Index name Pr Temp Description M T E

AC1 (tas) X Lag-1 autocorrelation X

Mean (tas) X Mean value X

WarmAnnualMaxSpell (tasmax) X Median of the annual warm spell maxima (maximum number of
consecutive days with temperature >90th percentile)

X X

FA20 (tasmin) X Tropical nights (days with tmin >20�C) X

R01 X Wet-day frequency (number of days with precipitation ≥1 mm) X

SDII X Mean wet-day precipitation X

DryAnnualMaxSpell X Median of the annual dry spell maxima (maximum number of consecutive
days with precipitation <1 mm)

X X

DWProb X Dry-wet transition probability X

P98Wet X 98th percentile of precipitation amount on wet days X

Note: Indices names refer to the package https://github.com/SantanderMetGroup/VALUE, where the code for their calculation can be found.
Second and third columns indicate whether the indices are suitable for validating precipitation (Pr) and temperature (Temp), respectively.
The last three columns indicate if the indices analyse marginal (M, Gutiérrez et al., 2019), temporal (T, Maraun et al., 2019) or extreme (E,
Hertig et al., 2019) aspects, respectively. Indices highlighted in bold are those used in the synthesis VALUE paper (Maraun et al., 2019). Note
that a warm or dry spell has been defined as at least two consecutive days fulfilling a particular condition.

TABLE 2 Bias adjustment methods used in the intercomparison study, indicating the code, name, parametric/empirical (P/E)

character, the software package and a reference describing the method

Code Name P/E Package Reference

EQM Empirical Quantile mapping E climate4R Déqué (2007)

PQM Parametric Quantile mapping P climate4R Piani et al. (2010)

GPQM Generalized Pareto parametric quantile mapping P climate4R Vrac and Naveau (2007)

DQM Detrended quantile mapping E ClimDown Cannon et al. (2015)

QDM Quantile delta mapping E ClimDown Cannon et al. (2015)

SDM Scaled distribution mapping P pyCAT Switanek et al. (2017)

ISIMIP1 Method from the ISIMIP fast track P climate4R Hempel et al. (2013)

ISIMIP3 Method from the third phase of ISIMIP P ISIMIP3BASD Lange (2019)

Note: Methods highlighted in bold were included in the VALUE initiative (Gutiérrez et al., 2019). The package climate4R (which includes
the package downscaleR for downscaling; Bedia et al., 2020) is available at https://github.com/SantanderMetGroup/climate4R; the package
ClimDown is available at https://github.com/pacificclimate/ClimDown; the code for ISIMIP3 method is available at https://doi.org/10.5281/
zenodo.3648654; the code for SDM is available at https://github.com/wegener-center/pyCAT.
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occurrences using a revised threshold which matches
the observed and model simulated wet/dry day fre-
quency. Moreover, frequency adaptation (Themeßl
et al., 2012), but sampling from the observed Gamma
distribution instead of using linear interpolation, is
applied in order to simulate rain in case of an excess of
model dry days. It does not consider any specific cor-
rections for trends, but allows for their modification if
biases are intensity-dependent.

• Parametric quantile mapping (PQM): Parametric method
where a transfer function calibrated over the control
period is used which adjusts the theoretical empirical
cumulative distribution function (Gamma for precipita-
tion and Gaussian for temperature) of the model output
onto the corresponding observed distribution. The formu-
lation considered in this work is the one used in the Cost
Action VALUE and implemented in the climate4R tools.
The same wet-day frequency correction and frequency
adaptation as EQM are applied. It does not consider any
specific corrections for trends, and extremes are adjusted
by the fitted parametric distribution.

• Generalized Pareto parametric quantile mapping
(GPQM): Parametric method that fits Gamma
(or Gaussian for temperature) and Pareto distributions
below/above the 95th percentile. The same wet-day
frequency correction and frequency adaptation as
EQM are applied. Distributions are then fitted for wet
days only. The method does not consider any specific
corrections for trends while extremes are adjusted
based on the statistical extreme distribution.

