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A B S T R A C T   

Model-Driven Design (MDD) has proven to be a powerful technology to address the development of increasingly complex embedded systems. Beyond complexity 
itself, challenges come from the need to deal with parallelism and heterogeneity. System design must target different execution platforms with different OSs and HW 
resources, even bare-metal, support local and distributed systems, and integrate on top of these heterogeneous platforms multiple functional component coming from 
different sources (developed from scratch, legacy code and third-party code), with different behaviors operating under different models of computation and 
communication. Additionally, system optimization to improve performance, power consumption, cost, etc. requires analyzing huge lists of possible design solutions. 
Addressing these challenges require flexible design technologies able to support from a single-source model its architectural mapping to different computing re-
sources, of different kind and in different platforms. Traditional MDD methods and tools typically rely on fixed elements, which makes difficult their integration 
under this variability. For example, it is unlikely to integrate in the same system legacy code with a third-party component. Usually some re-coding is required to 
enable such interconnection. This paper proposes a UML/MARTE system modeling methodology able to address the challenges mentioned above by improving 
flexibility and scalability. This approach is illustrated and demonstrated on a flight management system. The model is flexible enough to be adapted to different 
architectural solutions with a minimal effort by changing its underlying Model of Computation and Communication (MoCC). Being completely platform independent, 
from the same model it is possible to explore various solutions on different execution platforms.   

1. Introduction 

Embedded Systems (ESs) are the fundamental constituents of the 
Internet of Things (IoT), the new paradigm leading the development of 
electronics in the medium-term. Based on them, it is possible to conceive 
the design of new electronic systems providing the computing and 
communication resources required by new applications [1]. Neverthe-
less, the design of these new applications has to cope with their 
increasing complexity as the main problem to be overcome. Design 
complexity comes from three main reasons:  

• Increasing complexity of the integrated circuits on which the 
embedded systems can be implemented, with a higher number of 
processing cores, co-processors, peripherals, sensors, etc.  

• Increasing heterogeneity of the computing platforms with a larger 
variety of computing resources of different kind, such as CPUs of 
various types, either with the same instruction-set (i.e. big-little) or 
different (i.e. ARM-RISCV), GPUs, DSPs, application-specific HW, 
etc.  

• Increasing number of computing nodes in the execution platform as, 
in order to be able to provide the required services, the application 
has to be distributed over a network of nodes of different kind, from 

simples sensing motes and embedded systems to computing re-
sources in the fog and the cloud. In some extreme cases, the system 
being design has to be conceived as a collection of systems; a System- 
of-Systems (SoS).  

• Increasing complexity of the interaction between the (digital) system 
and the (analog) physical environment in which it has to operate 
leading to Cyber-Physical Systems of Systems (CPSoS). 

System complexity expands the number of design alternatives. 
Therefore, it is crucial to assist the system architect in the identification 
of the most suitable solutions already at the early phases of the design 
process before time and effort are invested in the implementation, 
integration and testing [2]. Moreover, selecting the hardware platform 
from the very beginning allows the development of the hardware ar-
chitecture in parallel with the development of the software architecture, 
thus accelerating the global development process. The challenge for the 
industry is to avoid over-dimensioning the required computing re-
sources (with impact on cost and energy) as well as under-dimensioning 
them (impact on performance and redesign cost). 

Model-Driven Software Engineering (MDSE) has proven to be a 
powerful approach to deal with the increasing complexity of software 
development [3]. It can be adapted to different design contexts and 
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domains, being compatible with methodologies like Agile [4] and 
DevOps [5]. The abstraction, interoperability, and reusability capabil-
ities of MDSE become especially relevant in order to model complex 
services built on distributed, heterogeneous embedded devices as com-
mented above. The advantages of MDSE can be applied to system en-
gineering as well. 

System modeling is an essential aspect of any system engineering 
methodology. This is especially important in Model-Driven Engineering 
(MDE). MDE demands a sound, comprehensive modeling methodology 
in order to capture all the relevant information about the system being 
designed. Thus, in order to address the demand for more powerful 
modeling methods, new methodologies are continuously being pro-
posed. Currently, the challenges posed by the increasing complexity of 
CPSoSs require of more powerful, generic, reusable, platform- 
independent modeling methods able to cope with the complete service 
under design. From the model, it should be possible to analyze, explore 
different solutions and optimize the system towards satisfying all the 
functional and non-functional requirements such as speed, throughputs, 
power consumption, security, safety, etc. Finally, once the system en-
gineer is convinced that the system design is valid, it is possible to 
synthesize the SW to be executed on the different computing resources 
and, eventually the application-specific HW required. 

The tendency in the last years has been towards a specialization of 
SW development methods and languages to specific domains, leading to 
a diversity of Domain-Specific Languages (DSLs) [3]. Nevertheless, the 
use of these DLSs usually creates closed areas, since it is quite difficult to 
integrate under one DSL the developments done in others, limiting 
reusability and composability. To solve this problem, this paper pro-
poses, first, the use of a standard modeling language, and then, to specify 
the system components in such a way that, they can be easily adapted for 
its integration under different environments, communication mecha-
nism and/or models of computation. 

To achieve this goal, this paper proposes the use of UML/MARTE 
(Modeling and Analysis of Real-Time and Embedded systems), the 
standard proposed by the OMG for the modeling and analysis of real- 
time and embedded systems. UML/MARTE covers both system engi-
neering, by the Generic Resource Modeling (GRM) and the Generic 
Component Modeling (GCM) chapters, and software engineering, by the 
High-Level Application Modeling (HLAM) chapter and the Software 
Resource Modeling (SRM) section of the Detailed Resource Modeling 
(DRM) chapter. In addition, UML/MARTE covers architectural mapping 
and design-space exploration by supporting the description of the 
computing architecture by the (Detailed) Hardware Resource Modeling 
(HRM) of the Detailed Resource Modeling (DRM) chapter [6]. 

One of the main ways to improve design productivity is to keep to a 
minimum the need to develop new components from scratch but using 
them repeatedly from one project to the other [7]. This affects several 
versions of the same product in a product-line, the same product 
implemented on several HW/SW execution platforms as well as the 
maintenance and updating of a product already in field operation. 

As a result, in this paper, S3D, a Single-Source System modeling and 
Design framework is proposed able to support an efficient Cyber- 
Physical Systems of Systems (CPSoS) modeling. The starting point is 
UML/MARTE as it allows to model functionality at different abstraction 
levels but also the execution platform on which this functionality can be 
mapped. In a Single-Source approach [4], all the relevant information 
about the system being designed is centralized in a single model. The 
rationale behind this approach comes from the fact that modeling is 
costly and error-prone. The main goal of the S3D approach is to mini-
mize the modeling effort as much as possible. In order to facilitate 
capturing all the relevant information about the system for different 
purposes in a coherent, accessible and understandable way, the infor-
mation is organized in views. Each view encloses all the required in-
formation about a particular aspect of the system. As each view is 
orthogonal to the others, they support separation of concerns, which is 
an important principle for designing high quality software systems and 
is both applied in the Model-Driven Architecture (MDA) [8] and 
Aspect-Oriented Software Development (AOSD) [9]. An essential nov-
elty in S3D is the description of component functionality. Instead of 
making use of the mechanisms provided by UML for that purpose like 
state or activity diagrams, S3D associates to each component its func-
tional code in a programming language (i.e. C++). Components may be 
associated to several codes in different languages so that the most 
appropriate for a particular computing resource or application can be 
selected. S3D does not impose any restriction to the code in the file 
which is a user’s responsibility. The only strict condition is to ensure that 
the code is platform-independent so that it can be compiled and 
executed on any computing platform. The goal of the S3D framework is 
the automatic generation of the simulation and analysis models from the 
same source, taking into account the architectural and mapping de-
cisions as well as the communication and synchronization properties 
among components defined in the UML/MARTE model. 

From the central repository, different tools can be used in order to 
perform the different design tasks such as verification, simulation, per-
formance analysis, schedulability analysis, etc. Finally, when the design 
is considered correct, satisfying all the functional and non-functional 
constraints, the code to be deployed on the different computational 
nodes of the distributed platform is automatically generated, as shown 

Fig. 1. The S3D framework.  
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in Fig. 1. 
From the same single-source model, Model to Model (M2M) and 

Model to Text (M2T) generators extract the information required by 
each design tool. Once the design is considered as correct, the code to be 
compiled on each computing resource or synthesized (using behavioral 
synthesis tools), is extracted from the model. In this paper, the focus is 
put on the modeling methodology able to support such a framework. 
Additional information about S3D and its associated design tools can be 
found in [10]. 

The structure of the paper is the following. First, a description of the 
state of the art regarding the modeling approaches currently available 
will be provided. A discussion of the problem statement and the main 
requirements that the methodology should satisfy is provided in the next 
section. Then, the S3D modeling methodology is detailed. First, for the 
sake of completeness, the fundamental concepts supporting the meth-
odology are described. Then, the main improvements to current com-
mon practices towards reusability are highlighted. Finally, the modeling 
methodology is assessed on a complex use case, a Flight Management 
System (FMS). 

2. State of the art 

Since the 90’s, Object-Oriented Modeling is the dominant SW 
modeling and design methodology [11]. In Object-Oriented Modeling 
(OOM), the system is conceived as a collection of objects. Objects are 
instantiation of classes, which encapsulate data and methods. No re-
strictions are put on the way the objects interact among them, either by 
calling methods from other objects or global and static variables. 
Concurrency is not made explicit. Thus, a class may trigger a large 
number of threads or may be a passive unit implementing methods to be 
called from external objects. As the main communication mechanism is 
the function call, active threads jump from one object to the other freely. 
This makes very difficult to analyze the actual behavior of the system 
being modeled. As each object may interact with any other, under-
standing the active threads in the system is not easy. In the same way, 
apart from inheritance, hierarchy is not visible in many cases. This 
makes OOM hardly scalable and reusable. The problems derived from 
concurrency in OOM have been highlighted [12]. 

