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Abstract: A problem of sparse optimal boundary control for a
semilinear parabolic partial differential equation is considered, where
pointwise bounds on the control and mixed pointwise control-state
constraints are given. A standard quadratic objective functional is
to be minimized that includes a Tikhonov regularization term and
the L1-norm of the control accounting for the sparsity. Applying a
recent linearization theorem, we derive first-order necessary optimal-
ity conditions in terms of a variational inequality under linearized
mixed control state constraints. Based on this preliminary result, a
Lagrange multiplier rule with bounded and measurable multipliers is
derived and sparsity results on the optimal control are demonstrated.

Keywords: semilinear parabolic equation, optimal control, sparse bound-
ary control, mixed control-state constraints

1. Introduction

In this paper, we investigate sparse optimal controls for a class of nonlinear
parabolic boundary control problems with mixed pointwise control-state con-
straints. Let us motivate this class of problems by the following simplified
example:
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In a bounded domain Ω ⊂ R
N , N ∈ N, with Lipschitz boundary Γ, consider

the optimal control problem

min J(y, u) :=

∫ T

0

∫

Ω

1

2
|y − yQ|

2 dxdt +

∫ T

0

∫

Γ

(ν

2
|u|2 + κ |u|

)

dσdt (1.1)

subject to the parabolic initial-boundary value problem

∂ty −∆y = 0 in Ω× (0, T )

∂ny + y3 = u in Γ× (0, T )

y(x, 0) = 0 in Ω

(1.2)

and to the mixed pointwise control-state constraints

ua ≤ u(x, t) (1.3)

u(x, t)− y(x, t) ≤ ud (1.4)

to be fulfilled for a.a. (x, t) ∈ Γ × (0, T ). Here, yQ is a desired state function,
while T > 0, ua, ud, ν > 0, and κ > 0 are fixed real numbers. Throughout
the paper, we will write Q := Ω × (0, T ) and Σ := Γ × (0, T ). By u ∈ Lp(Σ),
p > N + 1, we denote the control function and y is the associated state; ∂ny
denotes the outward normal derivative defined a.e. on Γ, and σ is the Lebesgue
surface measure induced on Γ.

If the state y(x, t) is interpreted as the temperature of a point x ∈ Ω at time
t and u is a controllable outside temperature, the constraints have the following
meaning: The control constraint (1.3) restricts the control temperature from
below, ua is the lowest possible temperature. The constraint (1.4) restricts
the speed of heating: It requires that the difference between the boundary
temperature y and the outside control temperature u be not too large. This
restriction avoids too fast heating. To avoid too sudden cooling, the lower
bound ua + y ≤ u might be posed instead of (1.4). This case can be considered
analogously.

Our theory also works for two-sided control constraints ua ≤ u(x, t) ≤ ub
as in Casas and Tröltzsch (2018a), where some results are even easier to prove.
However, the complexity of the presentation is higher. Therefore, we confine
ourselves to the one-sided pure control constraint (1.3).

Problems with mixed control state constraints for partial differential equa-
tions were investigated first in Tröltzsch (1979) for boundary control of the
linear heat equation. With κ = 0, the theory was discussed later for nonlinear
equations in some papers by A. Rösch and the second author, see exemplarily
Rösch and Tröltzsch (2007) and the references therein. Recently, in Casas and
Tröltzsch (2018a) we extended the theory of problems with mixed control-state
constraint to sparse control, i.e. to the case κ > 0. There, the linear heat equa-
tion was taken as state equation. By linearity of the equation, the discussion of
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first-order necessary conditions was simpler than for the problems posed here,
because the feasible set was convex.

The main novelty of this new contribution is the nonlinearity of the equation
in the context of sparsity and mixed control state constraints. By the nonlin-
earity, the feasible set is no longer convex and special techniques of analysis are
needed. In particular, the proof of comparison theorems for certain solutions of
parabolic equations is much more demanding.

2. The state equation and comparison theorems

We shall consider a more general version of the state equation (1.2), namely

∂ty −∆y + d(x, t, y) = 0 in Q

∂ny + b(x, t, y) = u in Σ

y(x, 0) = y0(x) in Ω.

(2.1)

For the state equation, we rely on the following assumptions that are adoptet
in the whole paper without explicitly mentioning them any more.

Assumption 1 • The initial state y0 belongs to L∞(Ω).
• Throughout the paper, we fix real numbers q > N

2 + 1 and p > N + 1.
• The functions d : Q×R → R and b : Σ×R → R are measurable with respect

to (x, t) and of class C1 with respect to y. Moreover, d(·, ·, 0) ∈ Lq(Q) and
b(·, ·, 0) ∈ Lp(Σ).

• With some constant M0 > 0, it holds that
∣

∣

∣

∣

∂d

∂y
(x, t, 0)

∣

∣

∣

∣

≤M0 for a.a. (x, t) ∈ Q,

∣

∣

∣

∣

∂b

∂y
(x, t, 0)

∣

∣

∣

∣

≤M0 for a.a. (x, t) ∈ Σ.

(2.2)

• There is some real number M1 such that

∂d

∂y
(x, t, y) ≥M1 for a.a. (x, t) ∈ Q,

∂b

∂y
(x, t, y) ≥M1 for a.a. (x, t) ∈ Σ.

(2.3)

• The functions
∂d

∂y
and

∂b

∂y
are locally Lipschitz with respect to y: This

means that, for all M > 0, there is some constant LM such that
∣

∣

∣

∣

∂d

∂y
(x, t, y1)−

∂d

∂y
(x, t, y2)

∣

∣

∣

∣

≤ LM |y1 − y2| a.e. in Q

∣

∣

∣

∣

∂b

∂y
(x, t, y1)−

∂b

∂y
(x, t, y2)

∣

∣

∣

∣

≤ LM |y1 − y2| a.e. in Σ

(2.4)
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holds for all yi ∈ R with |yi| ≤M , i = 1, 2.
Let us observe that (2.2) and (2.4) imply that for every |y| ≤M

∣

∣

∣

∣

∂d

∂y
(x, t, y)

∣

∣

∣

∣

≤M0 + LMM for a.a. (x, t) ∈ Q.

Moreover, from the mean value theorem we deduce

|d(x, t, y2)− d(x, t, y1)| ≤ (M0 +LMM)|y2 − y1| for a.a. (x, t) ∈ Q

for all yi ∈ R with |yi| ≤M . Analogous inequalities hold for b.

Notice that (2.3) does not imply monotonicity of d and b with respect to y.

Hereafter, we will follow the standard notation

W (0, T ) = {y ∈ L2(0, T ;H1(Ω)) : ∂ty ∈ L2(0, T ;H1(Ω)∗)}.

Theorem 2.1 For every u ∈ Lp(Σ) with p > N + 1, the state equation (2.1)
has a unique solution yu ∈ W (0, T ) ∩ L∞(Q). Moreover, there exist constants
K2 and K∞ such that

‖yu‖L∞(Q) ≤ K∞

(

‖y0‖L∞(Ω) + ‖d(·, ·, 0)‖Lq(Q) + ‖b(·, ·, 0)‖Lp(Σ) + ‖u‖Lp(Σ)

)

,

(2.5)

‖yu‖L∞(0,T ;L2(Ω)) + ‖yu‖L2(0,T ;H1(Ω))

≤ K2

(

‖y0‖L2(Ω) + ‖d(·, ·, 0)‖L2(Q) + ‖b(·, ·, 0)‖L2(Σ) + ‖u‖L2(Σ)

)

.

(2.6)

Finally, if {uk}∞k=1 ⊂ Lp(Σ) is a sequence converging weakly to u in Lp(Σ),
then yuk

→ yu strongly in L2(0, T ;H1(Ω)) ∩ L∞(Q), yuk |Σ → yu|Σ strongly in

L∞(Σ), and yuk
(T ) → yu(T ) strongly in L∞(Ω), k → ∞.

Proof Though the proof follows standard lines, some complications arise
from the fact that b and d are possibly not monotone increasing with respect to
y. Since we do not know a precise reference for such a general partial differential
equation, we comment the main steps of the proof for the convenience of the
reader.

Without loss of generality, we can assume that the constant M1 in (2.3) is
strictly negative. According to Grisvard (1985), Theorem 1.5.1.10, there exists
a constant K only depending on Ω such that

∫

Γ

|y(x)|2 dσ ≤ K
[

ε

∫

Ω

|∇y(x)|2 dx+
1

ε

∫

Ω

|y(x)|2 dx
]

(2.7)
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holds for all y ∈ H1(Ω) and all ε ∈ (0, 1); we select

0 < ε < min

{

1,
1

2K|M1|

}

.

Now, associated with ε, we take a real number λ satisfying

λ ≥
1

2
+ |M1|

(K

ε
+ 1
)

.

By the change of variables yλ(x, t) = e−λty(x, t) in (2.1), we obtain

∂tyλ −∆yλ + dλ(x, t, yλ) = 0 in Q

∂nyλ + bλ(x, t, yλ) = e−λtu in Σ

yλ(x, 0) = y0(x) in Ω,

(2.8)

where

dλ(x, t, y) = e−λtd(x, t, eλty) + λy and bλ(x, t, y) = e−λtb(x, t, eλty).

Then we have

∂dλ
∂y

(x, t, y) =
∂d

∂y
(x, t, eλty) + λ ≥M1 + λ ≥

1

2
+

|M1|K

ε

and

∂bλ
∂y

(x, t, y) =
∂b

∂y
(x, t, eλty) ≥M1.

Hence, with the mean value theorem and the above inequalities, the choice of λ
implies the following inequalities

∫

Ω

[dλ(x, t, yλ)− dλ(x, t, 0)]yλ dx ≥
(1

2
+

|M1|K

ε

)

∫

Ω

|yλ(x)|
2 dx,

∫

Γ

[bλ(x, t, yλ)− bλ(x, t, 0)]yλ dσ ≥M1

∫

Γ

|yλ(x)|
2 dσ.

Using (2.7), we infer

∫

Γ

[bλ(x, t, yλ)− bλ(x, t, 0)]yλ dσ

≥M1K
[

ε

∫

Ω

|∇yλ(x)|
2 dx +

1

ε

∫

Ω

|yλ(x)|
2 dx

]

≥ −
1

2

∫

Ω

|∇yλ(x)|
2 dx+

M1K

ε

∫

Ω

|yλ(x)|
2 dx.

