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Abstract. This paper deals with a class of nonlinear optimization problems in a function space,
where the solution is restricted by pointwise upper and lower bounds and by finitely many equality
and inequality constraints of functional type. Second-order necessary and sufficient optimality con-
ditions are established, where the cone of critical directions is arbitrarily close to the form which is
expected from the optimization in finite dimensional spaces. The results are applied to some optimal
control problems for ordinary and partial differential equations.
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1. Introduction. Let (X,S, µ) be a measure space with µ(X) < +∞. In this
paper we will study the following optimization problem:

(P)



minimize J(u),
ua(x) ≤ u(x) ≤ ub(x) a.e. x ∈ X,
Gj(u) = 0, 1 ≤ j ≤ m1,
Gj(u) ≤ 0, m1 + 1 ≤ j ≤ m,

where ua, ub ∈ L∞(X) and J,Gj : L∞(X) −→ R are given functions with differen-
tiability properties to be fixed later. We will state necessary and sufficient optimality
conditions for a local minimum of (P). Our main goal is to reduce the classical gap
between the necessary and sufficient conditions for optimization problems in Banach
spaces. We shall prove some optimality conditions very close to the ones for finite
dimensional optimization problems. In the case of finite dimensions, strongly active
inequality constraints (i.e., with strictly positive Lagrange multipliers) are considered
in the critical cone by associated linearized equality constraints. Roughly speaking,
this is what we are able to extend to infinite dimensions. Due to the lack of compact-
ness, the classical proof of the sufficiency theorem known for finite dimensions cannot
be transferred to the case of general Banach spaces. Our direct method of proof is
able to overcome this difficulty. To our best knowledge, this result has not yet been
presented in the literature. Of course, the bound constraints ua(x) ≤ u(x) ≤ ub(x)
introduce some additional difficulties in the study because they constitute an infinite
number of constraints. In section 2 we introduce a slightly stronger regularity as-
sumption than that considered in the Kuhn–Tucker theorem, which allows us to deal
with the bound constraints.
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SECOND-ORDER OPTIMALITY CONDITIONS 407

In section 4 we discuss the application of our general results to different types of
optimal control problems. We consider the control of ODEs as well as that of partial
differential equations of elliptic and parabolic type.

2. Necessary optimality conditions. In this section we will assume that ū is
a local solution of (P), which means that there exists a real number r > 0 such that
for every feasible point of (P), with ‖u− ū‖L∞(X) < r, we have that J(ū) ≤ J(u).

For every ε > 0, we denote the set of points at which the bound constraints are
ε-inactive by

Xε = {x ∈ X : ua(x) + ε ≤ ū(x) ≤ ub(x)− ε}.
We make the following regularity assumption:{∃εū > 0 and {hj}j∈I0 ⊂ L∞(X), with supp hj ⊂ Xεū ,

such that G′
i(ū)hj = δij , i, j ∈ I0,

(2.1)

where

I0 = {j ≤ m|Gj(ū) = 0}.
I0 is the set of indices corresponding to active constraints. We also denote the set of
nonactive constraints by I−

I− = {j ≤ m|Gj(ū) < 0}.
Obviously (2.1) is equivalent to the independence of the derivatives {G′

j(ū)}j∈I0
in L∞(Xεū). Under this assumption we can derive the first-order necessary conditions
for optimality satisfied by ū. For the proof, the reader is referred to Bonnans and
Casas [3] or Clarke [10].
Theorem 2.1. Let us assume that (2.1) holds and that J and {Gj}mj=1 are of

class C1 in a neighborhood of ū. Then there exist real numbers {λ̄j}mj=1 ⊂ R such that

λ̄j ≥ 0, m1 + 1 ≤ j ≤ m, λ̄j = 0 if j ∈ I−,(2.2) 〈
J ′(ū) +

m∑
j=1

λ̄jG
′
j(ū), u− ū

〉
≥ 0 ∀ua ≤ u ≤ ub.(2.3)

Since we want to establish some optimality conditions useful for the study of
control problems, we need to take into account the two-norm discrepancy; for this
question, see, for instance, Ioffe [17] and Maurer [19]. Then we have to impose some
additional assumptions on the functions J and Gj .

(A1) There exist functions f, gj ∈ L2(X), 1 ≤ j ≤ m, such that for every h ∈
L∞(X)

J ′(ū)h =

∫
X

f(x)h(x)dµ(x) and G′
j(ū)h =

∫
X

gj(x)h(x)dµ(x), 1 ≤ j ≤ m.(2.4)

(A2) If {hk}∞k=1 ⊂ L∞(X) is bounded, h ∈ L∞(X), and hk(x) → h(x) a.e. in
X, then 

J ′′(ū) +
m∑
j=1

λ̄jG
′′
j (ū)


h2

k →

J ′′(ū) +

m∑
j=1

λ̄jG
′′
j (ū)


h2.(2.5)
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408 EDUARDO CASAS AND FREDI TRÖLTZSCH

If we define

L(u, λ) = J(u) +

m∑
j=1

λjGj(u) and d(x) = f(x) +

m∑
j=1

λ̄jgj(x),(2.6)

then

∂L

∂u
(ū, λ̄)h =


J ′(ū) +

m∑
j=1

λ̄jG
′
j(ū)


h =

∫
X

d(x)h(x)dµ(x) ∀h ∈ L∞(X).(2.7)

From (2.3) we deduce that

d(x) =




0 for almost every x ∈ X, where ua(x) < ū(x) < ub(x),
≥ 0 for almost every x ∈ X, where ū(x) = ua(x),
≤ 0 for almost every x ∈ X, where ū(x) = ub(x).

(2.8)

Associated with d, we set

X0 = {x ∈ X : |d(x)| > 0}.(2.9)

Given {λ̄j}mj=1 by Theorem 2.1, we define the cone of critical directions

C0
ū = {h ∈ L∞(X) satisfying (2.11) and h(x) = 0 for almost every x ∈ X0},

(2.10)
with 



G′
j(ū)h = 0 if (j ≤ m1) or (j > m1, Gj(ū) = 0, and λ̄j > 0),

G′
j(ū)h ≤ 0 if j > m1, Gj(ū) = 0, and λ̄j = 0,

h(x) =

{≥ 0 if ū(x) = ua(x),
≤ 0 if ū(x) = ub(x).

(2.11)

In the following theorem we state the necessary second-order optimality condi-
tions.
Theorem 2.2. Assume that (2.1), (A1), and (A2) hold; {λ̄j}mj=1 are the La-

grange multipliers satisfying (2.2) and (2.3); and J and {Gj}mj=1 are of class C2 in a
neighborhood of ū. Then the following inequality is satisfied:

∂2L

∂u2
(ū, λ̄)h2 ≥ 0 ∀h ∈ C0

ū.(2.12)

To prove this theorem we will make use of the following lemma.
Lemma 2.3. Let us assume that (2.1) holds and that J and {Gj}mj=1 are of class

C2 in a neighborhood of ū. Let h ∈ L∞(X) satisfy G′
j(ū)h = 0 for every j ∈ I, where

I is an arbitrary subset of I0. Then there exist a number εh > 0 and C2-functions
γj : (−εh,+εh) −→ R, j ∈ I, such that{

Gj(ut) = 0, j ∈ I, and Gj(ut) < 0, j /∈ I0, ∀|t| ≤ εh;
γj(0) = γ′j(0) = 0, j ∈ I,

(2.13)

with ut = ū+ th+
∑
j∈I γj(t)hj, {hj}j∈I given by (2.1).
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SECOND-ORDER OPTIMALITY CONDITIONS 409

Proof. Let k be the cardinal number of I and let us define ω : R × R
k −→ R

k by

ω(t, ρ) =

(
Gj

(
ū+ th+

∑
i∈I

ρihi

))
j∈I

.

Then ω is of class C2 in a neighborhood of (0, 0),

∂ω

∂t
(0, 0) = (G′

j(ū)h)j∈I = 0 and
∂ω

∂ρ
(0, 0) = (G′

j(ū)hi)i,j∈I = identity.

Therefore we can apply the implicit function theorem and deduce the existence of
ε > 0 and functions γj : (−ε,+ε) −→ R of class C2, j ∈ I, such that

ω(t, γ(t)) = ω(0, 0) = 0 ∀t ∈ (−ε,+ε) and γ(0) = 0,

where γ(t) = (γj(t))j∈I . Furthermore, by differentiation in the previous identity we
get

∂ω

∂t
(0, 0) +

∂ω

∂ρ
(0, 0)γ′(0) = 0 =⇒ γ′(0) = 0.

Taking into account the continuity of γ and Gj and that γ(0) = 0, we deduce the
existence of εh ≤ ε such that (2.13) holds for every t ∈ (−εh,+εh).

Proof of Theorem 2.2. Let us take h ∈ C0
ū satisfying

h(x) = 0 if ua(x) < ū(x) < ua(x) + ε or ub(x)− ε < ū(x) < ub(x)(2.14)

for some ε ∈ (0, εū]. We introduce

I = {1, . . . ,m1} ∪ {j : m1 + 1 ≤ j ≤ m, Gj(ū) = 0, and G′
j(ū)h = 0}.(2.15)

I includes all equality constraints, all strongly active inequality constraints (i.e., λ̄j >
0), and, depending on h, possibly some of the weakly active inequality constraints
(i.e., λ̄j = 0). Then we are under the assumptions of Lemma 2.3. Let us set

ut = ū+ th+
∑
j∈I

γj(t)hj , t ∈ (−εh, εh).