• Detrended quantile mapping (DQM): Empirical method
whose application consists of three steps (i) removing
the long-term mean (linear) trend; (ii) applying empiri-
cal quantile mapping (using all quantiles) to the
detrended series; (iii) adding the mean trend to the bias-
adjusted series. Zeros in the observed and modelled data
are replaced with nonzero uniform random values
below the trace threshold prior to bias correction. By
doing so, the transfer function can be calibrated using
all days from the model and observed series. After the
correction, the days with precipitation lower than a
predefined wet-day threshold are recorded as zero.
This method does not consider any specific correc-
tions for extremes, while the mean trend is preserved
by construction.

• Quantile delta mapping (QDM): Empirical method
divided in three steps (i) future model outputs are
detrended by quantile; (ii) quantile mapping is applied
to all empirical detrended quantiles of the detrended
series; (iii) the projected trends are reapplied to the
bias-adjusted quantiles. Same correction for the wet-
day frequency as for DQM is used. The method does

not consider any specific corrections for extremes,
while the trend is preserved for all quantiles.

• Scaled Distribution Mapping (SDM): Trend-preserving
parametric method that scales monthly observed distri-
butions by changes in the model's past and future distri-
butions (multiplicative assuming a Gamma distribution
for precipitation and absolute assuming a Normal distri-
bution for temperature) and likelihood of events
(Switanek et al., 2017). Prior to the scaling, days with
less precipitation than 1 mm are set to zero, tempera-
ture values are detrended. After the scaling, bias-
corrected values are reordered to their original position
in time and the temperature trend is added again. In
case a model overestimates the number of wet days, the
least wet days are treated as dry days, in case of under-
estimation raw modelled rain-day frequency remains
unchanged. SDM does not consider any specific correc-
tions for extremes.

• ISIMIP1: This is a trend-preserving parametric
method developed in the ISIMIP Fast Track (Hempel
et al., 2013; Warszawski et al., 2014). Here we use the
implementation provided in climate4R (note that the
original implementation of this method is available at
https://github.com/ISI-MIP/BC). The method consists
of a correction of the monthly mean value (using cor-
rection offsets for temperature and correction factors
for precipitation) followed by the correction of daily
variability around the monthly mean value (using lin-
ear transfer functions for temperature and nonlinear
transfer functions for precipitation). The method pre-
serves additive/multiplicative trends in the monthly
mean value because the same correction offset/factor
is used in all application periods. It adjusts the wet-
day frequency only if it is biased high.

• ISIMIP3: This is a parametric bias correction method
developed for the third phase of ISIMIP (Lange, 2019). It
generates pseudo future observations by transferring, for
each quantile, the simulated climate change signal to the
historical observations. It then uses these pseudo future
observations as “reference” for correcting future model
simulations with parametric quantile mapping. Any trend
in daily mean temperature is removed before and restored
after these two steps. Daily minimum and maximum tem-
perature are not corrected directly. Instead, amplitude and
skewness of the diurnal temperature cycle are corrected.
Corrected daily minimum and maximum temperature are
then derived from those and the corrected daily mean
temperature. The method adjusts the wet-day frequency
and generates wet days using random values drawn from
the distribution. It does not consider any specific correc-
tions for extremes and preserves the trends in all percen-
tiles instead of only the mean trend.
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For the sake of better comparability among methods,
all of them were calibrated on a monthly basis since
some methods explicitly work month by month (SDM,
ISIMIP1, ISIMIP3). As shown, all methods deal with the
wet-day frequency differently but all use a wet-day
threshold of 1 mm.

