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ARTICLE INFO ABSTRACT

Handling Editor: Xiaogiao Wan A high resolution core (9.7 yr cm™!) from the Chao de Veiga Mol raised bog (NW Iberian Peninsula) was analyzed
to identify plant macrofossils, estimate peat humification and calculate hydroclimatic indices based on current

Keywords: bog species, with the overall aim of determining the climate conditions associated with evolution of the bog

Last Iglgem““m during the Medieval Climate Anomaly and the Little Ice Age. These proxies, together with historical and climate

Raised bog

data, proved to be good indicators of the changes in bog surface wetness.

Humification analysis Analysis: of the core led to identification of 9 different periods: two corresponding to the so-called Medieval
Southwest Europe Climate Anomaly (930 to 1345 AD, 1075-665 calibrated years before present [cal. yr BP]); four corresponding to
Climate change the Little Ice Age (1345 to 1905 AD; 665-105 cal yr BP); and three corresponding to the last century (1905 to
2000 AD). The findings revealed a generally dry climate that lasted until the 14th century, followed by a tran-
sition to a long period with a more humid, but characteristically very variable climate, which ended at the
beginning of the 20th century and was followed by a rapid transition to more humid conditions and finally, a
change to drier conditions.

The Medieval Climate Anomaly was indicated by the abundance of dry-adapted mosses (Leucobryum glaucum,
Hypnum cupressiforme) and characterized by warm dry conditions and high levels of peat humification, with
alternating wet phases. The LIA period was dated by a large abundance of Sphagnum species (an indicator of
wetness) and a gradual increase in the humification index. However, four different climate phases were differ-
entiated in this period.

High-resolution reconstruction of the evolution of the CVM bog and the multiproxy approach have together
enabled a more detailed identification of climatic variations in this area, which are generally consistent with the
global models, as well as better definition of the elusive climatic oscillations in the last millennium and confir-
mation of the importance of local modulation of global models.

The study provides new information and a detailed chronology of climatic events that will help to refine local
modulation of the climate evolution model in the still quite unexplored region of the NW Iberian Peninsula, a key
area for understanding the paleoclimatic dynamics in SW Europe.

Plant macrofossil

1. Introduction Holocene patterns of hydroclimatic variability in many parts of the world
(e.g. Payne and Blackford, 2008; Loisel and Garneau, 2010; Castro et al.,
Peat-based palaeoclimate proxies have been used to reconstruct 2015). Most multi-proxy peatland palaeoclimate studies are based on the

* Corresponding author. Group of Environmental Studies Applied to the Natural and Cultural Heritage (GEMAP), Dept. Soil Science and Agricultural Chemistry, Fac.
Biology, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Galicia, Spain.
E-mail address: xabier.pombal@usc.es (X. Pontevedra-Pombal).
Peer-review under responsibility of China University of Geosciences (Beijing).

https://doi.org/10.1016/j.gsf.2020.05.015

Received 25 July 2019; Received in revised form 20 March 2020; Accepted 20 May 2020

Available online 18 June 2020

1674-9871/© 2020 China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


mailto:xabier.pombal@usc.es
http://crossmark.crossref.org/dialog/?doi=10.1016/j.gsf.2020.05.015&domain=pdf
www.sciencedirect.com/science/journal/16749871
www.elsevier.com/locate/gsf
https://doi.org/10.1016/j.gsf.2020.05.015
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.gsf.2020.05.015
https://doi.org/10.1016/j.gsf.2020.05.015

D. Castro et al.

following assumptions: (i) plant macrofossils and the degree of peat
humification can be used to reconstruct records of change in bog water
table positions, and (ii) bog surface wetness (BSW) is primarily controlled
by the prevailing balance between precipitation and evapotranspiration,
as ombrotrophic mires receive their water and nutrition from meteoric
sources (Amesbury et al., 2011). Both of the above-mentioned proxies
have been used to study the major climate changes in the early and
middle Holocene.

Climate changes during the last millennium have been identified by
historical documents (classic literature, administrative and ecclesiastical
records) and marine, lake and river sedimentological proxies. Due to the
scarcity of natural archives with sufficient resolution, the chronology of
the main climate episodes in southwestern Europe during the last mil-
lennium, is not well delimited. This particularly applies to the Medieval
Climate Anomaly (MCA), which occurred between the 11th and 13th
centuries (e.g. Lamb, 1965), and the Little Ice Age (LIA) which occurred
between 1350 and 1850 AD (Jones and Bradley, 1992). Nonetheless,
available data suggest a high level of regional variability in the Iberian
Peninsula (Lebreiro et al., 2006; Moreno et al., 2012; Abrantes et al.,
2017; Oliva et al., 2017). The LIA is usually considered a cold climate
period subsequent to the high temperatures in the MCA. This model was
created considering the northern European glaciers and is consistent with
global patterns; however, the model remains to be validated for southern
Europe and for more local scales.

The Iberian Peninsula can be considered a hotspot in terms of regional
modulation of global climate models (Giorgia and Lionello, 2008). The
peninsula has a unique planetary position situated almost between two
continents, at the southwest end of the Eurasian continent and very close
to the African continent, and between the Atlantic Ocean and the Med-
iterranean Sea (Martin and Olcina, 2001). Under these conditions, wind
flows from the west and southwest, and the climate is modified by the
influence of the Gulf Stream. The influence of the Mediterranean Sea in
the east increases the climate gradient. The proximity to the African
continent modifies climate patterns, especially because of the injection of
continental tropical air masses. In other words, there is a highly dynamic
balance between diverse and opposing influences, i.e. oceanic and con-
tinental, and temperate and subtropical influences. In addition, the
extreme compactness of the territory, together with the high mean
elevation (650-700 m a.s.l.) and several peripheral mountain align-
ments, endows the Iberian territory with unique climate characteristics
and dynamics. All of this occurs within a context of general atmospheric
circulation defined in the north by the dominant winds from the west and
southwest, and in the south by subtropical anticyclones, both with sea-
sonal migrations.

A recent review of Oliva et al. (2017) analysing a large number of
palaeoclimate Iberian records, has enabled construction of a robust and
coherent general framework for climate evolution in the Iberian Penin-
sula during the last millennium.

There is now a need to validate, adjust and strengthen this model
according to local modulations, to which such a dynamic and heteroge-
neous climatic territory may be prone.

The model must be improved in two ways: (i) by considering the
geographical distribution of the data, as although a large number of re-
cords are available for the Pyrenees and Cantabrian range, they are much
scarcer in the northwest and southwest of the Iberian Peninsula; and (ii)
by locating and studying natural archives whose diagenesis and rates of
evolution enable improvement of the sensitivity, resolution and stability
of the model for periods as short as the last millennium, and in particular
the LIA.

