ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIÓN

UNIVERSIDAD DE CANTABRIA

Trabajo Fin de Grado

INSTALACIÓN SOLAR TÉRMICA PARA PRODUCCIÓN DE ACS

Solar thermal installation for hot sanitary water production

Para acceder al Título de

GRADUADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

Autor: Guillermo Díez del Cerro

Septiembre – 2020

En el presente proyecto se realizan los cálculos que ayudarán a dimensionar una instalación solar térmica de baja temperatura en un edificio multivienda situado en la localidad de Santander, Cantabria. Dicha instalación se usará de apoyo para cubrir las demandas de agua caliente sanitaria (ACS) del edificio.

Primero, se realiza una introducción en la cual se habla sobre el tipo de tecnología usada, mencionándose los diferentes tipos de posibilidades que existen dentro de este tipo de instalaciones. Además, se señala la solución que se sigue en este caso. Seguidamente, se realiza los cálculos pertinentes para la demanda de ACS, donde se dimensionan las diferentes partes de la instalación.

Por último, se añaden unos planos que reflejan la distribución de los captadores en la instalación, así como, también se añade un pliego de condiciones que hay que seguir a la hora de llevar a cabo la obra. Finalmente, se añade un presupuesto orientativo del coste de la obra y su posible subvención.

This project talks about a solar thermal system that uses solar energy to heat the domestic hot water in a multi-family building located in the town of Santander, Cantabria.

Firstly, there's an introduction in which different kinds of technology are shown. Afterwards, calculations for the domestic hot water are shown, as the different parts of the system.

In the end, the plans of the distribution of solar panels are attached with a list of conditions and especifications to be followed during the construction of the installation. At last, an estimation of the budget needed is made, with it's convenient subventions.

V	IEMO	RIA	5
1.	OB.	JETO DEL PROYECTO	6
2.	SIT	UACIÓN GEOGRÁFICA	6
3.	NO	RMATIVA DE APLICACIÓN	9
4.	INS	TALACIONES DE ENERGÍA SOLAR TÉRMICA	9
	4.1.	ENERGÍA SOLAR TÉRMICA	9
	4.2.	TIPOS DE INSTALACIONES	. 11
	4.3.	CRITERIOS DE CLASIFICACIÓN DE LAS PEQUEÑAS INSTALACIONES	. 12
	4.4.	COMPONENTES DE LAS INSTALACIONES DE ENERGÍA SOLAR TÉRMICA	. 16
	4.4.	1. Captador solar	. 17
	4.4.	2. Acumulador solar	. 19
	4.4.	3. Intercambiador de calor	20
	4.4.	4. Sistema hidráulico	. 21
	4.4.		
	4.4.		
5.	HIG	IENE Y MANTENIMIENTO EN LAS INSTALACIONES SOLARES TÉRMICAS	
	5.1.	HIGIENE EN LAS INSTALACIONES SOLARES TÉRMICAS	
	5.2.	MANTENIMIENTO EN LAS INSTALACIONES SOLARES TÉRMICAS	
6.	DA	TOS METEREOLÓGICOS	. 29
Α	NEXC	A: CÁLCULOS PARA ACS	. 31
1.	INT	RODUCCIÓN	. 32
2.	CÁI	CULOS PARA LA INSTALACIÓN DE ACS	. 34
	2.1.	CÁLCULO DE LA SUPERFICIE DE CAPTACIÓN	. 35
	2.2.	COBERTURA SOLAR	. 36
	2.3.	SISTEMA DE ALMACENAMIENTO	63
	2.4.	FLUIDO CALOPORTADOR	64
	2.5.	SELECCIÓN DE TUBERÍAS	67
	2.6.	BOMBA DE CIRCULACIÓN	. 73
	2.7.	VASO DE EXPANSIÓN	. 74
	2.8.	AISLAMIENTO TÉRMICO	. 77
Ρ	LANC)S	. 79
P	LIEGO	D DE CONDICIONES	. 81

1.	PLI	IEGO DE CONDICIONES	82
2.	GEI	ENERALIDADES DE LOS COMPONEN	ITES82
	2.1.	CAPTADORES SOLARES	82
	2.2.	INTERACUMULADORES	82
	2.3.	TUBERÍAS Y DEMÁS ELEMENTOS	82
	2.4.	MATERIALES	83
3.	EJE	ECUCIÓN DE LA OBRA	83
	3.1.	CONCEPTOS GENERALES	83
	3.2.	MONTAJE DE CAPTADORES SOLA	RES84
	3.3.	MONTAJE DEL INTERACUMULADO	DR85
	3.4.	MONTAJE DEL CIRCUITO HIDRÁU	LICO 85
	3.5.	MONTAJE DE LA BOMBA HIDRÁUL	ICA 86
	3.6.	MONTAJE DEL AISLAMIENTO	86
4.	ME	EDICIÓN DE LA OBRA	87
	4.1.	PRECIOS	87
	4.2.	ABONOS	87
	4.3.	MEDICIONES	87
	4.4. R	REPLANTEO	87
	4.5.	COMIENZO DE LAS OBRAS	88
	4.6.	RESPONSABILIDADES	88
5.	DIS	SPOSICIONES FINALES	88
	5.1.		88
	5.1.	.1. Componentes	88
	5.1.	.2. Prescripciones generales de la in	nstalación88
	5.2.	EJECUCIÓN	88
	5.3.	CONDICIONES FACULTATIVAS	89
	5.3.	3.1. Dirección	89
	5.3.	3.2. Interpretación	89
	5.3.	3.3. Responsabilidades	90
	5.3.	3.4. Duración	90
	5.3.	3.5. Exclusividad	90
Р	RESU	UPUESTO	91
1.	INT	TRODUCCIÓN	92
2.	PRI	RESUPUESTO	92
3	RFI	NTARII IDAD	93