Observe that M1 is assumed to be negative.
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Therefore, by combining the estimates for dλ and bλ we get
∫

Ω

[dλ(x, t, yλ)− dλ(x, t, 0)]yλ dx+

∫

Γ

[bλ(x, t, yλ)− bλ(x, t, 0)]yλ dσ

≥ −
1

2

∫

Ω

|∇yλ(x)|
2 dx+

1

2

∫

Ω

|yλ(x)|
2 dx.

From this inequality, multiplying (2.8) by yλ and integrating in Ω yields an
a posteriori a priori estimate for almost all t ∈ (0, T ),

1

2

d

dt

∫

Ω

|yλ(t)|
2 dx +

1

2

∫

Ω

|∇yλ(t)|
2 dx+

1

2

∫

Ω

|yλ(t)|
2 dx

≤

∫

Ω

dλ(x, t, 0)yλ(t) dx +

∫

Γ

[bλ(x, t, 0) + e−λtu(x, t)]yλ(t) dσ. (2.9)

The estimate (2.6) is a straightforward consequence of this inequality and the
definition of yλ. Let us sketch the proof of existence of a solution. To this end,
for every integer k ≥ 1 we consider the functions

dkλ(x, t, y) = dλ(x, t,P[−k,+k](y)) and bkλ(x, t, y) = bλ(x, t,P[−k,+k](y)),

where P[a,b] :R−→ [a, b] is the projection operator: P[a,b](s)=max{a,min{s, b}}.

For every k and every (z, w) ∈ L2(Q)×L2(Σ), we consider the linear bound-
ary value problem

∂ty −∆y + dkλ(x, t, z) = 0 in Q

∂nyλ + bkλ(x, t, w) = e−λtu in Σ

y(x, 0) = y0(x) in Ω.

(2.10)

In view of

|dkλ(x, t, z)| ≤M0 + (Lk + λ)k and |bkλ(x, t, w)| ≤M0 + Lkk,

we deduce the existence and uniqueness of a solution y ∈ W (0, T ) of (2.10)
satisfying

‖y‖W (0,T ) ≤ C
(

‖y0‖L2(Ω) + ‖u‖L2(Σ) +M0 + (Lk + λ)k
)

.

Then, using the compactness of the embedding W (0, T ) ⊂ L2(Q) and of the
trace mapping W (0, T ) ∋ y 7→ y|Σ ∈ L2(Σ) (see, for instance, Temam, 1979,
Ch. III, Theorem 2.1), we deduce with Schauder’s fixed point theorem, applied
to the mapping

L2(Q)× L2(Σ) ∋ (z, w) 7→ (y, y|Σ) ∈ L2(Q)× L2(Σ),

the existence of a fixed point (ykλ, y
k
λ|Σ), i.e. a solution in W (0, T ) of

∂ty −∆y + dkλ(x, t, y) = 0 in Q

∂ny + bkλ(x, t, y) = e−λtu in Σ

y(x, 0) = y0(x) in Ω.
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Now, using that λ > 0 and arguing as we did to get the estimate (2.9), we can
proceed similarly to Ladyzhenskaya, Solonnikov and Ural’tseva (1988), III-§7,
to deduce the boundedness

‖ykλ‖L∞(Q) ≤ C′
(

‖y0‖L∞(Ω) + ‖d(·, ·, 0)‖Lq(Q) + ‖b(·, ·, 0)‖Lp(Σ) + ‖u‖Lp(Σ)

)

with C′ independent of k. Then, for every k large enough, we have that
dkλ(x, t, y

k
λ) = dλ(x, t, y

k
λ) and bkλ(x, t, y

k
λ) = bλ(x, t, y

k
λ) and, hence, ykλ is so-

lution of (2.8). Undoing the change of variable y = eλtykλ, we see that y is
solution of (2.1) and (2.5)-(2.6) hold. The uniqueness follows in a standard way
from Gronwall’s Lemma.

To conclude the proof, we assume that uk ⇀ u in Lp(Σ) and prove the strong
convergence of {yuk

} to yu. First, we observe that (2.5) and (2.6) imply that
{yuk

}k is bounded in L2(0, T ;H1(Ω)) ∩ L∞(Q). By subtracting the equations
satisfied by yuk

and yu and using the mean value theorem, we get for zk =
yuk

− yu

∂tzk −∆zk +
∂d

∂y
(x, t, ŷk)zk = 0 in Q

∂nzk +
∂b

∂y
(x, t, ỹk)zk = uk − u in Σ

zk(x, 0) = 0 in Ω,

(2.11)

where ŷk = yu + θk(yuk
− yu) and ỹ

k = yu + ρk(yuk
− yu) for some measurable

functions θk : Q → [0, 1] and ρk : Σ → [0, 1]. From the above equation we
infer that {zk}k is bounded in the space of Hölder functions C0,µ(Q̄) for some
µ ∈ (0, 1) as well as in W (0, T ); see Ladyzhenskaya, Solonnikov and Ural’tseva
(1988), Ch. III, Theorem 10.1. Arguing as in (2.9), and undoing the change of
variables, we get after integration in [0, T ]

∫

Q

|∇zk|
2 dxdt+

∫

Q

|zk|
2 dxdt ≤ C

∫

Σ

(uk − u)zk dσdt.

This inequality, along with the compactness of the embedding C0,µ(Q̄) ⊂ C(Q̄),
implies the strong convergence zk → 0 in C(Q̄) ∩ L2(0, T ;H1(Ω)), hence the
strong convergences stated in the theorem follow. �

We will heavily rely on certain comparison theorems for the solution of semi-
linear equations. There exist many associated results in literature, often proven
for classical solutions; we refer exemplarily to Pao (1992). However, we were not
able to find a rigorously proven result for weak solutions of the class of nonlinear
parabolic equations below. This is not surprising in view of the technicalities
needed to prove Theorem 2.1.

Therefore, we prove the following result, although it can be expected from
the available literature for classical parabolic equations.
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Theorem 2.2 (Comparison theorem) Let u, v ∈ Lp(Σ) be given and let y
and z be the weak solutions to

∂ty −∆y + d(x, t, y) = 0 in Q

∂ny + b(x, t, y)− y = u in Σ

y(x, 0) = y0(x) in Ω,

(2.12)

∂tz −∆z + d(x, t, z) = 0 in Q

∂nz + b(x, t, z)− z = v in Σ

z(x, 0) = y0(x) in Ω.

(2.13)

If u(x, t) ≤ v(x, t) holds a.e. in Σ, then y(x, t) ≤ z(x, t) is satisfied a.e. in Q
and y|Σ(x, t) ≤ z|Σ(x, t) holds a.e. in Σ.

Proof Let us set w = y − z. Then, by subtracting the equations (2.12) and
(2.13), we get

∂tw −∆w +
∂d

∂y
(x, t, ŵ)w = 0 in Q

∂nw +
( ∂b

∂y
(x, t, w̃)− 1

)

w = u− v in Σ

w(x, 0) = 0 in Ω,

(2.14)

where ŵ = y + θ(z − y) and w̃ = y + ρ(z − y) for some measurable functions
θ : Q → [0, 1] and ρ : Σ → [0, 1]. This linear system has a unique solution
w ∈W (0, T ) ∩ L∞(Q), see Raymond and Zidani (1998, 1999). Now we select

0 < ε <
1

2K(|M1|+ 1)
and λ ≥

1

2
+ |M1|+

K(|M1|+ 1)

ε
,

where K satisfies (2.7) and M1 is given by (2.3). By setting wλ(x, t) =
e−λtw(x, t), we obtain from (2.14)

∂twλ −∆wλ +
(∂d

∂y
(x, t, ŵ) + λ

)

wλ = 0 in Q

∂nwλ +
( ∂b

∂y
(x, t, w̃)− 1

)

wλ = e−λt(u − v) in Σ

wλ(x, 0) = 0 in Ω.

(2.15)

Multiplying this equation by w+
λ = max{wλ, 0} and arguing as in the proof of

(2.9) leads to

1

2

∫

Ω

|w+
λ (T )|

2 dx+
1

2

∫

Q

|∇w+
λ |

2 dxdt+
1

2

∫

Q

|w+
λ |

2 dxdt ≤

∫

Σ

e−λt(u − v)w+
λ dσdt ≤ 0,
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which proves that w+
λ = 0. Since the solution of (2.15) is continuous in Q̄,

we infer that w+(x, t) = eλtw+
λ (x, t) ≤ 0 for every (x, t) ∈ Q̄. This proves the

theorem. �

Remark 1 In the above proof we have used the fact that w+ ∈ W (0, T ) for
every w ∈ W (0, T ). This can be proven as follows. First, we recall that z+ ∈
H1(Ω) and ‖∇z+‖H1(Ω) ≤ ‖∇z‖H1(Ω) for every z ∈ H1(Ω). As an immediate
consequence we have that w+ ∈ L2(0, T ;H1(Ω)) for every w ∈ L2(0, T ;H1(Ω)).
Let us prove that d

dtw
+ ∈ L2(0, T ;H1(Ω)∗). We take a sequence {wk}k ⊂

C∞(Q̄) ⊂ H1(Q) such that wk → w inW (0, T ). We observe that d
dtw

+
k ⊂ L2(Q)

and

∥

∥

∥

∥

d

dt
w+

k

∥

∥

∥

∥

L2(0,T ;H1(Ω)∗)

=

(

∫ T

0

∥

∥

∥

∥

d

dt
w+

k (t)

∥

∥

∥

∥

2

H1(Ω)∗
dt

)1/2

≤

(

∫ T

0

∥

∥

∥

∥

d

dt
wk(t)

∥

∥

∥

∥

2

H1(Ω)∗
dt

)1/2

=

∥

∥

∥

∥

d

dt
wk

∥

∥

∥

∥

L2(0,T ;H1(Ω)∗)

≤ C

for some constant C and for every k. Taking a subsequence, we can assume that
{ d
dtw

+
k }k converges weakly in L2(0, T ;H1(Ω)∗) to some g. This means that

∫ T

0

∫

Ω

dw+
k

dt
z dxφ(t)dt →

∫ T

0

〈g, z〉H1(Ω)∗,H1(Ω)φ(t)dt (2.16)

for all z ∈ H1(Ω), φ ∈ D(0, T ).

