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Abstract. This paper deals with a class of optimal control problems governed by elliptic equa-
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1. Introduction. In contrast to the optimal control of linear systems with a
convex objective, where first order necessary optimality conditions are already suffi-
cient for optimality, higher order conditions such as second order sufficient optimality
conditions (SSC) should be employed to verify optimality for nonlinear systems. Sec-
ond order sufficient optimality conditions have also proved to be useful for showing
important properties of optimal control problems such as local uniqueness of optimal
controls and their stability with respect to certain perturbations. Moreover, they may
serve as an assumption to guarantee the convergence of numerical methods in opti-
mal control. In this respect, we refer to the general expositions by Maurer and Zowe
[15] and Maurer [14] for different aspects of second order sufficient optimality con-
ditions. The approximation of programming problems in Banach spaces is discussed
in Alt [2]. Moreover, Alt [3], [4] has established a general convergence analysis for
Lagrange–Newton methods in Banach spaces.

Meanwhile, an extensive number of publications have been devoted to different
aspects of second order sufficient optimality conditions for control problems governed
by ordinary differential equations. The well-known two-norm discrepancy has in par-
ticular received a good deal of attention. We refer, for instance, to Ioffe [13] and
Maurer [14].

First investigations of second order sufficient optimality conditions for control
problems governed by partial differential equations have been published by Goldberg
and Tröltzsch [11], [12] for the boundary control of parabolic equations with nonlin-
ear boundary conditions. In [9], Casas, Tröltzsch, and Unger have extended these
ideas to elliptic boundary control problems with pointwise constraints on the con-
trol. Moreover, they tightened the gap between second order necessary and sufficient
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1370 E. CASAS, F. TRÖLTZSCH, AND A. UNGER

optimality conditions. This was done by the consideration of sets of strongly active
constraints according to Dontchev et al. [10]. This technique is also related to first
order sufficient optimality conditions introduced by Maurer and Zowe [15]. It should
be mentioned that as many as four norms have to be used in this case (L∞-norm for
differentiation, L2-norm to formulate second order sufficient optimality conditions,
L1-norm for the first order sufficient optimality condition, and certain Lp-norms to
obtain optimal regularity results).

Bonnans [5] has shown that a very weak form of second order sufficient condi-
tions can be used to verify local optimality for a particular class of semilinear elliptic
control problems with constraints on the control: If the second order derivative of
the Lagrange function is a Legendre form, then it suffices to have its positivity in all
critical directions.

In our paper, the results of [9] will be extended to additional constraints on the
state. In this way, we are continuing the investigations by Casas and Tröltzsch [8] on
second order necessary conditions. We also rely on general ideas of Maurer and Zowe
[15], combining their approach with a detailed splitting technique.

At the beginning, we aimed to establish second order sufficient optimality condi-
tions for boundary control problems governed by semilinear elliptic equations in do-
mains of arbitrary dimension with general pointwise constraints on the control and the
state. However, we soon recognized that pointwise state-constraints lead to essential
and somewhat surprising difficulties. To establish second order sufficient optimality
conditions for problems with pointwise state-constraints given on the whole domain,
we had to restrict ourselves to two-dimensional domains with controls appearing lin-
early in the boundary condition. These obstacles might indicate some limits for the
“traditional” type of second order sufficient optimality conditions for control problems
governed by PDEs.

If pointwise state-constraints are imposed on compact subsets of the domain, while
the other quantities are sufficiently smooth, then arbitrary dimensions can be treated
without restrictions on the nonlinearities. In this case the adjoint state belongs to
L∞(Γ). Moreover, we are able to avoid the assumption of linearity of the boundary
condition with respect to the control by introducing some extended form of second
order optimality conditions.

2. The optimal control problem. We consider the problem: Minimize the
functional

F0(y, u) =

∫
Ω

f(x, y(x)) dx+

∫
Γ

g(x, y(x), u(x)) dS(x)(2.1)

subject to the equation of state{−∆y(x) + y(x) = 0 in Ω,
∂νy(x) = b(x, y(x), u(x)) on Γ,

(2.2)

to the constraints on the state y

Fi(y) = 0, i = 1, . . . ,m,(2.3)

E(y) ∈ K,(2.4)

and to the constraints on the control u

ua(x) ≤ u(x) ≤ ub(x) almost everywhere (a.e.) onΓ.(2.5)
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SUFFICIENT SECOND ORDER OPTIMALITY CONDITIONS 1371

In this setting, Ω ⊂ R
n is a bounded domain with a Lipschitz boundary Γ according to

the definition by Nečas [17]. Moreover, sufficiently smooth functions f : Ω × R → R

and g, b : Γ × R
2 → R are given. The symbol ∂ν is used for the derivative in the

direction of the unit outward normal ν on Γ. The functionals Fi : C(Ω) → R,
i = 1, . . . ,m, are supposed to be twice continuously Fréchet differentiable, that is, to
be of class C2. By E we denote a mapping of class C2 from C(Ω) into a real Banach
space Z. K ⊂ Z is a nonempty convex closed set, and ua, ub : Γ → R are functions
of L∞(Γ) satisfying ua(x) ≤ ub(x) on Γ.

The control u is looked for in the control space U = L∞(Γ), while the state y is
defined as a weak solution of (2.2) in the state space C(Ω) ∩H1(Ω) = Y , that is,∫

Ω

(∇y∇v + yv) dx =

∫
Γ

b(·, y, u)v dS ∀v ∈ H1(Ω).(2.6)

We endow Y with the norm ‖y‖Y = ‖y‖C(Ω) + ‖y‖H1(Ω). The following assumptions

are imposed on the given quantities.

(A1) For each fixed x ∈ Ω or Γ, respectively, the functions f = f(x, y), g =
g(x, y, u), and b = b(x, y, u) are of class C2 with respect to (y, u). For fixed
(y, u), they are Lebesgue measurable with respect to x ∈ Ω or x ∈ Γ, respec-
tively.

Throughout the paper, partial derivatives are indicated by associated subscripts. For
instance, byu stands for ∂2b/∂y∂u . By b′(x, y, u) and b′′(x, y, u) we denote the gradient
and the Hessian matrix of b with respect to (y, u):

b′(x, y, u) =

(
by(x, y, u)
bu(x, y, u)

)
, b′′(x, y, u) =

(
byy(x, y, u) byu(x, y, u)
buy(x, y, u) buu(x, y, u)

)
;

|b′| and |b′′| are defined by adding the absolute values of all entries.
In the next assumption, fixed parameters p > n − 1 and s, r are used, which

depend on n. For the possible (minimal) choice of s and r we refer to the discussion
of regularity in (3.13). Roughly speaking, we have y|Γ ∈ Ls(Γ) and y ∈ Lr(Ω) in the
linearized system (2.2) if u ∈ L2(Γ). As usual, s′ and r′ denote conjugate numbers.
For instance, s′ is defined by 1/s′ + 1/s = 1.

(A2) For all M > 0 there are constants CM > 0, functions ΨM
f ∈ L(r/2)′(Ω),

ΨM,1
g ∈ L(s/2)′(Γ), ΨM,2

g ∈ L2(s/2)′(Γ), ΨM,3
g ∈ L∞(Γ), and a continuous,

monotone increasing function η ∈ C(R+ ∪ {0}) with η(0) = 0 such that
(i)

by(x, y, u) ≤ 0 a.e. x ∈ Γ, ∀(y, u) ∈ R
2,(2.7)

b(·, 0, 0) ∈ Lp(Γ), for a p > n− 1,
|b′(x, y, u)|+ |b′′(x, y, u)| ≤ CM ,
|b′′(x, y1, u1)− b′′(x, y2, u2)| ≤ CM η(|y1 − y2|+ |u1 − u2|)
for almost all x ∈ Γ and all |y|, |u|, |yi|, |ui| ≤M , i = 1, 2;

(ii) f(·, 0) ∈ L1(Ω), fy(·, 0) ∈ Lr′(Ω), fyy(·, 0) ∈ L(r/2)′(Ω)
|fyy(x, y1)− fyy(x, y2)| ≤ ΨM

f (x) η(|y1 − y2|)
∀ x ∈ Ω, |yi| ≤M , i = 1, 2;
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1372 E. CASAS, F. TRÖLTZSCH, AND A. UNGER

(iii) g(·, 0, 0) ∈ L1(Γ), gy(·, 0, 0) ∈ Ls′(Γ), gu(·, 0, 0) ∈ L2(Γ),

gyy(·, 0, 0) ∈ L(s/2)′(Γ), gyu(·, 0, 0) ∈ L2(s/2)′(Γ), guu(·, 0, 0) ∈ L∞(Γ)
(here, · stands for x)

|gyy(x, y1, u1)− gyy(x, y2, u2)| ≤ ΨM,1
g (x)η(|y1 − y2|+ |u1 − u2|),

|gyu(x, y1, u1)− gyu(x, y2, u2)| ≤ ΨM,2
g (x)η(|y1 − y2|+ |u1 − u2|),

|guu(x, y1, u1)− guu(x, y2, u2)| ≤ ΨM,3
g (x)η(|y1 − y2|+ |u1 − u2|),

for almost all x ∈ Γ and all |yi| ≤M, |ui| ≤M .