The present study aims to examine climate evolution in the study
area during the last millennium, by using a high resolution record and a
multi-proxy approach and paying particular attention to the LIA. The
study will attempt to provide new information that will help to refine
local modulation of the regional models established in the Iberian
Peninsula, as an area of special relevance in the context of the northern
hemisphere.
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2. Study site

The Chao de Veiga Mol (CVM) raised bog (43°32'34.4"N,
7°30'13.41”"W; Pontevedra-Pombal et al., 2019) is located in the Xistral
Mountains (NW Iberian Peninsula) at an elevation of 700 m a.s.l. and 15
km south of the coast of the Bay of Biscay, occupying a palaeo-glacial
cirque (Fig. 1). It consists of a central raised bog of 2.1 ha, surrounded
by fens (3.9 ha). The lithology is dominated by two-mica granite. The
mean annual temperature is 7.0 °C and the mean annual rainwater pre-
cipitation is 1700 mm (Pontevedra-Pombal et al., 2014). The rainfall
gradient is close to 100 mm per 100 m altitude. These values define a cool
and very humid environment. The seasonality of precipitation is the
lowest in the Iberian Peninsula.

The bog includes different microhabitats, which are mainly deter-
mined by the microtopography and the water table level and which
shelter heath and grass plant communities.

The CVM bog be characterised as follows: (i) it has the highest known
resolution rates of Iberian peatlands (a mean value of 1.26 mm/yr or 7.9
yr/cm in the first 1000 years; Pontevedra-Pombal et al., 2017); (ii) it is
highly sensitive to climate changes because it lies close to the coast, with
no barriers to mitigate the impact of the storms; (iii) it is located in the
north-west of the Iberian Peninsula, an area of particular value in the
context of the local modulation of global change (Gutiérrez and Pons,
2006); and (4) it has an age-depth model of high resolution (Ponteve-
dra-Pombal et al., 2019).

3. Material and methods
3.1. Present plant cover and hydrological preferences of the plant species

Floristic inventories were carried out throughout 2013 (in February,
April, August and November), in 33 plots (1 m?). The plots were selected
according to physical and chemical properties such as the groundwater
table, temperature (°C), pH value, oxygen concentration (ppm) and redox
potential (mV). The values of these properties were used to cluster the
plots from drier to wetter areas, as follows: (i) dry hummock, (ii) wet
hummock, (iii) lawns, (iv) damp lawns, and (v) waterlogged pools. In the
field, we described the floral composition and took photographs for
analysis of floral cover.

We selected those species covering more than 10% in any plot to carry
out the statistical analysis. Analysis of their hydroclimatic preferences of
the selected species was performed on the basis of previous and our own
data (Dupont, 1986; Rodwell, 1998; Castro et al., 2015; Romero Pedreira,
2015). The relationships between species were examined by discriminant
analysis (DFA) implemented in IBM SPSS Statistics 20 software. The DFA
anabled us to create groups of species that grow in similar environments.

To create the Hydroclimatic Index, we used the DFA-derived groups
together with knowledge of the ecohydrobiological behaviour of these
species. The values of the index vary from 1 to “n”, where 1 is associated
with species growing in waterlogged conditions and “n” with species
growing in dry conditions.

The historical hydrological changes in the bog were assessed on the
basis of the present ecological analysis, historical climate data (Font
Tullot, 1988; Fernandez-Cortizo, 2005; Losada, 2008), publications on
the climate of Galicia (Carballeira et al., 1983) and data from weather
stations in the area surrounding the bog (www.meteogalicia.es).

3.2. Peat samples

A peat monolith of depth 845 cm was obtained, from the center of the
raised area. The top 100 cm was extracted with a Wardenaar corer, and
the fresh monolith was sliced into 1 c¢m sections in the field. The deeper
samples were obtained with a Byelorussian corer and sliced into 2 cm
sections. The top 135 cm was analyzed. Four sub-samples were prepared
per sample. One was frozen at —10 °C, the second was stored at 4 °C, the
third was lyophilized and the fourth was dried at 105 °C. The latter two
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Fig. 1. (A) Location of the study area. (B) General view of the CVM raised bog.

types of sample were finely milled in an agate mortar, homogenized and
stored in a cool dark place.

3.3. Extraction and analysis of plant macrofossils

Sub-samples of 5 cm® of fresh peat were extracted by a standard
procedure (Mauquoy et al., 2010). Sieved residues were suspended in
Petri dishes with a thin layer of distilled water and analyzed to determine
the relative abundance of species remains, by the quadrat and leaf count
technique (Mauquoy et al., 2010). Sphagnum leaves (n > 100) were
analyzed by microscopy ( x 40-400 magnification). Plant remains were
identified to the lowest possible taxonomic level by comparison with a
reference collection (of herbarium specimens and microscopic slides of
different parts of the vegetative apparatus and reproductive structures of
the species constituting the current vegetation of this and other Iberian
and European bogs). Keys and descriptions reported in various papers
were also used (Grosse-Brauckmann and Streitz, 1992; Wojcicki et al.,
2006; Mauquoy and van Geel, 2007; Cappers and Neef, 2012; Souto et al.,
2017). Bryophytes were identified by consulting the Flora Briofitica
Ibérica (Casas et al., 2006; Guerra and Ros, 2006). The stratigraphic di-
agrams were generated with C2 software (Juggins, 2011).

3.4. Hydroclimatic indices

The macrofossil hydroclimatic indices were generated using two
variations of the method proposed by Dupont (1986):

(i) The Dupont Hydroclimatic Index (DHI) (Dupont, 1986), which
includes weighted values for dicotyledonous remains (Daley and
Barber, 2012).

(i) A new Hydroclimatic Index adapted to CVM (HI-CVM), for which
the current species of CVM were separated into 5 groups resulting
from the discriminant analysis of their hydrological preferences.
Each species group was given a hydrological value of between 1
and 5, representing conditions ranging from wet to dry.

The following equation was used to calculate both indices (DHI and
HI-CVM) (Daley and Barber, 2012):
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where:

X = species abundance (%)
w = species hydrological value (see Table 2)
i = a given sample level in the core

3.5. Humification analysis

The subsamples were dried at 30 °C for 1 week before being ground in
a mill. An aliquot (0.01 g) of this material was treated by alkaline
extraction (with 8% NaOH), and the extract was filtered to remove sus-
pended solids. A 50 mL aliquot of the filtrate was then diluted with 50 mL
of distilled water (Blackford and Chambers, 1993). Four hours after the
initial mixing, the percentage of light transmission at 540 nm was
measured in a Jenway 6305 spectrophotometer. The raw data were
normalized and detrended (Blundell and Barber, 2005). The results were
expressed as the percentage light transmission (T,y). Low percentages of
light transmission denote well-humified peat, and high percentages
denote poorly humified peat (Blackford and Chambers, 1993). The ex-
tractions were performed in triplicate, and the spectrophotometric
measurements were repeated three times for every sample.