On the other hand, we have

∫ T

0

∫

Ω

dw+
k

dt
z dxφ(t)dt =

∫ T

0

d

dt

∫

Ω

w+
k (t) z dxφ(t) dt (2.17)

= −

∫ T

0

∫

Ω

w+
k (t) z dxφ

′(t) dt → −

∫ T

0

∫

Ω

w+(t) z dxφ′(t) dt

=

〈

d

dt

∫

Ω

w+ z dx, φ

〉

D′(0,T ),D(0,T )

. (2.18)

From (2.16) and (2.18), we infer that

d

dt

∫

Ω

w+ z dx = 〈g, z〉H1(Ω)∗,H1(Ω) ∀z ∈ H1(Ω).

From Temam (1979), Chpt. 3, Lemma 1.1, we find that

d

dt
w+ = g ∈ L2(0, T ;H1(Ω)∗),

which concludes the proof.
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The next theorem is a contribution to inverse isotony, also called monotony
in the sense of Collatz, that was discussed extensively in the 1950-70ties. An
operator T mapping a partially ordered vector space X into another partially
ordered vector space Y is called inverse isotone, if the inequality T (u) ≤ T (v)
in Y implies u ≤ v in X . In this case, the problem T (x) = g is called a
problem of monotone type. For the associated concept, we mention Collatz
(1952, 1964), Glashoff and Werner (1979); or Redheffer and Walter (1979).
Inverse isotony plays an important role in the inclusion of numerical solutions to
differential equations by guaranteed upper and lower bounds, a topic of interval
mathematics, see Ortega and Rheinboldt (1967) or Rheinholdt (1969).

Associated results were formulated for classical solutions. We prove the
result for weak solutions and for the particular type of equations that we need
for our analysis and for nonsmooth control functions as it is standard in control
theory. To our best knowledge, this is not available from literature.

We recall that yu denotes the solution of (2.1) associated with u.

Theorem 2.3 (Inverse isotony) For every function g ∈ Lp(Σ), the equation

v(x, t) = g(x, t) + yv(x, t), (x, t) ∈ Σ, (2.19)

has a unique solution v ∈ Lp(Σ). If u ∈ Lp(Σ) satisfies the inequality

u(x, t) ≤ g(x, t) + yu(x, t), (x, t) ∈ Σ, (2.20)

then u(x, t) ≤ v(x, t) holds for a.a. (x, t) ∈ Σ.

Proof a) Existence and uniqueness of the solution v to (2.19).

We consider the system

∂ty −∆y + d(x, t, y) = 0 in Q

∂ny + b(x, t, y)− y = g in Σ

y(x, 0) = y0(x) in Ω.

Thanks to Theorem 2.1, this system has a unique solution y ∈ W (0, T )∩L∞(Q).
Notice that the function b̃(x, t, y) := b(x, t, y)− y satisfies Assumption 1. Now
we set v := g + y|Σ. Then we have v ∈ Lp(Σ). Shifting y to the right hand side
of the boundary condition above, we see that y solves the state equation with
control v on the right-hand side. Therefore, it holds that y = yv and we see, in
turn, that v = g + yv a.e. in Σ, hence v solves the equation (2.19).

The uniqueness of v is obtained as follows: If vi, i = 1, 2, are solutions of
(2.19), then we have

v1 − v2 = y1 − y2, (2.21)
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where yi = yvi , i = 1, 2. Subtracting the differential equations satisfied by y1
and y2 and taking w = y1 − y2, we find

∂tw −∆w +
∂d

∂y
(x, t, ŵ)w = 0 in Q

∂nw +
∂b

∂y
(x, t, w̃)w = 0 in Σ

w(x, 0) = 0 in Ω.

Using again Raymond and Zidani (1998, 1999) we infer that w = 0. This shows
y1 = y2 and implies, in turn, v1 = v2 by equation (2.21). Another way of proving
the uniqueness was communicated to us by one of the referees: The uniqueness
directly follows from the inverse isotony shown in part b) below. We thank the
unknown referee for this nice idea.

b) Inverse isotony. Assume now that u ∈ Lp(Σ) satisfies the inequality
(2.20). We have to show that u ≤ v holds a.e. in Σ.

The inequality for u means that u = g − e + yu with some e ∈ Lp(Σ) that
is a.e. non-negative. By inserting u = g − e + yu and v = g + yv as control
functions in the state equation (2.1) for yu and yv, respectively, we get the
boundary conditions

∂nyu + b(x, t, yu)− yu = g − e

∂nyv + b(x, t, yv)− yv = g.

Since g − e ≤ g, the Comparison Theorem 2.2 yields

yu(x, t) ≤ yv(x, t) for a.a. (x, t) ∈ Σ.

Therefore, with (2.20) we infer

u ≤ g + yu ≤ g + yv = v a.e. in Σ. �

Let us consider the control-to-state mapping G : Lp(Σ) −→ W (0, T ) ∩
L∞(Q), associating to every control u the corresponding state yu = G(u) solving
(2.1). According to Theorem 2.1, this mapping is well defined. Let us denote
by GΣ : Lp(Σ) −→ Lp(Σ) the mapping given by

GΣ(u) = yu|Σ.

The term ”inverse isotony” in the previous Theorem 2.3 refers to the following
observation: The equation v = g+yv can be written as v−GΣ(v) = g. Therefore,
the result of the theorem can be formulated as

u−GΣ(u) ≤ v −GΣ(v) =⇒ u ≤ v

in Lp(Σ), i.e. I − GΣ is inverse isotone and the equation v − GΣ(v) = g is a
problem of monotone type.
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Theorem 2.4 The mapping G is of class C1. The derivative of G at u ∈ Lp(Σ)
in the direction v ∈ Lp(Σ) is given by G′(u)v = zv, where zv ∈W (0, T )∩L∞(Q)
is the unique solution to

∂tz −∆z +
∂d

∂y
(x, t, yu) z = 0 in Q

∂nz +
∂b

∂y
(x, t, yu) z = v in Σ

z(x, 0) = 0 in Ω.

(2.22)

Proof Let us define the function space

Y = {y ∈ W (0, T ) ∩ L∞(Q) : ∂ty −∆y ∈ Lq(Q) and ∂ny ∈ Lp(Σ)}.

Let us recall that for any element y ∈ L2(0, T ;H1(Ω)) such that ∂ty − ∆y ∈

L2(Q) there exists the normal derivative ∂ny ∈ H
1/2
00 (Σ)∗; see, for instance,

Dautray and Lions (2000), pp. 525-526. Moreover, the embedding L2(Σ) ⊂

H
1/2
00 (Σ)∗ holds. In Y we consider the norm

‖y‖Y = ‖y‖W (0,T ) + ‖y‖L∞(Q) + ‖∂ty −∆y‖Lq(Q) + ‖∂ny‖Lp(Σ).

Now, we consider the mapping

F : Y × Lp(Σ) −→ Lq(Q)× Lp(Σ)× L∞(Ω),

F(y, u) = (∂ty −∆y + d(x, t, y), ∂ny + b(x, t, y)− u, y(0)− y0).

It is easy to check that F is well defined and it is of class C1 and

∂F

∂y
(y, u)z =

(

∂tz −∆z +
∂d

∂y
(x, t, y)z, ∂nz +

∂b

∂y
(x, t, y)z, z(0)

)

.

For every (f, v, z0) ∈ Lq(Q)× Lp(Σ)× L∞(Ω) the problem

∂tz −∆z +
∂d

∂y
(x, t, y) z = f in Q

∂nz +
∂b

∂y
(x, t, y) z = v in Σ

z(x, 0) = z0 in Ω

has a unique solution z ∈ Y . Hence, ∂F
∂y (y, u) : Y −→ Lq(Q)× Lp(Σ)× L∞(Ω)

is an isomorphism. This follows as a particular case from Theorem 2.1; see
also Raymond and Zidani (1998, 1999). Therefore, since F(G(u), u) = 0 for
every u ∈ Lp(Σ), we can apply the implicit function theorem to the equation
F(y, u) = (0, 0, 0) to deduce that G is of class C1 and that zv = G′(u)v is the
solution of (2.22). �
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Corollary 1 (Nonnegativity of G′
Σ) For all u ∈ L∞(Σ) and all directions

v ∈ L∞(Σ) that are a.e. nonnegative, also G′
Σ(u)v is a.e. nonnegative, i.e.

v ≥ 0 =⇒ G′
Σ(u)v ≥ 0.

Proof The result is obtained by applying the Comparison Theorem 2.2 to

∂ty −∆y +
∂d

∂y
(x, t, yu(x, t))y = 0 in Q

∂ny +
[ ∂b

∂y
(x, t, yu(x, t)) + 1

]

y − y = 0 in Σ

y(x, 0) = 0 in Ω,

∂tz −∆z +
∂d

∂y
(x, t, yu(x, t))z = 0 in Q

∂nz +
[ ∂b

∂y
(x, t, yu(x, t)) + 1

]

z − z = v in Σ

z(x, 0) = 0 in Ω.

Then, obviously, the assumptions of Theorem 2.2 are satisfied. Therefore, since
v ≥ 0, we find by applying the comparison theorem that z = G′

Σ(u)v is nonneg-
ative. �

3. Optimal control problem and its solvability

We shall investigate the following optimal control problem that is an extended
version of the introductory example (1.1)-(1.4):

Min J(u) :=
νQ
2

∫

Q

|yu(x, t) − yQ(x, t)|
2 dxdt+

νT
2

∫

Ω

|yu(x, T )− yT (x)|
2dx

+

∫

Σ

(ν

2
|u(x, t)|2 + κ |u(x, t)|

)

dσdt

(3.1)

subject to the mixed pointwise control-state constraints

ua ≤ u(x, t) ≤ ud + yu(x, t) (3.2)

to be satisfied a.e. in Σ.

The next assumption is needed throughout the further paper. It has to be
assumed in all further results and will not be explicitly mentioned.

Assumption 2 (Optimal control data) In the problem above, the follow-
ing quantities are given: Real numbers νQ ≥ 0, νT ≥ 0, a Tikhonov parameter
ν > 0, the sparse parameter κ > 0, a desired state yQ ∈ L∞(Q), a desired
final state yT ∈ L∞(Ω), and real numbers ua < 0, ud > 0 as bounds for the
constraints (3.2). We also assume that νQ + νT > 0.
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In all what follows, the Assumptions 1 and 2 are tacitly assumed.

First, we prove the existence of an optimal control. To this aim, we show
the following result on boundedness of the feasible set:

Lemma 1 There is some constant MF > 0 such that

max{‖u‖L∞(Σ), ‖yu‖L∞(Q), ‖yu|Σ‖L∞(Σ)} ≤MF (3.3)

holds for all feasible controls u, i.e. for all u satisfying the constraints (3.2),
and for their associated states yu.