Remark 2.1. Notice that the estimates in (i)–(iii) imply boundedness and Lip-
schitz properties of b, f, g, b′, f ′, g′ in several L-spaces. We omit them, because they
follow from the mean value theorem.

(A3) (i) Let us define the norm

‖y‖2 = ‖y‖C(A) + ‖y‖Lr(Ω) + ‖y‖Ls(Γ)

for y ∈ C(Ω), where A ⊂ Ω is a certain measurable compact subset. Here
A stands for a set, where we know y ∈ C(A) for Neumann boundary
data given in L2(Γ). In the case n = 2 we may take A = Ω, while A ⊂ Ω
is needed for n > 2. For A = ∅ we put ‖y‖C(A) = 0.

We assume at a fixed reference state y ∈ C(Ω) that

|F ′
i (y)y| ≤ CF ‖y‖2 ∀y ∈ C(Ω),

|F ′′
i (y)[y1, y2]| ≤ CF ‖y1‖2‖y2‖2 ∀y1, y2 ∈ C(Ω)

holds with some CF > 0. Moreover, we require with a CM > 0

|F ′
i (y1)y − F ′

i (y2)y| ≤ CM‖y1 − y2‖2‖y‖2,

|(F ′′
i (y1)− F ′′

i (y2))[y, v]| ≤ CM η(‖y1 − y2‖C(Ω))‖y‖2‖v‖2

∀ yj with ‖yj‖C(Ω) ≤M , j = 1, 2, ∀ y, v from C(Ω), and ∀ i = 1, . . . ,m.

(ii) Analogous assumptions are imposed on E : C(Ω) → Z, where ‖ · ‖Z is
to be substituted for | · |. For instance,

‖E′(y)y‖Z ≤ CE‖y‖2 ∀y ∈ C(Ω)

is supposed.

We shall explain the main constructions of our paper by the following canonical ex-
ample (P) that fits in the general setting.

Example (P). Minimize

1

2

∫
Ω

(y − yd)2dx+
α

2

∫
Γ

u2dS

subject to

−�y + y = 0 in Ω,
∂νy = u− y3 on Γ,

and

|u| ≤ 1, y(0) ≤ y0
in the open unit ball Ω ⊂ R

3 around zero, where α > 0, y0 ∈ R, and yd ∈
L∞(Ω) are given. Here, we have Z = R, K = R

−, A = {0}, E(y) = y(0)−y0,
and we need y ∈ C(Ω) to make E well defined.
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SUFFICIENT SECOND ORDER OPTIMALITY CONDITIONS 1373

3. The state equation and first order necessary optimality conditions.
It can be shown that the equation (2.2) admits for each u ∈ Uad a unique weak
solution y = y(u) ∈ Y , where Uad = {u ∈ L∞(Γ) |ua(x) ≤ u(x) ≤ ub(x) a.e. onΓ}.
Moreover, there is a constant M such that

‖y(u)‖Y ≤M ∀u ∈ Uad.(3.1)

In particular, it holds that ‖y‖C(Ω) ≤ M . Casas and Tröltzsch [8] have proved that

the mapping u �→ y(u) from L∞(Γ) into Y is of class C2. Furthermore, the Lipschitz
property

‖y(u1)− y(u2)‖2 ≤ C2‖u1 − u2‖L2(Γ)

holds for all u1, u2 ∈ Uad, where C2 is a positive constant and ‖ ·‖2 is defined in (A3).
For fixed u ∈ Uad we have b(·, y, u) ∈ Lp(Γ), hence the weak solution y ∈ Y of (2.2)
belongs to the space

Yq,p = {y ∈ H1(Ω) | −∆y + y ∈ Lq(Ω), ∂νy ∈ Lp(Γ)},
which is known to be continuously embedded into Y = C(Ω)∩H1(Ω) for each q > n/2
and each p > n− 1.

In all of what follows we assume that a reference pair (y, u) ∈ Y × Uad is given,
satisfying, together with an associated adjoint state ϕ ∈ W 1,σ(Ω) ∀σ < n/(n − 1),
and with Lagrange multipliers

λ = (λ1, . . . , λm)T ∈ R
m, z∗ ∈ Z∗,

the associated standard first order necessary optimality conditions. We will just as-
sume them. They can be proved following Casas [7], Bonnans and Casas [6], or Zowe
and Kurcyusz [23]. The first order optimality system to be satisfied by (y, u) consists
of the state equations (2.2), the constraint u ∈ Uad, the adjoint equations

−∆ϕ+ ϕ = fy(·, y) +

m∑
i=1

λiF
′
i (y)|Ω + (E′y)∗z∗|Ω in Ω,(3.2)

∂νϕ = by(·, y, u)ϕ+ gy(·, y, u) +

m∑
i=1

λiF
′
i (y)|Γ + (E′y)∗z∗|Γ on Γ(3.3)

for the adjoint state ϕ, the complementary slackness condition

〈z∗, κ− E(y)〉 ≤ 0 ∀κ ∈ K,(3.4)

and the variational inequality∫
Γ

(gu(x, y(x), u(x)) + ϕ(x)bu(x, y(x), u(x)))(u(x)− u(x)) dS(x) ≥ 0(3.5)

∀ u ∈ Uad. We have F ′
i (y) ∈ C(Ω)

∗
, i = 1, . . . ,m, and E′(y)∗z∗ ∈ C(Ω)

∗
; hence

these quantities can be identified with real Borel measures on Ω. Let a nonnegative
function β ∈ L∞(Γ) and real Borel measures µΩ and µΓ concentrated on Ω and Γ,
respectively, be given. Then the problem{−∆ϕ+ ϕ = µΩ in Ω,

∂νϕ+ βϕ = µΓ on Γ
(3.6)
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1374 E. CASAS, F. TRÖLTZSCH, AND A. UNGER

admits a unique solution ϕ ∈ W 1,σ(Ω) ∀ σ < n/(n − 1) (see Casas [7]; the reader is
also referred to Stampacchia [20] for the Dirichlet case). In view of this, we may write

ϕ = ϕ0 +

m∑
i=1

λiϕi + ϕE ,

where ϕ0, ϕi, and ϕE solve (3.6) for µΩ = fy, F
′
i (y)|Ω, E′(y)∗z∗|Ω, and µΓ = gy,

F ′
i (y)|Γ, E′(y)∗z∗|Γ, respectively. We have at least ϕ0, ϕi, and ϕE in W 1,σ(Ω). More-

over, ϕ satisfies the formula of integration by parts∫
Ω

(−∆y + y)ϕdx+

∫
Γ

(∂νy + βy)ϕdS(x) =

∫
Ω

y dµΩ +

∫
Γ

y dµΓ(3.7)

∀ y ∈ Yq,p, where q > n/2, p > n−1. It is easy to verify that the optimality conditions
can be expressed by the Lagrange function

L(y, u, ϕ, λ, z∗) = F0(y, u) −
∫

Ω

(−∆y + y)ϕdx−
∫

Γ

(∂νy − b(·, y, u))ϕdS

+
m∑
j=1

λjFj(y) + 〈z∗, E(y)〉,
(3.8)

L : Yq,p × U ×W 1,σ(Ω) × R
m × Z∗ → R. The regularity of y and ϕ fits together,

as ϕ ∈ W 1,σ(Ω) ∀ σ < n/(n − 1) ensures ϕ ∈ Ls(Ω) ∀ s < n/(n − 2) (Nečas [17,
Thm. 3.4, p. 69]), and ϕ|Γ ∈ Lr(Γ) holds ∀ r < 1 + 1/(n − 2) [17, Thm. 4.2, p.
84]). Therefore, this definition makes sense. In (3.8), 〈·, ·〉 denotes the duality pairing
between Z and its dual space Z∗. The Lagrange function L is of class C2 with respect
to (y, u) for fixed ϕ, λ, and z∗.