From Lemma 2.3 we know that Gj(ut) = 0 if j ∈ I, and Gj(ut) < 0 if j /∈ I0, provided
that t ∈ (−εh,+εh). From (2.11) we deduce that Gj(ū) = 0 and G′

j(ū)h < 0 for
j ∈ I0 \ I. Therefore we have that Gj(ut) < 0 for every j /∈ I and t ∈ (0, ε0), for some
ε0 > 0 small. On the other hand, the assumptions on h, along with the additional
condition (2.14) and the fact that supphj ⊂ Xεū , imply that ua(x) ≤ ut(x) ≤ ub(x)
for t ≥ 0 small enough. Consequently, by taking ε0 > 0 sufficiently small, we get that
ut is a feasible control for (P) for every t ∈ [0, ε0). Now we know Gj(ut) = 0 for j ∈ I
and λ̄j = 0 for j /∈ I0 (cf. (2.2)). According to (2.11) we require G′

j(ū)h = 0 for active

inequalities with λ̄j > 0; hence if i belongs to I0 \ I, then λ̄j = 0 must hold. This
leads to

m∑
j=1

λ̄jGj(ut) = 0 ∀t ∈ [0, ε0).
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410 EDUARDO CASAS AND FREDI TRÖLTZSCH

Therefore the function φ : [0,+ε0) −→ R given by

φ(t) = J(ut) +

m∑
j=1

λ̄jGj(ut)

has a local minimum at 0 and, taking into account that γ′j(0) = 0,

φ′(0) =


J ′(ū) +

m∑
j=1

λ̄jG
′
j(ū)




h+

∑
j∈I

γ′j(0)hj




=


J ′(ū) +

m∑
j=1

λ̄jG
′
j(ū)


h =

∫
X

d(x)h(x)dµ(x) = 0.

The last identity follows from the fact that h vanishes on X0. Since the first derivative
of φ is zero, the following second-order necessary optimality condition must hold:

0 ≤ φ′′(0) =


J ′′(ū) +

m∑
j=1

λ̄jG
′′
j (ū)


h2 +


J ′(ū) +

m∑
j=1

λ̄jG
′
j(ū)


(∑

i∈I
γ′′i (0)hi

)

=


J ′′(ū) +

m∑
j=1

λ̄jG
′′
j (ū)


h2 +

∑
i∈I

γ′′i (0)
∫
X

d(x)hi(x)dµ(x)

=


J ′′(ū) +

m∑
j=1

λ̄jG
′′
j (ū)


h2 =

∂2L

∂u2
(ū, λ̄)h2.

Here we have used (A1). Now let us consider h ∈ L∞(X) satisfying (2.11) but
not (2.14), i.e., h is any critical direction. The main idea in this case is to approach h
by functions hε, which belong to the critical cone C0

ū and satisfy (2.14) as well. Then
for every ε > 0, we define Aε = Xε ∪ {x ∈ X : ū(x) = ua(x) or ū(x) = ub(x)}. This
is the complement of the set of points x satisfying (2.14). Set

hε = hχAε
+
∑
i∈I

[∫
X\Aε

gi(x)h(x)dµ(x)

]
hi = hχAε

+ ĥ,

where χAε is the characteristic function of Aε and I is given by (2.15). We verify that
hε belongs to C

0
ū, while hχAε

is possibly not contained in this cone.
Thus for every j ∈ I, using (2.1) and taking 0 < ε < εū, we have

G′
j(ū)hε =

∫
X

gj(x)(hχAε)(x)dµ(x) +

∫
X

gj(x)ĥ(x)dµ(x)

=

∫
Aε

gj(x)h(x)dµ(x)

+
∑
i∈I

[∫
X\Aε

gi(x)h(x)dµ(x)

]∫
X

gj(x)hi(x)dµ(x)

=

∫
Aε

gj(x)h(x)dµ(x) +
∑
i∈I

[∫
X\Aε

gi(x)h(x)dµ(x)

]
δji

=

∫
X

gj(x)h(x)dµ(x) = G′
j(ū)h = 0.
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SECOND-ORDER OPTIMALITY CONDITIONS 411

In the case of j ∈ I0 \ I, we have G′
j(ū)h < 0. Then it is enough to take ε sufficiently

small to get G′
j(ū)hε < 0.

Thus, recalling that supphj ⊂ Xεū , we infer that hε satisfies the conditions (2.11)
and (2.14); therefore (2.12) holds for each hε, ε > 0 small enough.

Finally, it is clear that hε(x) → h(x) a.e. in X as ε → 0. Therefore, assumption
(A2) allows us to pass to the limit in the second-order optimality conditions satisfied
for every hε and to conclude (2.12).

3. Sufficient optimality conditions. Whenever nonlinear optimal control prob-
lems are solved, second-order sufficient conditions play an essential role in the numer-
ical analysis. For instance, they ensure local convergence of Lagrange–Newton–SQP
methods; see Alt and Malanowski [2], Dontchev et al. [11], Ito and Kunisch [18], or
Schulz [23], and the references cited therein. Such conditions are important for error
estimates as well. We refer, for instance, to Arada, Casas, and Tröltzsch [1] and Hager
[15]. Finally, we mention that second-order conditions should be checked numerically
to verify local optimality of computed solutions; see Mittelmann [21].

In this section, ū is a given feasible element for the problem (P). Motivated again
by the considerations on the two-norm discrepancy, we have to make some assumptions
involving the L∞(X) and L2(X) norms, as follows.

(A3) There exists a positive number r > 0 such that J and {Gj}mj=1 are of class

C2 in the L∞(X)-ball Br(ū), and for every η > 0 there exists ε ∈ (0, r) such that for
each u ∈ Br(ū), ‖v − ū‖L∞(X) < ε, h, h1, h2 ∈ L∞(X), and 1 ≤ j ≤ m we have



∣∣∣∣
[
∂2L

∂u2
(v, λ̄)− ∂2L

∂u2
(ū, λ̄)

]
h2

∣∣∣∣ ≤ η‖h‖2
L2(X),

|J ′(u)h| ≤ M0,1‖h‖L2(X), |G′
j(u)h| ≤ Mj,1‖h‖L2(X),

|J ′′(u)h1h2| ≤ M0,2‖h1‖L2(X)‖h2‖L2(X),

|G′′
j (u)h1h2| ≤ Mj,2‖h1‖L2(X)‖h2‖L2(X).

(3.1)

Analogously to (2.9) and (2.10), we define for every τ > 0

Xτ = {x ∈ X : |d(x)| > τ},(3.2)

Cτū = {h ∈ L∞(X) satisfying (2.11) and h(x) = 0 a.e. x ∈ Xτ}.(3.3)

The next theorem provides the second-order sufficient optimality conditions of
(P). Although they seem to be different from the classical ones, we will prove later
that they are equivalent; see Theorem 3.2 and Corollary 3.3.
Theorem 3.1. Let ū be a feasible point for problem (P) verifying the first-order

necessary conditions (2.2) and (2.3), and let us suppose that assumptions (2.1), (A1),
and (A3) hold. Let us also assume that for every h ∈ L∞(X) satisfying (2.11)

∂2L

∂u2
(ū, λ̄)h2 ≥ δ1‖h‖2

L2(X\Xτ ) − δ2‖h‖2
L2(Xτ )(3.4)

holds for some δ1 > 0, δ2 ≥ 0, and τ > 0. Then there exist ε > 0 and δ > 0 such that
J(ū)+δ‖u−ū‖2

L2(X) ≤ J(u) for every feasible point u for (P), with ‖u−ū‖L∞(X) < ε.

Proof. (i) Condition (3.4) is stable w.r.t. perturbations of ū. Without loss of
generality, we will assume that δ2 > 0. From (A3) we deduce the existence of r0 ∈
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412 EDUARDO CASAS AND FREDI TRÖLTZSCH

(0, r) such that for all h ∈ L∞(X) and ‖v − ū‖L∞(X) < r0∣∣∣∣
[
∂2L

∂u2
(v, λ̄)− ∂2L

∂u2
(ū, λ̄)

]
h2

∣∣∣∣ ≤ min

{
δ1
2
, δ2

}
‖h‖2

L2(X).

From this inequality and (3.4) it follows easily that

∂2L

∂u2
(v, λ̄)h2 ≥ δ1

2
‖h‖2

L2(X\Xτ ) − 2δ2‖h‖2
L2(Xτ )(3.5)

for every h satisfying (2.11) and ‖v − ū‖L∞(X) < r0.
(ii) Some technical definitions. Let us set

M = M0,2 +

m∑
j=1

|λ̄j |Mj,2 and ρ = min

{
1,

δ1
16M

}
,(3.6)

C1 = max

{
δ1
4
, 2δ2

}
+

3M

2
+

4M2

δ1
, C2 =

C1

2
max
j∈I0

‖hj‖2
L2(X)


 m∑
j=1

Mj,2




2

,(3.7)

C3 = 2C1mµ(X)1/2 max
j∈I0

‖hj‖2
L2(X) max

1≤j≤m
Mj,1.(3.8)

Finally, we take

ε = min

{
r0,

√
δ1

64C2µ(X)
,

8τ

δ1 + 16δ2
,
ρ

C3
min

j∈I+,j>m1

λ̄j

}
,(3.9)

where

I+ = {1, . . . ,m1} ∪ {j > m1 : Gj(ū) = 0 and λ̄j > 0}.
(iii) Approximation of u− ū by elements of the critical cone. Let u be a feasible

point for problem (P), with ‖u− ū‖L∞(X) < ε. Then u− ū will not, in general, belong
to the critical cone. Therefore, we use the representation u− ū = h+ h0, where h is
in the critical cone and h0 is some small correction.