Proof By Theorem 2.3 we know that there exists a unique solution v to the
equation v = ud+ yv. Thanks to p > N +1, the state yv belongs to L∞(Q) and
yv|Σ to L∞(Σ). Consequently, we have v ∈ L∞(Σ); set c0 = ‖v‖L∞(Σ). Then,
(3.2) and Theorem 2.3 on inverse isotony imply that u(x, t) ≤ v(x, t) ≤ c0 holds
for almost all (x, t) ∈ Σ. Moreover, we have u ≥ ua and hence ‖u‖L∞(Σ) ≤
max{|ua|, c0}. By inserting this in (2.5), we find another constant c1 such that
‖yu‖L∞(Q) ≤ c1 and, as a consequence, also ‖yu|Σ‖L∞(Σ) ≤ c1. With the choice
of MF := max{|ua|, c0, c1}, the estimate (3.3) is fulfilled. �

Let us introduce for convenience the functionals

f(u) =
νQ
2

∫

Q

|yu − yQ|
2 dxdt+

νT
2

∫

Ω

|yu(x, T )− yT (x)|
2 dx

+
ν

2

∫

Σ

|u(x, t)|2 dσdt,

j(u) =

∫

Σ

|u(x, t)| dσdt,

(3.4)

and the feasible set

F = {u ∈ L∞(Σ) : ua ≤ u ≤ ud + yu}.

Then we have J(u) = f(u) + κ j(u) and the optimal control problem can be
written in the short form as

min {f(u) + κ j(u) : u ∈ F}. (3.5)

We say that a control ū ∈ F is optimal if

f(ū) + κ j(ū) ≤ f(u) + κ j(u) ∀u ∈ F,

and locally optimal if this inequality holds for all u ∈ F ∩Bε(ū), where Bε(ū) is
the open ball of Lp(Σ) with radius ε > 0 centered at ū.

Theorem 3.1 (Existence of an optimal control) Assume that there ex-
ists a control u ∈ L∞(Σ) that satisfies the constraints (3.2). Then there exists
at least one optimal control.
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Proof According to the assumptions of the theorem, the feasible set F is
non-empty. Therefore, we can select a minimizing sequence {uk}k∈N such that

lim
k→∞

(f(uk) + κj(uk)) = inf{f(u) + κj(u) : u ∈ F} =: inf ≥ 0.

Thanks to Lemma 1, F is bounded in L∞(Σ), hence we can extract a sub-
sequence of {uk}k that converges weakly in Lp(Σ) to some element ū; let us
denote this subsequence by {uk}k, again. From the convergences stated in The-
orem 2.1 we infer that f(ū) ≤ lim infk→∞ f(uk). Moreover, the convexity and
strong continuity of j imply that j(ū) ≤ lim infk→∞ j(uk). Hence, we get that
J(ū) ≤ lim infk→∞ J(uk) = inf . To conclude that ū is an optimal control, we
have to prove that ū ∈ F . This is a consequence of the fact that F is sequentially
weakly closed in Lp(Σ). Indeed, first we observe that the sets

U1 = {v ∈ L∞(Σ) : ua ≤ v} and U2 = {v ∈ L∞(Σ) : v ≤ ud}

are convex and closed in Lp(Σ), therefore weakly closed, as well. Since {uk}k ⊂
U1 and {uk − yuk

}k ⊂ U2 and, due to Theorem 2.1, uk − yuk
⇀ ū− yū in Lp(Σ),

we infer that ū ∈ U1 and ū− yū ∈ U2. This means ua ≤ ū− yū ≤ ud and hence
ū ∈ F . �

4. Necessary optimality conditions and sparsity

4.1. A convergence result

Let us start with a simple but important convergence result for κ→ ∞.

Assumption 3 The control u = 0 strictly satisfies the mixed control-state
constraint of the optimal control problem, i.e. there is some δ > 0 such that

δ ≤ ud +GΣ(0)(x, t) for a.a. (x, t) ∈ Σ.

Since ua < 0 holds, the above assumption implies that u = 0 is a feasible
control. From now on, we will write

y0 = G(0).

Lemma 2 Let Assumption 3 be satisfied and let, for κ > 0, {ūκ}κ denote a
family of optimal controls of (3.1)-(3.2), corresponding to the sparse parameters
κ. Let ȳκ = G(ūκ) be the associated states. Then we have

limκ→∞ ‖ūκ‖Ls(Σ) = 0 ∀s ∈ [1,∞)

and ȳκ → y0 strongly in L2(0, T ;H1(Ω)) ∩ L∞(Q), ȳκ(·, T ) → y0(·, T )
strongly in L∞(Ω), and ȳκ|Σ → y0|Σ strongly in L∞(Σ). Moreover, there is
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some κ0 > 0 such that, for a.a. (x, t) ∈ Σ,

ud + ȳκ(x, t) ≥
δ
2 ∀κ ≥ κ0.

Proof Thanks to Assumption 3, the control u = 0 is feasible for all κ,
hence

J(ūκ) =
νQ
2
‖ȳκ − yQ‖

2
L2(Q) +

νT
2
‖ȳκ(T )− yT ‖

2
L2(Ω)

+
ν

2
‖ūκ‖

2
L2(Σ) + κ ‖ūκ‖L1(Σ)

≤ J(0) =
νQ
2
‖y0 − yQ‖

2
L2(Q) +

νT
2
‖y0(T )− yT ‖

2
L2(Ω).

This immediately yields

‖ūκ‖L1(Q) ≤
1

2κ

(

νQ‖y
0 − yQ‖

2
L2(Q) + νT ‖y

0(T )− yT ‖
2
L2(Ω)

)

→ 0, κ→ ∞.

Moreover, we know from Lemma 1 that the set of feasible controls is bounded
in L∞(Σ). Therefore, the L1-convergence above implies also

‖ūκ‖Ls(Σ) → 0, κ→ ∞ ∀s ∈ [1,∞).

The convergences ȳκ → y0 and the associated ones for the final and boundary
values of ȳκ follow from Theorem 2.1. Finally, it is enough to notice that
Assumption 3 can be written down as

δ ≤ ud + y0(x, t) for a.a. (x, t) ∈ Σ,

to deduce the existence of κ0 > 0 such that ud+ ȳκ(x, t) ≥
δ
2 holds for all κ ≥ κ0

and for a.a. (x, t) ∈ Σ. �

The proof reveals that Assumption 3 can be slightly relaxed: For the first
part of the statement, we only need 0 ≤ ud +GΣ(0)(x, t) for a.a. (x, t) ∈ Σ.

4.2. Linearization and preliminary optimality conditions

To prove our first-order necessary optimality conditions, we start with a lin-
earization theorem. This complements a theorem on necessary optimality con-
ditions in our related paper on sparsity properties for nonlinear problems with
pointwise state constraints, Casas and Tröltzsch (2018b). There, we proved the
first order necessary conditions, including regular Borel measures as Lagrange
multipliers and prepared this result by an abstract Lagrange multiplier rule
relying on a linearized Slater condition. Such a result was not known before,
because the L1-norm in the objective functional leads to a non-differentiable
objective functional.
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Here, we cannot apply this abstract result, because in our case of mixed
control-state constraints we want to prove the existence of Lagrange multipliers
for the constraint (1.4) that are functions of L∞(Σ) rather than of L∞(Σ)∗. To
this aim, we first perform a linearization of the problem in L∞(Σ). Next, we
change the control space to L2(Σ) without changing the feasible set. Finally
we show the existence of Lagrange multipliers by special techniques that are
tailored to problems with mixed control-state constraints.

We begin with an abstract result of linearization for differentiable con-
straints, but for an objective functional that is composed of a nonlinear dif-
ferentiable and a convex function.

Let U and Y be two normed vector spaces, K ⊂ U and C ⊂ Y two convex
sets, and let H : U −→ Y , f : U −→ R, and g : U −→ (−∞,+∞], be given
mappings. Consider the optimization problem

min {f(u) + g(u) : u ∈ K and H(u) ∈ C}. (4.1)

Theorem 4.1 (Linearization) Let ū be a local solution of (4.1). Assume
that f and H are Gâteaux differentiable at ū, g is convex and intC 6= ∅. If the
linearized Slater condition

∃u0 ∈ K : H(ū) +H ′(ū)(u0 − ū) ∈ intC (4.2)

is satisfied, then

f ′(ū)(u − ū) + g(u)− g(ū) ≥ 0 (4.3)

holds for all u ∈ K that satisfy

H(ū) +H ′(ū)(u− ū) ∈ C. (4.4)

Proof Let us define

U0 = {u ∈ K : H(ū) +H ′(ū)(u− ū) ∈ intC}.

The linearized Slater assumption (4.2) implies that u0 ∈ U0, hence U0 6= ∅. Let
us take an arbitrary element u ∈ U0. Since

lim
ρ→0

(

H(ū) +
H(ū+ ρ(u− ū))−H(ū)

ρ

)

= H(ū) +H ′(ū)(u − ū) ∈ intC,

there exists ρu ∈ (0, 1) such that

yρ = H(ū) +
H(ū+ ρ(u− ū))−H(ū)

ρ
∈ intC ∀ρ ∈ (0, ρu).

For every ρ ∈ (0, ρu), we have

H(ū+ ρ(u− ū)) = ρyρ + (1 − ρ)H(ū) ∈ C.
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The local optimality of ū along with the convexity of g implies that for every ρ
sufficiently small we have

0 ≤
f(ū+ ρ(u− ū))− f(ū)

ρ
+
g(ū+ ρ(u − ū))− g(ū)

ρ

≤
f(ū+ ρ(u− ū))− f(ū)

ρ
+ g(u)− g(ū).

Passing to the limit as ρ→ 0 in the above inequality, we obtain

f ′(ū)(u − ū) + g(u)− g(ū) ≥ 0 ∀u ∈ U0. (4.5)

Now, we take u ∈ K such that H(ū) + H ′(ū)(u − ū) ∈ C but u 6∈ U0. From
(4.2) it follows that uρ = u+ ρ(u0 − u) ∈ U0 for every ρ ∈ (0, 1). Therefore, the
convexity of g and (4.5) implies

f ′(ū)(uρ− ū)+g(u)−g(ū)+ρ(g(u0)−g(u)) ≥ f ′(ū)(uρ− ū)+g(uρ)−g(ū) ≥ 0

for every ρ ∈ (0, 1). Upon passing to the limit ρ→ 0 in the left hand side of the
above chain of inequalities, (4.3) follows. �

We apply this theorem to our optimal control problem for U = Y = L∞(Σ)
with

g(u) = κj(u),

H(u) = u− ud −GΣ(u),

K = {u ∈ L∞(Σ) : u ≥ ua a.e. in Σ},

C = (L∞(Σ))− = {u ∈ L∞(Σ) : u ≤ 0 a.e. in Σ},

where GΣ(u) = yu|Σ. Notice that C has a nonempty interior in L∞(Σ).