To correct for dilution of the mineral content of the peat samples, we
calculated the corrected transmittance (T.), following the method of
Payne and Blackford (2008). To modulate the short frequency fluctua-
tions and highlight the trends over longer periods, the 3-point moving
average of T, values were calculated (Tpey) (Castro et al., 2015).

The method proposed by Chambers et al. (2011) was used in order to
remove the effect of peat evolution with increasing age and the different
dynamics in the acrotelm and catotelm. The humification index (Hul) is
the residual time series, obtained by fitting a Structural Time Series
model. According to Harvey and Shephard (1993), we defined the orig-
inal time series as being composed by a time-varying trend and an
irregular component. To establish the standard state-space representa-
tion of our time series, we used the Kalman Filter to subtract the
time-varying trend component from the series. Finally, we obtained the
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residual term as the difference between the real time series and the
estimated trend component for each time interval. Low Hul values
indicate high levels of humification.

3.6. Peat core dating

Twenty-two peat samples, devoid of woody debris and with the
rootlets removed, were sent to the Angstrém Laboratory, Div. of Ion
Physics, '*C-Lab (Uppsala University, Sweden) and to the Center for
Applied Isotope Studies (University of Georgia, USA) for radiocarbon
AMS dating. The calibration 1*C dates are reported elsewhere (Ponte-
vedra Pombal et al., 2019). Ages are expressed as calibrated years before
present (cal. yr BP), and they were adjusted to the year of sampling
(2007) by adding the difference between 2007 and 1950 to all estimated
ages.

To improve the resolution of the age model established in the peat-
land for the last 1000 years, radionuclide data were used together with
radiocarbon data. The first thirty surface samples of CVM core were used
to determine fallout %7Cs, 21°Pb, 2'*Pb and 2*'Am activity concentra-
tions. The concentrations were determined at the Consolidated Radio-
isotope Facility (CoRiF) at Plymouth University (UK) following the
methodology described in detail by Appleby (2002). The Constant Rate
of Supply (CRS) model was then applied in order to build the 2'°Pb
age-model (Pontevedra-Pombal et al., 2019).

Bacon age-modelling software (Blaauw and Christen, 2011) was used
to construct an age-depth model based on all 2!°Pb and 1*C dates. Details
of the CVM age/depth model are reported elsewhere Pontevedra-Pombal
et al. (2019) (Fig. 2).

4. Results
4.1. Ecological preferences of the plant species

For the statistical analysis, we selected the 17 species that each pro-
vided more than 10% of the cover in any plot. Analysis of the data by DFA
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revealed significant differences (Wilks Lambda test, p < 0.01) in the
distribution of the cover (Fig. 3). Discriminant function 1 explained 66%
of the variance and function 2 explained 20.4% of the variance.

Comparison of the DFA results with the existing hydrobiological data
generated 5 groups (Table 1). Together these groups represent a hydro-
climatic index for the CVM flora (Fig. 3).

These findings are consistent with those obtained in a previous study
(Castro et al., 2015) of the ecological profiles of the mire species in the
NW Iberian Peninsula.

4.2. Macrofossil analysis

Most of the plant macrofossils identified are also important compo-
nents of the present flora in the CVM bog. The distribution of the flora
along the core is shown in Fig. 4.

We identified nine bryophytes, five of which belong to the genus
Sphagnum. The most abundant of these are from the Section Acutifolia
(S. capillifolium/S. rubellum); S. papillosum and S. tenellum are less
frequent; and S. cuspidatum is rare or occasional. Other bryophytes
include the mosses Leucobryum glaucum, Hypnum cupressiforme and
Racomitrium lanuginosum and the liverwort Odontochisma sphagni.

Within vascular plants, we identified Molinia caerulea (rhizomes,
leaves and caryopses), Eriophorum angustifolium (rhizomes, leaves and
achenes), Carex durieui (rhizomes, leaves and achenes), Juncus bulbosus
(seeds), Drosera rotundifolia (seeds), D. intermedia (seeds), Erica mack-
aiana (wood, shoots, flowers, seeds and leaves), Calluna vulgaris (seeds
and shoots) and Betula pubescens (samaras). Three vascular plant species
(E. mackaiana, M. caerulea and C. durieui) and Sphagnum Sect. Acutifolia
(S. capillifolium/S. rubellum) were always present throughout the bog
profile, although the abundance varied widely (Fig. 4).

On the basis of macrofossil taxa composition, we differentiated 9
zones throughout the CVM profile (Fig. 4):

In the first (deepest) zone (CVM-a, 135-119 cm deep), the relatively
high abundance of L. glaucum was remarkable as this species was absent
in the rest of the core. Likewise, at the beginning of this period we
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Fig. 2. Age-depth model based on 14¢C and 2'°Pb results and produced with BACON software. (A) 14C data; (B) calibrated **C (blue) and ?'°Pb (green) dates, and the
age-depth model where grey-scales indicate all possible age-depth models, and dotted lines indicate the mean and 95% confidence ranges (from Pontevedra-Pombal

et al., 2019).
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Fig. 3. Plot of discriminant scores (DFA) for Function 1 versus Function 2, discriminating the five species clusters related to bog hydrology. Function 1 explains 66% of
the variance (waterlogged-dry habitats) and Function 2 explains 20.4% of the variance (tolerance to water table fluctuations).

Table 1

Hydroecological groups of plant species currently present in the CVM, based on
ecological preferences. The hydrological values for the species used to calculate
the Hydroclimatic Index are shown.

Hydroecological group Species Hydrological
value
Species of waterlogged habitats S. cuspidatum, J. 1
bulbosus,
C. echinata, A. stolonifera
Species adapted to fluctuating water S. tenellum 2
table levels but with preference for
damp habitats
Species growing close to the pools S. papillosum, S. 3
capillifolium, C.
introflexus
Species of wet lawns E. angustifolium, M. 4
caerulea
Species of the dry heaths C. duriaeui, E. 5
mackaiana,

C. vulgaris, O. sphagni,
D. scoparium, L. glaucum,
H. cupressiforme.

observed the largest number of E. angustifolium macrofossils for the whole
profile, although this species disappeared in the second half of this zone
and then reappeared in the following years.