Thanks to (3.7), the optimality system can be rewritten in terms of L. Then it
is expressed by (2.6), the constraints on the state (2.3), (2.4), the constraints on the
control u ∈ Uad, and

Ly(y, u, ϕ, λ, z
∗)y = 0 ∀y ∈ Y,(3.9)

Lu(y, u, ϕ, λ, z
∗)(u− u) ≥ 0 ∀u ∈ Uad,(3.10)

〈z∗, κ− E(y)〉 ≤ 0 ∀κ ∈ K.(3.11)

This form is more convenient for our later evaluations.
Example. In (P), adjoint equation and variational inequality are given by

−�ϕ+ ϕ = y − yd + z∗ ◦ δ(0), ∂νϕ+ 3 y2ϕ = 0,∫
Γ

(αu+ ϕ)(u− u)dS ≥ 0 ∀|u| ≤ 1,

where δ(0) is the Dirac measure.
To shorten our notation, derivatives taken at (y, u, ϕ, λ, z∗) will be indicated by

a bar. For instance, Lyy, Lu(u − u) stand for the derivatives in (3.9) and (3.10),
respectively. Lyy[y1, y2] denotes the second order derivative of L in the directions
y1, y2 taken at (y, u, ϕ, λ, z∗). Moreover, Lww[w1, w2] is the second order derivative of
L in the directions w1 = (y1, u1), w2 = (y2, u2). If w1 = w2 = w, then we write for
short Lww[w,w] = Lww[w]2.
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SUFFICIENT SECOND ORDER OPTIMALITY CONDITIONS 1375

Next we provide some useful results on linearized versions of the state equation.
Regard first the linear system {−∆y + y = f in Ω,

∂νy + βy = g on Γ,
(3.12)

where β ∈ L∞(Γ) is nonnegative. For each pair (f, g) ∈ L1(Ω) × L1(Γ), this system
admits a unique solution y ∈ W 1,σ(Ω), where σ < n/(n − 1); see Casas [7]. (Notice
that a function of L1 can be considered as a Borel measure.) On the other hand,
the solution y of (3.12) belongs to H1(Ω) ∩ C(Ω) if (f, g) ∈ Lq(Ω) × Lp(Γ). This
regularity result is well known for domains with C1-boundary. Moreover, it remains
true for domains with Lipschitz boundary in the sense of Nečas [17] (see Stampacchia
[19] and Murthy and Stampacchia [16]). On account of this, the mapping D : (f, g) �→
(y, y|Γ) is continuous from L1(Ω) × L1(Γ) into Ls(Ω) × Lt(Γ) for s < n/(n − 2) and
t < (n− 1)/(n− 2). D is continuous also from Lq(Ω) × Lp(Γ) into L∞(Ω) × L∞(Γ).
We obtain these spaces by embedding results for W 1,σ(Ω) [1], [17], [20]. In both
cases, this mapping is linear and continuous. Interpolation theory applies to show the
following results for D considered as a mapping defined on L2(Ω)× L2(Γ):

y ∈



C(Ω), n = 2,
Lr(Ω) ∀r <∞, n = 3,

Lr(Ω) ∀r < 2n

n− 3
, n ≥ 4,

y|Γ ∈



C(Γ), n = 2,
Ls(Γ) ∀s <∞, n = 3,

Ls(Γ) ∀s < 2(n− 1)

n− 3
, n ≥ 4.

(3.13)

4. Regularity condition and linearization theorem. Let us recall that we
consider a fixed reference pair (y, u) satisfying, together with (ϕ, λ, z∗), the first order
necessary conditions (3.9)–(3.11).

The linearized cone of Uad at u is the set C(u) = {v ∈ L∞(Γ) | v = 1(u− u), 1 ≥
0, u ∈ Uad}. Let F = F (y) denote the mapping y �→ (F1(y), . . . , Fm(y))T from Y to
R
m. For convenience, we introduce the set of all feasible pairs

M = {w = (y, u) ∈ Y × Uad | y = G(u) and y satisfies the state-constraints}
(notice that G is the nonlinear control-state-mapping). Following Maurer and Zowe
[15], the linearized cone L(M, w) at w = (y, u) is defined by

L(M, w) = {w |w = (y, u), u ∈ C(u) and (y, u) satisfies (4.1)–(4.3)},
where {−∆y + y

∂νy
=
=

0 in Ω,
by(·, y, u)y + bu(·, y, u)u on Γ,

(4.1)

F ′(y)y = 0,(4.2)

E′(y)y ∈ K(E(y)).(4.3)

Here, K(E(y)) = {z ∈ Z | z = 1(κ − E(y)), 1 ≥ 0, κ ∈ K} is the conical hull of
K − E(y).

Remark 4.1. The choice Z = R
k, E(y) = (E1(y), . . . , Ek(y))

T , K = (Rk)− for
E : Y → Z is of particular interest. Then (4.3) reduces to

E′
i(y)y ≤ 0

for all active i ∈ {1, . . . , k}, that is for all i, where Ei(y) = 0 holds.
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1376 E. CASAS, F. TRÖLTZSCH, AND A. UNGER

Example. The linearized cone for (P) is the set of the following pairs (y, u): They
satisfy u ∈ C(u) and

−�y + y = 0, ∂νy + 3y2y = u,(4.4)

y(0) ≤ 0,(4.5)

if y(0) = y0 (active state constraint). If the state constraint is not active, then (4.5)
disappears.

The following regularity assumption (R) is basic for our further analysis: To
formulate (R) we combine the two state constraints to one general constraint. We
therefore take Z = R

m×Z, K = {0}×K, define T : Y → Z by T (y) = (F (y), E(y)),
and put K(T (y)) = {0}×K(E(y)). The regularity condition was introduced by Zowe
and Kurcyusz [23] and requires

(R) T ′(y)G′(u)C(u)−K(T (y)) = Z.

This condition is sufficient for the existence of a (nondegenerate) Lagrange mul-
tiplier associated to the state-constraint E(y) ∈ K; see [23]. We should emphasize
that (R) does not rely on the condition intK �= ∅. In Appendix 7.1 we shall present
some sufficient conditions for (R) which, however, require intK �= ∅. (R) is discussed
for the canonical example (P) there. For Z = R

k, K = (Rk)−, the condition (R) is
equivalent to the well-known Mangasarian–Fromowitz condition.

Theorem 4.2. Suppose that (R) is satisfied. Then for all pairs (ŷ, û) ∈ M there
is a pair (y, u) ∈ L(M, w) such that the difference r = (ry, ru) = (ŷ, û)−(y, u)−(y, u)
can be estimated by

‖r‖Y×L∞(Γ) ≤ CL,p‖û− u‖L∞(Γ)‖û− u‖Lp(Γ) ∀p > n− 1,(4.6)

‖r‖ ≤ CL,2‖û− u‖L∞(Γ)‖û− u‖L2(Γ),(4.7)

where ‖r‖ = ‖ry‖2 + ‖ru‖L2(Γ). In the particular case b(x, y, u) = b1(x, y) + b2(x)u
we have

‖r‖Y×L∞(Γ) ≤ CL,p‖û− u‖2
Lp(Γ) ∀p > n− 1.(4.8)

This theorem is proved in Appendix 7.2. Let us conclude this section by con-
sidering some useful estimates for L′′ and for certain remainder terms. First, we
evaluate

L′′
[(y1, u1), (y2, u2)] = L′′(y, u, ϕ, λ, z∗)[(y1, u1), (y2, u2)],

where L′′ denotes the second order derivative of L with respect to (y, u). We have

L′′
[(y1, u1), (y2, u2)] =

∫
Ω

fyy(·, y)y1y2 dx+

∫
Γ

(y1, u1)g
′′(·, y, u)(y2, u2)

T dS

+

∫
Γ

ϕ · (y1, u1)b
′′(·, y, u)(y2, u2)

T dS

+

m∑
i=1

λiF
′′
i (y)[y1, y2] + 〈z∗, E′′(y)[y1, y2]〉.

(4.9)
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SUFFICIENT SECOND ORDER OPTIMALITY CONDITIONS 1377

Example. In the case of (P), L′′
admits the form

L′′
[(y1, u1), (y2, u2)] =

∫
Ω

y1y2dx+

∫
Γ

(6ϕy y1y2 + αu1u2)dS.

The term connected with ϕ causes trouble, more precisely,

I =

∫
Γ

ϕ (byy(·, y, u)y1y2 + byu(·, y, u)(y1u2 + y2u1) + buu(·, y, u)u1u2) dS.(4.10)

An estimate of I is needed with respect to the norm ‖y‖2 + ‖u‖L2(Γ) (cf. (4.19)).
We therefore have to require at least ϕ ∈ L2(Γ) in the second item and ϕ ∈ L∞(Γ)
in the third one. On the other hand, only ϕ ∈ Lr(Γ) follows from ϕ ∈ W 1,σ(Ω) for
r < (n − 1)/(n − 2); see Nečas [17, p. 84]. For n = 2 we obtain ϕ ∈ Lr(Γ) for all
r <∞, while n = 3 yields the regularity ϕ ∈ Lr(Γ) for all r < 2. On account of this,
the following additional assumption is crucial for our analysis.

(A4) Let one of the following statements be true:
(i) ϕ ∈ L∞(Γ).
(ii) buu(x, y, u) = 0 on Γ × R

2 and, if n ≥ 3, then ϕ ∈ Lr(Γ) for some
r > n− 1.

(iii) buu(x, y, u) = byu(x, y, u) = 0 on Γ × R
2 and, if n ≥ 4, then ϕ ∈ Lr(Γ)

for some r > (n− 1)/2.
(iv) b′′(·, y, u) = 0.