Let us introduce the set of indices

Iu = {j ∈ I0 : G′
j(ū)(u− ū) > 0 or [G′

j(ū)(u− ū) < 0 and j ∈ I+]}.
This is the set of indices for which we need to correct G′

j(ū)(u−ū), since the conditions
of the critical cone are not met. We need to carry out this correction for equality
constraints if G′

j(ū)(u − ū) �= 0. We also need to apply this correction for an active
inequality constraint satisfying G′

j(ū)(u − ū) > 0 or for a strongly active inequality
constraint if G′

j(ū)(u− ū) < 0 holds. We define for all j ∈ Iu

αj = G′
j(ū)(u− ū), h0 =

∑
j∈Iu

αjhj , and h = u− ū− h0,(3.10)

where the elements hj are introduced in assumption (2.1). Then h satisfies (2.11).
This is seen as follows:

G′
j(ū)h0 =

∑
i∈Iu

αiG
′
j(ū)hi =

∑
i∈Iu

αiδji.
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SECOND-ORDER OPTIMALITY CONDITIONS 413

If j /∈ Iu, then δji = 0 for all i ∈ Iu; hence

G′
j(ū)h = G′

j(ū)(u− ū)−G′
j(ū)h0 = G′

j(ū)(u− ū)

{
= 0 if j ≤ m1,
≤ 0 if j > m1

(the last inequality follows from j /∈ Iu). Thus G′
j(ū)h fulfills the conditions of the

critical cone. If j ∈ Iu, then

G′
j(ū)h = G′

j(ū)(u− ū)− αjδjj = αj − αj = 0,

and G′
j(ū)h also fulfills the conditions of the critical cone.

Let us now estimate h0 in L2(X). For every j ∈ Iu there exists vj = ū+θj(u− ū),
with 0 < θj < 1, such that

0 ≥ Gj(u) = Gj(ū)+G
′
j(ū)(u−ū)+

1

2
G′′
j (vj)(u−ū)2 = αj+

1

2
G′′
j (vj)(u−ū)2.(3.11)

If αj ≥ 0, we deduce from (3.11) and (3.1) that

|αj | = αj ≤ 1

2
|G′′
j (vj)(u− ū)2| ≤ 1

2
Mj,2‖u− ū‖2

L2(X).(3.12)

If αj < 0 and Gj(u) = 0, we get

|αj | = −αj = 1

2
G′′
j (vj)(u− ū)2 ≤ 1

2
Mj,2‖u− ū‖2

L2(X).(3.13)

Let us define

I−u = {j ∈ Iu : Gj(u) < 0 and αj < 0}.

This is the set of all indices, where we do not obtain an estimate of αj having the
order ‖u − ū‖2

L2(x). We should notice at this point that λ̄j > 0 holds for all j ∈ I−u .
(Since u must be feasible, j stands for an inequality constraint. Therefore, 0 > αj =
G′
j(ū)(u− ū), and j ∈ Iu implies j ∈ I+.) Then we have

‖h0‖L2(X) ≤ max
j∈I0

‖hj‖L2(X)


1
2


 m∑
j=1

Mj,2


 ‖u− ū‖2

L2(X) +
∑
j∈I−u

|αj |

 .(3.14)

(iv) Estimation of J(u) − J(ū). Using (2.6), (2.7), (3.6), (3.10), and (3.11), for
some v = ū+ θ(u− ū), 0 < θ < 1,

J(u) = J(u) +

m1∑
j=1

λ̄jGj(u) +

m∑
j=m1+1

λ̄jGj(u)−
m∑

j=m1+1

λ̄jGj(u)

= L(u, λ̄)−
m∑

j=m1+1

λ̄jGj(u)

≥ L(u, λ̄)−
∑
j∈I−u

λ̄jGj(u) ≥ L(u, λ̄)− ρ
∑
j∈I−u

λ̄jGj(u)
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414 EDUARDO CASAS AND FREDI TRÖLTZSCH

holds, since ρ < 1. Therefore,

J(u) ≥ L(u, λ̄)− ρ
∑
j∈I−u

λ̄jGj(u) = L(ū, λ̄) +
∂L

∂u
(ū, λ̄)(u− ū) +

1

2

∂2L

∂u2
(v, λ̄)(u− ū)2

− ρ
∑
j∈I−u

λ̄jαj − ρ

2

∑
j∈I−u

λ̄jG
′′
j (vj)(u− ū)2

= J(ū) +

∫
X

d(x)(u(x)− ū(x))dµ(x) +
1

2

∂2L

∂u2
(v, λ̄)h2

+
∂2L

∂u2
(v, λ̄)hh0 +

1

2

∂2L

∂u2
(v, λ̄)h2

0 + ρ
∑
j∈I−u

λ̄j |αj | − ρ

2

∑
j∈I−u

λ̄jG
′′
j (vj)(u− ū)2.

Now from (2.8), (2.11), (3.1), (3.5), and (3.6) it follows that

J(u) ≥ J(ū) + τ

∫
Xτ

|u(x)− ū(x)|dµ(x) + δ1
4
‖h‖2

L2(X\Xτ ) − δ2‖h‖2
L2(Xτ )

−M‖h0‖L2(X)‖h‖L2(X) − M

2
‖h0‖2

L2(X) + ρ
∑
j∈I−u

λ̄j |αj |

− ρ

2


∑
j∈I−u

λ̄jMj,2


 ‖u− ū‖2

L2(X)

≥ J(ū) +
τ

ε
‖u− ū‖2

L2(Xτ ) +
δ1
8
‖u− ū‖2

L2(X\Xτ ) −
δ1
4
‖h0‖2

L2(X\Xτ )

− 2δ2‖u− ū‖2
L2(Xτ ) − 2δ2‖h0‖2

L2(Xτ )

−M‖h0‖L2(X)

(‖u− ū‖L2(X) + ‖h0‖L2(X)

)− M

2
‖h0‖2

L2(X)

+ ρ
∑
j∈I−u

λ̄j |αj | − ρ

2
M‖u− ū‖2

L2(X).(3.15)

Using the definition of ε from (3.9), we have

τ

ε
− 2δ2 ≥ δ1

8
.(3.16)

On the other hand,

M‖h0‖L2(X)‖u− ū‖L2(X) = 2

[√
δ1
4

‖u− ū‖L2(X)

] [
2M√
δ1

‖h0‖L2(X)

]

≤ δ1
16

‖u− ū‖2
L2(X) +

4M2

δ1
‖h0‖2

L2(X).(3.17)

From the definitions of C1 and ρ given in (3.7) and (3.6) along with (3.15), (3.16),
and (3.17), we get

J(u) ≥ J(ū) +
δ1
8
‖u− ū‖2

L2(X) − C1‖h0‖2
L2(X)

− δ1
16

‖u− ū‖2
L2(X) + ρ

∑
j∈I−u

λ̄j |αj | − δ1
32

‖u− ū‖2
L2(X)

= J(ū) +
δ1
32

‖u− ū‖2
L2(X) − C1‖h0‖2

L2(X) + ρ min
j∈I+,j>m1

λ̄j
∑
j∈I−u

|αj |.(3.18)
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SECOND-ORDER OPTIMALITY CONDITIONS 415

(v) Two auxiliary estimates and final result . From (3.7), (3.9), and (3.14) we get,
on using (a+ b)2 ≤ 2 (a2 + b2),

C1‖h0‖2
L2(X) ≤ C1 max

j∈I0
‖hj‖2

L2(X)


1
2


 m∑
j=1

Mj,2




2

‖u− ū‖4
L2(X) + 2


∑
j∈I−u

|αj |



2



= C2‖u− ū‖4
L2(X) + 2C1 max

j∈I0
‖hj‖2

L2(X)


∑
j∈I−u

|αj |



2

≤ C2ε
2µ(X)‖u− ū‖2

L2(X) + 2C1 max
j∈I0

‖hj‖2
L2(X)


∑
j∈I−u

|αj |



2

≤ δ1
64

‖u− ū‖2
L2(X) + 2C1 max

j∈I0
‖hj‖2

L2(X)


∑
j∈I−u

|αj |



2

.(3.19)

The definition of αj given by (3.10) along with assumption (3.1) imply

|αj | ≤ Mj,1‖u− ū‖L2(X) ≤ Mj,1ε
√
µ(X).(3.20)

From (3.8) and the above inequality, we deduce

2C1 max
j∈I0

‖hj‖2
L2(X)


∑
j∈I−u

|αj |

 ≤ C3ε.(3.21)

Definition (3.9) and (3.21) lead to

ρ min
j∈I+,j>m1

λ̄j − 2C1 max
j∈I0

‖hj‖2
L2(X)


∑
j∈I−u

|αj |

 ≥ 0.(3.22)

Finally, combining (3.18), (3.19), and (3.22), we conclude the desired result:

J(u) ≥ J(ū) +
δ1
64

‖u− ū‖2
L2(X).

Now we prove the equivalence between the sufficient optimality conditions stated
in Theorem 3.1 and the classical ones.
Theorem 3.2. Let ū be a feasible point of (P) satisfying (2.2) and (2.3). Let Cū

be the set of elements h ∈ L∞(X) satisfying (2.11), and Cτū be given by (3.3). Let us
suppose that assumptions (2.1), (A1), and (A3) hold. Let τ > 0 be given. Then the
following statements are equivalent:

∃δ > 0 :
∂2L

∂u2
(ū, λ̄)h2 ≥ δ‖h‖2

L2(X) ∀h ∈ Cτū ,(3.23)

∃δ1 > 0, δ2 ≥ 0 :
∂2L

∂u2
(ū, λ̄)h2 ≥ δ1‖h‖2

L2(X\Xτ ) − δ2‖h‖2
L2(Xτ ) ∀h ∈ Cū.(3.24)

Proof. It is obvious that (3.24) implies (3.23), since h = 0 in Xτ if h ∈ Cτū .
Therefore, it is enough to take δ = δ1. Let us prove the opposite implication. Let
h ∈ Cū. We set hτ = hχXτ , where χXτ is the characteristic function of Xτ and

Ih = {j ∈ I0 : G′
j(ū)(h− hτ ) > 0 or [G′

j(ū)(h− hτ ) < 0 and G′
j(ū)h = 0]}.
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416 EDUARDO CASAS AND FREDI TRÖLTZSCH

We define

αj = G′
j(ū)(h− hτ ) ∀j ∈ Ih, ĥ =

∑
j∈Ih

αjhj , and h0 = h− hτ − ĥ,

where the functions hj are given by (2.1).
Let us see that h0 ∈ Cτū . Since supphj ⊂ Xεū and h − hτ = h(1 − χXτ ), we

have that h0(x) = 0 for x ∈ Xτ . Now we distinguish between the cases j ∈ Ih and
j ∈ I0 \ Ih.