In terms of H(u) = u− ud −GΣ(u), the condition (4.2) takes the form

u0 − ud −GΣ(ū)−G′
Σ(ū)(u0 − ū) ∈ intC.

For the optimal control problem (3.1)-(3.2), the linearized Slater condition ad-
mits the following form:

Assumption 4 (Linearized Slater condition) Let ū ∈ L∞(Σ) be fixed.
Assume the existence of u0 ∈ L∞(Σ) and δ > 0 such that

u0(x, t) ≥ ua and (u0 − ud −GΣ(ū)−G′
Σ(ū)(u0 − ū))(x, t) ≤ −δ (4.6)

hold for a.a. (x, t) ∈ Σ.

How strong is this assumption? It turns out that it follows from Assumption
3, provided that κ is large enough.
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Corollary 2 If Assumption 3 is satisfied, then there exists κ1 ≥ κ0 such that
the linearized Slater condition is satisfied with u0 = 0 for all κ ≥ κ1, where κ0
was defined in Lemma 2.

Proof By inserting the function u0 = 0 in the linearized Slater condition
(4.6), taken at ūκ, we estimate the term ud + GΣ(ūκ) + G′

Σ(ūκ)(−ūκ). Using
Lemma 2, we infer the existence of κ1 ≥ κ0 such that

‖GΣ(ūκ)−GΣ(0)‖L∞(Σ) = ‖ȳκ − y0‖L∞(Σ) ≤ δ/4

and

‖G′
Σ(ūκ)ūκ‖L∞(Σ) ≤ c ‖ūκ‖Lp(Σ) ≤ δ/4,

provided that κ ≥ κ1. In the last estimate, we used the continuity of the
mapping u 7→ G′

Σ(u) from Lp(Σ) to L(Lp(Σ), L∞(Σ)). Invoking Assumption 3,
we obtain for all κ ≥ κ1 that

ud +GΣ(ūκ) +G′
Σ(ūκ)(−ūκ) = ud +GΣ(0) + (GΣ(ūκ)−GΣ(0))−G′

Σ(ūκ)ūκ

≥ δ −
1

4
δ −

1

4
δ =

1

2
δ.

Hence, the linearized Slater condition is satisfied with δ/2. �

We have G′
Σ(ū)(u0− ū) = zu0−ū|Σ, where zu0−ū is the unique solution to the

linearized equation (2.22) with v = u0 − ū; moreover, it holds that G(ū) = yū.

Corollary 3 (Linearization of the control problem) Let ū be a local
solution of the control problem with associated state ȳ = yū and assume that the
linearized Slater condition (4.6) holds. Let u ∈ L∞(Σ) obey the inequalities

ua ≤ u(x, t) ≤ ud + ȳ(x, t) + zu−ū(x, t) (4.7)

a.e. in Σ, where zu−ū = G′(ū)(u − ū) is the unique solution to the linearized
equation (2.22) with yu = ȳ and v = u − ū taken in the right-hand side. Then
the inequality

f ′(ū)(u − ū) + κj(u)− κj(ū) ≥ 0 (4.8)

is satisfied for the functionals f and j, defined in (3.4).

The corollary follows straightforward from the general Theorem 4.1 after
inserting the mappings related to the optimal control problem (3.1)-(3.2).

Let us denote the set of controls satisfying the linearized constraints by

L = {u ∈ L∞(Σ) : ua ≤ u(x, t) ≤ ud + ȳ(x, t) + zu−ū(x, t) a.e. in Σ}.
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Thanks to the variational inequality (4.8), the control ū solves the convex opti-
mal control problem

min{f ′(ū)u+ κj(u) : u ∈ L}. (4.9)

Therefore, by subdifferential calculus, the following result is obtained as imme-
diate conclusion:

Corollary 4 Under the assumptions of Corollary 3, there is some λ̄ ∈ ∂j(ū)
such that the following variational inequality is satisfied:

f ′(ū)(u − ū) + κ

∫

Σ

λ̄(x, t)(u(x, t) − ū(x, t)) dσdt ≥ 0 ∀u ∈ L. (4.10)

We recall that a function λ̄ belongs to the subdifferential ∂j(ū) if and only if

λ̄(x, t) =







1 if ū(x, t) > 0
∈ [−1, 1] if ū(x, t) = 0

−1 if ū(x, t) < 0.

For linearization, we considered u and ū as elements of L∞(Σ), because the
convex cone C = (L∞(Σ))− has a non-empty interior. Now, we formally extend
the convex set L to the space L2(Σ). It turns out that this set does not change
by the transfer to L2(Σ). This can be confirmed by inverse isotony. Let us first
prove the following linearized version of Theorem 2.3:

Corollary 5 Let u ∈ L2(Σ) satisfy the inequality

u(x, t) ≤ ud + ȳ(x, t) + zu−ū(x, t) a.e. in Σ.

Then u(x, t) ≤ v(x, t) holds a.e. in Σ, where v ∈ L2(Σ) is the unique solution
of

v(x, t) = ud + ȳ(x, t) + zv−ū(x, t).

Moreover, v belongs to L∞(Σ).

Proof Analogously to Theorem 2.3, we obtain that any u that obeys the
assumption of the Corollary satisfies u(x, t) ≤ v(x, t), where v is the unique
solution to the equation

v(x, t) = ud + ȳ(x, t) + zv−ū(x, t) (4.11)

and zv−ū is the solution to the linearized equation (2.22) with v := v − ū as
control. The solution v of (4.11) can be constructed as in the proof of Theorem
2.3, part a). Indeed, we take z ∈W (0, T ) ∩ L∞(Q) as the solution of

∂tz −∆z +
∂d

∂y
(x, t, ȳ) z = 0 in Q

∂nz +
∂b

∂y
(x, t, ȳ) z − z = ud + ȳ − zū in Σ

z(x, 0) = 0 in Ω

(4.12)



Optimal sparse boundary control for a semilinear parabolic equation 109

and set v(x, t) = ud + ȳ(x, t) − zū + z(x, t) for (x, t) ∈ Σ. Then, the identity
z = zv holds and v(x, t) = ud + ȳ(x, t) + zv−ū(x, t) for (x, t) ∈ Σ. �

The solution v is bounded and measurable. In view of this, if u ∈ L, then
also u is bounded, because we have u(x, t) ∈ [ua, v(x, t)] for a.a. (x, t) ∈ Σ. This
shows that all u ∈ L2(Σ) that obey the inequalities (4.7) automatically belong
to L∞(Σ). Analogously to Lemma 1, there exists a constant ML > 0, such that

‖u‖L∞(Σ) ≤ML ∀u ∈ L.

Therefore, we have

L = {u ∈ L2(Σ) : ua ≤ u(x, t) ≤ ud + yū(x, t) + zu−ū(x, t) a.e. in Σ}.

Notice that G′(ū) was initially defined in Lp(Σ) via the linearized partial differ-
ential equation (2.22). By the solution properties of this equation, the mapping
v 7→ zv|Σ is also linear and continuous in L2(Σ). Therefore, G′(ū) can be con-
tinuously extended to L2(Σ). Let us introduce the notation S = G′

Σ(ū) for this
extended operator, i.e. S : L2(Σ) → L2(Σ). Then we have

Sv := G′
Σ(ū)v = zv|Σ ∀v ∈ L2(Σ).

Moreover, L can be written down as follows

L = {u ∈ L2(Σ) : ua ≤ u(x, t) ≤ ud + yū(x, t) + S(u− ū)(x, t) a.e. in Σ}.

Clearly, the nonnegativity of the operator G′
Σ(ū) extends from L∞(Σ) to L2(Σ).

Therefore, also S is nonnegative, i.e.

v ≥ 0 =⇒ Sv ≥ 0 ∀v ∈ L2(Σ).

Obviously, this nonnegativity is also true for the adjoint operator S∗ : L2(Σ) →
L2(Σ).

Remark 2 Let us mention another property of S that is used in the Appendix:
The operator I − S is bijective in L2(Σ). This is deduced analogously to the
proof of Corollorary 5: For any g ∈ L2(Σ), the unique solution of v − Sv = g
is given by v = g + z|Σ, where z is the solution to the linear parabolic equation
(4.12) with g substituted for ud + ȳ − zū in the right-hand side. The continuity
of I − S and the open mapping theorem imply that I − S is an isomorphism in
L2(Σ).

It is well known that the term f ′(ū)(u − ū) can be expressed in a more
explicit way on using an adjoint state. We define the adjoint state ϕ̄ as the
unique solution to the adjoint equation

−∂tϕ̄−∆ϕ̄+
∂d

∂y
(x, t, ȳ) ϕ̄ = νQ(ȳ − yQ) in Q

∂nϕ̄+
∂b

∂y
(x, t, ȳ) ϕ̄ = 0 in Σ

ϕ̄(x, T ) = νT (ȳ(x, T )− yT (x)) in Ω.

(4.13)
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Then we have

f ′(ū)(u − ū) =

∫

Σ

(ϕ̄(x, t) + νū(x, t))(u(x, t) − ū(x, t)) dσdt. (4.14)

Summarizing our findings, we obtain the following first-order condition:

Theorem 4.2 (Preliminary necessary optimality condition) Let ū be
a local solution to the optimal control problem (3.1)-(3.2) that satisfies the lin-
earized Slater condition (4.6) of Assumption 4. Then, there are an element
λ̄ ∈ ∂j(ū) and a unique adjoint state ϕ̄ ∈W (0, T ) ∩ L∞(Q) such that

∫

Σ

(ϕ̄(x, t) + νū(x, t) + κλ̄(x, t))(u(x, t)− ū(x, t)) dσdt ≥ 0 ∀u ∈ L (4.15)

holds, where ϕ̄ is the unique solution to (4.13).

Given µ ∈ L2(Σ), by standard arguments we can easily check that S∗µ = φΣ,
where φ ∈W (0, T ) is the unique solution of

−∂tφ−∆φ+
∂d

∂y
(x, t, ȳ)φ = 0 in Q

∂nφ+
∂b

∂y
(x, t, ȳ)φ = µ in Σ

φ(x, T ) = 0 in Ω.