BIBLIOGRAFÍA	98
FICHAS TÉCNICAS	103

MEMORIA

1. OBJETO DEL PROYECTO

El objeto del presente proyecto es el diseño de una instalación de energía solar térmica de baja temperatura para la producción de agua caliente sanitaria (ACS) en un edificio multivivienda situado en la ciudad de Santander, Cantabria. Para ello, todas las partes del proyecto se realizarán de acuerdo con las diferentes normativas que se adjuntan en éste.

Se dispondrá también de un sistema de apoyo que cubrirá la demanda del edificio cuando no sea posible satisfacerla con la instalación solar térmica. Es decir, se seguirá el diseño de configuración solar centralizada con subsistema de apoyo individual.

En este proyecto se persigue conseguir un ahorro, tanto energético como económico, para los diferentes vecinos del bloque de viviendas, así como demostrar que es posible disfrutar de las mismas prestaciones que ofrecen los sistemas tradicionales de quema de hidrocarburos, pero con un sistema más moderno y limpio.

Es importante tener en cuenta el contexto en el que nos encontramos actualmente. Estamos en una situación en la que la emisión de sustancias tóxicas a la atmósfera derivadas de la quema de combustibles ha hecho que la temperatura media del planeta haya sufrido un incremento importante que parece no tener marcha atrás. El cambio climático es una realidad imparable, y todo lo que esté en nuestras manos para reducir las emisiones tóxicas debería tenerse en cuenta y, tras un debido estudio, realizarse. Además, se debe tener en cuenta que España es un país propicio para el aprovechamiento de la energía solar, ya que se encuentra entre los países que más radiación solar al año reciben de toda Europa. Finalmente, la energía solar térmica en España se encuentra en una fase avanzada de desarrollo, instalación y aprovechamiento, siendo ya obligatoria su instalación en viviendas de nueva construcción y en reformas de una determinada dimensión.

2. SITUACIÓN GEOGRÁFICA

El bloque de viviendas se encuentra situado en el barrio de El Alisal, a las afueras de la ciudad de Santander, Cantabria. Las coordenadas son las siguientes: 43°27'25.0" N 3°51'12.9" W. El edificio está orientado al sur, con una desviación de

2º al este, lo que está dentro del límite recomendado de desviación respecto al sur geográfico, el cual se sitúa entre ±45º respecto a éste para un correcto aprovechamiento de la energía solar.

De acuerdo con lo estipulado en el Documento Básico HE Ahorro de energía, la zona climática del lugar de trabajo es la zona C1, lo cual nos servirá a la hora de determinar los parámetros dependientes de las diferentes zonas climáticas para la península Ibérica.

		Altitud sobre el nivel del mar (h)																						
		51	101	111	201	251	301	351	401	451	501	551	601	651	701	751	801	851	901	951	1001	1051	251	
Provincia	≤	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	≥
Piovilicia	50	100	150	200	250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050	1250	300	1301
	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m	m
Cantabria		1			D1							E1												

Figura 1. Zonas climáticas (Fuente: DB-HE)

Respecto a las posibles sombras sobre el tejado del bloque, no hay ningún tipo de construcción o accidente geográfico natural que haga sombra en ningún momento del día. Por otra parte, la inclinación del tejado es de 30°, lo cual supone que no haga falta la instalación de soportes para inclinar los captadores solares, ya que aprovechando esos 30° de inclinación se consigue un rendimiento óptimo de éstos.

El bloque dispone de 10 portales, con 6 viviendas cada uno. Las 6 viviendas se reparten en 3 pisos, siendo la distribución de cada vivienda igual, a excepción de las orientaciones de las diferentes estancias. Cada vivienda consta por lo tanto de: un salón, una cocina, tres dormitorios y un baño.

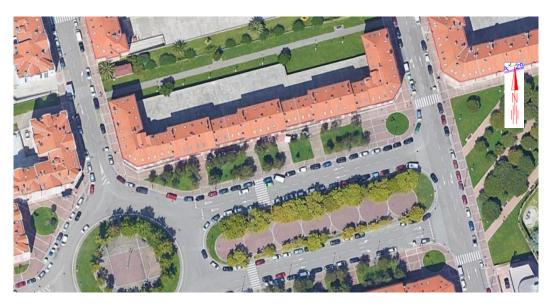


Figura 2. Foto aérea del bloque de viviendas (Fuente: Google Maps)

Por otra parte, hay que mirar que el ángulo de inclinación de los paneles de 30° es válido. Para ello se hace uso del término de ángulo de acimut, que es el ángulo que forma la dirección sur con la proyección horizontal del Sol, considerando la orientación sur con ϕ =0°, y considerando negativos los ángulos entre el sur y el este, y positivos entre el sur y el oeste. Considerando la *Figura 3,* donde se ve la relación entre ángulo de acimut e inclinación de los paneles, se puede hallar la inclinación máxima y mínima admisible de estos, sin que la irradiación solar recibida por los captadores baje del 90%.