If j ∈ Ih, then

G′
j(ū)h0 = G′

j(ū)(h− hτ )−
∑
i∈Ih

αiG
′
j(ū)hi = G′

j(ū)(h− hτ )− αj = 0.

If j ∈ I0 \ Ih, then from the definition of Ih we obtain that G′
j(ū)h0 = G′

j(ū)(h−
hτ ) ≤ 0.

If this inequality reduces to an equalityG′
j(ū)(h−hτ ) = 0, then h0 verifies that the

condition is in Cτū . In the remaining case in which j ∈ I0 \ Ih but G′
j(ū)(h− hτ ) < 0,

using again the definition of Ih, we deduce that G′
j(ū)h < 0. (G′

j(ū)h = 0 and
G′
j(ū)(h − hτ ) < 0 would give j ∈ Ih.) Consequently, since h ∈ Cū, we have that

j > m1 and λ̄j = 0 (otherwise, h ∈ Cτū and λ̄j > 0 would imply G′
j(ū)h = 0). Then

the inequality G′
j(ū)h0 < 0 also means that h0 shows the condition to be in Cτū .

We now prove that

‖ĥ‖L2(X) ≤ C0‖hτ‖L2(X),(3.25)

where

C0 =
∑
j∈I0

‖gj‖L2(X)‖hj‖L2(X),

gj being given in (2.4). Indeed, if αj > 0, then

|αj | = αj = G′
j(ū)(h− hτ ) = G′

j(ū)h−G′
j(ū)hτ ≤ −G′

j(ū)hτ ≤ ‖gj‖L2(X)‖hτ‖L2(X).

If αj < 0, then from the definition of Ih we have that G′
j(ū)h = 0; therefore

|αj | = −αj = −G′
j(ū)(h− hτ ) = G′

j(ū)hτ ≤ ‖gj‖L2(X)‖hτ‖L2(X).

Combining the previous two inequalities and the definition of ĥ, we get (3.25).
Finally, taking M as in (3.6), we obtain from (3.23) and (3.25)

∂2L

∂u2
(ū, λ̄)h2 =

∂2L

∂u2
(ū, λ̄)h2

0 +
∂2L

∂u2
(ū, λ̄)(hτ + ĥ)2 + 2

∂2L

∂u2
(ū, λ̄)h0(hτ + ĥ)

≥ δ‖h0‖2
L2(X) −M‖hτ + ĥ‖2

L2(X) − 2M‖h0‖L2(X)‖hτ + ĥ‖L2(X)

≥ δ

2
‖h− hτ‖2

L2(X) − δ‖ĥ‖2
L2(X) − 2M(‖hτ‖2

L2(X) + ‖ĥ‖2
L2(X))

− 2M(‖h− hτ‖L2(X) + ‖ĥ‖L2(X))(‖hτ‖L2(X) + ‖ĥ‖L2(X))

≥ δ

2
‖h− hτ‖2

L2(X) − C2
0δ‖hτ‖2

L2(X) − 2M(C2
0 + 1)‖hτ‖2

L2(X)

− 2M(C0 + 1)(‖h− hτ‖L2(X) + C0‖hτ‖L2(X))‖hτ‖L2(X)
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SECOND-ORDER OPTIMALITY CONDITIONS 417

≥ δ

4
‖h− hτ‖2

L2(X)

−
{
C2

0δ + 2M(C2
0 + 1) +

4M2(C0 + 1)2

δ
+ 2M(C0 + 1)C0

}
‖hτ‖2

L2(X)

= δ1‖h‖2
L2(X\Xτ ) − δ2‖h‖2

L2(Xτ ),

where obviously δ1 > 0 and δ2 ≥ 0 are independent of h ∈ Cū.
The following corollary is an immediate consequence of Theorems 3.1 and 3.2.
Corollary 3.3. Let ū be a feasible point for problem (P) satisfying (2.2) and

(2.3), and suppose that assumptions (2.1), (A1), and (A3) hold. Assume also that

∂2L

∂u2
(ū, λ̄)h2 ≥ δ‖h‖2

L2(X) ∀h ∈ Cτū(3.26)

for some δ > 0 and τ > 0 given. Then there exist ε > 0 and α > 0 such that
J(ū)+α‖u−ū‖2

L2(X) ≤ J(u) for every feasible point u for (P), with ‖u−ū‖L∞(X) < ε.

Remark 3.4. Comparing the sufficient optimality condition (3.4) with the neces-
sary condition (2.12), we notice the existence of a gap between the two, arising from
two facts. First, the constant δ1 is strictly positive in (3.4), and it can be zero in
(2.12), which is the classical situation even in finite dimensions. Second, we cannot
substitute, in general, Cτū , with τ > 0, for C0

ū in (3.26), as is done in (2.12), because
of the presence of an infinite number of constraints. Quite similar strategies are em-
ployed by Maurer and Zowe [20], Maurer [19], Donchev et al. [11], and Dunn [12].
The following example, due to Dunn [13], demonstrates the impossibility of taking
τ = 0 in (3.26). Let us consider X = [0, 1], S the σ-algebra of Lebesgue-measurable
sets of [0, 1], µ the Lebesgue measure in [0, 1], and a(x) = 1 − 2x. The optimization
problem is 

minimize J(u) =

∫ 1

0

[2a(x)u(x)− sign(a(x))u(x)2]dx,

u ∈ L∞([0, 1]), u(x) ≥ 0 a.e. x ∈ [0, 1].

Let us set ū(x) = max{0,−a(x)}. Then we have that

J ′(ū)h =

∫ 1

0

2[a(x)− sign(a(x))ū(x)]h(x)dx =

∫ 1/2

0

2a(x)h(x)dx ≥ 0

holds for all h ∈ L2([0, 1]), with h(x) ≥ 0. If we assume that h(x) = 0 for x ∈ X0,

J ′′(ū)h2 = −
∫ 1

0

2 sign(a(x))h2(x)dx = 2

∫ 1

1/2

h2(x)dx− 2

∫ 1/2

0

h2(x)dx = 2‖h‖2
L2(X)

holds, where, following the notation introduced in (2.9),

X0 = {x ∈ [0, 1] : |d(x)| > 0} =

[
0,

1

2

)
.

Thus (3.26) holds with δ = 2 and τ = 0. However, ū is not a local minimum in
L∞([0, 1]). Indeed, let us take for 0 < ε < 1

2

uε(x) =

{
ū(x) + 3ε if x ∈ [ 1

2 − ε, 1
2

]
,

ū(x) otherwise.
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418 EDUARDO CASAS AND FREDI TRÖLTZSCH

Then we have J(uε) − J(ū) = −3ε3 < 0. The reader can easily check that the only
points u satisfying the first-order optimality conditions are given by the formula

u(x) =

{
0 if x ∈ Z,

sign(a(x))a(x) otherwise,

where Z is any measurable subset of [0, 1] satisfying that a(x) ≥ 0 for every x ∈ Z.
None of these points is a local minimum of the optimization problem. Moreover, if
we define uk(x) = k ·max {0, a(x)}, then J(uk) = k(2− k)/6 → −∞ when k → +∞.

4. Application to some optimal control problems.

4.1. An abstract control problem. Let, in addition to the measure space
(X,S, µ), Y and Z be real Banach spaces; let A : Y → Z be a linear continuous
operator; and let B : Y × L∞(X) → Z be an operator of class C2. Moreover,
F, Fj : Y × L∞(X) → R are functionals of class C2, j = 1, . . . ,m. Consider the
optimal control problem

(OC)




minimize F (y, u),
Ay +B(y, u) = 0,
ua(x) ≤ u(x) ≤ ub(x) a.e. x ∈ X,
Fj(y, u) = 0, 1 ≤ j ≤ m1,
Fj(y, u) ≤ 0, m1 + 1 ≤ j ≤ m,

where the control u is taken from L∞(X). We assume that for all u ∈ L∞(X) the
equation Ay + B(y, u) = 0 admits a unique solution y ∈ Y , so that a control-state
mapping G : u �→ y is defined. Moreover, the inverse operator (A + ∂B

∂y (y, u))
−1 :

Z → Y is assumed to exist for all (y, u) ∈ Y ×L∞(X) as a linear continuous operator.
Then the implicit function theorem yields that G is of class C2 from L∞(X) to Y .
The first- and second-order derivatives G′(u) and G′′(u) are given as follows: Define
y = G(u), zh = G′(u)h, and zh1h2

:= G′′(u)[h1, h2] := (G′′(u)h1)h2. Then zh is the
unique solution of

Az +
∂B

∂y
(y, u)z +

∂B

∂u
(y, u)h = 0,(4.1)

while zh1h2 is uniquely determined by



Az +

∂B

∂y
(y, u)z = −

{
∂2B

∂y2
(y, u)[zh1 , zh2 ] +

∂2B

∂y∂u
(y, u)[zh1 , h2]

+
∂2B

∂u∂y
(y, u)[h1, zh2 ] +

∂2B

∂u2
(y, u)[h1, h2]

}
.