3 | RESULTS

Figures 1 and 2 show the GCM climate change signals
(absolute or relative deltas for the 2071–2100 RCP8.5
period with respect to the baseline 1981–2010) for the
marginal, temporal and extreme indices shown in
Table 1, for temperature and precipitation respectively.
As mentioned before, results are adjusted with respect
to two different observational datasets (Iberia01 and E-
OBS); consequently, the corresponding results for each
BA method are shown as pairs in these figures with
darker and lighter colours for Iberia01 and E-OBS,
respectively. This allows easy analysis of the influence
of the observational reference in the adjusted results,
thus estimating the effect of observational uncertainty.

Moreover, both high- and coarse-resolution observations
are considered in the process to adjust the coarse-
resolution model outputs (left and right columns, respec-
tively), to assess the influence of the resolution gap (down-
scaling effect).

3.1 | Representation of the climate
change signals

Overall, the largest differences arise between the stan-
dard and trend-preserving methods, showing the latter a
greater preservation of the original raw GCM signal for
most of the indices considered (not all of them directly
preserved by construction in the BA process). This is
especially noticeable for temperature where the three
standard methods (EQM, PQM and GPQM) yield warmer
future conditions, but with no physical mechanisms justi-
fying the signal increase (see Figure S2 for spatial details).
Among the trend-preserving methods, DQM and QDM
exhibit large departures from the raw signal for rainfall
frequency (R01), which in turn affects other indices. The
reason for this could be the particular treatment of wet-

FIGURE 1 GCM climate change signal (deltas, Δ) of temperature indices for the 2071–2100 (RCP8.5) period with respect to the

baseline 1981–2010 for the raw model output (first boxplot in each panel) together with bias adjusted results (rest of boxplots, see Table 2).

Results are shown for two similar BA experiments with highRes (0.2�, left column) and coarse (1.125�, right column) observational reference

data from two different datasets: Iberia01 (IB, dark-coloured boxes) and E-OBS (E, light-coloured boxes). Each coloured box represents the

interquartile range, whiskers expand from the fifth to 95th percentiles of the signals' range and outliers are not shown. Note that in the high-

resolution experiment the GCM outputs are “downscaled” to the target 0.2� resolution (using the same closest model gridbox for all insider

observation gridboxes), whereas in the coarse-resolution experiment both model and observations have the same resolution (no downscaling

effect). Black horizontal lines depict the median of the raw delta for reference
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day frequency, which is not explicitly adjusted by these
two methods (see Section 2.5 and Figure S3).

With regard to the temporal indices, although lag-1
autocorrelation in mean temperature (AC1) is not explic-
itly adjusted by any method, the trend-preserving ones
show results closer to those of the original data with
respect to the rest of the methods considered. In this sense,
the empirical quantile mapping (EQM) clearly overesti-
mates the signal while the parametric approach (PQM)
provides more consistent results with the raw signals. This
is expected since fitting the Gaussian distribution implies a
linear transformation of the time series. For the dry and
warm spells the signal is mostly preserved by most of the
methods (especially for warm spells) as could be expected
considering that the thresholds used to define the spells
(wet-day frequency and 90th temperature percentile,
respectively) are calibrated and, as a consequence, the rel-
ative temporal structure is preserved by most BA methods.

In the case of extreme indices, such as the 98th percen-
tile of wet-days, there are significant differences between the
different trend-preserving approaches and the remaining
methods (Figure 2 and Figure S4). The method presenting
the largest deviations to the raw signals is the generalised
extreme parametric method (GPQM), which very likely
extrapolates to out-of-sample results, thus magnifying the

signals. All methods tend to increase the raw model sig-
nals, and to a larger extent when Iberia01 is used as obser-
vational reference, especially for the high resolution
experiment. This could be due to the higher p98Wet values
recorded by Iberia01 compared to E-OBS (Figure S1 and
Herrera et al., 2016) which yield higher projected bias
adjusted values (see Figure S4) thus amplifying the climate
change signal. The signal of the frequency of tropical
nights (FA20, see Figure 1) is modified similarly by all the
BA methods yielding slightly higher changes, which is
expected since threshold-based indices are largely affected
by model biases.