We briefly comment on the consequences of these assumptions: (i) is true if
fy ∈ Lq(Ω), gy ∈ Lp(Γ) and if the restrictions of F ′

i , i = 1, . . . ,m, and E′(y)∗z∗

to Ω and Γ, respectively, belong to Lq(Ω), Lp(Γ), as well. Moreover, (i) holds for
functionals F ′

i , i = 1, . . . ,m, and E′(y)∗z∗ of C(Ω)∗, where the associated real Borel
measures are concentrated on the set A ⊂ Ω.

In addition to some assumptions on the regularity of ϕ for n ≥ 3, 4, (ii) requires
linearity of b with respect to u, that is b(x, y, u) = b0(x, y) + b1(x, y)u, (iii) means
that b(x, y, u) = b1(x, y)+ b2(x)u, while (iv) is true only for an affine-linear boundary
condition (but yet also true for a nonlinear functional F0).

(A4) is obviously satisfied in the example (P).
As a consequence of (A3) and (A4), pointwise state-constraints on the whole set

Ω can only be handled by the standard part of our theory if u appears linearly in
the boundary condition and n = 2. In the considerations below, we denote by rTi
the remainder terms associated with the ith order Taylor expansion of a mapping T .
For instance, the following first and second order expansions of b(x, y, u) are used at
triplets (x, y, u) and (x, y, u) ∈ R

n+2:

b(x, y, u)− b(x, y, u) = b′(x, y, u)(y − y, u− u) + rb1,(4.11)

where

rb1 = (bϑy − by)(y − y) + (bϑu − bu)(u− u)(4.12)

and bϑy , b
ϑ
u, by, bu denote by, bu taken at (x, y + ϑ(y − y), u + ϑ(u − u)) and (x, y, u),

respectively, with some ϑ ∈ (0, 1). Expanding the same expression up to the order
two, we have

b(x, y, u)− b(x, y, u) = b′(x, y, u)(y − y, u− u)
+

1

2
(y − y, u− u)b′′(x, y, u)

(
y − y
u− u

)
+ rb2,

(4.13)
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1378 E. CASAS, F. TRÖLTZSCH, AND A. UNGER

with the second order remainder term

rb2 =
1

2
(y − y, u− u)[b′′,ϑ − b′′](y − y, u− u)T .(4.14)

Here, b′′,ϑ, b
′′

denote the Hessian matrix of b with respect to (y, u) taken at the same
triplets as above. Due to our assumptions on b′ and b′′, the estimates

|rb1| ≤ CM (|y − y|2 + |u− u|2),(4.15)

|rb2| ≤ CM η(|y − y|+ |u− u|)(|y − y|2 + |u− u|2)(4.16)

are valid ∀ |y|, |y|, |u|, |u| ≤M . We continue with the discussion of the remainders rL1
and rL2 . A Taylor expansion of L gives

L(y, u, ϕ, λ, z∗)− L(y, u, ϕ, λ, z∗)
= Ly(y − y) + Lu(u− u) + rL1

= Ly(y − y) + Lu(u− u) +
1

2

(Lyy[y − y]2 + 2Lyu[y − y, u− u] + Luu[u− u]2
)
+ rL2 ,

where L indicates that L and its derivatives are taken at (y, u, ϕ, λ, z∗). We have

rL1 = (Lϑ
y − Ly)(y − y) + (Lϑ

u − Lu)(u− u)
rL2 =

1

2

(
(Lϑ

yy − Lyy)[y − y]2+ 2(Lϑ
yu − Lyu)[y − y, u− u] + (Lϑ

uu − Luu)[u− u]2
)
.

Lϑ indicates that (y+ ϑ(y− y), u+ ϑ(u− u), ϕ, λ, z∗) is substituted for (y, u, ϕ, λ, z∗)
in L′ and L′′ with some ϑ ∈ (0, 1). On account of the assumptions (A1)–(A4), we are
able to verify

|rL1 | ≤ CL(‖y − y‖2
2 + ‖u− u‖2

L2(Γ)),(4.17)

|rL2 | ≤ CL η(‖y − y‖C(Ω) + ‖u− u‖L∞(Γ))·(‖y − y‖2
2 + ‖u− u‖2

L2(Γ)),(4.18)

and

|L′′
[(y1, u1), (y2, u2)]| ≤ CL(‖y1‖2 + ‖u1‖L2(Γ))(‖y2‖2 + ‖u2‖L2(Γ)).(4.19)

The constant CL > 0 depends in particular on ϕ. For the definition of η we refer to
the assumption (A2). The analysis of (4.17)–(4.19) is performed in Appendix 7.3.

5. Standard second order sufficient optimality condition. Our main aim
is to establish sufficient optimality conditions close to the necessary ones derived
in Casas and Tröltzsch [8]. Therefore, we include also certain first order sufficient
optimality conditions. We shall combine an approach going back to Zowe and Maurer
[15] with a splitting technique introduced by Dontchev et al. [10]. The method of [10]
was focused on the optimal control of ordinary differential equations. It was extended
later by the authors in [9] to the case of elliptic equations without state-constraints.

In [15], Maurer and Zowe introduced first order sufficient optimality conditions
for differentiable optimization problems subject to a general constraint g(w) ≤ 0. For
our problem, the application of their approach in its full generality is rather techni-
cal. Therefore, in an initial step we incorporate the first order sufficient optimality
condition only for the constraints on the control. Later, we shall deal in the same way
with additional state-constraints.
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SUFFICIENT SECOND ORDER OPTIMALITY CONDITIONS 1379

The role of first order sufficient conditions can be explained most easily by the
minimization problem {min f(x) |xa ≤ x ≤ xb}, where f : R

n → R is of class C2.
Let x̄ satisfy the first order necessary conditions (variational inequality). If n = 1,
then f ′(x̄) �= 0 implies that x̄ is a local minimizer (even for concave f). Therefore,
the second order sufficient optimality condition f ′′(x̄) > 0 is needed only in the case
f ′(x̄) = 0, where the first order necessary condition is not sufficient. The situation is
similar for n > 1: The positive definiteness of f ′′(x̄) has to be required only on the
subspace {x ∈ R

n |xi = 0 if Dif(x̄) �= 0}.
Define for fixed τ > 0 (arbitrarily small) the set

Γτ = {x ∈ Γ | |gu(x, y(x), u(x)) + ϕ(x)bu(x, y(x), u(x))| ≥ τ}.

Γτ is a subset of “strongly active” control constraints (cf. (3.5)). In other words, Γτ =
{x ∈ Γ| |Lu(ȳ, ū, ϕ̄, λ̄, z̄

∗)(x)| ≥ τ} is the set, where the gradient of the objective
(expressed as a function of the control) is sufficiently steep. In the example above, τ
can be chosen as the minimal value of all nonvanishing |Dif(x̄)|.

We mention at this point the relation

〈z∗, E′(y)y〉 ≤ 0(5.1)

∀ (y, u) ∈ L(M, w), which follows from 〈z∗, E′(y)y〉 = 1〈z∗, κ− E(y)〉 ≤ 0 in view of
(3.4).

Let Pτ : L∞(Γ) → L∞(Γ) denote the projection operator u �→ χΓ\Γτ
u = Pτu. In

other words, (Pτu)(x) = u(x) holds on Γ \ Γτ , while (Pτu)(x) = 0 holds on Γτ . We
begin with our first and at the same time simplest second order sufficient optimality
condition.
(SSC) There exist positive numbers τ and δ such that

L′′(y, u, ϕ, λ, z∗)[w2, w2] ≥ δ‖u2‖2
L2(Γ)(5.2)

holds for all pairs w2 = (y2, u2) constructed in the following way: For every
w = (y, u) ∈ L(M, w), we split up the control part u in u1 = (u− Pτu) and
u2 = Pτu. The solutions of the linearized state equation{−∆yi + yi = 0 in Ω,

∂νyi = by(·, y, u)yi + bu(·, y, u)ui on Γ
(5.3)

associated with ui are denoted by yi, i = 1, 2. By this construction, we get
the representation w = w1 + w2 = (y1, u1) + (y2, u2).

Remark 5.1. The coercitivity condition (5.2) of (SSC) is required on the whole
set L(M, w) if Γτ is empty. This rather strong second order condition is obtained by
the formal setting τ = ∞.

Theorem 5.2. Let the feasible pair w = (y, u) satisfy the regularity condition
(R), the first order necessary optimality conditions (3.9)–(3.11), and the second order
sufficient optimality condition (SSC). Suppose further that the general assumptions
(A1)–(A4) are satisfied. Then there are constants 1 > 0 and δ′ > 0 such that

F0(ŷ, û) ≥ F0(y, u) + δ′‖û− u‖2
L2(Γ)(5.4)

holds for all feasible pairs ŵ = (ŷ, û) such that

‖û− u‖L∞(Γ) < 1.(5.5)
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1380 E. CASAS, F. TRÖLTZSCH, AND A. UNGER

Proof. We denote by l̄ = (ϕ, λ, z∗) the triplet of Lagrange multipliers appearing
in the first order necessary optimality conditions. Let an arbitrary feasible pair ŵ =
(ŷ, û) be given. Then

F0(ŵ)− F0(w) = L(ŵ, l̄)− L(w, l̄)− 〈z∗, E(ŷ)− E(ȳ)〉(5.6)

follows from F (ŵ) = F (w) = 0. The complementary slackness condition implies

−〈z∗, E(ŷ)− E(ȳ))〉 ≥ 0.