(4.2)

We omit the proof, which can easily be transferred from that of Theorem 2.3 in [7].
The abstract control problem (OC) fits in the optimization problem (P) by

J(u) := F (G(u), u), Gj(u) := Fj(G(u), u).

In this way, we obtain necessary and/or sufficient conditions for local solutions (ȳ, ū)
of (OC) by application of Theorems 2.1, 2.2, and 3.1 and Corollary 3.3, provided that
the corresponding assumptions (2.1) and (A1)–(A3) are satisfied. We tacitly assume
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SECOND-ORDER OPTIMALITY CONDITIONS 419

this in what follows and formulate these results in a way that is convenient for optimal
control problems. A Lagrange function L = L(y, u, ϕ, λ) is associated with (OC) by

L(y, u, ϕ, λ) = F (y, u)− 〈ϕ,Ay +B(y, u)〉+
m∑
j=1

λjFj(y, u),(4.3)

where ϕ ∈ Z∗, and 〈·, ·〉 denotes the duality between Z and Z∗. Notice that we must
distinguish between L for (P) and L for (OC). We have

J ′(ū)h =
∂F

∂y
(ȳ, ū)G′(ū)h+

∂F

∂u
(ȳ, ū)h

and obtain similar expressions for Gj(ū)h. Therefore, (2.6) yields


∂L

∂u
(ū, λ̄)h =


∂F
∂y

(ȳ, ū) +
m∑
j=1

λ̄j
∂Fj
∂y

(ȳ, ū)


G′(ū)h

+


∂F
∂u

(ȳ, ū) +

m∑
j=1

λ̄j
∂Fj
∂u

(ȳ, ū)


h.

(4.4)

Define an adjoint state ϕ ∈ Z∗ by
∂F
∂y

(ȳ, ū) +
m∑
j=1

λ̄j
∂Fj
∂y

(ȳ, ū)


 y =

〈
ϕ̄, Ay +

∂B

∂y
(ȳ, ū)y

〉
∀y ∈ Y.(4.5)

We assume that ϕ̄ is well defined by (4.5), which is true in our applications. Notice that
(4.5) is equivalent to ∂L/∂y(ȳ, ū, ϕ̄, λ̄)y = 0 for all y ∈ Y ; that is, ∂L/∂y(ȳ, ū, ϕ̄, λ̄) =
0 in the sense of Y ∗. Insert y = zh = G′(ū)h into (4.5); then y solves (4.1), and the
right-hand side of (4.5) is equal to −〈ϕ̄, ∂B/∂u(ȳ, ū)h〉. Substituting this for the first
item in (4.4), we find that

∂L

∂u
(ū, λ̄)h =

∂L
∂u

(ȳ, ū, ϕ̄, λ̄)h(4.6)

for all h ∈ L∞(X). If (A1) is satisfied, then we deduce from (2.7) that d(x) expresses
the derivative ∂L/∂u, i.e.,

∂L
∂u

(ȳ, ū, ϕ̄, λ̄)h =

∫
X

d(x)h(x)dµ(x).(4.7)

Corollary 4.1. Define J and Gj, j = 1, . . . ,m, as above, and let ū with
associated state ȳ be a local solution of (OC). If the regularity assumption (2.1) is
fulfilled, then there are Lagrange multipliers λ̄j, j = 1, . . . ,m, such that (2.2), (2.3)
are satisfied. Assume further that ϕ̄ ∈ Z∗ is uniquely determined by (4.5). Then (2.3)
is equivalent, with

∂L
∂u

(ȳ, ū, ϕ̄, λ̄)(u− ū) ≥ 0 ∀ua ≤ u ≤ ub.(4.8)

If additionally (A1) is satisfied, then ∂L
∂u (ȳ, ū, ϕ̄, λ̄) can be identified with a real function

d = d(x), and (4.8) admits the form∫
X

d(x)(u(x)− ū(x)) ≥ 0 ∀ua ≤ u ≤ ub.(4.9)

D
ow

nl
oa

de
d 

04
/2

3/
13

 to
 1

93
.1

44
.1

85
.2

8.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



420 EDUARDO CASAS AND FREDI TRÖLTZSCH

Proof. The statement follows from Theorem 2.1: The variational inequality (4.8)
is obtained from (2.3) by (2.6) and (4.6). If (A1) is satisfied, then (4.8) and (4.7)
imply (4.9).

Let us now apply the second-order conditions to the control system. We have to
express ∂2L/∂u2 in terms of L. From

L(u, λ) = F (G(u), u) +

m∑
j=1

λjFj(G(u), u)

we get, after some straightforward computations,


∂2L

∂u2
(ū, λ̄)[h1, h2] =


F ′′(ȳ, ū) +

m∑
j=1

λ̄jF
′′
j (ȳ, ū)


 [(y1, h1), (y2, h2)]

+


∂F
∂y

(ȳ, ū) +

m∑
j=1

λ̄j
∂Fj
∂y

(ȳ, ū)


G′′(ū)[h1, h2],

(4.10)

where yi = G′(ū)hi = zhi
, i = 1, 2. We know that G′′(ū)[h1, h2] = zh1h2 , where

z = zh1h2 is the solution of (4.2); hence this term can be reduced to zh1 and zh2 . By
definition of ϕ̄, (4.2), and (4.5),




∂F
∂y

+
m∑
j=1

λ̄j
∂Fj
∂y


 zh1h2

=

〈
ϕ̄, Azh1h2 +

∂B

∂y
zh1h2

〉

= −〈ϕ̄, B′′(ȳ, ū)[(zh1 , h1), (zh2 , h2)]〉
is obtained. Insert this into (4.10); then yi = zhi and zh1h2 = G′′(ū)[h1, h2] give



∂2L

∂u2
(ū, λ̄)[h1, h2] =


F ′′(ȳ, ū) +

m∑
j=1

λ̄jF
′′
j (ȳ, ū)


 [(y1, h1), (y2, h2)]

− 〈ϕ̄, B′′(ȳ, ū)[(y1, h1), (y2, h2)]〉
= L′′

(y,u)(ȳ, ū, ϕ̄, λ̄)[(y1, h1), (y2, h2)].

(4.11)

Notice that in (4.11) the increments (yi, hi) cannot be chosen independently, since yi
and hi are coupled through yi = G′(ū)hi = zhi . Hence the definition of zhi shows
that the pairs (y, h) = (yi, hi) have to solve the linearized equation

Ay +
∂B

∂y
(ȳ, ū)y +

∂B

∂u
(ȳ, ū)h = 0.(4.12)

Corollary 4.2. Assume that (2.1), (A1), and (A2) are satisfied and that ϕ̄ ∈ Z∗

is uniquely defined by (4.5). Then

L′′
(y,u)(ȳ, ū, ϕ̄, λ̄)(y, h)

2 ≥ 0(4.13)

holds for all (y, h) ∈ Y × L∞(X) that satisfy the linearized equation (4.12) and the
relations 



∂Fj
∂y

(ȳ, ū)y +
∂Fj
∂u

(ȳ, ū)h = 0 if (j ≤ m1)

or (j > m1, Fj(ȳ, ū) = 0, and λ̄j > 0),

∂Fj
∂y

(ȳ, ū)y +
∂Fj
∂u

(ȳ, ū)h ≤ 0 if j > m1, Fj(ȳ, ū) = 0, and λ̄j = 0,

(4.14)D
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SECOND-ORDER OPTIMALITY CONDITIONS 421

h(x) =

{≥ 0 if ū(x) = ua(x),
≤ 0 if ū(x) = ub(x),

(4.15)

h(x) = 0 if x ∈ X0.(4.16)

The second-order sufficient optimality conditions are given by the following.
Corollary 4.3. Let (ȳ, ū) fulfill all constraints of (OC) and, together with ϕ̄

and λ̄j, j = 1, . . . ,m, the first-order optimality conditions stated in Corollary 4.1.
Assume that (2.1), (A1), and (A3) hold true. If there exist τ > 0, δ1 > 0, and δ2 > 0
such that

L′′
(y,u)(ȳ, ū, ϕ̄, λ̄)(y, h)

2 ≥ δ1‖h‖2
L2(X\Xτ ) − δ2‖h‖2

L2(Xτ )(4.17)

holds for all (y, h) ∈ Y × L∞(X) that satisfy the linearized equation (4.12) and the
relations (4.14), (4.15), then the conclusions of Theorem 3.1 hold true; hence ū is a
local solution of (OC). Here, the set Xτ is defined by (3.2). The same conclusion is
true if the condition

L′′
(y,u)(ȳ, ū, ϕ̄, λ̄)(y, h)

2 ≥ δ‖h‖2
L2(X)(4.18)

holds instead of (4.17) with some δ > 0, where h(x) = 0 for all x ∈ Xτ for some
τ > 0, and (y, h) are subject to (4.12), (4.14), and (4.15).

4.2. Optimal control of ODEs. In this section we discuss an optimal control
problem governed by an ODE. We concentrate on a very simplified setting to give the
reader an easy insight into the application of the theory. For further problems, we
refer to the book by Hestenes [16]. Define

F (y, u) = ψ(y(T )) +

∫ T

0

f0(t, y(t), u(t))dt,

Fj(y, u) =

∫ T

0

fj(t, y(t), u(t))dt,

j = 1, . . . ,m, and consider the optimal control problem

(ODE)




minimize F (y, u),
y′(t) + b(t, y(t), u(t)) = 0 a.e. t ∈ (0, T ),
y(0) = 0,
ua(t) ≤ u(t) ≤ ub(t) a.e. t ∈ (0, T ),
Fj(y, u) = 0, 1 ≤ j ≤ m1,
Fj(y, u) ≤ 0, m1 + 1 ≤ j ≤ m.