Note that similar conclusions are obtained for experi-
ments performed at high (0.2�) and low (1.125�) resolu-
tions, depicting smoother spatial patterns for the
experiment at the coarse resolution (Figures S2–S4). Also
similar conclusions regarding the performance of the BA
methods hold for the RCM (Figures S6 and S7).

3.2 | Observational uncertainty

The effect of the observational reference on the change sig-
nal is larger for precipitation indices, in particular, extreme
indices (p98Wet) for the standard BA methods and

FIGURE 2 As Figure 1 for different precipitation indices (see Table 1). GCM climate change signal (deltas, Δ) for the 2071–2100
(RCP8.5) period with respect to the baseline 1981–2010 for the raw model output (first boxplot in each panel) together with bias adjusted

results (rest of boxplots, see Table 2). Results are shown for two similar BA experiments with highRes (0.2�, left column) and coarse (1.125�,
right column) observational reference data from two different datasets: Iberia01 (IB, dark-coloured boxes) and E-OBS (E, light-coloured

boxes). Each coloured box represents the interquartile range, whiskers expand from the fifth to 95th percentiles of the signals' range and

outliers are not shown. Black horizontal lines depict the median of the raw delta for reference
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marginal indices (SDII) for the trend-preserving methods
(especially QDM and ISIMIP3). The different sensitivity of
the methods to the observational datasets for extreme indi-
ces may be related to the special treatment of new extremes.
Whereas EQM applies a constant extrapolation based on
the correction of the last quantile and the parametric
methods use the fitted distributions, extrapolation is
avoided by DQM and QDM, since removing the modelled
trend prior to quantile mapping shifts the future distribu-
tion so that it tends to lie within the historical distribution
(Cannon et al., 2015). Note the higher quality and accuracy
of Iberia01 than E-OBS representing extremes, especially

for precipitation, regardless of the spatial scale considered
(Herrera et al., 2016), partly due to a denser station network
(Herrera et al., 2019b). QDM and ISIMIP3 rely on the whole
observed distribution to a larger extent than other methods
since the simulated signal is transferred to the observations
to generate pseudo future observations, to which the qua-
ntile mapping is applied.

A greater impact of the observational dataset is observed
on the actual projected values (Figure S5). This is evident for
indices such as R01, SDII and p98Wet for all methods. Thus,
the observational reference may play a more important role
than the BA method in the projected values, whereas the

FIGURE 3 Taylor diagrams for the climate change signal of R01, for the GCM (upper row) and the RCM (lower panel), for the two BA

experiments with highRes (0.2�AGG, see text, left column) and coarse (1.125�, right column) observational reference data from two different

datasets: Iberia01 (circles) and E-OBS (triangles). Within each panel, the reference value represents the raw signals and the coloured

markers depict the signal of the BA methods (see Table 2). Note that DQM lies outside the range in the upper panels; EQM, PQM and

GPQM group together in all panels
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method poses the largest source of uncertainty when
assessing the climate change signals, except for p98Wet
which is highly sensitive to the observational reference.

3.3 | Resolution effect

In order to assess the resolution effect more specifically,
we analyse the spatial patterns of the climate change sig-
nals (Figure 3 and Figures S8–S12). These Taylor diagrams
(Taylor, 2001) show the degree of agreement between the
spatial patterns of raw and bias-adjusted results, consider-
ing the high and low resolution experiments. For the sake
of comparability of the spatial patterns, the signals at the
high resolution have been conservatively remapped onto
the 1.125� (hereafter 0.2�AGG). The resolution effect can
be then assessed by comparing results at 0.2�AGG and
1.125�, whereas the effect of including the RCM in the
downscaling process can be observed by comparing the
top panels with the corresponding bottom ones.