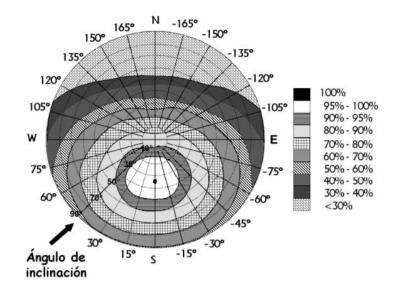


Figura 3. Relación entre ángulo de acimut, ángulo de inclinación de los paneles y porcentaje de irradiación solar recibida (Fuente: IDAE)

Teniendo en cuenta que la vivienda se encuentra orientada a 2º desviados respecto del sur en dirección este, se trazaría una línea que pase por este punto y por el centro de la circunferencia. Al trazarla, se observaría que, para que el porcentaje de irradiación solar recibida por los captadores no baje del 90%, la inclinación máxima de los captadores sería de 60º, mientras que la mínima sería de 7º. No obstante, esta figura está tomada para una localidad con una latitud igual a 41º, con lo que hay que hacer las correcciones pertinentes para la ciudad de Santander, de latitud 43.27º.

(ec. 1) Inclinación máxima =
$$60 - (41 - 43.27) = 62.27^{\circ}$$

(ec. 2) Inclinación mínima = $7 - (41 - 43.27) = 9.27^{\circ}$

Una vez hechas las correcciones, se ve que la inclinación de 30º de los captadores solares entra dentro de los límites de inclinación para el máximo aprovechamiento de la irradiación solar recibida.

3. NORMATIVA DE APLICACIÓN

- o Código Técnico de la Edificación (CTE).
- Reglamento de Instalaciones Térmicas en los edificios (RITE) y sus Instrucciones Técnicas.
- o Reglamento de Recipientes a Presión (RAP).
- Código Técnico del IDAE (Instituto para la Diversificación y Ahorro de la Energía).
- Real Decreto 865/2003, del 4 de julio, por el que se establecen los criterios higiénico-sanitarios para la prevención y control de la legionelosis.
- Orden ITC/71/2007, de 22 de enero, por la que se modifica el anexo de la Orden del 28 de julio de 1980, por la que se aprueban las normas e instrucciones técnicas complementarias para la homologación de paneles solares.
- Real Decreto 1027/2007, de 20 de julio, por el que se aprueba el Reglamento de Instalaciones Térmicas en los Edificios (RITE).
- Real Decreto 314/2006, de 17 de marzo, por el que se aprueba el Código Técnico de la Edificación (CTE).
- Real Decreto 891/1980, de 14 de abril, sobre homologación de paneles solares.
- Real Decreto 1244/1979, de 4 de abril de 1979, por el que se aprueba el Reglamento de Recipientes a Presión (RAP).

4. INSTALACIONES DE ENERGÍA SOLAR TÉRMICA 4.1. ENERGÍA SOLAR TÉRMICA

La energía solar térmica consiste en el aprovechamiento de la energía proveniente del Sol para la producción de agua caliente destinada al uso doméstico y calefacción. El aprovechamiento de este tipo de energías en viviendas supone una de las formas

más eficientes y económicas de aprovechar un recurso abundante, natural y autóctono. Además, su utilización supone también un descenso tanto en el consumo de energía primaria, como de emisiones de CO₂ correspondientes a la fuente energética que sustituye. La tecnología de aprovechamiento de la energía solar térmica es, además, una tecnología madura la cual ha experimentado una considerable implementación en el sector de la edificación en los últimos años. Al ser una tecnología tan madura, las instalaciones son muy seguras y cómodas, precisando además de un mantenimiento mínimo, con la posibilidad de incorporar sistemas de control para su seguimiento remoto.

España es un lugar propicio para el aprovechamiento de la energía solar térmica, ya que es uno de los países de Europa que más irradiación global recibe, como se puede observar en la siguiente figura.

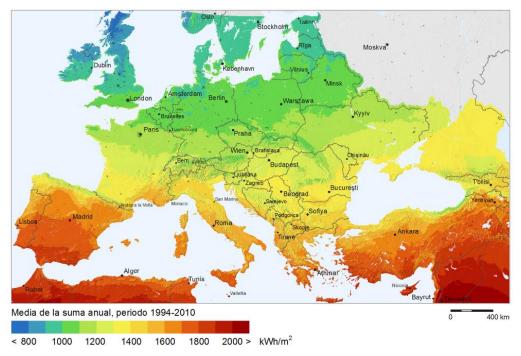


Figura 4. Irradiación global horizontal en Europa (Fuente: SOLARGIS)

La localización de este proyecto se encuentra en Santander, Cantabria, que dentro de España se engloba en lo que se conoce como zona C1, como anteriormente se ha explicado. En la siguiente figura se puede observar la irradiación global horizontal en España, señalándose la zona de ubicación del proyecto.

