The QUIJOTE-CMB Experiment: studying the polarisation
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ABSTRACT

The QUIJOTE (Q-U-T JOint Tenerife) CMB Experiment will operate at the Teide Observatory with the aim
of characterizing the polarisation of the CMB and other processes of Galactic and extragalactic emission in the
frequency range of 10-40 GHz and at large and medium angular scales. The first of the two QUIJOTE telescopes
and the first multi-frequency (10-30 GHz) instrument are already built and have been tested in the laboratory.
QUIJOTE-CMB will be a valuable complement at low frequencies for the Planck mission, and will have the
required sensitivity to detect a primordial gravitational-wave component if the tensor-to-scalar ratio is larger
than r = 0.05.

Keywords: cosmic microwave background, polarisation, cosmological parameters, early Universe, telescope,
instrumentation

1. INTRODUCTION

The study of the Cosmic Microwave Background (CMB) anisotropies is one of the most powerful tools in modern
cosmology, and it has played a crucial role in our understanding of the Universe. With the latest results from
WMAP satellite,! and with the information provided by ground-based experiments such as VSA,> ACBAR,3
CBIL* SPT® or ACT,% it has been possible to determine cosmological parameters with accuracies better than
five per cent.” Planck satellite, launched in May 2009, is expected to improve the accuracy on the determination
of the cosmological parameters, reaching precisions of less than a percent.®
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Until now, the majority of the CMB constraints are obtained from intensity measurements. However, the
CMB contains a wealth of information encoded in its polarisation signal. Since the first detection of polarisation
by the DASI experiment,® other experiments have provided measurements of the angular power spectrum of the
polarisation.'® 17 Despite their relatively poor signal-to-noise ratio, they still show excellent agreement with the
predictions of the standard ACDM model.

The standard theory predicts that the CMB is linearly polarized, the physical mechanism responsible for its
polarisation being Thomson scattering during the recombination or reionization epochs. Thus, the polarisation
state on any direction n on sky can be well described by the two Stokes parameters @) and U. Full-sky maps of
these two parameters can be decomposed into complex spin-2 harmonics

Q(R) iU (R) = asa om +2Yim(R), (1)
m

However, in practice these coefficients (a+2¢m) are not used in CMB studies to describe full-sky polarisation
maps. Instead, these polarisation maps are decomposed in terms of two scalar components usually called a
E-field (gradient) and a B-field (rotational),'® 1% and which are given by the coefficients

ag ¢m + a—2 ¢m ag ¢m — AG—2¢m
appm =—"" 5 ABm == o5 (2)

From here, the angular power spectra can be written as

1 m=-+¢
= 21 ;g ax, om@y,em (3)

where X and Y can take the values T, E, or B. Thus, in addition to the temperature power spectrum TT (CZTT),
we have three parity-independent angular power spectra to describe the polarisation field: the cross-correlation
of temperature T and E mode, TE (C7®); and the auto-correlation of the E and B modes, EE (CF¥) and BB
(CEB), respectively. All the other combinations (TB and EB) are expected to be zero for the CMB field.

The importance of this decomposition is connected with the physics of generation of the CMB anisotropies.
If the fluctuations in CMB intensity are seeded by scalar perturbations (i.e fluctuations in the density alone),
one would only expect primordial E modes in the CMB polarisation. However, vector and tensor perturbations,
like those due to gravitational waves (GW) in the primordial Universe,? are mechanisms that could generate
primordial B-modes in the polarisation on large angular scales. Therefore, if we can measure these modes, we
may have a unique way to carry out a detailed study of the inflationary epoch. In particular, the energy scale
V' at which inflation occurred can be expressed in terms of r, the ratio of tensor to scalar contributions to the
power spectrum, as?!