(4.16)

4.3. Lagrange multiplier rule and minimum principle

Let us start this section by a short exposition on the notion of Lagrange mul-
tipliers, associated with the mixed control-state constraint. We can have two
different views, but both lead to the same result. The first is the consideration
of the original nonlinear and non-differentiable problem (3.5). The associated
Lagrangian function that ”eliminates” only the upper constraint by a Lagrange
multiplier µ, is

L(u, µ) = f(u) + κj(u) +

∫

Σ

(u− ud −GΣ(u))µ dσdt.

A function µ̄ ∈ L2(Σ) is called a Lagrange multiplier associated with a local
solution ū of (3.5), if µ̄ ≥ 0, ū obeys the necessary optimality conditions for the
optimization problem minu≥ua

L(u, µ̄), and the complementarity condition
∫

Σ

(ū − ud −GΣ(ū)) µ̄ dσdt = 0 (4.17)

is satisfied. The expected necessary optimality conditions are

f ′(ū)(u− ū)+

∫

Σ

[κλ̄(u− ū)+((u− ū)−G′
Σ(ū)(u− ū))µ̄] dσdt ≥ 0 ∀u ≥ ua,
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where λ̄ ∈ ∂j(ū). Upon inserting (4.14) and with S = G′
Σ(ū), this amounts to

∫

Σ

(ϕ̄+ νū + κλ̄+ µ̄− S∗µ̄)(u− ū) dσdt ≥ 0 ∀u ≥ ua. (4.18)

A second point of view regarding the Lagrange multiplier rule is the lin-
earized optimal control problem: If Assumption 4 is fulfilled, then - owing to
Theorem 4.3 - the locally optimal control ū solves the linear optimization prob-
lem with mixed control-state constraints

min

∫

Σ

(ϕ̄(x, t) + νū(x, t) + κλ̄(x, t))u(x, t) dσdt ≥ 0 (4.19)

subject to u ∈ L2(Σ) and

ua ≤ u(x, t) ≤ (ud + yū + S(u− ū))(x, t) (4.20)

for a.a. (x, t) ∈ Σ, where ϕ̄ is the unique solution to (4.13). Now we intro-
duce the Lagrangian function associated with this problem, where we include
the linearized mixed control-state constraint by a multiplier µ ∈ L2(Σ). This
Lagrangian is

L(u, µ) =

∫

Σ

(ϕ̄+ νū + κλ̄)u dσdt+

∫

Σ

(u − ud − yū − S(u− ū))µ dσdt.

The associated necessary optimality conditions consist – again with a Lagrange
multiplier µ̄ – of

∂L

∂u
(ū, µ̄)(u − ū) ≥ 0 ∀u ≥ ua,

joint with the complementarity condition, associated with the linearized upper
inequality constraint. A simple computation reveals that this amounts to the
same conditions as above, namely to (4.17)-(4.18). This observation shows that
any Lagrange multiplier µ̄ ∈ L2(Σ) for the linearized problem, associated with
ū, is also a multiplier for the original nonlinear and non-differentiable problem
and vice versa. We are justified to concentrate on the linearized problem.

Assumption 5 The lower bound ua is assumed to be feasible for the linearized
problem, i.e. there holds

ua − ud − yū − S(ua − ū) ≤ 0 a.e. in Σ.

Remark 3 (i) If ua satisfies Assumption 5, then it is close to being a Slater
point.

Indeed, if the inequality holds in the stronger form

ua − ud − yū − S(ua − ū) ≤ e− δ
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with some δ > 0, then u0 := ua is a Slater point. Observe that Assumption 5 is
satisfied for every κ large enough if ua − ud − y∅ − Sua ≤ e− δ for some δ > ∅.

(ii) The linearized Slater Assumption 4 and Assumption 5 are independent
conditions. None of them can be deduced from the other one. Due to Assumption
4, we can apply the linearization technique. Of course, this assumption also
leads to the existence of a Lagrange multiplier µ̄ ∈ L∞(Σ)∗. However, one of
our main goals is to obtain a more regular multiplier, namely µ̄ ∈ L∞(Σ). For
this purpose, we use Assumption 5.

Theorem 4.3 (Existence of a Lagrange multiplier) Let Assumption 5
be fulfilled and let ū ∈ L2(Σ) solve the linear optimization problem (4.19)-(4.20).
Denote by ȳ := yū the associated state. Then there exists a non-negative La-
grange multiplier µ̄ ∈ L∞(Σ) associated with the mixed control-state constraint.
This is a function µ̄ such that

∫

Σ

(ϕ̄+ ν ū+ κ λ̄+ µ̄− S∗µ̄)(u − ū) dσdt ≥ 0 ∀u ≥ ua (4.21)

holds and the following complementarity conditions are satisfied,

µ̄ ≥ 0, ū− ȳ − ud ≤ 0,

∫

Σ

(ū− ȳ − ud) µ̄ dσdt = 0. (4.22)

In view of the similarities of the proof to an analogous one in Casas and Tröltzsch
(2018a), we will sketch it in the Appendix. Notice that the Lagrange multiplier
µ̄ is a Lagrange multiplier for the nonlinear optimal control problem (3.1)-(3.2),
since it fulfills the conditions (4.17)-(4.18), characterizing a Lagrange multiplier.

Let us formulate the optimality conditions in a slightly different form that
later will simplify the proof of sparsity properties of the optimal control.

Theorem 4.4 (Pointwise minimum principle) Let the Assumptions 4 and
5 be satisfied. If ū is a locally optimal control and µ̄ ∈ L∞(Σ) is an associated
Lagrange multiplier that exists according to Theorem 4.3, then, for almost all
(x, t) ∈ Σ, the value u = ū(x, t) is a solution of the problem

min (ϕ̄+ ν ū+ κ λ̄− S∗µ̄)(x, t)u (4.23)

subject to

ua ≤ u ≤ ud + ȳ(x, t). (4.24)

Proof The proof is similar to that of Theorem 2 in Casas and Tröltzsch
(2018a). We rely on the variational inequality (4.21) that needs Assumption 4
for linearization and Assumption 5 for the existence of the Lagrange multiplier
µ̄. For convenience, we define

e(x, t) = (ϕ̄+ ν ū+ κ λ̄− S∗µ̄)(x, t).
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For given (x, t) ∈ Σ, the minimum in (4.23) is attained by

u =







ua, if e(x, t) > 0,
∈ [ua, ud + ȳ(x, t)], if e(x, t) = 0,
ud + ȳ(x, t), if e(x, t) < 0.

Assume that the result of the theorem is not true. Then one of the following
two measurable sets E1, E2 must have positive measure,

E1 = {(x, t) ∈ Σ : e(x, t) > 0 but ū(x, t) > ua},

E2 = {(x, t) ∈ Σ : e(x, t) < 0 but ū(x, t) < ud + ȳ(x, t).

In the points of E1, we have ū(x, t) > ua. Here, the variational inequality (4.21)
can only hold, if

(ϕ̄+ ν ū+ κ λ̄+ µ̄− S∗µ̄)(x, t) = 0 a.e. in E1,

hence e(x, t) ≤ 0 follows from µ̄ ≥ 0, contradicting the definition of E1. There-
fore, E1 cannot have positive measure.

To analyze the set E2, we use that the variational inequality (4.21) implies

(ϕ̄+ ν ū+ κ λ̄+ µ̄− S∗µ̄)(x, t) ≥ 0 (4.25)

a.e. in Σ. We also observe that in a.a. points of E2 the multiplier µ̄ vanishes,
because the upper (mixed control-state-) constraint is inactive. Hence, by µ̄ = 0
in E2, the inequality e(x, t) = (ϕ̄+ν ū+κ λ̄−S∗µ̄)(x, t) ≥ 0 follows from (4.25),
contradicting the definition of E2. Therefore, also E2 cannot have positive
measure. This completes the proof. �

Remark 4 The constraints (4.24) are ua ≤ u ≤ ud+ ȳ with fixed function ȳ. In
this form, they are pointwise control constraints. This is characteristic for the
so-called two-phase maximum principle, introduced by Grinold (1970) for con-
tinuous linear programming problems, here formulated as minimum principle.

Let us conclude this section by a slight reformulation of the variational in-
equality (4.21). From (4.13) and (4.16) we infer that ϕ̄|Σ − S∗µ̄ = ψ̄|Σ , where
ψ̄ is the unique weak solution to the adjoint equation

−∂tψ̄ −∆ψ̄ +
∂d

∂y
(x, t, ȳ) ψ̄ = νQ(ȳ − yQ) in Q

∂nψ̄ +
∂b

∂y
(x, t, ȳ) ψ̄ = −µ̄ in Σ

ψ̄(x, T ) = νT (ȳ(x, T )− yT (x)) in Ω.

(4.26)

By ψ̄ and the minimum principle (4.23)-(4.24), the variational inequality (4.15)
admits the final form

∫

Σ

(ψ̄+ ν ū+ κ λ̄)(u− ū) dσdt ≥ 0 ∀u ∈ L2(Σ) : ua ≤ u ≤ ud+ ȳ. (4.27)
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4.4. Sparsity of the optimal control

The variational inequality (4.27) is a useful tool for proving the following theo-
rem on sparsity properties of ū that is the main result of our paper:

Theorem 4.5 (Sparsity) (i) Let the Assumptions 3, 4, and 5 be satisfied and
let ū be locally optimal for the control problem (3.1)-(3.2). Then, owing to
Theorem 5.2 that is demonstrated in the Appendix independently of Theorem
4.5, a Lagrange multiplier µ̄ ∈ L∞(Σ), associated with the upper constraint of
(3.2) exists. For any such Lagrange multiplier, the implications

|ψ̄(x, t)| ≤ κ ⇒ ū(x, t) = 0

ū(x, t) = 0 ⇒ ψ̄(x, t) ≤ κ
(4.28)

are satisfied for a.a. (x, t) ∈ Σ with the adjoint state ψ̄ solving (4.26). Moreover,
if κ ≥ κ0 with κ0 introduced in Lemma 2, we have that

ū(x, t) = 0 ⇔ |ψ̄(x, t)| ≤ κ for a.a. (x, t) ∈ Σ. (4.29)

(ii) There is a value κ1 > 0, such that ū = 0 holds for all sparse parameters
κ ≥ κ1 such that Assumption 5 is satisfied.