The first half of the second zone (CVM-b, 119-91 cm deep) was
characterized by a high abundance of M. caerulea and C. duriaeui. The
presence of D. rotundifolia seeds was also noteworthy in this period.

In the following four zones (CVM-c,d,e,f, 93-31 cm deep), there was a
significant increase in the presence of Sphagnum species and J. bulbosus.

In CVM-c (90.5-66.5 cm deep), D. rotundifolia seeds were also
abundant and then disappeared in the remaining layers.

In the following zone (CVM-d, 67-55 cm deep), there was a
decrease in the presence of S. tenellum and Sphagnum Sect. Acutifolia

1465

Table 2
Species weightings (w) used in reconstruction of the Dupont Hydroclimatic index
(DHI) and the CVM Hydroclimatic Index (HI-CVM).

Taxon DHI weighting HI-CVM weighting

8

a

Calluna vulgaris

Carex duriaei

Dicranun scoparium

Eriophorum angustifolium,

Erica mackaiana/tetralix,
Hypnum_cupressiforme

Juncus bulbosus
Leucobryum_glaucum

Molinea caerulea

Monocot leaves and stem undifferentiated
Monocot node/root undifferentiated
Monocot roots, undifferentiated
Odontochisma sphagni
Racomitrium lanuginosum
Sphagnum papillosum

Sphagnum Sect. Acutifolia
Sphagnum Sect. Cuspidata
Sphagnum tenellum

UoM

Wood

S CRE]

o

»

TINHF WWOUO T T ThAUREOOSAOO U

W ONFOWOR N NN

# New index derived for these species in the present study.
b According to our analysis these species do not have any hydrological indi-
cator value. UOM: unidentified organic matter.

(S. capillifolium/S. rubellum) and an increase in S. papillosum.

In CVM-e (55-46 cm deep), there was a general decrease in the
abundance of Sphagnum macrofossils and an increase in J. bulbosus, as
well as Drosera intermedia seeds, which were only recorded in this zone.

J. bulbosus, S. tenellum and S. papillosum were most abundant in CVM-
LIA-f (47-31 cm deep), in addition to S. cuspidatum and B. pubescens,
which were only recorded in this zone.

In the upper 31 cm layer, Sphagnum macrofossils were absent or
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Fig. 4. CVM plant macrofossil diagram: (a) main plant groups and Sphagnum species (expressed as a percentage); (b) vascular plant species and mosses (expressed as

total numbers).

scarce, except for Sphagnum Sect. Acutifolia. In CVM-g (31-23 cm deep),
R. lanuginosum and L. glaucum were very abundant.

These two species disappeared in the following zone (CVM-h, 23-5
cm deep), in which the only recorded mosses were Sphagnum Sect.
Acutifolia and H. cupressiforme.

In the top layer (5-0 cm deep) of the core, most of the plant remains
corresponded to E. mackaiana, C. vulgaris and H. cupressiforme.

4.3. Hydroclimatic index (HI)

Most of the species weightings for the hydroclimatic indices derived
from the ecological preferences of the present flora in CVM (section 3.1)
are new, and only those obtained for S. tenellum, S. papillosum and
Sphagnum Sect. Cuspidata (Table 2) are consistent with those reported by
Dupont (1986). The main differences between our weightings and those
of Dupont (1986) are related to macrofossils not identified to species
level (monocots, UOM, wood), as they may correspond to groups of
species with different hydrological preferences. We therefore consider
that these unidentified macrofossils do not have any value as hydrolog-
ical markers, contrary to the suggestion of Dupont (1986).

Fig. 5 shows the results of the use of both hydroclimatic indexes, DHI
and HI-CVM. The positive values represent an increase in bog surface
wetness (BSW), while negative values indicate dry conditions. Although
both indices generally show similar trends (r = 0.716; p < 0.0001), there
are also some discrepancies due to the different criteria used to calculate
the indices, as already mentioned.

In our analysis, wet conditions were mainly associated with the
presence of J. bulbosus, D. rotundifolia and S. tenellum, and dry conditions

were associated with the presence of H. cupressiforme and C. vulgaris.
Different species combinations caused variations throughout the core.

4.4. Humification index

The results of the peat humification analyses are presented in Fig. 6 as
the moving average (Tpoy) of raw data of the percentage of light trans-
mission (Tgy,) corrected for the inorganic ash content (T.). Detrending
raw humification values are necessary to correct for diagenetic effects on
the climate proxy signal (Blundell and Barber, 2005). Peat age was highly
significantly and negatively correlated with T,y and Tp,oy (r = —0.710 to
—0.760; p < 0.0001).

In the CVM core, two zones with different dynamics were observed; the
acrotelm (upper 50 cm), in which autogenic decay occurs rapidly, and the
catotelm (50-135 cm), in which peat decay is stabilized. The transition
zone between the acrotelm and catotelm was clearly established from the
change in soil density and the inorganic ash and carbon content (Ponte-
vedra-Pombal et al., 2019). For each zone, we calculated a different linear
regression and used the detrended humification index (Hul) (Fig. 6). A
series of significant shifts from relatively high Hul (related to wet events)
tolow Hul (related with dry events) were recorded. Levels with high Hul at
9-21 cm, 35-45 cm, 62-93 cm and 127-135 cm and relatively low Hul
levels at 23-33 ¢cm, 47-59 cm, 95-100 cm and 107-127 cm were recorded.

5. Discussion

Hydroclimatic indices and the humification index, considered proxies
for climate data, showed a high level of consistency and coherence,
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Fig. 5. Hydroclimatic indexes for CVM: Dupont Hydroclimatic Index (DHI) and Chao de Veiga Mol Hydroclimatic Index (HI-CVM). Main phases: dark grey = wet

phase, light grey = dry phase.

although some discrepancies were also observed, mainly in the 20th
century AD. The causes of these differences can be attributed to
weighting of the wetness values attributed to some species with wide
hydroecological distributions. The humification index (Hul) was signif-
icantly and positively correlated with the DHI hydroclimatic index (r =
0.649; p < 0.0001), but much more significantly with the HI-CVM
hydroclimatic index (r = 0.803; p < 0.0001).

The temporal differences in the composition of peat-associated spe-
cies throughout the bog profile are very similar to the spatial variation in
current plant cover composition, in relation to hydrological gradients.
The hydrological preferences of Sphagnum species are currently consis-
tent with those outlined by Clymo (1963): thus, S. cuspidatum is the
dominant species in permanent waterlogged habitats; S. tenellum mainly
grows in seasonally waterlogged areas; S. papillosum grows around pools
and hollows; and Sphagnum Sect. Acutifolia (S. capillofolium, S. rubellum)
prefers less wet habitats, such as small hummocks.