4
%

Based on BB upper limits alone, the best current constraint on the inflationary GW background is'® r < 0.72
(95% C.L.). When combining this information with the measurements of the other three CMB power spectra
(TT, TE and EE), the WMAP data'® alone gives r < 0.36 (95% C.L.). Finally, when BAO and SNIa constraints
are included,” we have 7 < 0.2 (95% C.L.). These numbers translate into a constraint of < 4 x 1016 GeV.

Because of the importance of detecting primordial gravitational waves,?? 23 there is a huge interest to develop
experiments to measure (or constrain) the amplitude of B-modes power spectrum of the CMB polarisation. Here
we present one of these efforts.

The QUIJOTE (Q-U-1 JOint TEnerife) CMB Experiment?* is a scientific collaboration between the Instituto
de Astrofisica de Canarias, the Instituto de Fisica de Cantabria, the IDOM company, and the universities of
Cantabria, Manchester and Cambridge, with the aim of characterizing the polarisation of the CMB, and other
galactic and extragalactic physical processes in the frequency range 10-40 GHz and at angular scales larger than
1 degree. Updated information can be found on the project website.?®
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Figure 1. A 3D drawing of the QUIJOTE-CMB experiment dome and the two telescopes.

2. PROJECT BASELINE

The QUIJOTE-CMB experiment consists of two telescopes and three instruments (see Fig. 1), which will observe
in the frequency range 10-40 GHz with an angular resolution of ~ 1 degree, from the Teide Observatory (2400 m)
in Tenerife (Spain). Experience over more than 27 years?® with several CMB experiments (Tenerife Experiment,
JBO-TAC Interferometer, COSMOSOMAS, Very Small Array) shows that this is an excellent place for CMB
observations. The project has two phases already funded:

e Phase I. Construction of the first QUIJOTE-CMB telescope (QT1) and two instruments which can be
exchanged in the QT1 focal plane. The first instrument (MFI) is a multichannel instrument providing the
frequency coverage between 10 and 20 GHz, and it will start commissioning during the summer of 2012.
The second instrument (TGI) will consist of 31 polarimeters working at 30 GHz, and it is expected to start
operations at the end of 2013. This phase also includes a two-element interferometer operating at 30 GHz,
which will be used as a “source-subtractor” facility to monitor and correct the contribution of polarized
radio-sources in the final QUIJOTE-CMB maps.

e Phase II. Construction of the second QUIJOTE-CMB telescope (QT2), and a third instrument (FGI) with
40 polarimeters working at 40 GHz.

There are also plans for a future Phase III of the project, which considers the construction of a new instrument
with at least 100 receivers at W-band. However, this third phase is not funded yet.

Table 1 summarizes the basic (nominal) characteristic of these three instruments in phases I and II. The noise
equivalent power (NEP) for one stabilized polarimeter channel is defined here as

Tsys
V Av Nchan '

where Ty stands for the total system temperature, Av is the bandwidth and Nehan is the number of channels
(computed here as the number of horns times the number of output channels per horn). From here, the noise
sensitivity is obtained as NEP/+/t, being ¢ the integration time. We note that the system temperature (7. sys)
values appearing in Table 1 have several contributions: the receiver contribution; the estimated contribution of
the opto-mechanics; the spillover contribution (i.e., the background contribution when the instrument is placed
in the focal plane of the telescope); the atmospheric contribution at the considered frequency; and the CMB
contribution (2.7K).

NEP = v2 (5)
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Table 1. Nominal characteristics of the three QUIJOTE-CMB instruments: MFI, TGI and FGI. Sensitivities are referred
to Stokes Q and U parameters. See text for details.

MFI TGI FGI
Nominal Frequency [GHz] 11 13 17 19 30 30 40
Bandwidth [GHz] 2 2 2 2 8 8 10
Number of horns 2 2 2 2 1 31 40
Channels per horn 4 4 4 4 2 4 4
Beam FWHM [°] 0.92 0.92 0.60 0.60 0.37 0.37 0.28
Tyys K] 25 25 25 25 35 35 45
NEP [uK s'/?] 280 280 280 280 390 50 50
Sensitivity [Jys'/?] 0.30 0.42 0.31 0.38 0.50 0.06 0.06

Figure 2. Left: QUIJOTE-CMB enclosure at the Teide Observatory. Right: Inside the QUIJOTE-CMB dome, before the
installation of QT1.