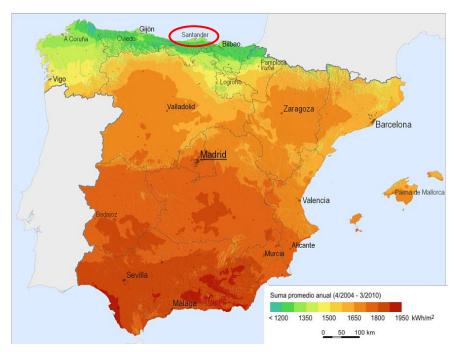


Figura 5. Irradiación global horizontal en España (Fuente: SOLARGIS)

4.2. TIPOS DE INSTALACIONES

Generalmente se diferencian tres tipos de instalaciones de energía solar térmica y se clasifican en función de las temperaturas de trabajo, éstas son: instalaciones de energía solar térmica de baja temperatura, de media temperatura y de alta temperatura.

- o Instalaciones de energía solar térmica de baja temperatura: son aquellas que proveen un calor útil a temperaturas menores de 65°C. Son las que se destinan generalmente al uso doméstico y se usan tanto para la producción de agua caliente sanitaria (ACS), como para servir de apoyo al sistema de calefacción. En concreto, este tipo de instalación es el que acontece al presente proyecto. El uso de colectores planos es lo más frecuente en este tipo de instalaciones.
- Instalaciones de energía solar térmica de media temperatura: este tipo de instalaciones se utilizan para aquellas aplicaciones que requieren temperaturas comprendidas entre los 100°C y los 250°C. A partir de los 80°C los colectores planos poseen un rendimiento prácticamente nulo, por lo que hay que hacer uso de otras tecnologías, que en el caso de las instalaciones de media temperatura son los colectores de tubos de vacío y

- los colectores de concentración. La aplicación principal de este tipo de instalaciones es la generación de vapor para procesos industriales.
- Instalaciones de energía solar térmica de alta temperatura: con estas instalaciones lo que se busca es captar la energía solar mediante colectores que trabajan a temperaturas superiores a los 500°C para que, una vez que se ha transformado la radiación solar en energía calorífica, ésta se transforme en energía eléctrica. Se diferencian tres tipos diferentes de procesos tecnológicos para este tipo de instalaciones: centrales de disco parabólico, centrales de receptor central (o torre) y centrales de colectores centro-parabólicos.

Por último, hay que señalar que este tipo de instalaciones están formadas por dos circuitos independientes, el primario y el secundario.

- Circuito primario: es el circuito formado por los captadores solares y las tuberías que los unen. Por él circula el fluido caloportador de trabajo, el cual recoge la energía térmica que se produce en los captadores y la transfiere al acumulador solar, generalmente mediante un intercambiador de calor externo o interno.
- Circuito secundario: en él se recoge la energía captada en el circuito primario mediante un intercambiador de calor y se distribuye a los diferentes puntos de consumo. El fluido que circula por dicho circuito es agua de consumo sin aditivos.

4.3. CRITERIOS DE CLASIFICACIÓN DE LAS PEQUEÑAS INSTALACIONES

Las pequeñas instalaciones se clasifican, generalmente, atendiendo a cinco criterios funcionales que son los siguientes:

- Principio de circulación: diferencia entre los diferentes tipos de mecanismos por los cuales se produce el movimiento del fluido caloportador que circula por el circuito primario. Se diferencian dos tipos:
 - Circulación natural o termosifón: la circulación del fluido de trabajo se debe a la diferencia de densidad entre el fluido caliente y el frío.

- Circulación forzada: se instala una bomba circuladora que es la que produce el movimiento del fluido de trabajo dentro del circuito.

ODITEDIO	CIRCULACIÓN	CIRCULACIÓN				
CRITERIO	FORZADA	NATURAL				
Bomba de circulación	Sí necesita	No necesita				
Caudales de	Caudal fijo	Función de la radiación				
calentamiento	Caudai iijo	solar				
Regulación de caudal	Para ajustar saltos de	No es necesaria				
regulación de caddal	temperatura	INO 65 HECESAHA				
Posición relativa del	No afecta al	Acumulador debe situarse				
captador y acumulador	funcionamiento	más elevado que el				
captagor y acumulagor	Tanolonamiento	captador				
Tipo de absorbedor solar	Cualquiera	Debe ser de parrilla				
Pérdida de carga	No es importante	Baja facilita el efecto				
componentes	140 cs importante	termosifón				
Trazado de tuberías	Sin muchos	Delicado y con				
Trazado de taberras	condicionantes	pendientes				
Alimentación eléctrica	Sí	No				
Integración arquitectónica	Más sencilla	Con mayor dificultad				
Pérdidas térmicas	Menores si se instala en	Mayores si se instala en				
acumulador	interior que es lo habitual	exterior que es lo habitual				
Pérdidas térmicas en	Más en circuito primario	Más en recorridos a				
circuito	mas en encuno primario	consumo				
Salto temperatura	Pequeño	Mayor				
captador	. 040.00	, 5.				
Temp. máx. acumulador	Necesario control	Controlable por diseño				
Protecciones heladas	Cualquier sistema	Sólo anticongelante				
Coste de la inversión	Mayor	Menor				
Coste de mantenimiento	Mayor	No tiene control ni bomba				
Coste de explotación	Coste de la energía	No tiene costes				
Oosio do explotación	eléctrica	adicionales				