In Actor-Oriented Modeling (AOM), the system is conceived as a 
collection of concurrent components called actors [13][14]. Actors 
encapsulate data and functionality and interact each other through 
predefined communication patterns, which may lead to concrete Models 
of Computation [15]. Actor-Oriented modeling intends to highlight 
‘concurrency, temporal properties, and assumptions and guarantees in 
the face of dynamic system structure’. Although it is more restrictive 
than OOM, the benefits that AOM provides justify its use. Examples of 
AOM frameworks are Simulink [16], Labview [17], Modelica[18] and 
Ptolemy [19]. 

In Component-Based System Modeling (CBSM), the system is 
designed by hierarchically dividing its structure in components inter-
acting among them and with the environment. The other way around, in 
a bottom-up approach, the system is built up from predesign compo-
nents [20]. A component is a concept in the middle of an object and an 
actor. CBSM imposes conditions to the objects in order to be considered 
as components. While an object does not have any restriction in the way 
it interacts with other objects, a component encapsulates functionality 
and interact with other components using explicit communication in-
terfaces. Therefore, CBSM can support OOM directly as components are 
objects and can be used as such when the restrictions to the communi-
cation and synchronization mechanisms among components are relaxed. 
In the opposite direction, when the internal functionality of the 
component has to satisfy concrete restrictions, it becomes an actor. 

Model-Driven Software Engineering is widely used in order to cope 
with the increasing complexity of software development. Several com-
mercial tools are available. One of the most popular is Matlab/Simulink 
[21]. Although Matlab/Simulink facilitates the modeling and analysis of 

complex systems, its simulation efficiency might be an important 
disadvantage. Being based on a single Model of Computation and 
Communication (MoCC) is another limitation. CoFluent is other com-
mercial tool extended to model IoT systems [22]. Although supporting 
more interaction models that Matlab/Simulink, it is also limited in the 
way components may interact among them. On the contrary, Ptolemy is 
an open-source software framework supporting actor-oriented design 
under any MoC [19]. The flexibility Ptolemy provides in mixing 
different MoCs goes hand in hand with restrictions in modeling as the 
action code has to be encapsulated inside the Java infrastructure 
combining the different ‘Directors’, that is, the simulation engines for 
each specific MoC. 

The communication and synchronization mechanisms among com-
ponents are essential to define the underlying MoC on which the system 
is based. Software connectors are first class architectural elements that 
reflect the specific features of interactions among components in a sys-
tem [23]. They are associated to a protocol and an implementation [24]. 
In some cases, specific UML profiles are proposed to describe the SW 
architecture of components and connectors. The latter are described 
using a specific stereotype very similar to the component [25]. Being an 
architectural element, connectors can be composed to build more 
complex interaction mechanisms among components [20]. This solution 
makes it more difficult to model the SW architecture and makes it more 
rigid as any change in the interaction between two components requires 
replacing the connector in the composite diagram. A taxonomy for 
connectors has been proposed but the result is difficult to handle as the 
variety of connector types considered is very large [26]. In order to 
specify the behavior of connectors, they can be handle using the same 
mechanisms as for behavioral types [27]. Software connector may 
strongly benefit from the flexibility provided in this paper in defining 
different MoCs. 

The Unified Modeling Language (UML) provides a standard, 
graphical-based formalism for capturing system models. UML is very 
flexible but lacks the semantical content required in most application 
domains. The fUML subset details the simulation semantics of the model 
but it does not add the concepts needed in a particular domain [28]. As a 
consequence, the tendency has been towards a proliferation of DSLs [3]. 
Metamorph is a good example of a modeling framework able to combine 
different DSLs. The key feature in achieving this goal is the ‘connector’. 
The connector is language-specific (i.e. Modelica connector or Spice 
connector). Heterogeneous simulation is achieved by combining 
different simulation engines under the global control of a Master, in a 
similar way as Ptolemy [29]. Addressing IoT heterogeneity by 
combining different DSLs has been proposed in [30]. This is the easiest 
way but strongly restrict design-space exploration as changing a 
component modeled in one DSL from one domain to another would 
require to model again the component in a new DSL, eventually from 
scratch. Even in the case the transformation is automatic, some 
domain-specific information may be lost. 

An alternative to UML for Model-Driven Design (MDD) of systems 
(and SoS) is the Architectural Analysis and Design language (AADL) 
[31]. As the language is based on fundamental computing engineering 
concepts for both the functional architecture and the HW/SW 
computing platform, AADL could be used in many different domains. 
Nevertheless, its current use is limited to mixed-critical systems in the 
automotive and aeronautic domains. An AADL model contains compo-
nent types and implementation with their interfaces, subcomponents, 
and other properties. It defines the system in a hierarchical manner, with 
a top component called the root system and other component categories 
are grouped into three clusters: hardware, software, and hybrid. Com-
ponents communicate among them connections. AADL supports three 
types of connections. A port connection represents the transfer of data 
and control between two concurrently executing components, i.e., be-
tween two thread components, or between a thread and a processor or 
device. Parameter connections are an abstraction for the flow of data 
through the parameters of a sequence of subprogram calls. Access 
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connections designate access to shared data components by concur-
rently executing threads, or by subprograms executing within a thread. 
As a consequence, modeling a particular communication mechanism 
requires using different types of connections with different properties 
which makes difficult to change the underlying MoCC and explore 
different solutions [32]. 

Several modeling environments such as Modelio [33] and Papyrus 
[34] support UML/MARTE, the standard DSL for real-time and 
embedded systems. The standard defines the basic concepts required to 
support real-time and embedded systems, a first specialization of this 
core package to support pure modeling of applications (e.g. hardware 
and software platform modeling) and a second specialization to support 
quantitative analysis of UML2 models, specially schedulability and 
performance analysis. Nevertheless, although MARTE provides the 
required modeling elements but does not define how to use them. As a 
consequence, several modeling methodologies have been proposed [35]. 
One of them is Time4Sys, a framework developed as a Polarsys plugin 
with the objective to bridge design and analysis tools without changing 
the development framework. The main goal is timing analysis. It sup-
ports schedulability analysis based on ‘Worst-Case Execution Times’ 
(WCET). The tool also supports workload simulation assigning constant 
execution times to the tasks (subtasks) [36]. 

One of the first frameworks using MARTE for system modeling and 
design was Gaspard [37]. In Gaspard, components encapsulate tasks. 
The underlying MoC is data-flow. The main contribution of the paper 
was to take advantage of the Repetitive Structure Modeling (RSM) ca-
pabilities of the MARTE profile. The RSM features facilitates the 
description of iterative architectures in which the system is composed of 
a multi-dimensional structure of tiles of the same component. Three 
technologies are targeted for system analysis at different abstraction 
levels: functional level with synchronous languages, PVT level with 
SystemC, and RTL level with VHDL. The equivalence among these three 
different executable models is not explained. 

Chess is one of the most complete UML/MARTE component-based 
modeling methodology [38][39]. As Gaspard, Chess also exploits the 
potential of UML/MARTE in describing the HW platform and, therefore, 
easy the modeling of different architectural mappings. Another impor-
tant similitude is the solid implementation of separation of concerns by 
design views. Some SysML features are used for the modeling of re-
quirements and for the system-level design. Functional and temporal 
properties and requirements of components can be specified in Chess 
following the FoReVer contract-based approach [40]. Although the 
original focus is embedded and real-time software, Chess can be applied 
to other domains as the semantical concepts supported are fundamental 
to system engineering and not domain-specific. Components interact 
among them through ports. The functions that a ‘ClientServerPort’ offers 
to, or requires from other components are declared in the interfaces 
associated to the port. The properties that the system engineer can assign 
to the interface functions in order to specify its execution only refer to its 
periodicity (sporadic or periodic) and its protection (sequential or 
guarded). In order to facilitate the modeling of data-flow systems, the 
‘flowport’ is also supported. Being, apparently, an advantage, the 
‘flowport’ enforces a concrete communication mechanism, which limits 
the flexibility and reusability of the system model. Another, more recent 
UML-based modeling and design framework is Hepsycode. Its main 
limitation is that it only supports a single MoC, the CPS [41]. 