Hence we can neglect this term, and a second order Taylor expansion yields

F0(ŵ)− F0(w) ≥ L(ŵ, l̄)− L(w, l̄)

≥
∫

Γ

lu (û− u) dS +
1

2
L′′(w, l̄)[ŵ − w]2 + rL2 (w, ŵ − w),

where lu(x) = gu(x, y(x), u(x))+ϕ(x)bu(x, y(x), u(x)). Using the variational inequal-
ity, we find

F0(ŵ)− F (w) ≥ τ
∫

Γτ

|û− u| dS +
1

2
L′′(w, l̄)[ŵ − w]2 + rL2 (w, ŵ − w).(5.7)

Let us introduce for convenience the bilinear form B = L′′(w, l̄). Next we ap-
proximate ŵ − w by w = (y, u) ∈ L(M, w), according to Theorem 4.2. In this way
we get a remainder r = (ry, ru) = ŵ − w − w satisfying the estimate

‖r‖ ≤ CL‖û− u‖L∞(Γ)‖û− u‖L2(Γ).(5.8)

It follows that B[ŵ − w]2 = B[w]2 + 2B[r, w] + B[r]2. We have w ∈ L(M, w); hence
(SSC) applies to B[w]2. Now we substitute in B[w]2 the representation w = w1 +w2

described in (SSC) and deduce

B[w]2 = B[w2]
2 + 2B[w1, w2] +B[w1]

2

≥ δ‖u2‖2
L2(Γ) − 2CL(‖y1‖2 + ‖u1‖L2(Γ))(‖y2‖2 + ‖u2‖L2(Γ))

−CL(‖y1‖2 + ‖u1‖L2(Γ))
2

from (SSC) and (4.19). In the following, c will denote a generic constant. Suppose
that 1 < 1 is given and assume ‖û − u‖L∞(Γ) < 1. Then ‖yi‖2 ≤ c‖ui‖L2(Γ) and
Young’s inequality together yield

B[w]2 ≥ δ‖u2‖2
L2(Γ) −

δ

2
‖u2‖2

L2(Γ) − c‖u1‖2
L2(Γ)

≥ δ

2

∫
Γ\Γτ

u2 dS − c
∫

Γτ

u2 dS

≥ δ

2

∫
Γ\Γτ

|û− u|2 dS − c
∫

Γ\Γτ

|û− u| |ru| dS − c
∫

Γτ

|û− u|2 dS

−c
∫

Γτ

|û− u| |ru| dS − c
∫

Γτ

|ru|2 dS.

(5.9)

The expression under the third integral is estimated by ‖û − u‖L∞(Γ)|û − u|. In the
other integrals (except the first) we insert (5.8) and derive

B[w]2 ≥ δ

2

∫
Γ\Γτ

|û− u|2 dS − c1
∫

Γτ

|û− u| dS − c1‖û− u‖2
L2(Γ).(5.10)
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SUFFICIENT SECOND ORDER OPTIMALITY CONDITIONS 1381

The treatment of B[r, w] and B[r]2 is simpler. We find

|B[r, w]| ≤ c‖r‖‖u‖L2(Γ) = c‖r‖‖û− u+ ru‖L2(Γ)

≤ c1‖û− u‖2
L2(Γ).

The same type of estimate applies to B[r]2. Altogether,

B[ŵ − w]2 ≥ δ

2

∫
Γ\Γτ

|û− u|2 dS − c1
∫

Γτ

|û− u| dS − c1‖û− u‖2
L2(Γ)(5.11)

is obtained. By substituting (5.11) in (5.7), we get

F0(ŵ)− F0(w) ≥ (τ − c1)
∫

Γτ

|û− u| dS +
δ

2

∫
Γ\Γτ

|û− u|2 dS − c1‖û− u‖2
L2(Γ)

−|rL2 (w, ŵ − w)|
≥ τ

2

∫
Γτ

|û− u| dS +
δ

2

∫
Γ\Γτ

|û− u|2 dS − c1‖û− u‖2
L2(Γ)

−|rL2 (w, ŵ − w)|.

Since ‖û − u‖L∞(Γ) ≤ 1 was assumed, |û − u| ≥ |û − u|2 holds a.e. Using this in the
first integral, setting δ′ = min{τ/2, δ/2}, and substituting the estimate (4.18) for rL2 ,
we complete our estimation by

F0(ŵ)− F0(w) ≥ ‖û− u‖2
L2(Γ)(δ

′ − c1− η(c‖û− u‖L∞(Γ)))

≥ δ′

2
‖û− u‖2

L2(Γ)

for sufficiently small 1 > 0.
Our condition (SSC) does not have the form expected from a comparison with

second order conditions in finite dimensional spaces. In particular, the pair (y2, u2)
constructed in (SSC) does not in general belong to L(M, w). To overcome this diffi-
culty, we introduce another regularity condition (R)τ that is stronger than (R). This
new constraint qualification is similar to that one used in Casas and Tröltzsch [8] to
derive second order necessary conditions.

Let Cτ (u) denote the set of controls u ∈ C(u) having the property u(x) = 0 if
x ∈ Γτ . We strengthen (R) to

(R)τ T ′(y)G′(u)Cτ (u)−K(T (y)) = Z.

On using (R)τ , we are able to show that the following second order sufficient
optimality condition implies (5.4) as well.
(SSC)τ There exist positive numbers τ and δ such that

L′′(y, u, ϕ, λ, z∗)[w,w] ≥ δ‖u‖2
L2(Γ)(5.12)

holds for all pairs w = (y, u) of L(M, w) with the property u(x) = 0 for
almost every x ∈ Γτ .

Theorem 5.3. Let the assumptions of Theorem 5.2 be fulfilled, where (R) and
(SSC) are replaced by (R)τ and (SSC)τ . Then the assertion of Theorem 5.2 remains
true.
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1382 E. CASAS, F. TRÖLTZSCH, AND A. UNGER

Proof. The proof is almost identical to that of Theorem 5.2. The only difference
consists in a more detailed splitting. In the first part of the proof we repeat the steps
up to the splitting w = w1 + w2 after (5.8). Define Φ = T ◦G. Then we have

Φ′(u)(u1 + u2) ∈ K(Φ(u)),

as w1 + w2 ∈ L(M, w). Therefore,

Φ′(u)u2 ∈ K(Φ(u))− Φ′(u)u1

holds so that w2 = (y2, u2) does not in general belong to the linearized cone. Thanks
to the regularity condition (R)τ , the linear version of the Robinson–Ursescu theorem
(see Robinson [18]) implies the existence of uH in Cτ (u) with the following properties:
The inclusion

Φ′(u)uH ∈ K(Φ(u))

holds, and

‖u2 − uH‖L2(Γ) ≤ c‖u1‖L2(Γ)(5.13)

is satisfied (see the proof of Theorem 4.2 in the appendix). In other words, we find a
pair wH = (yH , uH) in L(M, w) with uH = 0 on Γτ . Hence, (SSC) applies to B[wH ]2.
Moreover, the control uH is sufficiently close to u2.

Now we define ũ2 = uH and ũ1 = u1 + (u2 − uH). Further, let ỹi = G′(u)ũi
denote the corresponding solution of the linearized state equation. Then w̃i = (ỹi, ũi)
is substituted for wi = (yi, ui), i = 1, 2. The only difference between the proofs of
Theorem 5.2 and 5.3 appears between the formulas and (5.8) and (5.9): We use the
splitting w = w̃1 + w̃2 instead of w = w1 +w2. Moreover, the first line of the estimate
(5.9) is changed as follows:

B[w]2 ≥ δ ‖ũ2‖2
L2(Γ) −

δ

4
‖ũ2‖2

L2(Γ) − c ‖ũ1‖2
L2(Γ)

≥ 3δ

4
‖u2 + (uH − u2)‖2

L2(Γ) − c ‖u1 + (u2 − uH)‖2
L2(Γ)

≥ δ

2
‖u2‖2

L2(Γ) − c ‖u1‖2
L2(Γ),

where we have used the estimate (5.13). Then we proceed word for word as in the
proof of Theorem 5.2.