Here, T is a fixed time. To reduce the number of technicalities, let us discuss only
real-valued functions y and u. The vector-valued case can be handled analogously.
For the same reason, we assume that the functions ψ, fj , and b are of class C2 on
R and [0, T ]×R× [minua,maxub], respectively, although weaker Carathéodory-type
conditions would suffice. We introduce the state space Y = {y ∈ W 1,∞(0, T )|y(0) =
0} and set

(Ay)(t) = y′(t), (B(y, u))(t) = b(t, y(t), u(t)).

A is continuous from Y to Z = L∞(0, T ), and B is of class C2 from Y ×L∞(0, T ) to
Z. In this way, (ODE) is related to (OC) as a particular case, where X = [0, T ], and µ
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422 EDUARDO CASAS AND FREDI TRÖLTZSCH

is the Lebesgue measure, dµ = dt. For convenience, the variable t ∈ X is substituted
for the variable x, which was used in the former sections.

Let (ȳ, ū) ∈ Y × L∞(0, T ) be our reference solution, a given candidate for opti-
mality. For (ODE), the Lagrange function

L(y, u, ϕ, λ) = F (y, u)−
∫ T

0

ϕ(y′ + b(t, y, u))dt+

m∑
j=1

λjFj(y, u)(4.19)

is introduced, where ϕ ∈ W 1,∞(0, T ) will be defined by the adjoint equation below.
In an obvious way this ϕ generates a linear functional belonging to Z∗, but it has
more regularity than arbitrary functionals of this space.

Remark 4.4. Given the inhomogeneous initial condition y(0) = y0, we have to
work with the space Y = W 1,∞(0, T ) and must include the initial condition in the
definition of A. Then the additional term ϕ0(y(0)− y0) would appear in (4.19). This
requires some more notational effort. However, the optimality conditions are not
changed. Therefore, without loss of generality we confine ourselves to a homogeneous
initial condition.

Having in mind the particular form of ϕ, we see that here (4.5) is nothing more
than the definition of the adjoint equation


−ϕ′ +

∂b

∂y
(t, ȳ, ū)ϕ =

∂f0

∂y
(t, ȳ, ū) +

m∑
j=1

λ̄j
∂fj
∂y

(t, ȳ, ū),

ϕ(T ) = ψ′(y(T )).

(4.20)

It is obvious that (4.20) admits a unique solution ϕ̄ ∈ W 1,∞(0, T ). In section 5 we
show that (A1) is satisfied for (ODE). We obtain the following derivatives of the
Lagrange function:

∂L
∂u

(ȳ, ū, ϕ̄, λ̄)h =

∫ T

0


∂f0

∂u
− ϕ̄

∂b

∂u
+

m∑
j=1

λ̄j
∂fj
∂u

h


 dt(4.21)

(all derivatives taken at (ȳ, ū)); hence ∂L/∂u can be identified with d ∈ L∞(0, T ),

d(t) =


∂f0

∂u
− ϕ̄

∂b

∂u
+

m∑
j=1

λ̄j
∂fj
∂u


 (t).(4.22)

The second derivative of L is


L′′
(y,u)(ȳ, ū, ϕ̄, λ̄)[(y1, h1), (y2, h2)] = ψ′′(ȳ(T ))y1(T )y2(T )

+

∫ T

0


(y1, h1)


f ′′

0 (ȳ, ū)− ϕ̄b′′(ȳ, ū) +
m∑
j=1

λ̄jf
′′
j (ȳ, ū)


 (y2, h2)





 dt,

(4.23)
where f ′′

0 , b
′′, f ′′

j stand for 2× 2 Hessian matrices taken at (t, ȳ(t), ū(t)). It is easy to
verify that (A2) is satisfied.

The first-order necessary optimality conditions are stated in Corollary 4.1. In
particular, the following variational inequality has to be satisfied:∫

X

d(t)(u(t)− ū(t))dt ≥ 0(4.24)
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SECOND-ORDER OPTIMALITY CONDITIONS 423

for all ua ≤ u(t) ≤ ub; hence ū(t) = ua, where d(t) > 0, and ū(t) = ub, where d(t) < 0.
(These points form the set X0.) No information is obtained where d is zero. Roughly
speaking, this is the set for which higher-order conditions are needed.

The second-order necessary conditions are formulated in Corollary 4.2. We have
to specify the linearized equation (4.12) and the form of the derivatives in the relations
(4.14). The linearized equation is

 y′ +
∂b

∂y
(t, ȳ, ū)y +

∂b

∂u
(t, ȳ, ū)h = 0,

y(0) = 0,
(4.25)

while

∂Fj
∂y

(ȳ, ū)y +
∂Fj
∂u

(ȳ, ū)h =

∫
X

{
∂fj
∂y

(t, ȳ, ū)y +
∂fj
∂u

(t, ȳ, ū)h

}
dt.(4.26)

4.3. Optimal boundary control of an elliptic equation. As a further ap-
plication, we consider an elliptic control problem. For convenience, we discuss a
simplified version and refer for further reading to [9].

Let Ω ⊂ R
N be a bounded domain with boundary Γ of class C0,1. Let ν denote

the outward unit normal vector at Γ, and ∂ν be the associated normal derivative.
Define

F (y, u) =

∫
Ω

γ0(x, y(x))dx+

∫
Ω

ψ0(x, y(x))dµ0(x) +

∫
Γ

f0(x, y(x), u(x))dS(x),

Fj(y, u) =

∫
Ω

γj(x, y(x))dx+

∫
Ω

ψj(x, y(x))dµj(x) +

∫
Γ

fj(x, y(x), u(x))dS(x),

j = 1, . . . ,m. We assume that the functions γj = γj(x, y), ψj = ψj(x, y), and
fj = fj(x, y, u) are of class C2 on Ω̄ × R and Ω̄ × R

2, respectively. Moreover, real
Borel measures µj are given on Ω. Here, µ is the Lebesgue surface measure induced
on Γ, dµ = dS. The appearance of the measures µj in the functionals will heavily
influence the verification of assumptions (A1)–(A3). Therefore, the easier case ψj = 0,
j = 1, . . . ,m, is of interest as well.

Consider the optimal control problem

(ELL)




minimize F (y, u),
−∆y + y = 0 in Ω,
∂νy + b(x, y, u) = 0 on Γ,
ua(x) ≤ u(x) ≤ ub(x) a.e. on Γ,
Fj(y, u) = 0, 1 ≤ j ≤ m1,
Fj(y, u) ≤ 0, m1 + 1 ≤ j ≤ m.

In this setting, the boundary control u is looked upon in the space L∞(Γ), hence
X = Γ, while the state y belongs to Y = {y ∈ H1(Ω)| − ∆y + y ∈ Lq(Ω), ∂νy ∈
Lp(Γ)}. (Here q > N/2 and p > N − 1 are given fixed.) Endowing Y with the graph
norm, it is known that Y ⊂ C(Ω̄), the embedding being continuous. Assume that
b = b(x, y, u) satisfies the same conditions as the fj . Additionally, we require that
(∂b/∂y)(x, y, u) ≥ 0 on Γ× R × [minua,maxub]. Define

A : Y → Lq(Ω)× Lp(Γ) and B : Y × L∞(Γ) → Lq(Ω)× Lp(Γ)
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424 EDUARDO CASAS AND FREDI TRÖLTZSCH

by

(Ay) =

(−∆y + y
∂νy

)
and B(y, u)(x) =

(
0

b(x, y(x), u(x))

)
.

The equation Ay + B(y, u) = 0, which is equivalent to our elliptic boundary value
problem, admits for each u ∈ L∞(Γ) exactly one solution y ∈ Y . The mapping u �→ y
is of class C2 from L∞(Γ) to Y . Now we proceed in the same way as in the preceding
section. The Lagrange function is

L(y, u, ϕ, λ) = F (y, u)−
∫

Ω

(−∆y + y)ϕdx

−
∫

Γ

(∂νy + b(x, y, u))ϕdS +

m∑
j=1

λjFj(y, u),

where ϕ ∈ W 1,s(Ω) for all s < N
N−1 is the adjoint state. The adjoint state ϕ together

with its trace ϕ|Γ forms a Lagrange multiplier of Z∗ = Lq
′
(Ω)×Lp

′
(Γ) having higher

regularity. Here (4.5) reduces to the adjoint equation


−∆ϕ+ ϕ =
∂γ0

∂y
+
∂ψ0

∂y
µ0|Ω +

m∑
j=1

λ̄j

(
∂γj
∂y

+
∂ψj
∂y

µj |Ω
)
,

∂νϕ+
∂b

∂y
ϕ =

∂f0

∂y
+

m∑
j=1

λ̄j
∂fj
∂y

+
∂ψ0

∂y
µ0|Γ +

m∑
j=1

λ̄j
∂ψj
∂y

µj |Γ

(all partial derivatives taken at (x, ȳ(x), ū(x))). This equation has a unique solution
ϕ̄ ∈ W 1,s(Ω) associated with (ȳ, ū, λ̄). Notice that for N = 2 the Sobolev imbedding
theorem yields ϕ ∈ Lσ(Ω) for all σ < ∞, but not in general ϕ ∈ L∞(Ω). For N ≥ 3
the regularity of ϕ is even lower. This indicates that we have to discuss assumptions
(A1)–(A3) with more care. We shall do this in the last section.