Reusability has been always an implicit consequence of MDD. The 
distinction between the Platform-Independent Model (PIM) and the 
Platform-Specific Model (PSM) made by Model-Driven Architecture [7] 
facilitates reusability. If the MDD methodology is component-based, 
then reusability is even easier [42]. Nevertheless, reusability does not 
come for free and additional measures have to be taken in order to 
ensure it [43]. There is a lack for system modeling methodologies sup-
porting reusability as a first-class goal. In most cases, only general rec-
ommendations are found in bibliography [44]. So, the use of repositories 
of models is mentioned. Nevertheless, the structure and contents that 

these repositories (libraries) should have, are not described [42-44]. 
The UML/MARTE background modeling methodology on which this 

paper is based was presented in [35]. Its fundamentals were similar to 
Chess. Both are good examples of generic, reusable, 
platform-independent modeling methodologies. They have proven to 
support the modeling of embedded systems. Nevertheless, when dealing 
with services implemented on CPSoSs, these MDD frameworks need to 
be extended with more powerful modeling methods. In a CPS, the 
embedded system has to operate inside a physical environment ruled by 
strict physical equations. So, for instance, in the FMS used as example in 
the paper, the position of the airplane at each point in time is determined 
by the impulse produced by the engines, the mass of the airplane and the 
aerodynamics of its movement. The importance of accurate timing 
analysis in CPSoS design has been highlighted [45,46]. Time accuracy 
and granularity evolve along the design process. From an untimed model 
of both the environment and the system in which data in the environ-
ment are generated and consumed at certain implicit rates, more 
detailed models can be derived. For the environment, SystemC is a good 
choice. Its analog extension may facilitate the modeling of physical 
processes [47]. Regarding the temporal behavior of the system, it can be 
untimed at the beginning, timed with estimated workloads during sys-
tem analysis and optimization and finally, modeled accurately using 
host-compiled simulation [2] or virtualization. In all the cases, the 
system model has to be generated from the functional code by the M2M 
and M2T generators commented above. During system optimization, the 
functional code in components may require to be replaced by optimized 
versions for specific targets (i.e a GPU requiring OpenCL instead of 
C++) or its parallelization in order to exploit the parallelism of 
NoC-based multi-core platforms [48,49] and MPSoCs [50]. 

In this paper, the improvements built on top of S3D will be described. 
The main goal of these improvements is reusability. The structure of the 
paper is the following. In Section 3, an overview of the methodology is 
presented. This will allow the reader to better understand the technical 
contributions made. These contributions are detailed in Section 4. In 
Section 5, an industrial use case, a Flight Management System, is used to 
assess the methodology proposed and the advantages it brings in sup-
porting a fast exploration of different architectural mappings and the 
selection of the most appropriate. Although the experiment corresponds 
as well to a design-space exploration example, the different architectural 
mappings may correspond to several versions of the same product, an 
up-date of a product or a new implementation of the product on a 
different platform. Finally, the main conclusions of the work are 
outlined. 

3. Problem statement 

As commented above, the main challenges to be faced by a CPSoS 
modeling methodology are the increasing complexity of the integrated 
circuits, its growing heterogeneity and the increasing complexity of the 
system behavior and structure, composed by a number of distributed 
embedded systems, eventually connected to the cloud. From the analysis 
of the state of the art, it is possible to conclude that there is a lack of 
powerful-enough system modeling methodologies able to scale to cyber- 
physical systems composed by a variety of embedded systems. 

In order to minimize the modeling effort and to reduce the number of 
errors, the modeling methodology should be simple, easy to understand 
and easy to be applied to different domains. As an additional charac-
teristic towards simplicity and understandability, the number of 
fundamental modeling primitives should be as reduced as possible. 

However, even with a simple methodology, modeling a complex 
system can be a time-consuming task. To minimize that issue, out first 
proposal is to ensure that the same system model can be used for mul-
tiple purposes. That way, the modeling overhead impact along the whole 
design process is limited. For such purpose, we have adapted our 
modeling methodology to be able to generate models that can be used as 
inputs for many tools, such as eSSYN for code generation [51], VIPPE for 
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simulation and performance evaluation [52] or MAST for schedulability 
analysis [53]. As a result, the system model can be used as a single 
source for different activities. 

The single-source modeling approach followed by S3D supports 
capturing all the relevant information in a single site thus avoiding 
duplication of design information. If a piece of information is relevant 
for the system under design, it should be part of the model. The single- 
source approach ensures that any piece of information is where the tools 
needing it will find it and linked to those other parts of the model to 
which it is related. 

3.1. Reusability 

Generating a complete model of a large system (i.e. a CPSoS) is a 
time-consuming task. This paper focuses on proposing solutions capable 
of reduce this effort by improving model reuse, as shown in Section 5. 
These improvements are presented for the S3D modeling methodology, 
but they could be applied to other methodologies, especially due to the 
fact that they are based on standards, not on specific profiles, as 
described below. 

Typically, the process of creating a UML model involves, first, 
creating models of the individual elements of the system (e.g. compo-
nents) and then, combining these elements to specify the system. It is 
usual to spend more time in the modeling of the components than in the 
modeling of their interactions, due to the different parameters and de-
tails to be configure within the component models. Thus, minimizing 
this time will represent an important reduction of the overall modeling 
time. To do so, as in many other design activities, one of the main ways 
to improve design productivity is to keep to a minimum the need to 
develop new components from scratch but using them repeatedly from 
one project to the other [7]. 

However, there are several problems when trying to reuse compo-
nents, that will be addressed in this paper. The first problem is that, 
fundamentally, MDD is a top-down approach. The functional model of 
the system is developed by its hierarchical partition until simple enough 
components are found and developed from scratch. The model is 
analyzed and optimized until a valid model is ready for development. On 
the contrary, reusability is a bottom-up approach in which previously 
developed components are used again in order to build a new system. 
Thus, our first idea is to change this view. The proposal is to develop a 
library or repository of component models as complete as possible, valid 
to be reused from one project to another. 

But reusing a component from one project to another is not so simple. 
A second problem is that the reuse ratio can change a lot from one design 
to another. If a company is developing an improved version of a previous 
project, the new design can potentially reuse a lot of components from 
the previous version. However, if the company is developing a design for 
a completely new area, reuse can be minimal. In that context, it could be 
required to get third party components. However, this is only possible if 

standards are used. Modeling all the required details to support different 
tools with standard UML profiles is difficult, since standards are com-
mon and, thus, they do not offer exactly all the elements required by a 
specific tool provider. Typically, specific profiles are proposed to solve 
this problem, but they go against model reusability. Thus, an alternative 
based on standards is proposed in this paper. Specially, the paper will 
show how communication semantics can be modeled using the standard 
MARTE (Modeling and Analysis of Real Time and Embedded systems) 
profile of the OMG while ensuring component reusability. 

Furthermore, to be reused, a component may require being inte-
grated in a completely different structure compared with the design 
where it was originally developed (Fig. 2), services can be requested 
with different communication semantics, or the functionality has to be 
run in a completely different hardware platform. Achieve reusability 
under these circumstances requires the components to be completely 
independent from its implementation and use. To do so, first, component 
internal functionality must be completely platform independent. Sec-
ondly, another characteristic to be covered is composability. Compo-
nents should be able to be connected each other without restrictions, 
whenever one provides the services the other requires. In this way, the 
modeling methodology should support a ‘bottom-up’ design methodol-
ogy where sub-components are built up by the composition of simpler 
components, which, in the same way, can be the result of the compo-
sition of other simpler components as shown in Section 4. 

Thus, the main goal of this paper is to propose solutions to improve 
component reuse, focusing on platform independency and communi-
cation independency, including independency on ports and communi-
cation semantics, including support for multiple Models of Computation 
and Communication (MoCCs). Especially, the example and results in 
Section 6 will demonstrate how the same functional components can 
change their models of computation with just change a few parameters 
in the component model, using automatic code generation to obtain 
implementation with different performance. 

4. S3D: Single-source system modeling and design 

For the sake of completeness and to present the improvements on 
reusability described in Section 5, a brief introduction to the S3D 
modeling methodology is required. As stated before, the S3D method-
ology has been proposed to enable designers to create system models 
that can be used as input for different tools at different steps of the 
design process. 

The modeling methodology has been kept simple, based on funda-
mental system engineering concepts easy to be understood and easy to 
be applied to different domains. The number of modeling primitives 
have been reduced as much as possible, limiting them to ensure unam-
biguous identification of the fundamental concepts in the model. The 
methodology is Component-Based [48] and therefore, the main 
modeling primitives are the components, the required and provided 

Fig. 2. Different systems composed from the same components.  
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interfaces and the ports. Interfaces are basically lists of services offered 
or required, being services in S3D functions (defined by their name and 
arguments) for communication from/to other components. Ports define 
the communication capabilities of the component. Thus, each port 
indicate a list of interfaces, that is, a list of services, which are, all of 
them, required or provided. As it will be described in Section 5, ports 
will also define the communication and operation semantics associated 
to these services, such as synchronism or concurrency. 

Additionally, to capture all the relevant information in a simple way, 
the system model is divided in ‘views’. Each ‘view’ captures all the 
relevant information about a specific design concern (i.e. component 
characteristics, system functionality, the system verification, HW plat-
form, etc.). 

Following the Model-Driven Architecture (MDA), the design and 
verification views are divided in three groups, the Platform-Independent 
Model (PIM), the Platform Description Model (PDM) and the Platform- 
Specific Model (PSM). Nevertheless, the actual meaning of these 
models in S3D has been modified in order to integrate the information 
required by the single-source approach. 

Additionally, although simple, the modeling methodology should be 
able to support the modeling and design of complex systems, even 
Cyber-Physical Systems of Systems (CPSoS). This would enable a holistic 
analysis of the complete service being supported by the SoS, thus 
allowing the right system-level architectural decisions. 

4.1. Platform independent model 

The PIM “exhibits a sufficient degree of independence so as to enable 
its mapping to one or more platforms” [3]. Thus, it includes all these 

elements that are related to system functionality. These elements 
include the description of the functional components, the overall func-
tional architecture and the model of the environment for functional 
verification. As no relation to any HW architecture is included, the 
model is completely platform-independent. 

4.1.1. Application components 
The fundamental modeling element in the methodology is the 

component. Components communicate among them through ports, and 
ports contain interfaces, which define the communication methods. The 
components either require communication methods (or services) trough 
required interfaces or offer communication methods (or services) 
through provided interfaces (Fig. 3). 