It has been suggested that the presence of R. lanuginosum and
H. cupressiforme is a good indicator of changes in the climate towards
drier conditions (Ellis and Tallis, 2003). In the CVM, a significant in-
crease in the abundance of these two species was detected in the last
century.

On the basis of the analysis of the aforementioned proxies, and of
climate data from historical sources and from weather stations from the
surroundings of CVM, we performed a reconstruction of the hydrological
conditions of this bog during the last 1000 years of its development
(Figs. 7 and 8).

The periods identified in the Chao de Veiga Mol bog (Fig. 7) are
generally consistent with regional patterns (Luterbacher et al., 2005):
drier climate up to the 14th century; a rapid transition to more humid
climates during a highly variable period that lasted until the mid-late
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19th century, and a rapid transition to a less humid climate during the
last century.

5.1. Medieval Climate Anomaly in the CVM (930-1345 AD, 1075-665
cal yr BP; zones: CVM-a,b)

The Medieval Climate Anomaly (MCA) refers to a period of climate
history during which temperatures in Europe and neighbouring regions
of the North Atlantic are believed to have been comparable to, or even to
have exceeded, those of the late 20th century. This period is conven-
tionally believed to have occurred between approximately 900 and 1300
AD (Easterbrook, 2016).

The reconstructions, of greater or lesser resolution, of the climatic
evolution during the MCA in the Iberian Peninsula have shown that there
is no univocal answer. Clear regional variations are observed in the data,
which are mainly marine and lake records (Moreno et al., 2012). In the
northwest, warm and humid conditions dominated, while in the rest of
the Iberian Peninsula, warm and dry or even arid conditions dominated.
Moreno et al. (2012) mainly attributed these conditions to a stable pos-
itive phase of the North Atlantic Oscillation (NAO), while Alvarez et al.
(2005) proposed that these climatic conditions (ca. 252-1368 AD) in the
northwest are due to a negative phase of the NAO. However, a recent
model that reconstructs the evolution of the NAO in the last millennium,
proposes, that there has not been a persistent positive NAO phase during
the whole MCA (Ortega et al., 2015).

The following periods were defined for this epoch in the CVM core:

CVM-a (930-1070 AD, 1075-935 cal yr BP) was defined as a dry
period because of the abundance of L. glaucum (at present is significantly
correlated with dry habitats), the high hydroclimatic indices and the high
level of peat humification. This is consistent with a previous
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Fig. 6. Peat humification profile for the CVM core: (T,,) average light Transmission; (Ty0y) percentage of light transmission corrected for the inorganic ash content
and using a 3-point moving average; (Hul) detrended function for humification data.

consideration as a dry and relatively warm period on the basis of his-
torical climate data (Losada, 2008). The conditions of this climatic phase
are similar to those observed in the rest of the Iberian Peninsula (Moreno
et al., 2012).

The ocean temperature in western Europe during this period (Fig. 8)
was higher than average (Eiriksson et al., 2006), there was an increase in
the surface temperature of the snowy mantle of Greenland (Kobashi
etal., 2011) and also a significant increase in the summer temperature in
Europe (Luterbacher et al., 2016).

CVM-b (1070-1345 AD, 935-665 cal yr BP). At the local or supra-
local level, this period has been characterized by a warm humid
climate (700-1300 AD; Alberola Roma, 2014). According to our findings,
the climate in this period was not uniform, but had alternating wet and
dry phases, with the dry phases predominating. The proxies analyzed
indicate the existence of these intermediate phases of changeable
climate, as shown by the variations in the abundance of the most
representative species of this period, i.e. M. caerulea, C. duriaeui,
E. angustifolium and D. rotundifolia, as well as in the values of the
hydroclimatic index and peat humification levels.

So far, analysis of palaeoenvironmental records in the Iberian
Peninsula established a single phase of wet and warm conditions in the
northwest versus the hot and dry conditions of the rest of the Iberian
Peninsula (Moreno et al., 2012). The characteristics of CVM enable us to
identify two warm phases during MCA, one dry and one wet stage. The
latter may represent a phase considered by Munoz Sobrino et al., (2014)
to have transitional characteristics associated with an increase in
storminess, caused by the strengthening of the teleconnection pattern of
the Eastern Atlantic (EA).

Our findings are consistent with documentary sources (Losada, 2008)
showing that the 12th and 13th centuries were generally warm and rainy
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in the NW Iberian Peninsula, with some dry years such as 1172, 1220 and
1300 AD. Other studies on the Iberian Peninsula have also reported
higher temperatures (Martinez-Cortizas et al., 1999) and wet-warm
conditions, with some dry episodes (Benito et al., 2008) during medie-
val times. Similarly (Fig. 8), the summer temperature increased in Europe
(Luterbacher et al., 2016) as did the ocean temperature in western
Europe (Eiriksson et al., 2006).

The CVM record is consistent with global reconstructions (Mann
et al., 1999; Briffa, 2000) documenting warmer conditions between the
12th and 14th centuries, probably related to an increase in solar irradi-
ance (Fig. 8) (Bard et al., 2000; Crowley, 2000), persistent La Nina-like
tropical Pacific conditions, a warm phase of the Atlantic Multidecadal
Oscillation, and a more frequent positive phase of the North Atlantic
Oscillation (Seager et al., 2007).

5.2. Little Ice Age in CVM (1345-1905 AD, 665-105 cal yr BP; zones:
CVM-c,d,e,f)

Although the LIA was mainly cold, the rainfall patterns and temper-
ature vary throughout the period. The onset of the LIA in the CVM
sequence is marked around ca. 1345 AD by a high abundance of
Sphagnum wetness indicator species (S. tenellum and S. papillosum) and a
gradual increase in Hul. This initial date is consistent with a phenomenon
of substantial winter cooling, with increased snow cover and the extent
and duration of frozen water bodies in the winter months, described for
the whole of Europe (Pfister et al., 1996). The end is dated to 1905 AD
when these species disappeared and were replaced by other mosses that
indicate drier conditions (R. lanuginosum and H. cupressiforme).