The situation is easier in the case ψj = 0, j = 0, . . . ,m. Then all data given in the
adjoint equation are bounded and measurable, and the regularity theory of elliptic
equations yields ϕ̄ ∈ C(Ω̄) (see [5]).

Let us establish the first- and second-order derivatives of L. We get

∂L
∂u

(ȳ, ū, ϕ̄, λ̄)h =

∫
Γ


∂f0

∂u
(x, ȳ, ū) +

m∑
j=1

λ̄j
∂fj
∂u

(x, ȳ, ū)− ϕ̄
∂b

∂u
(x, ȳ, ū)


hdS

and

L′′
(y,u)(ȳ, ū, ϕ̄, λ̄)[(y1, h1), (y2, h2)]

=

∫
Γ

(y1, h1)


f ′′

0 (x, ȳ, ū) +

m∑
j=1

λ̄jf
′′
j (x, ȳ, ū)− ϕ̄b′′(x, ȳ, ū)


 (y2, h2)


dS

+

∫
Ω


∂2γ0

∂y2
(x, ȳ) +

m∑
j=1

λ̄j
∂2γj
∂y2

(x, ȳ)


 y1y2dx

+

∫
Ω

∂2ψ0

∂y2
(x, ȳ)y1y2dµ0 +

m∑
j=1

λ̄j
∂2ψj
∂y2

(x, ȳ)y1y2dµj .
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SECOND-ORDER OPTIMALITY CONDITIONS 425

We observe that, due to our notation, there is almost no difference in the expressions
derived for the case of (ODE) in (4.21), (4.23). The first- and second-order conditions
for our elliptic problem (ELL) admit the following form: Set

d(x) =
∂f0

∂u
(x, ȳ(x), ū(x)) +

m∑
j=1

λ̄j
∂fj
∂u

(x, ȳ(x), ū(x))− ϕ̄
∂b

∂u
(x, ȳ(x), ū(x)).

Then d has the same form as in (4.22). The first- and second-order optimality con-
ditions are given by Corollaries 4.1–4.3. There we set X = Γ to obtain all first- and
second-order conditions for (ELL). Now the directions (y, h) are coupled through the
linearized boundary value problem




−∆y + y = 0,

∂νy +
∂b

∂y
(x, ȳ, ū)y +

∂b

∂u
(x, ȳ, ū)h = 0.

(4.27)

The derivatives in (4.14), (4.15) admit the form



∂Fj
∂y

(ȳ, ū)y +
∂Fj
∂u

(ȳ, ū)h =

∫
Ω

∂γj
∂y

(t, ȳ)ydx+

∫
Ω

∂ψj
∂y

(t, ȳ)ydµj

+

∫
Γ

{
∂fj
∂y

(t, ȳ, ū)y +
∂fj
∂u

(t, ȳ, ū)h

}
dS.

(4.28)

In this way, we have obtained the second-order sufficient condition for a simplified
elliptic control problem. For the discussion of more general problems, we refer to [7],
[9]. We should underline again that so far we have stated the optimality condition in a
formal way. It remains to verify (A1)–(A3) to make our theory work. Low regularity
of the adjoint state ϕ can be an essential obstacle for this. We refer to section 5.

4.4. Optimal distributed control of a parabolic equation. We confine
ourselves to a distributed parabolic control problem. A more general class, including
boundary control and boundary observation, is considered in a separate paper by
Raymond and Tröltzsch [22]. Let Ω be defined as in the last section, and set Q =
Ω× (0, T ), Σ = Γ× (0, T ). Define

F (y, u) =

∫
Ω

γ0(x, y(x, T ))dx+

∫
Ω

ψ0(x, y(x, T ))dµ0(x)

+

∫
Q

f0(x, t, y(x, t), u(x, t))dxdt,

Fj(y, u) =

∫
Q

ψj(x, t, y(x, t))dµj(x, t) +

∫
Q

fj(x, t, y(x, t), u(x, t))dxdt,

j = 1, . . . ,m. We assume again that the functions ψj , fj , and γj are of class C2 on
Q̄× R and Q̄× R

2, respectively. Moreover, real Borel measures µj , j = 0, . . . ,m, are
given on Ω and Q, respectively. Now µ is the Lebesgue measure on Q, dµ = dxdt.
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426 EDUARDO CASAS AND FREDI TRÖLTZSCH

Consider the optimal control problem

(PAR)




minimize F (y, u),
∂y

∂t
−∆y + b(x, t, y, u) = 0 in Q,

∂νy = 0 on Σ,
y(x, 0) = 0 in Ω,
ua(x, t) ≤ u(x, t) ≤ ub(x, t) a.e. on Q,
Fj(y, u) = 0, 1 ≤ j ≤ m1,
Fj(y, u) ≤ 0, m1 + 1 ≤ j ≤ m.

In this setting, the distributed control u is looked upon in the space L∞(Q); hence
we set X = Q. The state y belongs to Y = {y ∈ W (0, T )|y(0) = 0, yt − ∆y ∈
Lq(Q), ∂νy ∈ Lp(Σ)}, where q > N/2 + 1 and p > N + 1 are given fixed. It is known
that Y ⊂ C(Q̄), the embedding being continuous for the graph norm. Assume that
b = b(x, t, y, u) satisfies the same conditions as the fj . Additionally, we require that
∂b/∂y(x, t, y, u) ≥ 0 on Q× R × [minua,maxub]. Define

A : Y → Lq(Q)× Lp(Σ) and B : Y × L∞(Q) → Lq(Q)× Lp(Σ)

by

Ay =

(
∂y

∂t
−∆y

∂νy

)
and B(y, u)(x, t) =

(
b(x, t, y(x, t), u(x, t))

0

)
.

The equation Ay+B(y, u) = 0, which is equivalent to our parabolic initial-boundary
value problem, admits for each u ∈ L∞(Q) exactly one solution y ∈ Y . We refer
to [5]. The mapping u �→ y is of class C2 from L∞(Q) to Y . Here, the Lagrange
function is

L(y, u, ϕ, λ) = F (y, u)−
∫
Q

(yt −∆y − b(x, t, y, u))ϕdxdt

−
∫

Σ

∂νyϕdSdt+

m∑
j=1

λjFj(y, u),

where ϕ is the adjoint state and dS again denotes the Lebesgue surface measure
induced on Γ. Equation (4.5) turns out to be the adjoint equation




−∂ϕ

∂t
−∆ϕ+

∂b

∂y
ϕ =

∂f0

∂y
+

m∑
j=1

λ̄j

(
∂fj
∂y

+
∂ψj
∂y

µj

)
in Q,

∂νϕ = 0 in Σ,

ϕ(x, T ) =
∂γ0

∂y
(x, ȳ(x, T )) +

∂ψ0

∂y
(x, ȳ(x, T ))µ0 in Ω

(all partial derivatives taken at (x, ȳ, ū)). This equation has a unique solution ϕ̄ ∈
W 1,s(Ω) associated with (ȳ, ū, ϕ̄, λ̄). If, however, ψj = 0, j = 1, . . . ,m, then ϕ̄ is more
regular, ϕ̄ ∈ W (0, T ) ∩ C(Q̄).
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SECOND-ORDER OPTIMALITY CONDITIONS 427

The relevant derivatives of L are

∂L
∂u

(ȳ, ū, ϕ̄, λ̄)h

=

∫
Q


∂f0

∂u
(x, ȳ, ū) +

m∑
j=1

λ̄j
∂fj
∂u

(x, ȳ, ū)− ϕ̄
∂b

∂u
(x, ȳ, ū)


hdxdt

=

∫
Q

d(x, t)h(x, t)dxdt,

L′′
(y,u)(ȳ, ū, ϕ̄, λ̄)[(y1, h1), (y2, h2)]

=

∫
Q

(y1, h1)


f ′′

0 (x, ȳ, ū) +

m∑
j=1

λ̄jf
′′
j (x, ȳ, ū)− ϕ̄b′′(x, ȳ, ū)


 (y2, h2)


dxdt

+

∫
Ω

∂2ψ0

∂y2
(x, ȳ(T ))y1(T )y2(T )dµ0 +

∫
Q

m∑
j=1

λ̄j
∂2ψj
∂y2

(x, ȳ)y1y2dµj

+

∫
Ω

∂2γ0

∂y2
(x, ȳ(T ))y1(T )y2(T )dx.

The first- and second-order conditions for the parabolic case are covered by Corollaries
4.1–4.3. We have to substitute Q for X there and replace the variable x by (x, t).
Moreover, in the second-order conditions, y and h are coupled through the linearized
initial-boundary value problem


yt −∆y +

∂b

∂y
(x, t, ȳ, ū)y +

∂b

∂u
(x, t, ȳ, ū)h = 0,

∂νy = 0,

y(x, 0) = 0.

(4.29)

We leave the calculations of the derivatives in (4.14) to the reader; they are obtained
by an obvious modification of (4.28). We should mention again that these optimality
conditions are meaningful only if the assumptions (A1)–(A3) are satisfied.

5. Verification of the assumptions. Our theory relies on the general assump-
tions (A1)–(A3). We shall see that (A1)–(A3) are naturally satisfied for the prob-
lem (ODE), while the situation is more complicated in the case of the elliptic or
parabolic PDE.