Reusable components in the library can be <<RtUnit>> or 
<<PpUnit>> weather they are active, concurrent objects or passive 
ones. When, related information can be assigned, such as the maximum 
number of threads a ‘RtUnit’ can have active at a time. Additionally, 
‘RtUnit’ components can have their own internal execution flows (not 
triggered by an external service call). So, a thread is generated executing 
the component method specified as the ‘main’ function, leading to 
component-level parallelism. Functional and extra-functional con-
straints may be imposed to the application components using appro-
priate constraint-specification languages such as OCL. 

Functional components also include the specification on the func-
tionality, while ports and interfaces specify the semantics of each 
communication. However, the definition of these elements is critical in 
terms of reusability. Thus, they will be described in detail in the next 
section. 

Fig. 4. The structural subsystem LocGroup.  

Fig. 3. A system with three components.  
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4.1.2. System functionality and subsystems 
The system is conceived as a hierarchical network of components. 

Once the components are specified, the system functionality is obtained 
as a composition of such application components connected each other 
through concrete, compatible ports and interfaces. Thus, the system is 
created following a client/server philosophy, being the client the 
component requiring a service, and the server the component providing 
this service. In order to identify a component as the system, the 
<<System>> stereotype is used. 

Additionally, application components can be grouped together in 
subsystems. A subsystem is just a component that includes other com-
ponents inside, resulting a hierarchical component. In order to identify a 
component as a subsystem, the <<Subsystem>> stereotype is used. A 
subsystem can be part of more complex subsystems. In this way, sub-
systems are essential to deal with the modeling of complex systems of 
systems. That solution enables modeling hierarchy. Then, when a 
problem is too complex, the main way to address its modeling is dividing 
it in smaller sub-components, which can be modeled independently. An 
example is shown in Fig. 4: the LocGroup component of the Flight 
Management System used in Section 6 is shown. 

Hierarchy is supported both at the functional level and at the plat-
form, as described below. At the functional level, the functional archi-
tecture can contain as many sub-systems as needed. Each sub-system, if 
complex enough, can be decomposed in as many lower-level sub-sys-
tems as required. In this way, modeling of systems of systems is 
supported. 

4.2. Verification 

Verification is an essential task to be performed all along the design 
process. Each time the functional end extra-functional constraints for the 
whole system, its application subsystems and each of the components 
are defined, black-box verification suites at the different granularity 
levels can be set-up. When the functional code for each component is 
ready, concrete test sequences ensuring the correct behavior of the 
components can be developed. Based on these component test suites, 
sub-system and finally, system verification can be carried out. As com-
mented above, the time accuracy and granularity of the environment 
will be refined as the design process evolves, leading to several models of 
the ‘test-bench’. 

4.3. Platform-description model 

In this section, the fundamental elements of the PDM will be 
described. The PDM captures all the information required to describe the 
HW/SW platform of computing resources used to execute the system 
functionality described in the PIM. 

4.3.1. Network nodes 
In order to deal with the modeling of very complex systems of 

systems (SoS), partition and hierarchy are essential mechanisms to be 
exploited. The SoS should be partitioned in parts (i.e. complete systems 
by themselves) which should be partitioned again hierarchically until 
the detailed computing platform can be described by its computing ar-
chitecture of HW devices. These hierarchical parts are nodes connected 
each other through a network infrastructure. The network nodes play in 
the platform description the same role as the subsystems in the Platform 
Independent Model. The type of connector in the model is related with 
the kind of network used (i.e TCP/IP). The connection can be attributed 
with performance properties such as bandwidth, delay, jitter, etc. from 
which analytical or dynamic models can be derived [45]. 

4.3.2. Software platform 
An essential element in any computing platform is the Operating 

System (OS), eventually, several of them when the computing platform 
is complex and heterogeneous enough. In some cases, when a system or 
a subsystem has real-time constraints, a Real-Time Operating System 
(RTOS) is required. 

Apart from the OS, there is another Hardware-dependent Software 
(HdS) that has to be taken into account. Peripherals and, eventually, co- 
processors may require specific SW to implement the high-level inter-
face services used in the PIM. This code will be represented in the 
software platform as a <<DeviceBroker>> realizing a certain connec-
tion. The driver of the device should be installed in the OS. 

4.3.3. Silicon implementation 
The MARTE ‘HW_Physical’ model represents hardware resources as 

physical components with details on their shape, size, power con-
sumption, heat dissipation, and many other physical properties. In S3D, 
‘HW_Logical’ entities, apart from ‘HW_PLD’ and ‘HW_ASIC’ can be 
mapped to physical entities indicating a design intention or decision. As 
an example, in Fig. 6: , the ARM-Duo and associated devices are to be 
implemented in a FPGA, the main memory will make use of a com-
mercial chip (stereotyped as <<HwComponent>>) and the non-critical 
resources will be implemented in an ASIC. Based on this information, 
S3D will generate automatically all the information needed to feed the 
corresponding design flows. 

4.4. Platform-specific model 

The Platform-Specific Model (PSM) captures the implementation 
decisions taken during the design process. These decisions lead to the 
architectural mappings to be analyzed, compared, optimized and, 
finally, selected. Design decisions are expressed in UML with the 
‘abstraction’ and ‘allocate’ relation between objects. A is allocated in B 
means that object A is to be implemented by object B. So, Figs. 7 and 8 
shows the design decisions taken for the architectural mapping of the 
FMS application components to the HW-SW resources of the actual PDM. 
Therefore, the methodology is flexible enough to support the analysis 
and comparison of many different architectural solutions for the 

Fig. 5. HW architecture for the “Airplane_HW” Node.  
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Fig. 8. Architectural mapping of FMSR components.  

Fig. 6. HW implementation.  

Fig. 7. Figure of functional components to executables.  
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implementation of a complex system. The system architect should be 
able to explore as many different architectural mappings as needed, that 
is, decisions about which computational resource should execute each 
functional component, with minimal effort. With just modifying the 
arrows in the view, the concrete analysis model of a particular archi-
tectural mapping is generated automatically [2]. 

4.4.1. Memory spaces 
Depending on the characteristics of the computing platform, the 

application mapped on it may be implemented in only one process (an 
executable) or several. Each executable process will share the computing 
resources with the other processes but in its own memory space. Without 
this information, it is not possible to generate the application code. This 
is the reason why the functional components are mapped to memory 
spaces. Only when the complete system is simple enough this interme-
diate layer can be removed. Fig. 7 shows the implementation of the FMS 
in two executables, ‘CriticalSW’ and ‘FlightPlan’. The airports database 
is to be implemented in a third executable. 

4.4.2. Architectural mapping 
Finally, memory spaces, SW resources such as operating systems and 

HW processors are mapped in the architectural mapping. In Fig. 8, the 
memory spaces (processes) defined in Fig. 7 are mapped to the operating 
systems, and those to the HW processors inlcuded in Fig. 5. 

5. Improved reuse capabilities 

In this section, the new features included in S3D in order to address 
the modeling requirements stated in Section 3 to improve modeling 

reusability, will be highlighted. 

5.1. Library-based methodology 

One of the main improvements provided by S3D is supporting 
bottom-up design approaches. In bottom-up design, the system is built as 
a hierarchical collection of sub-systems built-up from already charac-
terized components stored in one or several libraries. In some cases, the 
components may come from the adaptation of legacy code from previous 
projects or they can be provided by third parties. Thus, any new project 
may reuse the components of the libraries or repositories linked to it. 
This point is critical, since without a proper reuse mechanism, the other 
proposals done to improve reusability will be useless. 

These libraries contain complete functional component models, 
including all the relevant information about them such as the data types 
received or returned in the provided/required services, interfaces, 
properties, functional and verification codes, etc. Fig. 10 shows the basic 
structure of a library. Libraries can also include subsystems and com-
ponents used to describe the platform such as processors or peripherals, 
including specific information, such as the characteristics of the caches 
or the ISA for processors. 

It is worth mentioning that the functional model of a system is very 
similar to a sub-system in a library. Thus, once finished, including a 
system design as a new sub-system in a library is straightforward. 

5.2. Flexibility: Generic components 

A second proposal to maximize reusability and flexibility, is that 
components in the library are generic components. These generic com-
ponents are specified considering a complete separation between func-
tionality and communication in order to eliminate restrictions on their 
future use. Component functionality typically defines what the compo-
nent does, and it is independently on where or how it will be used. 
However, communication is completely dependent on utilization de-
tails: target infrastructure, environment, surrounding components, etc. 
Thus, generic components are components that only include information 
about functionality and functional interfaces but not about ports or 
communication semantics. This latter information will be added in the 
model at the instantiation points, letting the automatic code infra-
structure integrated in the S3D framework to generate the correspond-
ing glue codes. That way, reusability and composability will be granted. 

Following these ideas, the model of each abstract component follows 
the structure presented in Fig. 10. It includes:  

• The UML component itself stereotyped as <<RtUnit>> or 
<<PpUnit>> depending it is an active component or a passive one,  

• Data types and interfaces,  
• Functional and verification code. 

These generic components are transformed in application compo-
nents when used in a system. These application components inherit all 
the information from the generic components of the library, only 
requiring specifying the ports, which depends on the system connec-
tions. This is shown in Fig. 10: . 

In their most abstract form, the only external information about such 
elements is the services (functions) they provide and/or require, as 
shown in Fig. 12 for SENS_C1_G. Thus, the required interface of a 
structured component lists all the services that the component requires 
from other components or the environment. The provided interface lists 
all the services that the component offers to other components or the 
environment. The fact that the structured components do not specify 
which, and in what way the required/provided services are grouped in 
interfaces and exposed externally, maximizes the reusability of these 
components. This is the reason why abstract components does not 
include ports. The communication and computation semantics under 
which each service will be used, will be defined when applying the 

Fig. 9. An S3D reusable library.  
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component to a specific design, setting the ports required to specify 
these semantics. 