There is some controversy regarding the onset of the LIA. The most
recent (Oliva et al., 2017) dated the commencement of the LIA at ca. 1300
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AD. However, previous studies (Font Tullot, 1988; Alberola Romad, 2014) do
not consider that the LIA lasted into the 14th and 15th centuries in the
Iberian Peninsula as the cold signal is low. However, the same studies report
a decrease in temperature and an increase in rainfall. Font Tullot (1988)
described the 15th century as one of the periods with most rainfall and least
drought in the history of Spain. Other reconstructions of the LIA in the NW
Iberian also suggest a much later onset and a more limited extension,
focused on the 16th and 17th centuries (Munoz et al., 2007). However, this
reconstruction may be inaccurate, as it is based exclusively on the inter-
pretation of a single proxy (pollen) in an archive without sufficient reso-
lution for this period, and for a climate event over which intense
anthropogenic pressure on forests is superimposed (Pontevedra-Pombal
et al., 2012). In other studies, Lebreiro et al. (2006) and Abrantes et al.
(2017), detected a cold period between 1300 and 1850 AD, with the coldest
phase centred at 1400 AD, in the western Iberian Peninsula.

By contrast, other geochemical signals that are less affected by
anthropogenic deforestation processes (Martinez-Cortizas et al., 1999),
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although with low resolution, also detected the early onset of LIA (1345
AD) and a late end (1903 AD), similar to that established by the proxies
analyzed in the CVM. Moreover, Schellekens et al. (2011) and Castro
et al. (2015) observed a long wet period in the same area and coinciding
with the LIA.

In this study, the resolution of the CVM core was sufficiently high to
show climate events not previously described. We differentiated several
phases in CVM-LIA.

5.2.1. Increase in wetness and first wet maximum of the LIA (zone CVM-c)

According to macrofossil, hydroclimatic indices and peat humification
data, the CVM-LIA-c (1345-1610 AD, 665-400 cal yr BP) was a wet period
with some relatively dry episodes. Although the most abundant species
were E. mackaiana and Sphagnum Sect. Acutifolia, the presence of wetness
indicator species (S. tenellum, Juncus bulbosus and S. papillosum), good in-
dicators of bog surface wetness, led to positive values in the hydroclimatic
indices. The evolution of the HI is consistent with that of Hul.
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The beginning of this phase is consistent with observations made by
Oliva et al. (2017), i.e. moderate cooling and extreme rainfall events that
triggered major flooding of rivers on the Mediterranean and Atlantic
sides of the peninsula, particularly in the latter side. Losada (2008)
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Fig. 8. (A) Climatic phases established from the
study of macrofossils and humification in Chao de
Veiga Mol bog for the last millennium. (B)
Reconstruction of solar variability based on °Be
measurements in the Northern Hemisphere (after
Crowley, 2000). (C) Sea surface temperature
reconstruction for the North Atlantic area of
western Europe (after Eiriksson et al., 2006). (D)
Reconstruction of variability of Greenland snow
surface temperature (after Kobashi et al., 2011).
(E) European summer temperature anomalies
(after Luterbacher et al., 2016). (F) Total solar
irradiance (TSI) variations (after Bard et al.,
2000). Stars: Solar minimum events (Usoskin
et al.,, 2007) where “D star”: Dalton Minimum
(1790-1820 AD), “M star’: Maunder Minimum
(1645-1715 AD), “S star™: Sporer Minimum
(1450-1550 AD) and “W star”: Wolf minimum
(1280-1350 AD). Circle: ‘Mald4a’ Anomaly event
(Barriendos and Llasat, 2003). The data used in
Fig. 8B, C, D, E and F were obtained from the
Paleo Data Search repository (https://www
.ncde.noaa.gov/paleo-search/).

described the climate in NW Iberian Peninsula in the 14th century as
changeable, with dry years and years with flooding. Historical (Losada,
2008) and dendrochronological (Saz, 2003) data both showed that
rainfall was generally more frequent than drought in the 15th century.
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Periods of moderate rainfall predominated in the first half of the period,
while torrential rain and droughts were more frequent in the second half.
Likewise, Saz (2003) observed an increase in rainfall in winter and spring
in the 16th century, especially between 1499 and 1535 AD, but also
noted differences in the amount and seasonality of rainfall, between
several sites in northwestern Spain, during the 15th and 16th centuries.
Thus, the general agreement between the present data and the reference
data demonstrates the validity of the proxies analyzed here for recon-
structing bog surface wetness; the few discrepancies can be explained by
climate particularities in the CVM area.

According to Ortiz et al. (2010), dry and humid periods are not
necessarily related to changes in temperature; bog surface wetness differs
depending on the amount of precipitation and evaporation, affecting the
local vegetation biome. Given that none of the proxies that we studied
reliably indicates the temperature changes during this subperiod, we
consulted bibliographical sources to complete the information on the
CVM-LIA-c climate characteristics. On a global scale, the lower temper-
atures in the LIA after the 14th century (Mann et al., 1999; Moberg et al.,
2005) coincided with colder North Atlantic (Bond et al., 2001) and
Mediterranean Sea Surface Temperatures (SSTs, Taricco et al., 2008) and
a phase of mountain glacier advance (Wanner et al., 2008). In the Iberian
Peninsula, this period is characterized by generalized low temperatures
(Martinez-Cortizas et al., 1999), and the geochemical and sedimento-
logical records on the NW Iberian Continental Shelf (Martins et al., 2012)
identify an increase in precipitation during the LIA that has been related
to the behaviour of the NAO.

The occurrence of low summer temperatures, and thus, low evapo-
transpiration, probably generated moister conditions in the Mediterra-
nean Basin (Luterbacher et al., 2005). The cold humid phase recorded in
the Iberian Estanya Lake (Riera et al., 2004) between the late 14th cen-
tury and the beginning of the 15th century (1360-1550 AD) coincides
with a first relative maximum of mountain glacier advance (Denton and
Broecker, 2008) and more humid conditions (Trachsel et al., 2008) in
Central Europe. Water levels in other Iberian lakes, such as Lake La Cruz
(Julia et al., 1998) and the Salada Chipriana beach-lake in the Ebro
Valley, were also high during this period.

The maximum abundances of J. bulbosus, S. tenellum and S. papillosum
(1480-1530 AD) coincide with the Sporer minimum in solar irradiance,
which produced global cooling (Camenisch et al., 2016). Thus, the causes
of the abundance of wetness indicator species may be due either to
increased rainfall or to a decrease in temperatures (especially in sum-
mer), which would reduce evapotranspiration, or probably a combina-
tion of both circumstances.

Oliva et al. (2017) reported a gradual cooling of the climate during
the final decades of this period (as indicated by many records), associated
with the increasing occurrence of cold spells and snowstorms and
enhanced storminess. Historical sources show evidence of frequent se-
vere flooding in northeast Iberia between 1590 and 1620 AD (Llasat
et al., 2005; Barriendos and Rodrigo, 2006), together with high levels of
precipitation in southern Spain (Rodrigo et al., 1998).