Example. Let us briefly comment on (SSC) in the case of (P) for an active state
constraint y(0) = y0. Then L(M, w) is expressed through (4.4), (4.5), and a quite
strong second order condition is formulated by

L′′
(y, u, ϕ, z∗)[w,w] ≥ δ‖u‖2

L2(Γ)(5.14)

for all w = (y, u) ∈ L(M, w). In this way, we would not take advantage of strongly
active control constraints. These constraints appear on Γτ = {x ∈ Γ | |αu(x)+ϕ(x)| ≥
τ |}. We split (y, u) = (y1, u1) + (y2, u2), where u2 = 0 on Γτ and u1 = 0 on Γ \ Γτ .
(SSC) requires the coercitivity condition (5.14) only for (y2, u2), while (y1, u1) is
handled by first order sufficient optimality conditions. Notice that y2 might violate
the state-constraint y(x0) ≤ 0. We avoid this by (SSC)τ : It requires the coercitivity
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SUFFICIENT SECOND ORDER OPTIMALITY CONDITIONS 1383

condition for the following u ∈ C(u): They vanish on Γτ and satisfy together with the
associated solution y of the linearized partial differential equation the state-constraint
y(x0) ≤ 0.

The paper [15] shows that “strongly active” state-constraints may also contribute
terms to the first order sufficient optimality conditions. However, this leads to a
rather technical construction and more restrictive assumptions. We have to suppose
that the function b is linear with respect to the control u and n = 2. The corresponding
theorem is stated below. Define for fixed β > 0 and τ > 0 the following subset of
L(M, w):

Lβ,τ (M, w) = {w |w = (y, u) ∈ L(M, w) and w satisfies (5.15) below}.

The decisive inequality characterizing Lβ,τ is

〈z∗, E′(y)y〉 ≥ −β
∫

Γ\Γτ

|u(x)| dS(x).(5.15)

Lβ,τ (M, w) is the subset of L(M, w), where the term 〈z∗, E(y)〉 does not much con-
tribute to the first order sufficient optimality condition. It is only this set Lβ,τ (M, w̄)
where we have to require second order conditions, namely, the following condition.
(SSC′) There exist positive numbers β, τ , and δ such that

L′′(y, u, ϕ, λ, z∗)[w2, w2] ≥ δ‖u2‖2
L2(Γ)(5.16)

holds for all w2 = (y2, u2) obtained in the same way introduced in (SSC) by
elements w taken from the smaller set Lβ,τ (M, w).

Using this condition, we formulate the following.
Theorem 5.4. Let the feasible pair w = (y, u) satisfy the regularity condition

(R), the first order necessary optimality conditions (3.9)–(3.11), and the second order
sufficient optimality condition (SSC′). Suppose further that the general assumptions
(A1)–(A4) are satisfied. Moreover, assume that n = 2 and b(x, y, u) = b1(x, y) +
b2(x)u. Then there are constants 1 > 0 and δ′ > 0 such that

F0(ŷ, û) ≥ F0(y, u) + δ′‖û− u‖2
L2(Γ)(5.17)

holds for all feasible pairs ŵ = (ŷ, û) satisfying

‖û− u‖L∞(Γ) < 1.(5.18)

Proof. We begin in the way we have shown Theorem 5.2 by

F0(ŵ)− F0(w) = L(ŵ, l̄)− L(w, l̄)− 〈z∗, E(ŷ)− E(ȳ)〉.(5.19)

Once again, the representation ŵ−w = w+r is obtained. Now we distinguish between
two cases.

Case I: w = (y, u) ∈ L(M, w)\Lβ,τ (M, w). This is the case where we deduce
(5.17) from first order sufficiency. Here, the inequality

−〈z∗, E′(y)y〉 > β
∫

Γ\Γτ

|u(x)| dS(x)(5.20)
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1384 E. CASAS, F. TRÖLTZSCH, AND A. UNGER

is fulfilled. We transform (5.19) as follows:

F0(ŵ)− F0(w) = L′(w, l̄)(ŵ − w) + rL1 (w, ŵ − w)− 〈z∗, E(ŷ)− E(y)〉
= Ly(w, l̄)(ŷ − y) + Lu(w, l̄)(û− u)− 〈z∗, E′(y)(ŷ − y)〉

+rL1 (w, ŵ − w)− 〈z∗, rE1 (y, ŷ − y)〉
= 0 +

∫
Γ

lu(x)(û(x)− u(x)) dS(x)− 〈z∗, E′(y)y〉

+rL1 (w, ŵ − w)− 〈z∗, E′(y)ry + rE1 (y, ŷ − y)〉,(5.21)

where lu(x) stands for gu(x, y(x), u(x)) + ϕ(x)bu(x, y(x), u(x)).
Owing to n = 2 and b(x, y, u) = b1(x, y)+ b2(x)u, we are able to apply the strong

estimate (4.8) with p = 2. This yields

‖r‖Y×L∞(Γ) ≤ CL,2‖û− u‖2
L2(Γ).(5.22)

By Theorem 4.2, (5.22), (4.17), and (A3 (ii)) we have

max{‖ry‖2, |rL1 |, ‖rE1 ‖Z} ≤ c(‖ŷ − y‖2
2 + ‖û− u‖2

L2(Γ)).

Now the Lipschitz property of the mapping u �→ y(u) = G(u) from L2(Γ) into C(Ω)
(note that n = 2) permits us to estimate the last three items of (5.21) by c ‖û−u‖2

L2(Γ).

(5.20) is applied to the second one, while the first one is treated by Γτ : We know that

lu(x)(û(x)− u(x)) ≥ 0 a.e. on Γ;

hence∫
Γ

lu (û− u) dS ≥
∫

Γτ

lu(û− u) dS =

∫
Γτ

|lu| |û− u| dS ≥ τ
∫

Γτ

|û− u| dS.

Inserting this in (5.21) we continue with

F0(ŵ)− F0(w) ≥ τ
∫

Γτ

|û− u| dS + β

∫
Γ\Γτ

|u| dS − c‖û− u‖2
L2(Γ)

≥ τ
∫

Γτ

|û− u| dS + β

∫
Γ\Γτ

|û− u| dS − c‖û− u‖2
L2(Γ)

in view of ‖ru‖L∞(Γ) ≤ c‖û− u‖2
L2(Γ). Proceeding with the estimation, we deduce

F0(ŵ)− F0(w) ≥ min{β, τ}‖û− u‖L1(Γ) − c1‖û− u‖L1(Γ)

≥ β′‖û− u‖L1(Γ)

with some β′ > 0, provided that ‖û−u‖L∞(Γ) ≤ 1 ≤ 11 is fulfilled and 11 is sufficiently
small. Assume additionally that 11 ≤ 1. Then |û− u|2 ≤ |û− u| holds a.e.; hence

F0(ŵ)− F0(w) ≥ β′‖û− u‖2
L2(Γ)(5.23)

follows for ‖û− u‖L∞(Γ) ≤ 11.
Case II: w ∈ Lβ,τ (M, w) (partial use of first order sufficient optimality condi-

tions). Here, we neglect the term 〈z∗, E(ŷ) − E(y)〉 and proceed word for word as in
the proof of Theorem 5.2, using Lβ,τ instead of L.
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SUFFICIENT SECOND ORDER OPTIMALITY CONDITIONS 1385

Remark 5.5. Unfortunately, the definition of Lβ,τ (M, w) is not constructive. It
is difficult to describe in an explicit way which (y, u) ∈ L(M, w) belong to the different
cases I or II. Therefore, this type of first order sufficient condition is only of limited
value (see, for instance, the next example).

Example. To illustrate (SSC′) for (P) in comparison with (SSC), let us assume for
simplicity u ∈ intUad, hence Γτ = ∅. Then (SSC) requires the coercitivity condition
(5.14) on the whole set L(M, w). If y(0) = y0 and z∗ > 0 (strong complementarity),
then (SSC′) is weaker than (SSC): (5.14) is not needed for all (y, u) ∈ L(M, w)
satisfying

−z∗y(0) ≥ β
∫

Γ

|u(x)|dS.(5.24)

Assume that y can be represented by a positive Green’s function G = G(x, ξ),

y(0) =

∫
Γ

G(0, ξ)u(ξ)dS(ξ),

such that G(0, ξ) ≥ γ > 0 on Γ. Then (5.24) is fulfilled with β = z∗γ ∀ u ≤ 0.
Moreover, all u ≥ 0, u �= 0 do not contribute to L(M, w). Therefore, the coercitivity
condition (5.14) is needed only for all u having positive and negative parts U+ and
U−, where U+ dominates U−. However, this information does not essentially improve
(SSC).

Remark 5.6. Theorem 5.2 follows from Theorem 5.4 by setting β = 0, where we
can avoid the restrictions n = 2 and b(x, y, u) = b1(x, y) + b2(x)u.

The cone C(u) is defined by C(u) = {ρ(u − u) |u ∈ Uad, ρ ≥ 0}. Its closure in
L2(Γ) is

cl C(u) = {v ∈ L2(Γ) | v(x) ≤ 0 if u(x) = ub(x), v(x) ≥ 0, if u(x) = ua(x)}.
Let us redefine L(M, w) by substituting cl C(u) for C(u) and require (SSC) in this
form. Then (SSC) appears to be stronger, and Theorem 5.2 holds as well, since
cl C(u) ⊃ C(u). However, it can be proved by (R) and the generalized open mapping
theorem that (SSC) based on cl C(u) is in fact equivalent to (SSC) established with
C(u). This follows by continuity arguments.