Moreover, component models also include complete information 
about their internal functionality and provided services. In principal, no 
restrictions are imposed to the way the behavior is specified. 
Component-based design methodologies only impose restrictions on 
how the components interact among them, that is, through well-defined 
interfaces [54]. However, as a preferred solution, each component will 
be linked to the file where its structured data and behavior is specified in 
the action language used, in our case, C++, as described next. 

5.2.1. Descriptionof generic components’ functionality 
The internal behavior of the component should be clearly docu-

mented and eventually, formally described. For that purpose, the main 
restriction is that the functionality must be described in a platform- 
independent way. In order to be platform-independent, the code 
should not include any system call or Hardware-dependent Software 
(HdS), Only once mapped to a concrete computing resource, the corre-
sponding platform specific code including the required middleware, 
input-output access code and system calls is automatically generated by 
S3D by SW(HW) synthesis. The use of platform-independent code is 
important since any piece of code making use of any of these facilities 
limits its future reusability and goes against the separation between PIM, 
PDM and PSM. Moreover, decoupling component model from compo-
nent implementation bring additional flexibility as the analysis tools 
may explore different implementation alternatives depending on the 
concrete architectural mapping decided. 

Programming languages, databases, user interfaces, middleware so-
lutions etc. are not considered part of the platform whenever they can be 
ported from one platform to another, thus supporting the execution of 
SW in several platforms. As a result, S3D uses programming languages (i. 
e. C++, OpenCL, Java, etc.) as action languages in order to describe the 
functionality. 

Therefore, if an instance of the component is mapped to a CPU, the 

C++ or Java code might be the most appropriate, but, if it is mapped on 
a GPU, an OpenCL code may be preferable instead. However, obtaining a 
valid code from a generic functional description is beyond the current 
capabilities of S3D. Thus, when relevant, the new component may come 
with its implementation on a certain execution platform. That way the 
code is stored minimizing the effort of mapping the component in this 
resource in a future use. In fact, the automatic glue-code and makefile 
generator of S3D selects the platform specific code instead of the 
platform-independent code depending on the mapping of the compo-
nent in the PSM. 

Although in S3D the fundamental object is the hierarchical compo-
nent, and, as such, it is a Component-Based System Modeling (CBSM) 
framework, S3D can support other system modelingparadigms like 
Object-Oriented Modeling (OOM) or Actor-Oriented Modeling (AOM) in 
a uniform and unified way. Code flexibility is an important feature in 
this sense as by relaxing the programing constraints, the CBSM becomes 
OOM. In the opposite direction, by constraining the internal behavior of 
the component, CBSM becomes AOM. 

It is worth mentioning that, in the most general case, the generic 
components lack of any temporal information. This expands its reus-
ability. When a generic component is instantiated, its instance can be 
annotated with the timing constraints to be satisfied by its imple-
mentation. This is why the functional code should lack of any temporal 
information. This information should be added to the simulation/anal-
ysis model depending on the temporal model used (i.e. estimated 
workloads or timed models based on host-compiled simulation or 
virtualization). 

5.3. Interface modeling in UML/MARTE 

Additional flexibility in the model is achieved by defining the 
properties of the functions in the provided/required interfaces. The goal 
is to provide the system engineer with a flexible modeling infrastructure 
able to support different system engineering methodologies. In some 

Fig. 10. SENS_C1 as a generic and as an inherited, application component.  
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cases, these properties my affect partly the programming of the 
component. 

In the most general case, a required interface will call an interface 
function (service): 

InterfaceFunction(X1,…Xn, Z1,…Zm);

where Xi are the input variables to the function and Zi are the output 
variables. Output variables are those that are changed as a consequence 
of the execution of the function. Input variables are those that may affect 
the final value of an output. Input variables can be passed by values or by 
reference. Output variables can only be passed by reference. An actual 
parameter can be used as input and output to a function simultaneously: 
Xi ––– Zj 

For example, consider a pair of components. The first one, acting as a 
client, request the service “checkMovement” to provide the GPS position 
and the movement angle of the plane. Other component, acting as a 
server, offers this service and, when executed, it receives this informa-
tion and checks if it is correct conform the defined trajectory. Addi-
tionally, this information is stored in the server, which internally 
updates its status with the new GPS and angle. 

According to our proposal, the previous code describes a fixed 
functionality, but supports multiple semantics, which are not defined 
yet. If “checkMovement” is called as a standard function call, the client 
will wait until the server executes the function, while the “main” func-
tion of the server will update the flight plan in an unsafe way, since 
“currentGPS” is used unprotected. However, this is not the only possi-
bility. Modifying communication semantics in the model, and adding an 
automatically generated glue code in the middle, it could be possible to 
define that the service call is asynchronous, and thus, the client does not 
wait to the server. In this case, the client could continue its execution 
and call “checkMovement” again before the previous call has finished. 
Then, the new service call could be executed concurrently with the 
previous call, or not. If both run in concurrently, the second call could 
finish before the first one, and at the end, “currentGPS” and “curren-
tAngle” would not contain the last value, but an old one. Then, let’s 
suppose we select to disable parallelism. In that case, we should define if 
the second call should wait until the first one finishes, and the second 
call can execute; or if the call is cancelled as it cannot be executed 
immediately; or if the call should be stored in a buffer and executed 
when possible. In the latter case, we should define what to do when the 
buffer is already full; or if it is acceptable to potentially wait a long time 
blocked or we should put a timeout, etc. 

On the server side, we could put a synchronization point between the 
service and the main function to protect the data, or just force the 
function to execute an iteration of the main function only when new data 
arrives, or depending on a time trigger, etc. It will depend, for example, 
on if we consider that every new GPS value should provoke an execution 
of “updateFlightplan” or if we only require a sufficient refresh ratio. 

Thus, this example shows how channel semantics and mappings 
affect parallelism. As described in 4.1.1, in <<RTUnits>>, a thread is 
generated to execute the component method specified as the ‘main’ 
function, which results in a first level of parallelism. Then, when a ser-
vice is executed, it can be executed in the client thread, if the call is local 
and sequential. Otherwise, a new thread is created in the server. Addi-
tionally, other channel semantics can limit the number of threads 
executing in parallel, as described below. The automatically created glue 
code, which is located in between clients and servers, oversees creating 
and controlling this parallelism, depending on the semantics described 
in the UML model. This code uses the services of the underlying OS for 
that purpose (e.g. POSIX threads, semaphores and mutexes). 

Summarizing, multiple communication semantics can be imple-
mented supporting the same code, resulting in different computation 
behaviors, some valid and others maybe not, with potentially different 
side effects on the rest of the system, and with different performance 
results. Thus, our proposal is that the library components should be 

initially specified without this information, which should be defined 
when the component is used in a design, obtaining an implementation 
according to the semantics from automatic code generation. This auto-
mation will also enable the designer to evaluate the alternatives he/she 
considers relevant without no design effort. 

In order to improve reusability, the attributes describing communi-
cation semantics have to be modeled in a standard way. To do so, this 
paper proposes the use of the standard MARTE profile. However, using 
the profile for that purpose can be a complex task. In that way, we 
propose using attributes associated to the service, and to the provided 
and the required interfaces. Some of these elements will also enable 
describing different Models of Computation and Communication 
(MoCCs), as shown in next subsection. 

5.3.1. Properties of the services of the interface 
Each interface function (service) is stereotyped as a Real-Time ser-

vice (RtService). Its properties are defined by the following attributes:  

• The enumeration ‘ConcurrencyKind’ of the ‘concPolicy’ attribute 
[0..1], which, in S3D, define relationships among services of the 
same component. The ‘ConcurrencyKind’ enumeration has three 
possible values:  

• reader. The execution of the service has no side effects but can suffer 
side effects from other services. Consequently, the service can be 
provided concurrently to any other reader service (with the 
concurrency limit defined by the srPoolSize attribute of the corre-
sponding component), but not with a writer service. 

• writer. The execution of the service may have side effects. Conse-
quently, once the service is provided any call to any other reader or 
writer service should be blocked.  

• parallel. The service can be provided concurrently (with the 
concurrency limit defined by the srPoolSize attribute of the corre-
sponding component) as it does not provoke or suffer side effects 
from other services.  

• The enumeration ‘CallConcurrencyKind’ of the ‘concurrency’ 
attribute [1], which , in S3D, define relationships among calls to the 
same service. Any MARTE RtService is an UML ‘BehavioralFeature’ 
and, as such, inherits the enumeration ‘CallConcurrencyKind’ of the 
attribute ‘concurrency’. According to MARTE, the different values of 
the attribute are:  

• Sequential (S). When concurrency management mechanism is 
associated with the BehavioralFeature, concurrency conflicts may 
occur. Instances that invoke a ‘BehavioralFeature’ need to coordinate 
so that only one invocation to a target on any ‘BehavioralFeature’ 
occurs at once.  

• Guarded (G). Multiple invocations of a ‘BehavioralFeature’ that 
overlap in time may occur at one instance, but only one is allowed to 
start execution. The others are blocked until the performance of the 
currently executing ‘BehavioralFeature’ is completed.  

• Concurrent (C). Multiple invocations of a ‘BehavioralFeature’ that 
overlap in time may occur to one instance and all of them may 
proceed concurrently. 