The BA methods performance is rather consistent for
a given index regardless of the experiment resolution
and, in fact, the uncertainty due to the chosen BA
method is larger than the uncertainty due to the experi-
ment resolution. Overall, there are small differences
when observations at high (i.e., original) or coarse
(upscaled to the GCM grid) resolution are used for an
assessment performed at the coarse resolution. There is
some indication of a better agreement with the raw signal
for the RCM for most indices (Figures S8–S12) except for
FA20 (the GCM at 0.2�AGG slightly improves upon the
other experiments) and WarmAnnualMaxSpell (similar
results for RCM and GCM). This could be an indication
of the better preservation of the raw signals when the res-
olution mismatch between the original model and obser-
vation is small.

Observational uncertainty is also smaller than the
uncertainty due to the chosen BA method. Using Iberia01
as reference generally contributes to a better preservation
of the raw signals, especially for precipitation indices
(Figure 3 and Figures S10 and S11), except p98Wet
(Figure S12). Results are not very conclusive for tempera-
ture indices. For FA20 (Figure S9) all methods show very
similar signals among them (cf. Figure 1) and increase
the raw signal due to the systematic underestimation by
the raw RCM and GCM in the calibration period.

4 | SUMMARY AND
CONCLUSIONS

This work presents an intercomparison of eight standard
and state-of-the-art BA methods assessing the role of

observational uncertainty and resolution mismatch in the
frame of climate projections. The analyses are performed
using a set of climate indices, representing marginal, tempo-
ral and extreme aspects of temperature and precipitation.

The use of different BA methods is confirmed to be a
large source of uncertainty in this work; most methods
produce some modifications of the raw signals. It is well
known that BA can potentially modify the climate
change signal from the raw model output. Such changes
might be advantageous in some cases, for instance for
stationary, intensity-dependent biases (Gobiet et al., 2015;
Ivanov et al., 2018), but fundamental climate model
errors (e.g., unrealistically represented processes) cannot
be improved by statistical postprocessing (Maraun
et al., 2017). If a climate model simulates a credible cli-
mate change signal, and no clear case-specific physical
argument exists why the statistically modified signal
should be more plausible, trend-preserving methods are a
preferable choice (Maraun, 2016).

As expected, trend-preserving methods preserve bet-
ter the signal of the raw models, while modifying other
indices where a change is expected (e.g., FA20), similarly
to standard, unconstrained methods. Overall, the
methods which largely preserve the raw signals across
the different variables and indices are the quantile trend-
preserving methods QDM, SDM and ISIMIP3, although
the former exhibits some problems with the correction of
wet-day frequency. However, there is an indication of
higher sensitivity to the choice of the observational refer-
ence for these methods than for the standard ones for
precipitation indices representing marginal aspects
(SDII) whereas standard BA methods are more sensitive
to the observational dataset for extreme indices (P98Wet).
Thus, a high-quality reference is desirable. Note that the
observational reference has a larger impact on the projec-
ted indices than in the change signals, and also larger for
extreme than for marginal and temporal indices, posing a
larger source of uncertainty than the chosen BA method.

Regarding the resolution effect, we found some indi-
cation of better preservation of the raw signals when the
resolution mismatch between the original model and
observation is small (i.e., for the RCM). For a coarser
model, similar results are obtained when observations at
high (original) and low (upscaled to the GCM grid) reso-
lution are used. Note that the observational datasets
used here are gridded products which, despite the scale
mismatch, are more robust than point-based observa-
tions, for which bias adjustment may introduce unde-
sired statistical artefacts (Maraun, 2013). The choice of
the BA method, however, remains as a major source of
uncertainty compared to the resolution effect due to the
experiment resolution and observational dataset when
analysing the change signals.
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We conclude that the choice of trend-preserving
methods is recommended in general applications of BA
to postprocess model outputs since they are conservative
methods well suited to alleviate biases while maintaining
the raw original climate change signal at the same time.
The present work paves the way for further comparisons
using recently developed and promising BA methods,
which could be further extended to larger domains and
used in new international and collaborative initiatives,
such as the next VALUE experiment.
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