A sudden decrease in the total solar irradiance (TSI) was detected
during this period (1345-1610 AD) (Bard et al., 2000; Crowley, 2000) on
a global scale (Fig. 8), and a constant decrease in the oceanic temperature
occurred from the Iberian margin northeastwards via Scotland to western
Norway and Iceland (Eiriksson et al., 2006).

5.2.2. Decreased and minimum wet phases of LIA (zones CVM-d,e)

In the CVM-LIA-d phase (1610-1735 AD, 400-275 cal yr BP) there
was a general decrease in the abundance of plant species, mainly the
wetness indicator species. M. caerulea is the only species that remained at
similar levels of abundance as in the previous phase. Because of this, and
the small reduction in the peat humification levels, we consider that this
phase was less humid than the previous one.

During this period, a systematic decrease in several climate indicators
was detected at a different spatial scale (Fig. 8), indicating a clear ten-
dency toward very cold conditions (Bard et al., 2000; Crowley, 2000;
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Eiriksson et al., 2006; Kobashi et al., 2011; Luterbacher et al., 2016). On a
local scale, documentary and palaeoecological records indicate an
intense drop in temperature between 1645 and 1715 AD, which has been
associated with the prolonged sunspot minimum (Maunder minimum)
(Fernadez-Cortizo et al., 2016).

The short phase CVM-LIA-e (1735-1815 AD, 275-195 cal yr BP) differs
from the previous phase by an increase in the presence of J. bulbosus and
C. durieui, a decrease in Sphagnum sect. Acutifolia, S. papillosum and
M. caerulea, and the appearance of D. intermedia. There was also an increase
in hydroclimatic indices and a decrease in peat humification index.
Therefore, we assume that the dryness increased relative to the previous
phase, but also with episodes in which droughts alternated with rainfall.

The perception of a less wet bog surface is consistent with Galician
historical and dendrochronological climate data. According to Saz (2003)
and Losada (2008), the weather was generally colder and with less
persistent rainfall in the 16th and 17th centuries than in the 15th century,
but also with extreme episodes of droughts and flooding, in addition to
some very cold winters and hot summers.

Oliva et al. (2017) reported that written sources reveal cold and very
dry conditions in the Iberian Peninsula during the following decades,
intensifying during the second half of the 17th century (Domi-
nguez-Castro et al., 2015). Historical documents suggest that a critical
period occurred between 1680 and 1700, when severe cold and pro-
longed droughts caused serious famines in farming communities (Dom-
inguez-Castro et al., 2015).

Fluctuations in humidity and temperature, which have been detected
in CVM-LIA-e, are located chronologically (Fig. 8) at a time of slight re-
covery of the TSI (Bard et al., 2000; Crowley, 2000), although the records
do not show a significant increase in temperature (Eiriksson et al., 2006;
Kobashi et al., 2011; Luterbacher et al., 2016).

Four colder periods have been identified during the 17th century for
the Iberian LIA: 1615-1619 AD, 1636-1640 AD, 1669-1673 AD,
1678-1682 AD (Martinez-Cortizas et al., 1999). The plant macrofossils
recorded for these periods (end of the CVM-LIA-d and CVM-LIA-e) are
indicative of the adverse weather conditions for the vegetation, not only
because of the cold temperatures, but also because of alternanting
droughts and floods. According to Font Tullot (1988), precipitation
varied markedly in the North of Spain, with alternating pronounced
droughts and torrential rains and flooding; thus, during the 17th century,
climate conditions frequently prevented crop ripening. Olcina and Martin
(1999) indicated that the north—south meridian circulations increased in
frequency and resulted in cold and dry winters (a consequence of the
persistence of blocking anticyclones) and warm but short summers. Dry
and warm episodes were also recorded in dendroclimatological series
between 1675 and 1750 AD (Creus and Saz, 1999).

On a global scale, the CVM-LIA-d phase coincides with the Maunder
Minimum (1645-1715 AD). Oliva et al. (2017) described this period as a
relative climate optimum and that the increased solar radiation following
the Maunder Minimum promoted warmer temperatures and relatively
stable conditions in Europe until 1760, with a low frequency of extreme
events.

5.2.3. Second wet maximum of LIA (zone CVM-f)

The final LIA phase (CVM-LIA-f, 1815-1905 AD, 195-105 cal yr BP) is
mainly characterized by the abundance of Sphagnum mosses.
S. cuspidatum was only recorded in this period, which is also when
S. tenellum and S. papillosum, and also J. bulbosus were most abundant.
The values of the hydroclimatic indexes also increased during this period.
The peat humification levels for the first half of this phase are also
indicative of wetness, but the increase in these in second half is not
consistent with the macrofossil proxy. These discrepancies may be due to
the fact that this section corresponds to the acrotelm, in which the hu-
mification process is still and early stage.

As in the previous phases of the LIA, our findings for this phase are
consistent with historical and dendrochronological climate data (Font
Tullot, 1988; Saz, 2003; Losada, 2008).
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The first half of the 18th century was marked by cold winters across
Europe (Glaser and Riemann, 2009), coinciding with a sharp decline in
the index of the NAO (Bradley et al., 2003). Although the weather in the
South of Europe during the 18th century was very variable, the climate in
the NW Iberian Peninsula was characterized by high rainfall (Fernandez
Cortizo, 2005). The variability and magnitude of climate anomalies
decreased in the NW Iberian Peninsula in the 18th century, indicating a
gradual end to the LIA, although in the central third of the 19th century
there was a cold crisis that for some authors marks the end of LIA (Saz,
2003).

The decrease in the presence of S. papillosum and J. bulbosus, around
1800 AD, corresponds to the Malda anomaly (1760-1800 AD) (Bar-
riendos and Llasat, 2003), characterized by long winters with many ep-
isodes of frosts and snow and relatively cold summers, with alternating
floods and droughts. This anomaly was intensified after eruptions of the
Laki (1783) and Tambora (1818) volcanoes.

Le Roy Ladurie (2007) established the second hyper-LIA at between
1815 and 1860 AD. In the Iberian Peninsula, the first years of this century
were marked by a climate and social crises; the spring and autumn were
very rainy and the harvests rotted. The very wet conditions were more or
less continuous during the final phase of LIA in North West of Iberian
Peninsula. Oliva et al. (2017) documented a slight increase in tempera-
ture in the period between 1835 and 1850 AD in parallel to enhanced
hydrometeorological dynamics, including storms, persistent rain and
dramatic flooding. We believe that the drastic reduction in J. bulbosus,
S. tenellum and S. papillosum macrofossils until their disappearance at
around 1900 AD, can be interpreted as the end of the LIA in the CVM,
generally dated around 1850-1860 AD (Le Roy Ladurie, 2007).