In S3D, sequential, is used to indicate that the code does not support 
concurrency (e.g. it is not reentrant), while guarded means that calls 
should not execute in parallel by any reason, such as the desired MoC 
(see next section), although it is technically possible. Thus, only G or C 
can be selected to define the operation semantics. S is in practice a 
restricted version of G that implies that the attribute cannot be changed 
to C in any case. As a result, S will not be considered when defined the 
MoCs in next section as it is not an election depending on the MoC. 

As the ‘concPolicy’ attribute can also be applied to a PpUnit with the 
‘CallConcurrencyKind’ enumeration, the value given to the PpUnit 
attribute will prevail to the value given to the attribute ‘concurrency’ of 
any RtService in any interface of the PpUnit. 
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• The enumeration ‘ExecutionKind’ of the ‘exeKind’ attribute [0..1], 
which define when and where the service will be executed. The 
‘ExecutionKind’ enumeration has three possible values:  

• deferred. The call to the service is stored in the queue of the 
behavior attached to the service.  

• remoteImmediate. The execution is performed immediately with 
the computing resource on which the called component has been 
mapped.  

• localImmediate. The execution is performed immediately with the 
computing resource on which the calling component has been 
mapped. This possibility is not yet considered. 

The enumeration ‘SynchronizationKind’ of the ‘syncKind’ attribute 
[0..1], which defines the synchronity of the service. The ‘Synchroniza-
tionKind’ enumeration has four defined values:  

• synchronous. The client waits for the end of the invoked behavior 
before continuing its own execution.  

• asynchronous. The client does not wait for the end of the invoked 
behavior to continue its own execution.  

• delayedSynchronous. The client continues to execute and will 
synchronize later when the invoked behavior returns a value.  

• rendezVous. A behavior in the server waits for the client to start 
executing. In S3D, this means that it only forces the server to wait the 
client, not the client to wait for the server. If the client waits or not 
depends on thenotAttendedServiceattribute of the client(see 
below). 

5.3.2. Properties of the provided port 
In case any of the RtServices of the interface is attributed with an 

execution kind ‘deferred’, then the provided port will provide a buffer to 
store the calls in the queue. The port will be stereotyped as ‘StorageR-
esource’ and their properties defined by the following attribute:  

• The integer attribute ‘queueSize’ [0..1]. The integer value fixes the 
maximum size of the queue.  

• The non-standard enumeration ‘FullPoolPolicyKind’ of the not 
standard ‘fullPoolPolicy’ attribute [0..1], added in S3D to specify 
what to do when a FIFO is fool. The ‘FullPoolPolicyKind’ enumera-
tion has five defined values:  

• block. The call is not stored until a previous call is attended and a 
free position in the pool made available.  

• removeFirst. The first call to be attended is removed and the new 
call stored.  

• removeLast. The last call to be attended is removed and the new call 
stored.  

• flush. All the previous calls are removed from the FIFO and the new 
call stored.  

• other. Any other scheduling policy. 

Both ‘queueSize’ and ‘fullPoolPolicy’ are applicable when ‘exe-
Kind’ is set to “deferred”. The reason is that the corresponding FIFOs 
are only used to store the data incoming from clients that do not block 
themselves until the request is accepted. 

5.3.3. Properties of the required port 
When a required port calls a service, the call can be attended or not. 

The following attribute specifies the policy to follow in that case: 

• The enumeration ‘PoolMgtPolicyKind’ of the not standard ‘notA-
ttendedService’ attribute [0..1], if the service request cannot be 
attended just when it arrives. The ‘PoolMgtPolicyKind’ enumeration 
has five defined values:  

• infiniteWait. If the call is not attended, the client component waits 
indefinitely until the call is attended.  

• timedWait. If the call is not attended, the client component waits for 
bound time until the call is attended. At the end of the waiting time, 
if the call is not attended the behavior is determined by the ‘retry’ 
attribute.  

• dynamic. If the call is not attended, the client component continues 
execution.  

• exception. If the call is not attended, the client component raises an 
exception.  

• other. Any other policy. In S3D it is used to specify that the service 
also requires to meet an additional condition to be executed, being 
especially important in event-based MoCs. 

• The attribute ‘timeout’ [0..1] specifies the time until an event oc-
curs, and in S3D operates together with the previous one. When 
‘timedWait’ is specified, this attribute indicates the maximum time 
to wait. When ‘other’ is selected, it indicates the time advance 
requested for the next execution, as described in section 5.5.4. With 
other values it is not applicable.  

• The integer attribute ‘retry’ [1] = 0. The integer value fixes the 
number of times the client will repeat the call. If the call is not 
attended in any case, the client raises an exception which will 
determine the policy to follow. It is not used under ‘infiniteWait’ 
value. 

5.4. Definition of models of computation and communication with 
MARTE 

Depending on the properties defining the services and the provided 
and the required ports, different programming models can be defined. 
However, the selection of the values of all these properties require deep 
knowledge of the effects and the resulting semantics. Additionally, 
selecting a combination of properties without this knowledge can lead to 
inconsistent or incompatible results. For example, it has no sense to 
specify a service as deferred and synchronous at the same time. 

On the contrary, when a designer selects a set of properties for a 
communication between two components, it is because he has a previ-
ous idea of how the result must operate. Since most of the times these 
selections come from well-known computation mechanisms, an over-
view of some of the most common Models of Computation (MoC) and 
their specification following the proposed modeling methodology is 
presented next. 

The use of properties in both in the communication (require/pro-
vide) for defining the MoC is a challenging issue, since the same 
component must provide several semantics, event at the same time if it is 
connected with more than one client. The idea of limiting functionality 
to platform independent codes and specifying all communication se-
mantics in MARTE stereotypes enables the use of the components under 
multiple semantics, since the automatic code generation can generate 
the glue code handling these semantics from the model information. 
Additionally, it is important to note that the main attributes defining the 
MoC are defined by the provider, in the RTService, although almost all 
of the stereotypes defined above has some impact. This fact simplifies 
the implementation process, since a server providing a service to mul-
tiple clients only have to provide one MoC or MoCs of the same group. 

The problem appears when a component offers services with 
different attributes, and thus, potentially under different models of 
computation. However, S3D methodology considers that the problem is 
not the different models of computation but the relationship of the 
services with the internal state of the component. If one service modifies 
the state and another service uses it, it can be required to protect their 
execution, independently of their model of computation. For that pur-
poses, the attribute ‘concPolicy’ of the RTService is used. Thus, the 
attribute ‘concPolicy’ is not used on the definition of MoCs, but critical 
in order to ensure its correct operation. 

The general division of MoCs depending on the RTService properties, 
are listed in the next table, since more specific details for each group of 
MoCs are described in the next subsections (Abbreviations of MoCs used 
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in the table are also described in next subsections). 

5.4.1. Remote procedure call (RPC)/Remote method invocation (RMI) 
A Remote Procedure Call (RPC), or its counterpart in object oriented 

languages, a Remote Method Invocation (RMI), are typically initiated by 
the client, which sends a request message to a known remote server to 
execute a specified procedure with supplied parameters. While the 
server is processing the call, the client is usually blocked (it waits until 
the server has finished processing before resuming execution), as shown 
in Fig. 11. 

However, certain RPC implementation also enables the client to send 
an asynchronous request to the server. As a result, both synchronous and 
asynchronous calls are possible. Additionally, in order to avoid dead-
locks, a timeout can be defined.Table 2 shows the different alternatives. 
The RtService can be guarded or concurrent. In the second case, the 
server may attend several calls from the same component by parallel 

threads or several times the same service if repetitive calls are not 
filtered. Additionally, the attributes NotAttendedService, retry and 
syncKind define the exact RPC semantic, as described in [55]. 

5.4.2. Rendezvous (RV) 
This is the fundamental communication/synchronization pattern for 

the Communicating Sequential Processes (CSP) MoC. In this case, the 
calling function requires the execution of the called function, which has 
to be executed by a main thread in the component providing the 
function: 

The rendezvous ensures that two active tasks synchronize and 
interchange data at the same time. After the rendezvous, both threads 
are free to continue execution. In order to reduce the interaction time, 
the execution time of the called function should be minimized. In most 
cases, the function is just instrumental to interchange data, Xi in one 
direction and Zi in the opposite. In some cases in which the execution 

Fig. 13. Data flow MoC.  

Fig. 11. RPC MoC.  

Fig. 12. Rendezvous MoC.  
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time of the required function is large, the calling function sends the data 
to be processed and gets the data from the previous computation, which 
have been stored by the provider component after the previous call. 

CSP may lead to deadlocks. In order to avoid them, a time-out can be 
defined. If ‘retry’ is set to ‘0’, the calling function waits to be accepted 
during the timeout period. If it elapses, the function continues execution. 
If ‘retry’ is set to ‘n’, the function will be called at least ‘n’ times the 
timeout elapses. None of these cases corresponds to a CSP system. The 
following table shows the different alternatives: 

5.4.3. Data flow (DF) 
In a DF system, components communicate through data, which flow 

from the inputs of the system to internal components, among them and 
to the outputs. Thus, interface functions do not have output arguments. 

Outputs will be generated by the component receiving the data and sent, 
in a similar way, to another component or to the external environment. 
DF communication is asynchronous. Components may generate data and 
consume data at any time. This means that in the general case, a buffer is 
needed to store data when, during some period, there are more date 
produced than consumed. 

When the buffers between components never gets full (infinite ca-
pacity), DF becomes a Kahn Process Network (KPN). In real systems, 
buffers will have a finite size meaning that at certain points in time they 
may get full. In order to keep the properties of a KPN, the calling thread 
should stop. This may lead, eventually, to deadlocks. 