3. EXPERIMENT DESCRIPTION
3.1 Telescopes and Enclosure

The QUIJOTE-CMB experiment consists of two telescopes (hereafter QT1 and QT2) that will be installed
inside a single enclosure at the Teide Observatory. The enclosure and the building hosting the control room were
finished in June 2009 (see Fig. 2).

The layout of both QT1 and QT2 telescopes is based on an altazimuth mount supporting a primary (parabolic)
and a secondary (hyperbolic) mirror disposed in an offset Gregorian Dracon scheme, which provides optimal cross-
polarisation properties (designed to be < —35 dB) and symmetric beams. Each primary mirror has a 2.25m
projected aperture, while the secondary has 1.89 m. The system is under-illuminated to minimize side-lobes and
ground spillover. Each telescope is mounted on its own platform that can rotate around the vertical axis at a
maximum frequency of 6 rpm (i.e., 36 degs™!).

The telescope control software for QT1 was implemented during 2009, and the different observing modes
(raster, scanning, tracking, etc.) have been tested.?” The construction scheme, as well as the fabrication
techniques for QT1 have been already presented.?® We note that the QT1 mirrors have been designed to operate
up to 90 GHz (i.e., rms < 20 um and maximum deviation of d = 100 um). However, QT2 has been specified to
have a better surface accuracy, so the telescope could in principle operate up to 200 GHz.

The installation of QT1 at the Teide Observatory took place during May 2012 (see Fig. 3).

3.2 Instruments
3.2.1 Multi-frequency Instrument (MFT)

This is a multi-channel instrument with five independent sky pixels: two operate at 10-14 GHz; the other two
at 16-20 GHz, and finally a central polarimeter at 30 GHz that is being used as a demonstrator of the second
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Figure 3. Left: QT1 at the IAC workshop (June 2009). Right: Installation of QT1 at the Teide Observatory (May 3rd,
2012).

instrument during the laboratory tests and commissioning phase. The main science driver for the MFI is the
characterization of the Galactic emission. A complete description of the MFI and the details on the software are
presented elsewhere.?” 2 Here, we only provide the basic aspects of the instrument (see Fig. 4).

The optical arrangement includes five conical corrugated feedhorns (designed by the University of Manch-
ester). Each horn feeds a novel cryogenic on-axis rotating polar modulator which can rotate at speeds of up to
1Hz. We consider two possible operational modes: either continuous rotation of the polarimeters, or discrete
changes of the positions of the motors in steps of 22.5° (note that the polar modulation occurs at four times
the rotation angle). The orthogonal linear polar signals are separated through a wide-band cryogenic Ortho-
Mode-Transducer (OMT) before being amplified through two similar LNAs (a Faraday-type module in the case
of 30 GHz). These two orthogonal signals are fed into a room-temperature Back-End module (BEM) where they
are further amplified and spectrally filtered before being detected by square-law detectors. All the polarimeters
except the 30 GHz receiver have simultaneous ”Q” and ”U” detection i.e. the 2 orthogonal linear polar signals
are also correlated through a 180° hybrid and passed through two additional detectors. The band passes of these
lower frequency polarimeters have also been split into an upper and lower band which gives a total of 8 channels
per polarimeter (see Table 1).

The FEM for the low frequency channels was built by the IAC. The receivers for these channels use MMIC
6-20 GHz LNAs (designed by S. Weinreb and built in Caltech). The gain for these amplifiers is approximately
30dB, and the noise temperature is less than 9 K across the band. The 30 GHz FEM was built at the University
of Manchester, and the design used an existing Faraday module (same as the one used for OCRA-F*). The
BEM for the 30 GHz instrument was built by DICOM, with collaboration of IFCA at the simulation level. The
cryogenics and the mechanical systems were provided by the TAC.