6. Extended second order conditions. A study of the preceding sections
reveals that (SSC) is sufficient for local optimality in any dimension of Ω without
restrictions on the form of the nonlinear function b, whenever (A3) is satisfied and
ϕ ∈ L∞(Γ). ϕ is bounded and measurable if pointwise state-constraints are given only
in compact subsets of Ω with the other quantities being sufficiently smooth. In two-
dimensional domains, pointwise state-constraints can be imposed on Ω̄, if b(x, y, u) is
linear with respect to u. An extension to ϕ ∈ Lr(Γ) requires stronger assumptions on
b. However, we shall briefly sketch in this section that some extended form of (SSC)
may partially improve the results for n ≤ 3.

Let us assume ϕ /∈ L∞(Γ). Then it seems to be natural to introduce in L∞(Γ)
another norm

‖u‖ϕ =

(∫
Γ

(1 + |ϕ(x)|)u2(x) dS(x)

)1/2

.

This definition is justified, as u ∈ L∞(Γ) and y ∈ C(Ω) holds in all parts of our paper.
For ϕ ∈ L∞(Γ), the new norm is equivalent to ‖u‖L2(Γ). To get rid of the restrictions
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1386 E. CASAS, F. TRÖLTZSCH, AND A. UNGER

imposed on b in (A4) we redefine the set of strongly active control constraints Γτ by

Γτ,ϕ = {x ∈ Γ | |gu(x, y(x), u(x)) + ϕ(x)bu(x, y(x), u(x))| ≥ τ(1 + |ϕ(x)|)}.(6.1)

Moreover, we substitute the condition

L′′(y, u, ϕ, λ, z∗)[w2, w2] ≥ δ‖u2‖2
ϕ(6.2)

for (5.2). If ϕ /∈ L∞(Γ), then (6.2) is stronger than (5.2). On the other hand, the
term

∫
Γ
ϕbuuu

2
2dS contributes to L′′. (SSC) implies (at least) the nonnegativity of

ϕbuu; hence ∫
Γ

ϕbuuu
2
2dS =

∫
Γ

|ϕ| |buu|u2
2dS ≥ κ

∫
Γ

|ϕ|u2
2dS

holds, provided that |buu| ≥ κ. In view of this, (6.2) appears quite natural.
Now Theorem 5.2 remains true for n ≤ 3 without assumption (A4).
This statement is easy to verify. Apart from the estimates (4.17)–(4.19), our

theory is not influenced by introducing ‖u‖ϕ. The discussion of (4.17)–(4.19) is the
decisive point. We are able to replace ‖·‖L2(Γ) by ‖·‖ϕ there, as the basic inequalities
(7.14)–(7.16) (Appendix 7.3) can be slightly reformulated: (7.14) is nothing more
than ∫

Γ

|ϕ|u2dS ≤ ‖u‖2
ϕ,(6.3)

while (7.16) remains unchanged (n = 2, 3). Only (7.15) has to be substituted by

∫
Γ

|ϕ| |y| |u| dS =

∫
Γ

|ϕ|1/2|y| |ϕ|1/2|u| dS ≤ ‖u‖ϕ
(∫

Γ

|ϕ|y2dS

)1/2

≤ ‖ϕ‖1/2

Ls/(s−2)(Γ)
‖y‖Ls(Γ)‖u‖ϕ.(6.4)

Here we have invoked (7.15) for sufficiently large s (n = 2, 3). Now a careful study of
the proof of Theorem 5.2 shows that (A4) can be removed on using (6.3) and (6.4).
Assuming (6.2), we arrive at the estimate (5.4) with ‖û−u‖2

ϕ instead of ‖û−u‖2
L2(Γ).

Then (5.4) follows from ‖u‖ϕ ≥ ‖u‖L2(Γ). The same arguments apply to the first
order sufficient conditions in Theorem 5.4 for n = 2 if we redefine Lβ,τ (M, w) by
substituting for (5.15) the inequality

〈z∗, E′(y)y〉 ≥ −β
∫

Γ\Γτ

(1 + |ϕ|)|u| dS.(6.5)

7. Appendix.

7.1. On the regularity condition. Regard the state equation (4.1) linearized
at (y, u). Let Ŷ ⊂ H1(Ω) be the set of all solutions of this equation associated to
u ∈ L∞(Γ). In other words, we have Ŷ = G′(u)L∞(Γ). (R) is satisfied in the following
particular cases.

(a) K = Z (no inequality constraints). Then (R) means F ′(y)G′(u)C(u) = R
m.

This condition is satisfied if, in addition to the surjectivity property F ′(y)Ŷ = R
m,

the following holds: There is a ũ ∈ intL∞(Γ) Uad with F ′(y)ỹ = 0. Here, ỹ denotes
the solution of the linearized state equation (4.1) associated with ũ − u, that is,
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SUFFICIENT SECOND ORDER OPTIMALITY CONDITIONS 1387

ỹ = G′(u)(ũ− u). The proof follows from [22, Lemma 1.2.2].
(b) F = 0 (no equality constraints). In this case, (R) is read as E′(y)G′(u)C(u)−

K(E(u)) = Z. Once again, (R) is implied by two separate conditions: We assume
E′(y)Ŷ − K(E(y)) = Z and require the existence of an ũ ∈ intL∞(Γ) Uad with the
property that E′(y)ỹ ∈ K(E(y)) holds at ỹ = G′(u)(ũ − u) [22, Lemma 1.2.2]. It
should be mentioned that case (a) follows from (b).

Example. (P) is worth discussing in this context. If the state constraint y(0) ≤ y0
is not active at y, then (R) is obviously satisfied. Therefore, we assume y(0) = y0 and
get K(E(y)) = {z ∈ R | z ≤ 0} = R

−. Then E′(y)Ŷ −K(E(y)) = Z reduces to the
following requirement: For every z ∈ R

− there exists a function u ∈ L∞(Γ) such that
the equation y(0) = z is satisfied by the corresponding solution y of the linearized
equation (4.4). This property is fulfilled, since we may find at least one u ∈ L∞(Γ)
such that y(0) �= 0. Hence, (R) is implied by the following conditions: There are
ũ ∈ L∞(Γ) and ε > 0 such that |ũ| ≤ 1 − ε holds and that the solution ỹ of (4.4)
corresponding to ũ− u satisfies ỹ(0) ≤ 0.

(c) General case. Let us assume intZ K �= ∅ and intL∞(Γ) Uad �= ∅. We require
the surjectivity property

F ′(y)Ŷ = R
m.(7.1)

Moreover, assume the existence of a ũ ∈ intL∞(Γ) Uad such that

E(y) + E′(y)ỹ ∈ intZ K,(7.2)

F ′(y)ỹ = 0(7.3)

holds for ỹ = G′(u)(ũ− u). Then (R) is fulfilled. To show this, we first mention the
simple fact that z̃ ∈ intZ K implies z̃+ z/1 ∈ K for arbitrary z ∈ Z if 1 is sufficiently
large. We have to verify that the system

F ′(y)y = z1,(7.4)

E′(y)y − 1(k − E(y)) = z2(7.5)

is solvable ∀ z1 ∈ R
m, z2 ∈ Z by some y ∈ G′(u)C(u), k ∈ K, and 1 ≥ 0: From (7.1)

we find u1 ∈ L∞(Γ) such that y1 = G′(u)u1 solves the equation

F ′(y)y1 = z1.

Now we add to y1 a multiple of ỹ. Then

F ′(y)(y1 + 1ỹ) = F ′(y)y1 = z1

is obtained from (7.3). Consequently, (7.4) holds for y = y1 + 1ỹ. Moreover, we
deduce from (7.2) for sufficiently large 1 that

E(y) + E′(y)ỹ − 1

1
(z2 − E′(y)y1) = k ∈ K.

This relation is equivalent to

E′(y)(y1 + 1ỹ)− 1(k − E(y)) = z2.