When the interface function is called, the call is stored in the buffer to 
be attended afterwards. In that case, the execution of the calling thread 

continues. In order to ensure that the calling thread is able to continue, 
the interface function should not have any output parameter. If this 
happened, the calling function should wait until the function is finished 
and the output parameters calculated, thus, avoiding the call to be 
asynchronous. In the KPN MoC, the ‘NotAttendedService’ attribute is 
‘infiniteWait’. If the component behaves as an actor in which its internal 
behavior is executed each time a certain number of interface functions in 
its inputs have been called generating in each output a certain number of 
function calls, the MoC becomes Synchronous Data Flow (SDF). 
Depending on how many data are consumed (produced) in each input 
(output) each time, several variants of the fundamental SDF appear. If 
the number of data consumed (produced) in each input (output) is 
constant, the MoC is called multi-rate DF, regular DF or just SDF. A 
special case is when the rate in all the inputs and outputs is the same. 

Fig. 14. DE, TT and TDF MoCs.  

Table 2 
RPC MoC alternatives.  

Required Port RtService Provided Port RPC semantic 
NotAttendedService retry concurrency exeKind syncKind queueSize FullPoolPolicy 

infiniteWait none G or C rem.Im. sync. none none exactly once 
infiniteWait none G or C rem.Im. async. none none at most once 
timedWait 0 G or C rem.Im. sync. none none exactly once 
timedWait 0 G or C rem.Im. async. none none at most once 
timedWait > 0 G or C rem.Im. sync. none none at least once 
timedWait > 0 G or C rem.Im. async. none none maybe once  

Table 3 
CSP and RV MoCs.  

Required Port RtService Provided Port MoC 
NotAttendedService retry concurrency exeKind syncKind queueSize FullPoolPolicy 

infiniteWait none G or C rem.Im. rendezvous none none CSP 
timedWait 0 G or C rem.Im. rendezvous none none RV 
timedWait > 0 G or C rem.Im. rendezvous none none RV  

Table 1 
Attributes defining MoC groups.  

Group of 
MoCs 

RtService Other Properties 
exeKind syncKind notAttendedService 

FC/RPC/RMI rem.Im. sync/async Any (except dynamic and 
other) 

RV/CSP rem.Im. rendezvous Any (except dynamic and 
other) 

DF Deferred async 
/rendezvous 

Any (except dynamic and 
other) 

DE/TT/DTF Deferred async/ 
rendezvous 

other 

SR rem.Im. async dynamic  
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The MoC in this case is called single-rate DF. If these rates change but 
following a static cyclic sequence of constant values, then the MoC is 
called cyclo-static DF. In all these cases, it is possible to find a static 
scheduling minimizing the required buffer sizes. This is not possible in 
the case of dynamic rates in dynamic Data Flow (DDF) systems [56]. 

The maximum number of function calls to be stored is defined with 
the attribute ‘buffer’. It may happen that a higher production than 
consumption rates produces the buffer to get full. The policy to follow in 
that case is determined by the ‘fullPoolPolicy’ attribute. If the policy is 
‘block’, and a new data is produced, the component is blocked until the 
buffer is read and, therefore, new free space is made available. The way 
around, if the thread in the provided component tries to read from an 
empty buffer, it is blocked until new data are produced and written. In 
both cases, a deadlock may be produced. 

There are two ways to avoid deadlocks. The first one is to choose any 
other ‘FullPoolPolicyKind’ value. In this case, no new call is blocked but 
previous calls might be lost. The other possibility is to specify a timeout. 
In that case, if the timeout elapses, then the call is aborted if ‘retry = 0’ 
or a new call is tried if ‘retry > 0’. None of these two ways corresponds to 
KPN or SDF models. The following table shows the different alternatives 
leading to KPN, SDF or simple DF, as shown in Table 4. 

It is important to note that in KPN the order of the data is critical. 
Thus, concurrent operation is not accepted, in order to avoid order 
inversions. 

A special case is found when the reading (writing) of the data is 
decoupled from the computation on the data. This happens when the 
interface function just gets the data to be read at any time by an internal 
thread in the component or puts the data to be read at any time by 
another component. Getting (putting) the data is so fast that there is no 
chance that a new getting (putting) of the data occurs when the previous 
data is still being got (put). In that case, if the goal is to ensure that no 
data is lost by a write-write or double-taken by a read-read, the RtSer-
vice has to be implemented with a ‘rendezvous’ value for the ‘syncKind’ 
attribute, as shown in Table 5. 

5.4.4. Discrete event (DE), Time-triggered (TT), Timed data flow (TDF) 
Discrete Event, Time-Triggered and Timed Data Flow are MoCs 

where the functionality (internal to the component or a service call) is 
executed when triggered by an event. Thus, there are two elements to 
consider: the trigger and the functionality to be triggered.  

• In the TT [57] MoC, the moment in which each component reads the 
inputs and the time in which it delivers the outputs are determined in 
advance.  

• The TDF [47] MoC is basically a TT MoC in which the frequency of 
each component may be different depending on the input and output 
rates. This is the MoC used by many analog simulators like Modelica, 
Simulink and SystemC-AMS. In practice, the functionality first reads 
all data required to execute from the inputs, and then, it waits to the 
trigger to execute.  

• In DE [58] systems, components react to events in their inputs 
created to control the execution of the services. An event is an 
instantaneous indication to trigger a reaction. Theoretically, it can be 
considered similar to DTF with delta times. In practice, the event is 
generated with all the services of the previous iteration have finished 
their execution. The automatically generated code must be in charge 
of that. 

To model S3D, TDF and DE systems, the functionality waiting to be 
triggered will be stopped in a synchronization point, similar to the used 
in rendezvous to guarantee that new data has arrived. That way, when 
the trigger arrives the function is resumed. The trigger is generated by 
the glue code synthesized automatically in S3D. 

The following is the representation of the interfaces in DE, TT and 
TDF: 

These systems require delivering data to the next iteration, and a 
storage queue to execute correctly independently of the order of 
execution of the client and the server. Additionally, in TT and TDF the 
order of the data is important, and so, concurrent operation is not 
accepted in order to avoid order inversions. The result is shown in 
Table 6. 

5.4.5. Synchronous reactive (SR) 
In a SR system, the activity in the inputs, in our case, the calls for 

Table 4 
DF MoC.  

Required Port RtService Provided Port MoC 
NotAttendedService retry concurrency exeKind syncKind queueSize FullPoolPolicy 

infiniteWait none G or C deferred async. > 0 block KPN/SDF 
infiniteWait none G or C deferred async. > 0 (any other) DF 
dynamic none G or C deferred async. > 0 any DF 
timedWait 0 G or C deferred async. > 0 any DF 
timedWait > 0 G or C deferred async. > 0 any DF  

Table 5 
DF MoC when data and computation are decoupled.  

Required Port RtService Provided Port MoC 
NotAttendedService retry concurrency exeKind syncKind queueSize FullPoolPolicy 

infiniteWait none G deferred rendezvous > 0 block KPN/SDF 
infiniteWait none G or C deferred rendezvous > 0 (any other) DF 
dynamic none G or C deferred rendezvous > 0 any DF 
timedWait 0 G or C deferred rendezvous > 0 any DF 
timedWait > 0 G or C deferred rendezvous > 0 any DF  

Table 6 
Attributes of TT, TDF and DE MoCs.  

Required Port RtService Provided Port MoC 
NotAttendedService retry concurrency exeKind syncKind queueSize FullPoolPolicy 

other none G deferred async >0 block TT 
other none G deferred rendezv. >0 block TDF / DE  
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required functions, trigger the internal activity among components until 
the system reaches a stable state in which no further function calls are 
made. This time, which in reality will be finite, is considered zero and all 
the activities performed are considered synchronous each other. Only 
then, new activities in the inputs are allowed. From this point of view, 
this model of computation does not impose any restriction to the 
properties in components and interfaces (Table 7). 

In SR it is required to ensure that the new set of events starts when 
the system is stable. To do so, a global control component can be used, 
similarly to DE system. 

6. Application example and simulation results 

The modeling methodology has been applied to an avionics appli-
cation provided by Thales, a safety-critical Flight Management System 
(FMS) in an airplane. The purpose of the FMS in modern avionics is to 
provide the crew with centralized control for the aircraft navigation 
sensors, computer based flight planning, fuel management, radio navi-
gation management, and geographical situation information. From pre- 
set flight plans (take-off airport to landing airport), the FMS is respon-
sible for the plane localization, the trajectory computation allowing the 
plane to follow the flight plan, and the reaction to pilot directives. 

The FMS is decomposed into several tasks modeled as components. It 
computes various data (i.e., exact location, trajectories, and nearest 
airports list among many others) and it is supposed to send guidance 
instructions to the autopilot and also to send the different results to a 
display. The FMS inputs consist of:  

• Sensor data: The FMS receives data from different sensors installed in 
a plane like: the GPS, inertia sensors, etc. The data from these sensors 
and state data conserved in the FMS is used to estimate an accurate 
position (including latitude, longitude and altitude) of the plane.  

• Pilot commands: The pilot can configure most of the tasks in the FMS. 
For that purpose, the FMS is able to receive configuration commands.  

• Navigation database: The FMS includes a read-only Navigation 
Database that contains the elements from which the flight plans are 
constructed, such as: airport locations, runway locations, departure 
procedures, airways (similar to sky-level highways), arrival 
procedures. 

Likewise, the FMS outputs consist of:  

• The display: All the data computed by the FMS could be displayed on 
a console or through lights/LEDs on panels. Each FMS task can send 
the data independently of the other tasks to the display.  