3.2.2 Thirty-GHz Instrument (TGI)

This instrument will be mainly devoted to primordial B-mode science. TGI will be fitted with 31 polarimeters
working in the range of 26-36 GHz. After the laboratory tests with the 30 GHz polarimeter of the MFI, we found

*OCRA-F: http://www.jodrellbank.manchester.ac.uk/research/ocra/ocraf .html.
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Figure 4. Left: Close view of the MFI, during the integration phase (May 2011). Center: Integration of the MFI in the
QT1 focal plane (December 2011). Right: MFT already installed at the QT1 focal plane (January 2012). The electronic
boxes controlling the telescope and the instrument are also installed.
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Figure 5. Configuration of each of the 31 receivers of the TGI, in the QUIJOTE-CMB experiment.

that the MFT design, based on the spinning polar modulators in a cryogenic environment, is not appropriate for
the long-term operations required for the TGI. Thus, we have modified the receiver configuration by replacing
the rotating polar modulator with a fixed polarizer. The current new design is presented in Fig. 5. It includes
a fixed polarizer and 90° and 180° phase switches to generate four polarisation states to minimize the different
systematics in the receiver. A detailed description of the system has been already presented.?”

3.2.3 Forty-GHz Instrument (FGI)

Also devoted to primordial B-mode science, the FGI will be fitted with 40 polarimeters working at 40 GHz. The
conceptual design of a polarimeter chain for the FGI is identical to the one used for the TGI (see Fig. 5).

3.3 Source subtractor facility

An upgraded version of the VSA source subtractor (VSA-SS) facility,®® which is being carried out by the
Cavendish Laboratory and the University of Manchester, will be used to monitor the contribution of polarized
radio-sources in the QUIJOTE-CMB maps. The VSA-SS is a two element interferometer, operating at 30 GHz,
with 3.7 m dishes and a separation of 9m (see Fig. 6). The VSA-SS system only measured one linear polarisation
of the incoming radiation, so it is being upgraded to include a half-wave plate (HWP) in front of each of the
antennas in order to allow for successive measurements of Stokes Q and U. Here, we use a dielectrically embedded
mesh-HWP designed and produced at the University of Manchester (see right panel of Fig. 6).

Using the method described by Tucci et al. (2004)32 to simulate the polarisation properties of radio sources
at the QUIJOTE-CMB frequencies, we have estimated that in order for the residual source contribution to our
measurements be equal to or smaller than the expected B-mode signal for the case of r = 0.1 at 30 GHz, we
must remove the effects of all sources whose Stokes I intensity is higher than 300 mJy (see Fig. 7). Our strategy
is therefore to measure the 30 GHz Stokes I intensity of known radio sources (e.g., from the GB6 catalogue) and
then measure the polarisation of those that we find have Stokes I greater than 300 mJy. The total number of
sources to be monitored in the whole QUIJOTE-CMB surveyed area will be around 500. The expected polarised
flux sensitivity per source of the VSA-SS is 2-3 mJy.

An upgrade of this VSA-SS facility to operate at 40 GHz during the Phase II of the project is currently under
discussion.

Proc. of SPIE Vol. 8444 84442Y-6



Figure 6. Left: One of the two antennas of the VSA source subtractor. This facility will be re-used to measure the
polarisation of radio sources to correct the QUIJOTE-CMB 30 GHz maps. Right: Picture of the HWPs used for the
VSA-SS.

4. SCIENCE GOALS AND SCIENCE CASES

4.1 Core science
The QUIJOTE-CMB experiment has two primary scientific goals:

e to detect the imprint of gravitational B-modes if they have an amplitude r > 0.05;

e to provide essential information of the polarisation of the synchrotron and the anomalous microwave emis-
sions from our Galaxy at low frequencies (10-40 GHz).