Therefore, (7.5) is satisfied by y = y1+1ỹ. Furthermore, u1+1(ũ−u) = 1(ũ+(1/1)u1−
u) ∈ C(u) holds for sufficiently large 1. This is true, since ũ + (1/1)u1 ∈ Uad for 1
large enough (notice that ũ ∈ intL∞(Γ) Uad). Thus we have also shown y ∈ G′(u)C(u).
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1388 E. CASAS, F. TRÖLTZSCH, AND A. UNGER

7.2. Proof of the linearization theorem. To prove Theorem 4.2 we need the
following auxiliary result.

Lemma 7.1. Let u, û ∈ Uad be given with associated states y, ŷ defined by (2.2).
Introduce y ∈ Y as the solution of the linearized state equation{−∆y + y = 0 in Ω,

∂νy = by(·, y, u)y + bu(·, y, u)(û− u) on Γ.
(7.6)

Then the estimates

‖ŷ − y − y‖Y ≤ Cp‖û− u‖L∞(Γ)‖û− u‖Lp(Γ) ∀p > n− 1,(7.7)

‖ŷ − y − y‖2 ≤ C2‖û− u‖L∞(Γ)‖û− u‖L2(Γ)(7.8)

are satisfied with certain constants Cp, C2. If bu(x, y, u) does not depend on y and u,
then we have

‖ŷ − y − y‖Y ≤ Cp‖û− u‖2
Lp(Γ) ∀p > n− 1.(7.9)

Proof. We use the first order expansion of b at (x, y, u) and obtain from (2.2),
(7.6), and (4.11) the system

−∆(ŷ − y − y) + (ŷ − y − y) = 0 in Ω,

∂ν(ŷ − y − y)− by(·, y, u)(ŷ − y − y) = rb1 on Γ,

where

|rb1(x)| ≤ CM (|ŷ(x)− y(x)|2 + |û(x)− u(x)|2)
and M depends on Uad (notice that the boundedness of Uad implies a uniform bound
on all admissible states). Therefore, the discussion of (3.12) yields for p > n− 1

‖ŷ − y − y‖Y ≤ c‖rb1‖Lp(Γ)

≤ c
((∫

Γ

|ŷ − y|2pdS
) 1

p

+

(∫
Γ

|û− u|2pdS
) 1

p

)
.

The mapping u �→ y = G(u) is Lipschitz from Lp(Γ) to C(Ω) for p > n − 1. If
p = 2, then the Lipschitz property holds in the norm ‖y‖2 for y. For p > n − 1, we
continue by

‖ŷ − y − y‖Y ≤ c
(
‖û− u‖2

Lp(Γ) + ‖û− u‖L∞(Γ)‖û− u‖Lp(Γ)

)
,

while p = 2 yields only

‖ŷ − y − y‖2 ≤ c‖û− u‖L∞(Γ)‖û− u‖L2(Γ).

We have shown (7.7) and (7.8). If bu does not depend on (y, u), then bu(·, y + ϑ(ŷ −
y), u+ ϑ(û− u)) = bu(·, y, u); hence

|rb1| = |(bϑy − by)(ŷ − y)| ≤ c|ŷ − y|2.
This yields

‖rb1‖Lp(Γ) ≤ c
(‖ŷ − y‖C(Γ)‖ŷ − y‖Lp(Γ)

) ≤ c‖û− u‖2
Lp(Γ),
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SUFFICIENT SECOND ORDER OPTIMALITY CONDITIONS 1389

that is, (7.9).
Proof of Theorem 4.2. Define v = û−u and let ỹ denote the solution of the linear

system (4.1) associated to u := v. We have ỹ = G′(u)v, where G : L∞(Γ) → Y is the
control-state mapping u �→ y = G(u) for the nonlinear system (2.2). By Lemma 7.1,

‖ŷ − y − ỹ‖Y ≤ e(v),(7.10)

where e(v) denotes the right-hand side of the estimates (7.7) and (7.9), respectively,
depending on the assumptions on b. Let us introduce the mapping Φ(u) = T (G(u)).
Its derivative is Φ′(u)v = T ′(y)G′(u)v, and the regularity condition (R) can be rewrit-
ten as

Φ′(u)C(u)−K(Φ(u)) = Z.

We know that Φ(û) ∈ K, hence a Taylor expansion yields

Φ(û) = Φ(u) + Φ′(u)(û− u) + rΦ1 ,(7.11)

where the norm of rΦ1 can be estimated by

‖rΦ1 ‖Z ≤ c e(v).(7.12)

Since Φ(û) and k = Φ(u) belong to K, (7.11) implies Φ′(u)(û−u)+ k+ rΦ1 ∈ K; thus
also

Φ′(u)(û− u) ∈ −rΦ1 +K(Φ(u)).(7.13)

In other words, we have û−u ∈ C(u) and Φ′(u)(û−u) ≤K(Φ(u)) −rΦ1 , where z ≥K(Φ(u))

0 is defined by z ∈ K(Φ(u)). Owing to (R), this inequality is regular in the sense of
Robinson [18]. Therefore, we are able to apply the linear version of the Robinson–
Ursescu theorem (see [18]): It implies the existence of a constant CR > 0 and a
u ∈ C(u) satisfying ‖u− (û− u)‖L∞(Γ) ≤ CR‖rΦ1 ‖Z together with

Φ′(u)u ∈ K(Φ(u)).

Consequently, for y = G′(u)u, we have (y, u) ∈ L(M, w) and

‖u− (û− u)‖L∞(Γ) ≤ c̃e(v).

The estimates stated in (4.6) and (4.8) follow immediately.
(4.7) is proved completely analogous. Here, e(v) is defined by (7.8), ‖ · ‖Y is to

be replaced by ‖ · ‖2, and ‖ · ‖L2(Γ) is to be substituted for ‖ · ‖L∞(Γ). We rely on the
continuity of Φ′(y) in the L2-norm.

7.3. Estimates of the Lagrange function. In this subsection we derive the
estimates (4.17)–(4.19) for rL1 , rL2 , and L′′. They depend mainly on the estimation of
I defined in (4.10), which is performed by the discussion of the following integrals:∫

Γ

|ϕ|u2 dS ≤ c‖u‖2
L2(Γ),(7.14)

provided that assumption (A4 (i)) is fulfilled, and
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1390 E. CASAS, F. TRÖLTZSCH, AND A. UNGER

∫
Γ

|ϕ| |y| |u| dS ≤ c‖ϕy‖L2(Γ)‖u‖L2(Γ) ≤ c‖ϕ2‖1/2

L(s/2)′ (Γ)
‖y2‖1/2

Ls/2(Γ)
‖u‖L2(Γ)

≤ c‖ϕ‖L2s/(s−2)(Γ)‖y‖Ls(Γ)‖u‖L2(Γ).(7.15)

These estimates are justified by (A4 (ii)): For n = 2 we know y ∈ C(Γ) and ϕ ∈ Lr(Γ)
∀r <∞. If n ≥ 3, then y ∈ Ls(Γ) holds ∀ s < 2(n− 1)/(n− 3) (including s <∞ for
n = 3). The function 2s/(s − 2) = 2/(1 − 1/s) is monotone decreasing. Therefore,
s ↑ 2(n− 1)/(n− 3) implies 2s/(s− 2) ↓ n− 1, so that ϕ ∈ Lr(Γ) for some r > n− 1
justifies (7.15) with a sufficiently large s. Finally,∫

Γ

|ϕ|y2 dS ≤ ‖ϕ‖L(s/2)′ (Γ)‖y2‖Ls/2(Γ) = ‖ϕ‖Ls/(s−2)(Γ)‖y‖2
Ls(Γ)(7.16)

is estimated by (A4 (iii)): In the case n = 2 we can take s = ∞, as y ∈ C(Γ)
and ϕ ∈ L1(Γ) is true without any additional assumption. For n = 3 we know
y ∈ Ls(Γ) ∀ s < ∞. If s ↑ ∞, then s/(s − 2) ↓ 1 < n/(n − 1). Since ϕ ∈ Lr(Γ)
holds ∀ r < n/(n − 1), (7.16) is true for sufficiently large s. In the case n ≥ 4
we repeat the analysis of the case n ≥ 3. This leads to the additional assumption
ϕ ∈ Lr(Γ) for some r > n−1

2 . Now it is easy to derive the estimates (4.17)–(4.19) for
L′′, rL1 , and rL2 : For instance, I in (4.10) is handled by (7.14)–(7.16), and

|I| ≤
∫

Γ

|ϕ|(|byy| |y1y2|+ |byu|(|y1u2|+ |y2u1|) + |buu| |u1u2| dS
≤ c(‖y1‖2 + ‖u1‖L2(Γ))(‖y2‖2 + ‖u2‖L2(Γ)),

as byy, byu, and buu belong to L∞(Γ). The other parts of L′′ are discussed by means of
(A1)–(A3). This yields (4.19) after easy evaluations. In the same way, the remainder
terms are investigated. Here, the quantities in I are the most difficult ones again. For
instance, (7.14)–(7.16) applies to discussing

|rI2 | =
∫

Γ

|ϕ| {|bϑyy − byy| |y − y|2 + 2|bϑyu − byu| |y − y| |u− u|

+ |bϑuu − buu| |u− u|2
}
dS

≤ cη(‖y − y‖C(Γ) + ‖u− u‖L∞(Γ))(‖y − y‖2
2 + ‖u− u‖2

L2(Γ)),

which contributes to rL2 . The other terms of rL2 are handled by the estimates for
second order derivatives in (A1)–(A3) in a direct way. Simple evaluations of this type
verify (4.17)–(4.18). We leave the details to the reader.
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