(i) Problem (ODE). (A1). It is obviously sufficient to look at one of the functionals
Gj(u) = Fj(G(u), u) to assess the situation. We have

G′
j(ū)h =

∫ T

0

∂fj
∂y

(t, ȳ, ū)ydt+

∫ T

0

∂fj
∂u

(t, ȳ, ū)hdt,(5.1)

where y = G′(ū)h. Here, ∂fj/∂y, ∂fj/∂u are bounded and measurable functions.
Moreover, the estimate

‖y‖C[0,T ] = ‖G′(ū)h‖C[0,T ] ≤ c‖h‖L2(0,T )(5.2)

holds, since ‖y‖C[0,T ] ≤ c‖y‖H1(0,T ) ≤ c‖h‖L2(0,T ). Thus the mapping h �→ G′
j(ū)h

defines a linear and continuous functional on L2(0, T ). By the Riesz representation
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428 EDUARDO CASAS AND FREDI TRÖLTZSCH

theorem,

G′
j(ū)h =

∫ T

0

gj(t)h(t)dt(5.3)

must hold with some gj ∈ L2(0, T ); hence (A1) is fulfilled.
(A2). Here, the derivative

G′′
j (ū)[h1, h2] =

∫ T

0

(y1, h1)f
′′
j (t, ȳ, ū)(y2, h2)


dt

is characteristic for the discussion. All entries of f ′′
j are bounded and measurable. If

hki → hi in L2(0, T ), k → ∞, i = 1, 2, then yki → yi in C[0, T ]; hence G′′
j (ū)[h

k
1 , h

k
2 ] →

G′′
j (ū)[h1, h2]. This shows (A2).

(A3). First, we must estimate differences of the type G′′
j (ũ) − G′′

j (ū) for ũ in a
L∞-neighborhood of ū. We get

|(G′′
j (ũ)−G′′

j (ū))h
2| ≤

∫ T

0

|f ′′
j (t, ỹ, ũ)− f ′′

j (t, ȳ, ū)||(y, h)|2dt,

where ỹ = G(ũ), ȳ = G(ū), y = G′(ū)h. Due to our assumptions, we find that

|[G′′
j (ũ)−G′′

j (ū)]h
2| ≤ δ(‖y‖2

C[0,T ] + ‖h‖2
L2(0,T )) ≤ cδ‖h‖2

L2(0,T ),(5.4)

where δ → 0 as ‖ũ − ū‖L∞ → 0. Another characteristic part in ∂2L/∂u2 is the
coupling of the nonlinearity b with ϕ̄. It is the essential advantage of our simplified
case (ODE) that ϕ̄ ∈ L∞(0, T ). Therefore, we are justified to estimate∣∣∣∣∣

∫ T

0

(y, h)b′′(t, ȳ, ū)(y, h)
ϕ̄dt

∣∣∣∣∣ ≤ c‖ϕ̄‖L∞(0,T )(‖y‖2
C[0,T ] + ‖h‖2

L2(0,T ))

≤ c‖h‖2
L2(0,T ).

(5.5)

Discussing all second-order terms in this way, we easily verify that (A3) is also satis-
fied.

(ii) Elliptic problem (ELL). We repeat the discussion of (A1)–(A3) along the lines
of (i) but concentrating on the essential differences with the case of (ODE). Here, it
holds that

G′
j(ū)h =

∫
Ω

∂γj
∂y

(x, ȳ)ydx+

∫
Ω

∂ψj
∂y

(x, ȳ)ydµj

+

∫
Γ

∂fj
∂y

(x, ȳ, ū)ydS +

∫
Γ

∂fj
∂u

(x, ȳ, ū)hdS,

where y = G′(ū)h. In contrast to (5.2), now the mapping G′(ū) is not in general
continuous from L2(Γ) to C(Ω̄). This property only holds for N = dim Ω = 2 (see [9]).
For N > 2 we assume that Ωj , the support of µj , satisfies Ω̄j ⊂ Ω. Then the mapping
h �→ G′(ū)h is continuous from L2(Γ) to C(Ω̄j); hence h �→ G′

j(ū)h is a linear and

continuous functional on L2(Γ). The Riesz theorem yields a representation analogous
to (5.3). Hence (A1) is shown under additional assumptions on the subdomains Ωj .
(A2) then holds true in the same way. Notice that the restriction to Ωj is not needed
if all ψj vanish.
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SECOND-ORDER OPTIMALITY CONDITIONS 429

To verify (A3) we need even more restrictions on the data. The situation is easy
if ψj = 0, j = 1, . . . ,m. Then all given data in the adjoint equation are bounded and
measurable, and the regularity theory of elliptic equations yields ϕ̄ ∈ C(Ω̄). In this
case, (A3) is obviously satisfied.

Let us now assume that at least one of the ψj is not zero. Then the best regularity
of the trace ϕ̄|Γ is ϕ̄|Γ ∈ Lr(Γ) for all r < (N − 1)/(N − 2). For instance, ϕ ∈ Lr(Γ)
for all r < ∞ is obtained in the case N = 2. We therefore cannot assume that
ϕ̄ ∈ L∞(Ω). Regard the elliptic counterpart to (5.5),∣∣∣∣

∫
Γ

(y, h)b′′(x, ȳ, ū)(y, h)
ϕ̄dS
∣∣∣∣ =

∣∣∣∣
∫

Γ

ϕ̄

(
∂2b

∂y2
y2 + 2

∂2b

∂y∂u
yh+

∂2b

∂u2
h2

)
dS

∣∣∣∣
≤ c

∫
Γ

(|ϕ̄|y2 + |ϕ̄|yh+ |ϕ̄|h2)dS.

(5.6)

This expression has to be estimated for h ∈ L2(Γ). If ϕ̄|Γ /∈ L∞(Γ), which is the
normal case, then we must exclude the third term from (5.6). This means that
∂2b/∂u2 has to disappear—u must appear linearly. Next we consider the second term,
where ‖ϕ̄|Γy‖L2(Γ) is estimated against ‖h‖L2(Γ). The mapping h �→ y is continuous
from L2(Γ) to C(Γ) (N = 2), to Lr(Γ) for all r < ∞ (N = 3), and to Lr(Γ) for
all r < 2(N − 1)/(N − 3) (N > 3). Therefore, the second term can be estimated iff
N = 2, while it must be cancelled for N > 2. The latter means ∂2b/∂u∂y = 0—here
b = b1(x, y) + b2(x)u must hold. In the same way we arrive at the surprising fact
that for N > 3 the first term in (5.6) must vanish, too. In other words, in the case
of elliptic boundary control with pointwise functionals Fj , we cannot admit nonlinear
equations for N > 3.

Remark 5.1. We should underline again that these restrictions are not needed if
the functionals Fj are sufficiently regular (ψj = 0, j = 1, . . . ,m). Moreover, the case of
distributed controls permits us to slightly relax the restrictions on the dimension N .

(iii) Parabolic problem (PAR). Once again, (A1)–(A3) are satisfied if ψj = 0,
j = 1, . . . ,m. This is due to the high regularity ϕ̄ ∈ W (0, T ) ∩ C(Q̄) in this case.

In the opposite case, the problem of regularity is even more delicate than in the
elliptic problem. We cannot discuss the general case in detail and refer to the recent
paper [22]. Instead of this, let us explain the point for a very particular constraint:
Suppose that only one (pointwise) state constraint of the form

g1(y, u) =

∫ T

0

y(x1, t)dt = 0

is given, where x1 ∈ Ω is a fixed position of observation. To make the theory work,
we need some strong restrictions: We assume N = dim Ω = 1, i.e., Ω = (a, b),
and require that ∂2b/∂u2 = 0 (the control appears linearly). Then the mapping
h �→ y = G′(ū)h is continuous from L2(Q) to C(Q̄), and the functional h �→ g1(y, h)
is continuous on L2(Q). We know that ϕ̄ ∈ Ls(Q) for all s < 3. (This follows from
Theorem 4.3 in [22] for N = 1 and α = α̃.) Hence ϕ̄ /∈ L∞(Q), and that is the reason
why we cannot admit a control appearing nonlinearly. The estimate of the parabolic
counterpart of (5.6) is∣∣∣∣

∫
Q

(
∂2b

∂y2
ϕ̄y2 + 2

∂2b

∂y∂u
ϕ̄yh

)
dxdt

∣∣∣∣
≤ c‖ϕ̄‖L1(Q)‖y‖2

L∞(Q) + c‖ϕ̄‖L2(Q)‖y‖L∞(Q)‖h‖L2(Q) ≤ c‖h‖2
L2(Q).
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430 EDUARDO CASAS AND FREDI TRÖLTZSCH

Discussions of this type reveal that (A1)–(A3) are satisfied. However, we needed
very strong assumptions, in particular N = 1. The case N = 2 can be handled
under additional restrictions concerning the appearance of control and observations
(“control and observations have disjoint supports”; see [22]).

If there are no pointwise state constraints, the situation is easier, as the reader
can check.

Remark 5.2. The second-order conditions established in the previous sections
allow us to study L∞-local solutions. This causes specific difficulties if the optimal
control exhibits jumps. Therefore, Lp-optimality conditions can be more interesting.
An associated extension to Lp is possible, provided that the control-state mapping
u �→ y and the objective functional are differentiable from Lp to L∞. Under associated
restrictions (for instance, that the control appear linearly in the state equation and
the cost functional be quadratic with respect to the control), this extension to Lp is
possible for sufficiently large p < ∞. For some associated results we refer the reader
to Casas, Tröltzsch, and Unger [8] and Dunn [14].

Remark 5.3. For some optimal control problems, the second-order condition

∂2L

∂u2
(ū, λ̄)h2 > 0 ∀h ∈ C0

ū \ {0},

along with a certain positivity of the second derivative with respect to the control of
the Hamiltonian, provide sufficient optimality conditions. The reader is referred to
Casas and Mateos [6], where these conditions are proved to be sufficient and equivalent
to (3.26); see also Bonnans and Zidani [4]. In particular, if the control appears linearly
in the state equation and the cost functional is quadratic and positive with respect
to the control, then the above condition is sufficient for optimality.
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contraintes sur l’état, in Nonlinear Partial Differential Equations and Their Applications.
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