For these scientific objectives, QUIJOTE-CMB will conduct two large surveys in polarisation (i.e., Stokes Q and
U maps):

i) a shallow “Galactic” survey. It will cover around 10000 deg? of sky. It is expected to be finished after
2-3 months of effective observing time with each instrument, reaching sensitivities of ~ 10-15 uK per one degree
beam in the Stokes Q and U maps with the MFI (11-19 GHz), and < 3 uK per beam with the TGI and FGI at
30 and 40 GHz.

ii) a deep “Cosmological” survey. It will cover around 3000deg?. Here, we shall reach sensitivities of
~ 3—4 uK per one degree beam after one year of effective observing time with the MFI (11-19 GHz), and < 1 uK
per beam with TGI and FGI at 30 and 40 GHz.

According to these nominal sensitivities, QUIJOTE-CMB will provide one of the most sensitive 11-19 GHz
measurements of the polarisation of the synchrotron and anomalous emissions on degree angular scales. This
information is extremely important given that B-modes are known to be sub-dominant in amplitude as compared
to the Galactic emission,? as illustrated in Fig. 7. The QUIJOTE-CMB maps will also constitute an unique
complement of the Planck satellite’, helping in the characterization of the Galactic emission. In particular,
the combination of Planck and QUIJOTE-CMB will allow us: (a) to determine synchrotron spectral indices
with high accuracy, and to fit for curvature of the synchrotron spectrum to constrain CR. electron physics;>*
(b) to study the large-scale properties of the Galactic magnetic field;®> or (c) to assess the level of a possible
contribution of polarized anomalous microwave emission.3% 37

Using the MFT maps from the deep survey, we plan to correct the high frequency QUIJOTE-CMB channels
(30 and 40 GHz) to search for primordial B-modes. As an illustration, Fig. 8 presents two cases. The left panel
shows the scientific goal for the angular power spectrum of the E and B modes after 1-year of effective observing
time, assuming a sky coverage of 3000 square degrees, with the TGI only. In this particular case, the final noise

tPlanck: http://www.rssd.esa.int/index.php?project=Planck
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Figure 7. Expected foreground contamination in the 30 GHz QUIJOTE-CMB frequency band. It is shown the contribution
of polarized synchrotron emission and radio-sources for the case of subtracting sources down to 1 Jy in total intensity (upper
dashed line for radio-sources) and 300mJy (lower dashed-line). The physical models for these emissions are described
in.?® The shaded red area shows the expected level of primordial gravitational waves for 7 in the range 0.01-0.2.
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Figure 8. Left: Example of the QUIJOTE-CMB scientific goal after the Phase I of the project, for the angular power
spectrum of the CMB E and B mode signals. It is shown the case for 1 year (effective) observing time, and a sky coverage
of ~ 3,000 deg?®. The red line corresponds to the primordial B-mode contribution in the case of » = 0.1. Dots with error
bars correspond to averaged measurements over a certain multipole band. Right: Same computation but now for the
QUIJOTE-CMB Phase I1. Here we consider 3 years of effective operations with the TGI, and that during the last 2 years,
the FGI will be also operative. The red line now corresponds to r = 0.05.

level for the 30 GHz map is ~ 0.5 K /beam. The right panel shows the scientific goal for the QUIJOTE-CMB
Phase II. Here, we consider 3 years of effective observing time with the TGI, and 2 years with the FGI. Note that,
once the two instruments (FGI and TGI) are available, they can be operated simultaneously, as we will have
two telescopes. Finally, we stress that the computations presented in Fig. 8 correspond to the optimal situation
in which the foreground removal leaves a negligible impact on the power spectrum. More realistic estimates will
be published in a future paper.