(iii) The element λ̄ of the subdifferential ∂j(ū) is given by

λ̄(x, t) = P[−1,1]

{

−
1

κ
ψ̄(x, t)

}

. (4.30)

Proof The main ideas are inspired by the proof of sparsity for pointwise
control constraints from Casas, Herzog and Wachsmuth (2012). However, some
changes are needed to tackle mixed control-state constraints.

(i) First, we confirm the sparsity relations (4.28). We define the sets

E+ = {(x, t) ∈ Σ : ū(x, t) > 0},

E0 = {(x, t) ∈ Σ : ū(x, t) = 0},

E− = {(x, t) ∈ Σ : ū(x, t) < 0}.

Let us show (x, t) ∈ E0 ⇒ ψ̄(x, t) ≤ κ. In E0, we have ua < ū(x, t) ≤ ud+ȳ(x, t).
The lower inequality is not active. From the variational inequality (4.27) that
needs the Assumptions 4 and 5, we find

0 ≥ ψ̄(x, t) + νū(x, t) + κλ̄(x, t) = ψ̄(x, t) + κλ̄(x, t) ≥ ψ̄(x, t)− κ (4.31)

a.e. in E0. Therefore, ψ̄(x, t) ≤ κ holds. This confirms the lower implication of
(4.28). To show the upper one, assume conversely that |ψ̄(x, t)| ≤ κ. A standard
result for solutions ū of the variational inequality (4.27) is the projection formula

ū(x, t) = P[ua , ud+ȳ(x,t)]

{

−ν−1(ψ̄(x, t) + κ λ̄(x, t))
}

.
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In E+, we have λ̄(x, t) = 1, hence the projection formula implies

0 < −
1

ν
(ψ̄(x, t) + κ).

This yields ψ̄(x, t) < −κ and therefore |ψ̄(x, t)| > κ, contrary to the assumption
above. Analogously, the inequality ψ̄(x, t) > κ holds for a.a. (x, t) ∈ E−.
Therefore, ū(x, t) = 0 must be satisfied in a.a. points (x, t) with |ψ̄(x, t)| ≤ κ;
we have confirmed (4.28).

To show (4.29), we consider the points (x, t), where ū(x, t) = 0 holds. We
invoke Lemma 2 that implies δ

2 ≤ ud + ȳ(x, t) for all κ ≥ κ0. In this case, for
ū(x, t) = 0 also the upper inequality ū ≤ ud + ȳ is inactive. Now, instead of
(4.31), we obtain the equation

0 = ψ̄(x, t) + νū(x, t) + κλ̄(x, t) = ψ̄(x, t) + κλ̄(x, t)

that yields |ψ̄(x, t)| ≤ κ. Along with the upper implication of (4.28), this proves
(4.29).

(ii) According to Lemma 1, the sets of all feasible controls u and associated
states yu are bounded in L∞(Σ). The same follows for the associated adjoint
states ϕ, solving equation (4.13). The adjoint state ψ̄|Σ = ϕ̄|Σ−S∗µ̄ depends on
µ̄. However, by Theorem 5.2, part (ii), we can assume the Lagrange multiplier
µ̄ to be bounded in L∞(Σ) by some M2 > 0, independently of κ. Notice that in
Theorem 5.2 we do not claim that all existing Lagrange multipliers are bounded.
Therefore, we can assume

‖ψ̄‖L∞(Σ) ≤M3

with some constant M3 > 0 not depending on κ. Notice that the assumption
p > N + 1 is invoked for this property. For all κ ≥ κ1 = max{M3, κ0}, relation
(4.29) yields ū = 0.

(iii) The projection formula (4.30) is standard, see the proof of Theorem 3
in Casas and Tröltzsch (2018a). �

Remark 5 (Use of the assumptions) The general Assumptions 1 and 2 are
needed for the whole theory of the optimal control problem. In view of Corollary
2, the linearized Slater Assumption 4 is not needed for all sufficiently large κ,
if Assumption 3 holds. Moreover, it is not needed, if Assumption 5 is satisfied
in strong form, see Remark 3. Therefore, it is sufficient to require Assumption
3 and Assumption 5 in strong form.

5. Appendix

The results of this paper are based on a linearization method. The associated
analysis occupies a major part of our presentation. After linearization, the



116 E. Casas and F. Tröltzsch

further steps up to the final result on sparsity are similar to the ones in Casas
and Troltzsch (2018a). However, they differ from the arguments in Casas and
Troltzsch (2018a): Here, we do not include an upper bound u ≤ ub on the
control in addition to the other given constraints. This enables us to simplify
the presentation. It might be time consuming for a reader to adapt the proofs
of Casas and Troltzsch (2018a) to the problem posed here. Therefore, we briefly
discuss the associated issues in this Appendix to provide the reader with the
associated main ideas.

5.1. A pair of dual linear programming problems

The aim of this section is to prove the existence of a Lagrange multiplier, asso-
ciated with the mixed control-state constraint that is a function and belongs to
L∞(Σ). The starting point is the variational inequality (4.15). In view of this
inequality, the considered locally optimal control ū is a solution to the following
linear continuous optimization problem:

min

∫

Σ

(ϕ̄(x, t) + νū(x, t) + κλ̄(x, t))u(x, t) dσdt

u(x, t) ≤ ud + yū(x, t) + zu−ū(x, t),

u(x, t) ≥ ua,

for a.a. (x, t) ∈ Σ,

where zu−ū is defined by the linearized equation (2.22).

To cover this problem by one of the standard forms of linear programming
problems with nonnegativity constraints, we substitute

v := u− ua

and recall that zv = Sv. Then, the linearized mixed control-state constraint
above reads

v ≤ ud − ua + yū + S(ua − ū) + Sv.

Now we set

b = ud − ua + yū + S(ua − ū) and − a = ϕ̄+ νū+ κλ̄,

and arrive at the following final form of our linear programming problem that
we call the primal problem and denote it by (PP):

max

∫

Σ

a(x, t)v(x, t) dσdt

subject to v ∈ L2(Σ) and

v ≤ b+ Sv

v ≥ 0.

(PP)
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Here, all inequalities are to be understood pointwise a.e. in Σ. Notice that
a belongs to L∞(Σ), since all of the functions defining a are bounded. We
know by our construction that v̄ = ū − ua is a solution of (PP). Moreover, the
function b defined above is nonnegative, if Assumption 5 is fulfilled. Indeed,
this assumption is equivalent to b ≥ 0; notice that zua−ū = S(ua − ū).

5.2. Dual problem

Our next goal is to confirm the existence of a Lagrange multiplier, associated
with the upper bound of (PP). We apply the duality theory of continuous linear
programming problems as in Casas and Tröltzsch (2018a). That technique has
the particular advantage that Lagrange multipliers are constructed in a fairly
explicit way. This is useful to prove some special sparsity properties of locally
optimal controls of the optimal control problem (3.1)-(3.2).

To this aim, we establish the dual problem to (PP); it is

min

∫

Σ

b(x, t)µ(x, t) dσdt

subject to µ ∈ L2(Σ) and

µ ≥ a+ S∗µ

µ ≥ 0.

(DP)

This dual problem can be constructed as the Lagrangian dual to the conic linear
programming (PP); we refer to Bonnans and Shapiro (2000), Section 2.5.6. Two
questions have to be answered: The first is the equality of the maximum of (PP)
with the infimum of its dual problem (DP), the so-called strong duality. The
second is the solvability of (DP), i.e. if the infimum is attained as minimum. We
begin with the strong duality, which is more difficult than the second question.

The duality theorem of Casas and Tröltzsch (2018a) was inspired by early
results for linear programming problems of bottleneck type, see, e.g., Grinold
(1970). The techniques for such problems initiated duality results for more
general linear programming problems that rely on the so-called boundedness
condition, introduced in Grinold (1970). We refer, for instance, to Krabs (1968).
This condition fits very well the mixed control-state constraints as in our paper.
It does not require that the cone of nonnegative functions be non-nempty, as
Slater type conditions assume. Moreover, for our problem, it can be easily
confirmed, see Lemma 3 below.

The linear programming problem (PP) satisfies a boundedness condition that
ensures the equality of the primal optimal value with the associated dual one.
We refer to our exposition in Casas and Tröltzsch (2018a). To confirm this
condition, we define for given d ∈ L2(Σ) the set

P (d) = {v ∈ L2(Σ) : v ≤ d+ Sv, v ≥ 0}.
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This is the feasible set of (PP), associated with varying right-hand side d in the
upper bound of (PP).

Lemma 3 (Boundedness condition) There exists η > 0 independent of d,
such that

‖v‖L2(Σ) ≤ η ‖d‖L2(Σ) ∀v ∈ P (d).

Proof Owing to Theorem 2.3 on inverse isotony that also holds for the
linearized equation, the following property is satisfied: If v belongs to P (d),
then we have v ≤ w, where

w = d+ Sw.

The solution w exists and belongs to L2(Σ). Using that I − S is boundedly
invertible (see Remark 2), it follows that

‖v‖L2(Σ) ≤ ‖w‖L2(Σ) = ‖(I − S)−1d‖L2(Σ) ≤ ‖(I − S)−1‖L(L2(Σ)) ‖d‖L2(Σ).

Therefore, the desired estimate holds true with η = ‖(I − S)−1‖L(L2(Σ)). �

Corollary 6 The primal problem (PP) and the dual problem (DP) have the
same optimal value, i.e.

max
v ≤ b+ Sv
v ≥ 0

∫

Σ

a v dσdt = inf
µ ≥ a+ S∗µ
µ ≥ 0

∫

Σ

b µ dσdt.

Proof In view of Lemma 3, the boundedness condition of Assumption 2 in
Casas and Tröltzsch (2018a) is satisfied. The claim follows from the general
duality Theorem 7 in Casas and Tröltzsch (2018a). �

5.3. Solvability of the dual problem and Lagrange multipliers

To show the existence of Lagrange multipliers, again we follow the lines of Casas
and Tröltzsch (2018a). We have to show that (DP) has an optimal solution.
Then the infimum of the dual problem is a minimum and the solution of (DP)
is a Lagrange multiplier for (PP).

Theorem 5.1 (Dual existence) If Assumption 5 is satisfied, then the dual
problem (DP) has at least one optimal solution µ̄ that belongs to L∞(Σ) and
satisfies the equation

µ(x, t) = max{0 , a(x, t) + (S∗µ)(x, t)}. (5.32)

Proof The proof is analogous to the steps that prove Theorem 4 in Casas
and Tröltzsch (2018a). We refer to Lemma 7-8 of Casas and Tröltzsch (2018a).
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a) The feasible set of (DP) is not empty:

We take the unique solution µ̂ of the equation

µ̂ = |a|+ S∗µ̂.