Tabla 1. Comparación de criterios entre los dos tipos de circulación (Fuente: ASIT)

En la tabla anterior se reflejan las diferencias entre ambos sistemas para diferentes criterios, optando por el sistema de circulación forzada para la ejecución de este proyecto. La tabla ha sido obtenida de: Asociación Solar de la Industria Térmica (ASIT), (2020), *Guía Técnica de Energía Solar Térmica*, Madrid, España.

- Sistema de intercambio: referido a la manera de transferir la energía del circuito primario al circuito secundario (o de consumo).
 - Sistemas directos: en este caso, al ser la propia agua de consumo el fluido de trabajo de los captadores la transferencia de calor es directa, con lo que no hace falta ningún tipo de intercambiador de calor adicional.
 - Sistemas indirectos: el fluido de trabajo se mantiene totalmente aislado en el circuito primario, nunca llegándose a mezclar con el agua de consumo que circula por el circuito secundario. La transferencia energética se realiza mediante un intercambiador de calor, que será interno o externo respecto al acumulador.

CRITERIO	SISTEMA DIRECTO	SISTEMA INDIRECTO			
Fluido de trabajo	Sólo agua de red	Agua y fluido del primario			
		Pueden diseñarse los			
Presión de trabajo	Presión de suministro	circuitos para presiones			
		distintas			
Sistema de llenado	No requiere	Sí necesita			
Sistema constructivo	Más sencillo	Más complejo			
Evolución del rendimiento	Empeora	Constante			
Uso en zonas con riesgo	Desaconsejado	Recomendado			
de heladas	Desaconsejado	recomendado			
Uso con aguas muy duras	Desaconsejado	Recomendado			
Coste de la inversión	Menor	Mayor			
Mayor coste del	Limpieza interna del	Fluido del circuito corrado			
mantenimiento	captador	Fluido del circuito cerrado			

Tabla 2. Comparación entre los dos tipos de intercambio (Fuente: ASIT)

- Sistema de expansión: durante el funcionamiento de la instalación, el fluido de trabajo se ve sometido a variaciones de temperatura que causan que varíen tanto su volumen como su presión. Para absorber dichas variaciones es necesaria la instalación de los sistemas de expansión, que pueden ser:
 - Abierta: el fluido de trabajo del circuito primario está en constante contacto con la atmósfera. En estos casos, el vaso de expansión se sitúa en la parte más elevada de la instalación.
 - Cerrada: el fluido de trabajo no está en contacto con la atmósfera. Esto permite que el vaso de expansión pueda situarse en cualquier lugar de la instalación.
- Contenido de líquido: respecto al contenido de líquido se diferencian dos tipos de circuitos primarios en las instalaciones:
 - Circuito lleno: en este caso el circuito primario permanece siempre lleno con el fluido de trabajo. Tras haber sido purgado el circuito primario no contiene nada de aire.
 - Circuito con drenaje: en este tipo de circuito las tuberías están llenas de agua y aire. De esta forma, el líquido que contienen los captadores se puede vaciar, dejándolos solo llenos de aire, evitando así la generación de vapor y la congelación. El drenaje en este tipo de circuitos puede ser interior o exterior.
- Forma de acoplamiento: se diferencian tres formas de acoplamiento de los sistemas de captadores y de acumulación:
 - Compacto: todos los componentes se encuentran montados en una sola unidad. Son comunes en terrazas horizontales, no siendo así en tejados verticales, ya que la integración arquitectónica puede resultar difícil.
 - Integrado: dentro de este se llevan a cabo las funciones tanto de captación como de acumulación.
 - Partido: suelen ser del tipo de circulación forzada. En ellos los sistemas de captación y de acumulación se encuentran a una distancia considerable. Su principal ventaja es que facilitan la integración arquitectónica. Es el tipo de acoplamiento elegido para este proyecto.
- o Configuraciones de instalaciones: referidas al consumo de ACS.
 - Instalación solar y sistema de apoyo centralizados.
 - Instalación solar centralizada con sistema de apoyo distribuido.

- Instalación solar con acumulación distribuida.
- Instalación solar centralizada con intercambio distribuido.
- Instalación con doble acumulación solar, centralizada y distribuida.

En este proyecto se escoge la instalación solar centralizada con sistema de apoyo distribuido. En este tipo de instalación se realiza un precalentamiento del agua, que será llevada a su temperatura de consumo mediante el sistema de apoyo presente en cada una de las viviendas. Esta instalación utiliza menos espacios comunes, aunque se ha de disponer de espacios suficientes en la vivienda donde ubicar el sistema de apoyo.