4.2 Non-core science

Apart from the scientific goals described in the previous section, we have identified a number of secondary science
projects. The characteristics of QUIJOTE-CMB make it a suitable experiment for performing (relatively-short)
observations in specific regions that would allow us to tackle scientific objectives different to those for which it
was conceived. Some of these possible projects are:

i) Study of the polarisation of Galactic regions and extragalactic sources. One of the main science drivers
of QUIJOTE-CMB is to characterize the polarisation of the large-scale synchrotron emission from our Galaxy.

Proc. of SPIE Vol. 8444 84442Y-8



However, it is also interesting to study this polarisation in specific Galactic regions, and also in extragalactic
regions like M31, or in some of the 22 polarized sources detected in WMAP data.?® This could be done either
with the MFI or with the polarized source subtractor, depending on the angular resolution.

ii) Study of the North Polar Spur. This a huge feature, visible mainly in radio wavelengths, which covers
about a quarter of the sky and extends to high Galactic latitudes. Two main hypotheses have been proposed for
its origin, namely a superbubble inflated by stellar winds and supernovae activity from the Scorpius-Centaurus
OB association, on one hand, and an interaction between the loop I superbubble and the local superbubble.3’
QUIJOTE-CMB data in this region may help to disentangle these two hypotheses.

ili) Study of the polarisation of the anomalous microwave emission (AME) in the Perseus molecular
cloud and in other bright Galactic clouds. Apart from the synchrotron, it is also mandatory to have a good
characterization of the AME polarisation in order to assess what level of contamination current and future B-
modes experiments will suffer. At present, only upper limits of the polarisation percentage have been obtained;*°
these stand at ~1% at the 95% C.L. We estimate that 35h of observations with the 30 GHz channels of the MFI
on Perseus could allow us to obtain a ~1% upper limit at the 99% C.L. Other possible targets include the
p-Ophiuchi molecular cloud,*' the dark nebula LDN1622 or the Pleiades reflection nebula.*? These QUIJOTE-
CMB measurements will provide a unique tool to understand the physical mechanism responsible for the AME,
helping to distinguish between the electric dipole and the magnetic dipole radiation models.*3 44

iv) Study of the WMAP haze in polarisation. This is an excess of microwave emission towards the centre
of the Galaxy that was found at 23 GHz in WMAP data, with a significantly flatter spectrum than synchrotron,
and which has recently been shown to have a Gamma-ray counterpart in Fermi data.*> This is a burning subject
at the moment, mainly owing to one of the proposed hypotheses for its origin, which is based on hard synchrotron
radiation driven by relativistic electrons and positrons produced in the annihilations of one (or more) species of
dark matter particles.*6 QUIJOTE-CMB data could have an important contribution here, as it could allow us
to measure, or to constrain the expected level of polarisation of this synchrotron emission.

v) Study of the polarisation of the WMAP cold spot. This is a non-Gaussian feature in the CMB, in the
form of an extremely extended and cold region, which was found in WMAP data.?” After several considerations,
it was proposed as a possible scenario for its origin the presence of a texture, a kind of topological defect which
is predicted to occur in the primordial Universe. If this hypothesis were correct, a lack of polarisation would be
expected in this region as compared with typical values of the primordial CMB. Therefore, the QUIJOTE-CMB
data could help to disentangle the Gaussian and the texture hypotheses. In particular, it has been estimated®
that these data would be able to reject the Gaussian hypothesis with a significance of ~1%.

5. PROJECT STATUS AND TIMELINE

QT1 is already installed at the Teide Observatory, and is now in the commissioning process. Immediately after
this, the MFI will be commissioned, probably during this summer (2012). In parallel, the commissioning phase
of the source-subtractor facility will take place.

We expect to install the QT2 at the end of 2013. Concerning the other two instruments, the TGI will be
installed in the focal plane of the QT2, and will be commissioned by the end of 2013. The TGI will be available
by the end of 2014. Note that once the TGI is operative, the FGI will be permanently installed in QT1, while
the TGI will be placed in QT2.
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