• The autopilot: The role of the autopilot is to translate the attitude 
output information from the FMS (delta to be applied to the airplane 
roll, pitch and yew angles) to actions to be issued by the aircraft 
actuators like aps, slats, spoilers and the rudder. 

The use case includes all the features of the kind of multi-domain 
applications the proposed methodology is targeting: data received 
from sensors, user commands, critical and non-critical computations and 
data outputs to be provided to the user with different criticalities and 
rates. The IoT link is represented by the access to the data base in the 
cloud. 

The system has been modeled in S3D using Eclipse Neon EMT. The 
package of the components library is 174KB. The action language used 
to describe the functionality is C++. The corresponding code including a 

test bench with a complete flight from Santander to Paris is 42.4MB. 
Using the components in the library, the system is modeled in 1MB. 

The S3D framework shows its reusability as the components were 
developed and stored in a library from where they have been taken to 
compose the FMS. Each generic component has its own entity ready to 
be used in other projects even with a different composition of the 
required and/or provided interfaces. The hierarchical partitioning 
capability supported by S3D both at the functional and the HW/SW 
platform levels shows its scalability. In order to show the S3D simplicity 
in exploring the design space, an RPC model of the system has been 
analyzed and its performance estimated under three architectural so-
lutions with 1, 2 and 4 cores working at 4 different frequencies. It is 
worth mentioning that the 12 models were generated automatically 
from the PSMs resulting after changing just two numbers in the model, 
the number of cores in the node and their frequency. Under the RPC 
MoC, the main method in the ‘RtUnit’ components are periodic. Results 
are given in Table 8. 

The resulting simulated time (sim.time) is the time taken by the 
airplane from the origin to destination. Just to give an idea of the 
complexity of the model, during this time, the airplane sensors generate 
values each 200 μsec, which is much higher than the typical period of 
the system task reading this information. The reason is double: on the 
one hand we want to generate a completely exact value depending on 
the jitter of the reading task; on the other hand it is a required for our 
environment model, which use linear equations to model a non-linear 
trajectory. 

In the mono-core solution, the % of CPU usage grows as the core 
frequency decreases, as expected. At 250MHz CPU utilization is near 
100%. Lower frequencies saturate the CPU. This affects the number of 
events, that is, the total number of times all the interface functions are 
called. As can be seen, this number decrease when the % of utilization 
grows to 90%, meaning that not all the required computations are made, 
and some data are lost. This effect is reduced with a 2-core solution. 
Now, the system can work correctly at 250MHz. Nevertheless, the 
behavior is again incorrect when the frequency is reduced to 100MHz. 
The performance of the system is very similar with 4 cores which means 
that adding two extra cores does not provide any advantage. This is 
because the utilization of CPU1 is not affected by a larger number of 
cores. A different scheduling policy might change this behavior leading 
to a more balanced solution. 

In order to explore the flexibility of the methodology in supporting 
different MoCCs among components, two additional experiments are 

Table 8 
Simulation results under the RPC MoC.   

MHz % use sec  
cores frequency CPU1 CPU2 CPU3 CPU4 sim.time events 

1 1,000 26.7    4,022 392,074 
500 53.5    4,022 392,063 
250 99.6    4,022 364,679 
100 100    4,022 151,541 

2 1,000 21.5 5.2   4,022 392,074 
500 38.5 14.9   4,022 392,074 
250 73.9 33.1   4,022 392,074 
100 99.9 91.7   4,022 289,612 

4 1,000 21.4 3.8 1.4 0.1 4,022 392,074 
500 38.6 12.6 1.9 0.4 4,022 392,063 
250 73.5 29.5 3 1 4,022 392,086 
100 99.9 75.1 14.6 0 4,022 287,250  

Table 7 
Attributes of SR MoC.  

Required Port RtService Provided Port MoC 
NotAttendedService retry concurrency exeKind syncKind queueSize FullPoolPolicy 

dynamic none G or C rem.Im. async. none none SR  
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made. In both cases, the intention is to reduce the number of events lost 
in order to increase the accuracy of the decisions taken by the FMS. In 
the first experiment, the MoC of some critical interface methods are 
changed to ‘rendezvous’ (RV). The main functions of the corresponding 
components are no longer periodic as they will be blocked in the RV 
points. Results are given in Table 9. 

As it can be seen, the goal of processing more events is achieved, 
increasing from 392,074 to 704,831. Nevertheless, in the mono-core 
solution, at 250MHz and 100MHz, the simulated time increases. The 
explanation for this effect is the following. In the RPC MoC, the system 
reads less data from the environment, since reading task is not capable to 
execute on its period. As a consequence, the activity in the system de-
creases. This is demonstrated by the lower % of CPU utilization under 
the RPC MoC. If the synchronization mechanism between the system and 
the environment is a RV, the environment must wait until the generated 
data is taken. At a 1GHz and 500MHz, the system is fast enough to get all 
the data generated by the environment and compute it through all the 
system tasks. This does not happen at lower frequencies. The system 
cannot execute tasks on their expected periods, and therefore, some data 
are computed latter than expected. As the environment is Cyber- 
Physical, its behavior is no longer correct as the mechanical equations 
do not take into account that the time at which the data is computed is 
larger. 

Increasing the number of cores does not solve the problem as more 
CPUs do not reduce significantly the % of CPU1 utilization, thus keeping 
the problem unchanged. 

In a second experiment, some of the interfaces developed as RV, are 
implemented with FIFOs. Being an asynchronous MoC, some of the 
problems appearing with the RV should not happened. Again, main 
functions in components communicating via FIFOs are not periodic as 
they should read as much data as possible from the input FIFOs and 
produce as much data as possible in the output FIFOs, getting blocked 
only when an input FIFO is empty or an output FIFO is full. Results are 
given in Table 10. 

As it can be seen, the asynchronous character of the FIFO removes 
some of the blocks seen before. Now, only the slowest of the 2-core 
solution and all the 4-cores solutions work without problems. 

6.1. Comparative analysis with the closest modeling methodologies 

The following table makes a comparative analysis among S3D, Chess 
and Hepsycode, the three closest UML/MARTE system modeling 
methodologies: 

If we had use Chess, the modeling effort would have been very 
similar. In both tools, the UML model can be used for schedulability 
analysis using MAST [53]. Chess does not support the generation of a 
simulation model. From the MARTE model, an ADA template can be 
generated to be filled with the application code. Chess does not specify 
the MoCC among components so that it is not possible to explore 
different possibilities. As the ports and interfaces are fixed, reusability of 
the model is limited. Once the functional code for the component is 
developed, the MoCC of the component is fixed and any change would 
require rewriting the code. Thus, reusability is more difficult. 

In the case of Hepsycode, the only MoCC supported is CPS. Hep-
sycode can generate a SystemC simulation model as the system com-
ponents are described in this language. Application code generation 
would require a generation process from the SystemC model. 

7. Conclusion 

Model-Driven Engineering is a powerful mean to address the 
increasing complexity of real-time and embedded systems. The services 
that are starting to be developed to date and will become pervasive in 
the short term require scalable system modeling and design methodol-
ogies. In this paper, improvements to current practices in scalability and 
flexibility are proposed. They have been assessed on a complex use-case, 
a flight management system showing how a single-source approach can 
model the complete system with an unambiguous semantics to be used 
by the different design tools. The FMS project makes use of a library of 
previously modeled components, thus facilitating its reusability. Com-
ponents in the library are generic and, therefore, easy to be adapted to 
different projects. Both the platform-independent and the platform 
description models are hierarchical. An essential aspect of flexibility 
improvement comes from the possibility to change the way in which 
component interact among them just by defining the properties in the 
interface methods and the required and provided ports leading to 
different MoCCs. 
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Table 9 
Simulation results under the RV MoC.   

MHz % use sec  
cores frequency CPU1 CPU2 CPU3 CPU4 sim.time events 

1 1,000 58.5    4,022 704,831 
500 100    4,022 595,519 
250 100    7,785 567,371 
100 100    18,827 568,587 

2 1,000 41 17.4   4,022 704,831 
500 82.2 34.8   4,022 704,831 
250 99.9 45.6   5,786 619,867 
100 99.9 50.2   14,013 644,129 

4 1,000 41 11 0 6.5 4,022 704,832 
500 82.2 26.8 0 7.9 4,022 704,832 
250 99.9 40 4.5 2.33 5,999 650,594 
100 99.9 47.4 2.8 0.035 14,010 644,125  

Table 10 
Simulation results under the FIFO MoC.   

MHz % use sec  
cores frequency CPU1 CPU2 CPU3 CPU4 sim.time events 

1 1,000 58.5    4,022 704,831 
500 99.9    4,022 564,666 
250 100    6,856 500,091 
100 100    19,243 591,969 

2 1,000 41 17.4   4,022 704,831 
500 82.2 34.8   4,022 704,831 
250 99.8 54.2   4,022 456,342 
100 99.9 99.8   4,131 260,780 

4 1,000 41 11 0 6.5 4,022 704,832 
500 82.2 26.8 0 7.9 4,022 704,832 
250 99.7 43.8 7.6 4.9 4,022 467,874 
100 99.9 77.9 18.7 5.1 4,022 255,758  

Table 11 
CSP and RV MoCs.  

Modeling Framework Library-based MoCC flexibility Schedulability Analysis Executable Model Generation Application Code Generation 

S3D Yes Yes Yes(with MAST) Yes(Native simulation) Yes 
Chess No NoUp to the user Yes(with MAST) No Partially(ADA template) 
Hepsycode No No(Only CSP) No Yes(SystemC) No  
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