4.4. COMPONENTES DE LAS INSTALACIONES DE ENERGÍA SOLAR TÉRMICA

Una instalación solar térmica está compuesta por los siguientes elementos. Los subapartados siguientes se dedicarán a definir y explicar cada uno de los componentes más en detalle.

- Captador solar. es el dispositivo que se encarga de transformar la radiación solar en energía térmica que es transferida al fluido de trabajo.
- Acumulador solar: en él se acumula el agua hasta que llegue la hora de su uso. La transferencia de calor entre el fluido de trabajo y el agua de consumo puede producirse dentro del acumulador.
- Intercambiador de calor. se encarga de realizar la transferencia de energía térmica del fluido caloportador al agua de consumo. Puede ser interno o externo al acumulador solar.
- Sistema hidráulico: en él se incluyen: bombas de circulación, tuberías,
 vasos de expansión y las válvulas y accesorios hidráulicos.
- Sistema de control: asegura el correcto funcionamiento de la instalación, así como de la protección de los diferentes componentes.
- Sistema de energía auxiliar: sirve de ayuda para proporcionar el calor necesario para que el agua de consumo alcance las condiciones deseadas, cuando no sea suficiente con el trabajo de los captadores.

4.4.1. Captador solar

Este dispositivo es el más característico de la instalación. Su principio de funcionamiento se basa en el efecto invernadero, ya que lo que hace es retener la energía solar que recibe, transformándola en energía térmica y transfiriéndola después al fluido caloportador. Es importante que esté diseñado también para resistir las diferentes inclemencias climatológicas, más teniendo en cuenta la situación geográfica del proyecto, ya que en los meses de otoño e invierno las lluvias son frecuentes en la ciudad de Santander.

Uno de los parámetros que definen al captador solar es el rendimiento, que se calcula como el cociente entre la energía obtenida y la energía recibida. Para este proyecto, se ha utilizado la siguiente expresión:

$$(ec. 3) \eta = B - K * \frac{T_m - T_{AMB}}{G}$$

Siendo:

- η : rendimiento del captador

- B: factor de rendimiento óptico

K: coeficiente global de pérdidas térmicas [W/(m².ºC)]

T_m: temperatura media del captador [°C]

T_{AMB}: temperatura ambiente exterior [°C]

- G: irradiancia solar [W/m²]

En las pequeñas instalaciones como la que acontece a este proyecto, el tipo de captador más usado es el captador plano. Existe también otro tipo de tecnología que es la de tubos de vacío, pero al no ser la seleccionada para el proyecto no se estudia con más detenimiento.

Los componentes de un captador plano son los siguientes:

Cubierta: se encarga de producir el efecto invernadero en el cual se basa el funcionamiento del captador. Debe asegurar la estanqueidad de éste, ya que los componentes internos han de estar protegidos de las inclemencias del clima. Además, tiene que reducir las pérdidas por radiación y convección. Suele estar construida con vidrio.

- Absorbedor: se trata de una placa metálica plana, la cual es calentada al recibir la radiación solar que atraviesa la cubierta. Tiene un papel importante en el valor del rendimiento del captador, ya que éste es altamente dependiente del tipo y calidad del tratamiento superficial del absorbedor.
- Circuito hidráulico: por él circula el fluido caloportador, el cual debe asegurar la correcta transmisión del calor captado en el absorbedor. Normalmente se trata de una mezcla de agua y anticongelante, de forma que la temperatura de congelación sea menor a las temperaturas mínimas históricas que se alcanzan en la zona del proyecto. Las tuberías del circuito hidráulico han de estar en contacto con el absorbedor, facilitando así la transferencia térmica entre ellos. El material más empleado para las tuberías es el cobre.
- Aislamiento: se sitúa en la parte posterior y los laterales del captador, con el objetivo de reducir las pérdidas térmicas del absorbedor. Suele utilizarse lana de vidrio o lana mineral.
- Carcasa: en ella se encuentran el resto de los componentes. Como características principales la carcasa ha de ser resistente a la corrosión, a las deformaciones mecánicas y estar preparado para que no le afecten las variaciones de temperatura a las que se pueda ver sometido. Suelen estar hechas de aluminio, acero inoxidable o acero galvanizado.

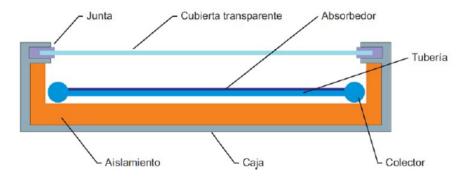


Figura 6. Sección de un captador plano con sus componentes (Fuente: ASIT)

4.4.2. Acumulador solar

La función del acumulador solar es, como su nombre indica, acumular el agua caliente proveniente de los captadores solares. Por lo tanto, en estos depósitos se almacena la energía térmica para tenerla disponible cuando se requiera, independientemente de la radiación solar en ese momento.

Uno de los conceptos a los que hay que prestar más atención es al de la estratificación. El agua que se almacena dentro del acumulador, cuando se calienta, disminuye su densidad y tiende a ascender, mientras que el agua fría tiende a bajar, produciéndose una estratificación del agua por temperatura dentro del acumulador. Este efecto es deseable, ya que permite que el agua más caliente se encuentre en la parte superior del acumulador, de donde se extrae para el consumo.