By inverse isotony, the non-negativity of the operator S∗ implies that µ̂ ≥
0 holds. Obviously, µ̂ satisfies the mixed constraint of (DP), since we have
|a(x, t)| ≥ a(x, t).

b) Construction of a dual solution

We begin with a feasible solution µ for the dual problem that does not satisfy
the equation (5.32). Then, there is a set E ⊂ Σ with positive measure, where

µ(x, t) > max{0 , a(x, t) + (S∗µ)(x, t)} for a.a. (x, t) ∈ E.

Let E+ be the subset of E, where the function a+ S∗µ is nonnegative and E−

be the subset of E, where it is negative. We construct a new feasible solution µ̃
that is smaller than µ on E.

For all (x, t) ∈ E+, we have µ(x, t) > a(x, t) + (S∗µ)(x, t). Here, we set

µ̃(x, t) := a(x, t) + (S∗µ)(x, t) < µ(x, t).

In E−, there holds µ(x, t) > 0. Here, we fix µ̃(x, t) := 0 and hence

µ(x, t) > µ̃(x, t) = 0 > a(x, t) + (S∗µ)(x, t).

In Σ \ E we define µ̃(x, t) := µ(x, t).

By this construction, we have µ̃(x, t) ≤ µ(x, t), hence

∫

Σ

b(x, t)µ̃(x, t) dxdt ≤

∫

Σ

b(x, t)µ(x, t) dxdt

follows from b ≥ 0. Here, Assumption 5 enters. Moreover, since the operator
S∗ is nonnegative, we find

µ̃(x, t) ≥ a(x, t) + (S∗µ)(x, t) ≥ a(x, t) + (S∗µ̃)(x, t) for a.a. (x, t) ∈ Σ.

Therefore, µ̃ is feasible for the dual problem and has an objective value not
exceeding that of µ. Furthermore, the following identity holds

µ̃(x, t) = max{0 , a(x, t) + (S∗µ)(x, t)} for a.a. (x, t) ∈ Σ.

Repeating this process with µ := µ̃ and continuing in this way, we construct a
sequence {µn} that is pointwise non-increasing and converges to a function µ̄.
Moreover, by construction, µn+1 satisfies

µn+1(x, t) = max{0 , a(x, t) + (S∗µn)(x, t)} for a.a. (x, t) ∈ Σ.
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Passing to the limit in this identity, we infer that µ̄ satisfies the equation (5.32).
Moreover, it has an objective value not greater than that of the initial function
µ. Therefore, we can restrict the search for an optimum to solutions w of (5.32).

c) Existence of an optimal solution to (DP)

The set of functions µ satisfying (5.32) is bounded in L∞(Σ). Indeed, for all
such functions, there holds

µ ≤ |a|+ S∗µ.

By inverse isotony, it follows that µ ≤ w, where w ∈ L∞(Σ) is the unique
solution to

w = |a|+ S∗w. (5.33)

We already pointed out that the function a belongs to L∞(Σ), hence the same
holds true for all µ that obey (5.32). Therefore, the search for a minimum
of (DP) can be restricted to a bounded subset of L∞(Σ) ⊂ L2(Σ) that is se-
quentially weakly compact in L2(Σ). The objective functional is linear and
continuous. Hence, the existence of an optimal solution follows immediately. �

It turns out that any (optimal) solution of (DP) is a Lagrange multiplier for
the mixed control state constraint of the optimal control problem, associated
with the optimal solution (ȳ, ū) :

Lemma 4 Any solution µ̄ of (DP) is a Lagrange multiplier for the mixed control
state constraint of the optimal control problem.

Proof As a solution to (DP), µ̄ is a Lagrange multiplier for (PP). This is
a standard result of duality theory. We set up the Lagrangian function L(v, µ)
for (PP) and use the optimality condition

∂vL(v̄, µ̄)(v − v̄) ≥ 0 ∀v ≥ 0.

Then we obtain
∫

Σ

[(−a)(v − v̄) + ((v − v̄)− S(v − v̄)) µ̄] dσdt ≥ 0 ∀v ≥ 0.

Moreover, the complementarity condition

∫

Σ

(v̄ − Sv̄ − b)µ̄ dσdt = 0

is satisfied. After re-substituting v = u − ua, b = ud − ua + yū + zua−ū and
zua−ū = Sv, v − v̄ = u − ū, −a = ϕ̄ + νū + κλ̄, an easy computation shows
the equivalence of the last two formulas with (4.21). Therefore, µ̄ is a Lagrange
multiplier. �
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5.4. Uniform boundedness of the multiplier µ with respect to κ

We know that the function −a = ϕ̄ + κλ̄ + νū is bounded for each fixed κ.
However, its L∞(Σ)-norm might tend to infinity as κ → ∞. The aim of this
subsection is to show that this cannot happen and ‖a‖L∞(Σ) remains bounded,
independently of κ. Then also the solution w of (5.33) is bounded independently
of κ and the same property follows for at least one Lagrange multiplier µ,
satisfying µ ≤ w.

This uniform boundedness is needed to show the property of sparsity that
the optimal control ū vanishes if κ is sufficiently large. In this section, it is
useful to indicate the dependence of the solutions to the control problems on κ
by an associated index. For this purpose, we shall write ūκ, ȳκ, aκ, ϕ̄κ, µ̄κ etc.
for the optimal quantities of the problems associated to κ.

Theorem 5.2 (Uniform boundedness of Lagrange multipliers) Let
the Assumptions 3 and 5 be satisfied. Then,

(i) for all κ ≥ κ0 with κ0 introduced in Lemma 2, we find an optimal solution
µ̄κ of (DP), satisfying the inequality

µ̄κ(x, t) ≤ |ϕ̄κ(x, t)|+ (S∗µ̄κ)(x, t) a.e. in Σ. (5.34)

(ii) a constant M̂ > 0 not depending on κ ≥ 0 exists, such that

‖µ̄κ‖L∞(Σ) ≤ M̂ (5.35)

is satisfied for at least one optimal solution µ̄κ of (DP).

Proof Part (i): In view of Theorem 5.1, there is a solution µ̄κ of (DP) that
obeys

µ̄κ(x, t) = max{0 , aκ(x, t) + (S∗µ̄κ)(x, t)} a.e. in Σ. (5.36)

Now we distinguish between two cases for (x, t):

Case 1: aκ(x, t) + (S∗µ̄κ)(x, t) ≤ 0. Then µ̄κ(x, t) = 0 and we can estimate

µ̄κ(x, t) = 0 ≤ |ϕ̄κ(x, t)|+ (S∗µ̄κ)(x, t);

notice that S∗µ̄κ ≥ 0 follows from µ̄κ ≥ 0.

Case 2: aκ(x, t) + (S∗µ̄κ)(x, t) > 0. Here, we get from (5.36)

µ̄κ(x, t) = aκ(x, t) + (S∗µ̄κ)(x, t).

To verify the claim in Case 2, we show for the associated points (x, t) that
aκ(x, t) ≤ |ϕ̄κ(x, t)| holds. Then, (5.34) follows immediately.

We recall that aκ(x, t) = −ϕ̄κ(x, t) − ν ūκ(x, t) − κλ̄κ(x, t). The further
discussion depends on the sign of ūκ(x, t).
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Case 2a, ūκ(x, t) ≤ 0: Here, the inequality v̄κ ≤ bκ + Sv̄κ of (PP) is inactive, if
κ is large enough. Let us show this: as above, we set v̄κ = ūκ−ua. By inserting
this and the definition of b in the inequality v ≤ b+ Sv, we find

ūκ − ua ≤ ud − ua + yūκ
+ S(ua − ūκ) + S(ūκ − ua).

Simplifying, we find ūκ ≤ ud + ȳκ. By Lemma 2, we conclude that

ud + ȳκ(x, t) ≥
δ

2

a.e. in Σ for all sufficiently large κ, say κ ≥ κ0. Therefore, the inequality
0 = ūκ ≤ ud + ȳκ is inactive in Case 2a. In view of this, µ̄κ(x, t) = 0 follows
from the complementary condition (4.22) for all κ ≥ κ0.

Then, however, the restriction of (DP) implies µ̄κ = 0 ≥ aκ + S∗µ̄κ in the
associated points (x, t) and hence we are not in Case 2, contradicting our initial
assumption. In this way, we found out that ūκ(x, t) > 0 must hold a.e. in Case
2. This is the subject of the next case:

Case 2b, ūκ(x, t) > 0: Then, λ̄κ(x, t) = 1 holds, hence we found the desired
inequality

aκ(x, t) = −ϕ̄κ(x, t)− νūκ(x, t) − κ < −ϕ̄κ(x, t) ≤ |ϕ̄κ(x, t)|.

Part (ii): As a consequence of Lemma 1, all possible adjoint states ϕ̄κ, associated
to feasible controls, are uniformly bounded, hence there exists a numberM1 > 0
such that ‖ϕ̄κ‖L∞(Σ) ≤M1 ∀κ ≥ 0. Due to (5.34), we can assume

µ̄κ(x, t) ≤M1 + (S∗µ̄κ)(x, t) a.e. in Σ ∀κ ≥ κ0. (5.37)

For all 0 ≤ κ ≤ κ0, we have for at least one solution µ̄κ of (DP) that

µ̄κ(x, t) ≤ |(aκ + S∗µ̄κ)(x, t)| = | − (ϕ̄κ + ν ūκ + κλ̄)(x, t) + (S∗µ̄κ)(x, t)|

≤M1 + νMF + κ0 + (S∗µ̄κ)(x, t) =M2 + (S∗µ̄κ)(x, t).

In view of (5.37), the inequality

µ̄κ(x, t) ≤M2 + (S∗µ̄κ)(x, t) a.e. in Σ ∀κ ≥ 0

holds with M2 ≥ M1. By inverse isotony, we obtain 0 ≤ µ̄κ(x, t) ≤ w(x, t) for
the selected multiplier µ̄κ that obeys (5.36), where w ∈ L∞(Σ) is the unique
solution to

w(x, t) =M2 + (S∗w)(x, t).

Therefore, we obtain ‖µ̄‖L∞(Σ) ≤ M̂ := ‖w‖L∞(Σ) that verifies (5.35). �
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