The climate conditions recorded during this period coincide with a
worsening of the climate (Fig. 8) at regional and global scales (Bard et al.,
2000; Crowley, 2000; Eriksson et al., 2006; Kobashi et al., 2011; Luter-
bacher et al., 2016).

5.3. The recent climate cycle

We differentiated three periods in the 20th century on the basis of the
proxies analyzed: 1905-1925 AD (zone CVM-g) 1925-1990 AD (zone
CVM-h) and 1990-2000 AD (zone CVM-i).

The first (CVM-g) is considered a dry period because of the abundance
of mosses associated with dry conditions (R. lanuginosum, L. glaucum, H.
cuprresiforme) and the absence of mosses indicating wet conditions
(negative values of the hydroclimatic indexes), as well as high peat hu-
mification values. In the second period (CVM-h), the presence of
J. bulbosus, the increase in Sphagnum Sect. Acutifolia and the absence of
R. lauginosum and L. glaucum are indicative of increased wetness, which is
reinforced by low peat humification levels; whereas in the third period
(CVM-i), the absence of wetness indicator species, together with the large
number of H. cupressiforme, E. mackaiana and C. vulgaris macrofossils
(negative values of the hydroclimatic indexes), as well as high peat hu-
mification levels, were considered signals of a reduction in bog surface
wetness.

Although analysis of Iberian lake and marine records identifies a
single drier phase driven by a positive NAO behaviour, among other
factors, during the twentieth century (Lebreiro et al., 2006; Martins et al.,
2012), these periods are consistent with previously reported data and
weather station data. There was a marked contrast before and after in the
frequency and intensity of major rain storms that occurred in Spain
during the 20th century. In the period 1921-1935 AD, the most impor-
tant rainstorms occurred in Galicia and in the Cantabrian area, even in
summer (Losada, 2008). The period 1891-1920 AD was dry, while
1921-1985 AD was wet, with short, scant episodes of dry conditions
(Font Tullot, 1988).

The climate studies conducted by Carballeira et al. (1983) for the
period 1945-1974 indicate that in phase CVM-h the weather was
temperate and humid, with an average temperature of around 10 °C,
rainfall of 1700 mm and ETP around 700 mm.
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Climate data from weather stations in the NW Iberian Peninsula
indicate low rainfall between 1890 and 1921 AD (Llorente, 1955), which
corresponds with our interpretation of the results for CVM-g. Likewise,
climate data from weather stations located near CVM confirm that
CVM-h was wet, although less so at the end of the period. The decrease in
humidity became more pronounced in CVM-i because of a slight increase
in the average temperature and ETP, associated with a slight reduction in
rainfall.

Our findings are consistent with the recovery of the TSI values (Bard
et al., 2000; Crowley, 2000), the ocean temperature in western Europe
(Eiriksson et al., 2006), the surface temperature in Greenland (Kobashi
et al., 2011) and summer temperature in Europe (Luterbacher et al.,
2016).

6. Conclusions

A multiproxy approach was used to reconstruct the hydrological
conditions in a peat bog in the NW of the Iberian Peninsula throughout
the last millennium. The approach consisted of identification of plant
macrofossil presence, calculation of hydroclimatic indices (derived from
the ecological preferences of the present flora) and of humification
indices and enable construction of a high-resolution continuous age-
depth model for the entire Holocene.

Chao de Veiga Mol is a raised bog characterised by the highest known
resolution rates of Iberian peatlands (a mean value of 9.7 yr cm’l) and,
due to its geomorphological characteristics and geographical location, is
highly sensitive to climate changes, in an area of particular value for
compression of the local modulation of climate change.

An overall view of the sample core from the bog shows a generally dry
climate during the last millennium that lasted until the 14th century,
with a transition to a long period with a more humid, but very variable,
climate, ending at the beginning of the 20th century, followed by a rapid
transition first to more humid conditions and later to drier conditions.

The high resolution of the core enabled us to obtain a detailed
chronology of the climatic events. Nine climate phases were differenti-
ated in the period considered: two corresponding to the so-called Medi-
eval Climate Anomaly (930 to 1070 AD); four corresponding to the LIA
(1345 to 1905 AD); and three corresponding to the last century (1905 to
2000 AD).

The MCA, believed to have occurred in Europe between c. 900 and
1300 AD and with clear variations at regional level, was found to have
occurred in the peat bog from 930 to 1345 AD, but two well-contrasted
phases were clearly distinguished: a dry period (900-1070 AD), fol-
lowed by a period (1070-1345 AD) with alternating wet and dry phases.
Until now, a single warm and wet phase has been proposed for the Ibe-
rian Atlantic region and a warm and dry phase for the Mediterranean
area.

The LIA is generally considered a cold period, but with variations in
temperature and in rainfall patterns, the beginning and ending of which
are the subject of some controversy. In the CVM sequence, the onset of
the LIA is dated to around 1345 AD, and the end is dated to 1905 AD. This
early beginning of the LIA could not be established until now at the
necessary level of resolution. The resolution of the CVM core was suffi-
ciently high to reveal climate events not previously described: a wet
period, with a first wet maximum and some relatively dry episodes that
lasted from 1345 to 1610 AD; a less humid phase, with a clear tendency
to very cold conditions, from 1610 to 1735 AD, followed by a short phase
(1735-1815 AD) with increased dryness relative to the previous period,
with alternating drought and rainfall episodes, and, until the end of the
LIA, a second wet maximum, from 1815 to 1905 AD.

Finally, we differentiated three periods in the 20th century. The first,
between 1905 and 1925, is considered a dry period, followed by an in-
crease in wetness between 1925 and 1990 and then by a reduction in bog
surface wetness between 1990 and the end of the century.

The zonation determined by analysis of the core and the different
periods defined are generally consistent with existing knowledge of
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global climate changes, but also mark regional and local climate varia-
tions. The above-mentioned climate variations, with generally good
agreement between the proxies, are similar to information derived from
other studies, at global and local scales.

For the first time in the NW Iberian Peninsula, a continuous record of
sufficient resolution of the last thousand years has been established,
showing the variability that occurred during this climate period.

The intrinsic and environmental characteristics of CVM bog and a
multiproxy approach have made it possible (i) to establish that climatic
variations in this area are generally consistent with existing knowledge
on a global scale, (ii) to identify climatic oscillations during the last
millennium that remained hidden or observed with low resolution, and
(iii) to verify the presence of a local modulation of regional and global
models.

The research findings provide new information and a detailed chro-
nology of climatic events that will help to refine local modulation of the
regional models established in this geographical context, a key area of
special relevance for understanding the paleoclimatic dynamics of the
northern hemisphere.
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