El acumulador solar se colocará siempre lo más cerca posible de los captadores, así mismo es preferible disponerlo de forma vertical, ya que, de esta forma, se favorece el fenómeno de estratificación.

En cuanto a las conexiones, se tienen en cuenta los siguientes apartados:

- La conexión entre el agua caliente proveniente de los captadores solares y el acumulador se realizará por la parte superior de éste (entre un 50% y 75% de su altura total).
- Si el intercambiador de calor es interno al acumulador solar, éste se colocará en la parte inferior del acumulador.
- La tubería de conexión entre el acumulador solar y la entrada de los captadores se realizará por la parte inferior del primero.
- La tubería de salida del agua de consumo se situará en la parte lateral superior del acumulador solar.

Por otra parte, el acumulador solar debe ser resistente a las diferentes presiones y temperaturas a las que se verá sometido, así como a las posibles variaciones que estas variables puedan experimentar.

Las pérdidas térmicas es un parámetro muy importante a tener en cuenta a la hora de diseñar el acumulador solar, ya que de este parámetro dependerán, en gran medida, las prestaciones energéticas del sistema. Por ello, se recubre con el aislamiento seleccionado toda la superficie exterior del acumulador, teniendo en

cuenta que cualquier cámara de aire interior podría provocar movimientos de aire que aumentarían las pérdidas térmicas en el elemento.

Respecto a los diferentes tipos de acumuladores solares, se diferencian los siguientes en función de su material de construcción:

- De acero con recubrimiento interior vitrificado: el uso de este tipo de recubrimiento garantiza la calidad del agua de consumo, ya que previene la formación de hongos, además de proporcionar una protección elevada ante la corrosión.
- De acero con protección interior mediante resinas epoxi: tiene una temperatura máxima de trabajo de 90°C. Su calidad es inferior al anterior tipo, aunque su precio es más bajo.
- De acero inoxidable: proporciona una gran resistencia a la corrosión, siendo además el material más duradero de los tres.

4.4.3. Intercambiador de calor

En el intercambiador de calor tiene lugar la transferencia de energía térmica entre el fluido caloportador que circula por el circuito primario y el agua de consumo que circula por el circuito secundario. El sistema de intercambio de calor, al separar circuitos que contienen, cada uno de ellos, fluidos diferentes, puede verse sometido a diferentes condiciones de temperatura y presión. Por ello, a la hora de escoger el sistema de intercambio de la instalación, es importante tener en cuenta los siguientes aspectos:

- El fluido que va a circular por cada uno de los circuitos, así como las temperaturas a las que se verán sometidos.
- La pérdida de carga ha de ser baja.
- Prestar atención al posible ensuciamiento de este, ya que supondría un descenso en su capacidad de transferencia de energía.
- La variación de presiones máximas.

Respecto al tipo de intercambiadores, se diferencian dos posibles configuraciones: internos y externos. En el caso de este proyecto, se elige el tipo interno, con lo cual ese es el que se desarrolla un poco más en profundidad.

Dentro de los intercambiadores de calor internos se diferencian los de tipo serpentín y los de doble envolvente.

- Tipo serpentín: suelen estar construidos de cobre o acero inoxidable. Se dispone de forma helicoidal en el interior del sistema de almacenamiento de ACS.
- Doble envolvente: este tipo de intercambiadores está formado por dos depósitos, uno dentro de otro, entre los cuales circula el fluido de trabajo.
 En el depósito interior se encuentra el agua de consumo, calentándose mediante la trasmisión de calor por parte del fluido del circuito primario.
 Este tipo de intercambiador se utiliza preferentemente en instalaciones de bajo consumo de ACS.

4.4.4. Sistema hidráulico

El sistema hidráulico de la instalación comprende el cálculo de los caudales en todas las partes de ésta, así como la definición de los fluidos que circularán por las tuberías de distribución, el dimensionamiento de éstas y la definición del aislamiento térmico adecuado. Los elementos que forman parte de este apartado de la instalación son: bombas de circulación, tuberías, vasos de expansión, diferentes tipos de válvulas, elementos purgadores y de llenado.

Lo primero que hay que definir en este apartado es la forma de conexión de los captadores solares. Éstos, pueden agruparse de dos formas diferentes: en serie o en paralelo.

Serie: en este tipo de conexión, el caudal que circula por los captadores es el mismo que circula por la instalación. Teniendo en cuenta, además, que al aumentar la temperatura de entrada del fluido a los captadores disminuye el rendimiento de la instalación, este tipo de configuración no es recomendada para la producción de ACS.

Figura 7. Conexión en serie

Paralelo: en las conexiones en paralelo, hay que prestar atención al equilibrado hidráulico de la instalación, lo cual puede lograrse mediante el diseño de las conexiones con retorno invertido. De este modo, se diseña el circuito de manera que no existan recorridos de menor longitud de tuberías. Es importante colocar purgadores a la salida de cada grupo de captadores, de forma que se permita la salida del aire. Este tipo de conexión es el más utilizado en la producción de ACS, ya que es el que mejor rendimiento ofrece.

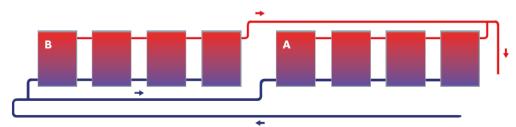


Figura 8. Conexión en paralelo

Para la realización de este proyecto, se elige la conexión de los captadores solares en paralelo con retorno invertido, ya que es la solución que mejores rendimientos ofrece, minimizando así las pérdidas energéticas del circuito.

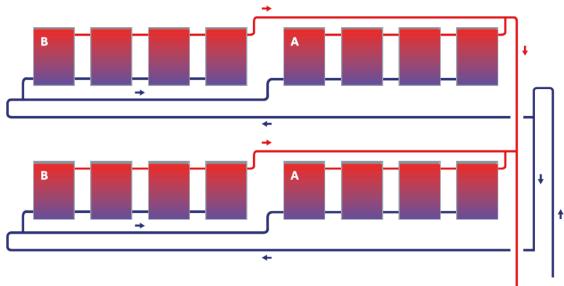


Figura 9. Conexión en paralelo con retorno invertido

La circulación tanto del fluido caloportador en el circuito primario, como del agua de consumo en el circuito secundario, se realiza mediante tuberías. Estas

tuberías tienen que cumplir una serie de requisitos, tanto sanitarios como de diseño. El material que se suele emplear en las instalaciones de energía solar térmica es el cobre, ya que presenta una serie de ventajas frente a los otros materiales que podrían utilizarse. Por citar algunas de estas ventajas, el cobre presenta una alta resistencia a la corrosión, pequeñas pérdidas de carga (debido a su superficie interior lisa), soporta elevadas presiones interiores de trabajo, elevada conductividad térmica y un reducido peso por metro lineal de tubería. Por último, las tuberías de cobre han de cumplir la normativa UNE especificada. Por otra parte, para la selección del diámetro de las tuberías, se han de cumplir dos condiciones:

- La velocidad de circulación del fluido será menor a 2 m/s si la tubería discurre por locales habitados, mientras que no podrá superar los 3 m/s si discurre por el exterior.
- La pérdida de carga unitaria en dichas tuberías nunca será superior a 40 mm de columna de agua por metro lineal de tubería.

Tanto las tuberías como los demás elementos de la instalación están expuestos en parte a las inclemencias meteorológicas. Además, al basarse el funcionamiento de dicha instalación en la transferencia de calor, todos sus elementos deberán estar convenientemente aislados térmicamente, evitando así las pérdidas energéticas que disminuirían el rendimiento general. Para determinar el grosor mínimo en función de las temperaturas máximas del fluido que circula por una determinada tubería, se acude al RITE.

Para hacer circular tanto al fluido caloportador en el circuito primario, como al agua de consumo en el circuito secundario, se utilizan las denominadas bombas de circulación. Dichas bombas se elegirán en función del caudal que va a impulsar la bomba y la altura manométrica que esta puede proporcionar. Esta altura manométrica de la bomba debe compensar las pérdidas de carga producidas principalmente por tres factores, las pérdidas de carga en las tuberías, captadores solares e intercambiador de calor.

Las dilataciones del fluido caloportador sufridas debido a las variaciones de temperatura a las que se ve sometido, son absorbidas por el vaso de expansión. La función de estos dispositivos es mantener constante la presión del circuito, pudiendo ser estos abiertos o cerrados, y se colocarán preferentemente en la canalización de

aspiración de la bomba, sin instalar ninguna válvula entre el vaso de expansión y el circuito, ya que esto podría provocar el aislamiento del vaso.

Para las labores de mantenimiento, así como para asegurar la seguridad de la instalación, se instalan diferentes tipos de válvulas a lo largo de la ésta. Estas son:

- Válvulas de corte: se utilizan con el fin de aislar los componentes más relevantes de la instalación, de forma que no se realiza el vaciado completo y la instalación puede seguir funcionando sin problemas. Se instalan a la entrada y salida de captadores, acumuladores, intercambiadores y bombas, así como a la entrada y salida del circuito de consumo y distribución de agua.
- Válvulas de seguridad: se instalan en cada uno de los circuitos cerrados de la instalación, aparte de en los grupos de captadores solares y acumuladores.
- Válvulas de retención: se utilizan para evitar flujos inversos del fluido, así como para garantizar un nivel de hermeticidad determinado. Este tipo de válvulas se instalan en la acometida de agua fría y en el circuito de recirculación.
- Válvulas de equilibrado: su función es introducir una pérdida de carga adicional en algunos componentes con el fin de equilibrar dichas partes del circuito.
- Válvulas de vaciado: permiten el vaciado total o parcial de las diferentes partes de la instalación. En el caso del circuito primario, al ser el fluido una mezcla anticongelante, el desagüe se realiza en un depósito independiente que permita su recogida y tratado. Por otra parte, en el circuito secundario, se realiza a la red de desagües del edificio.

Para evitar la formación de bolsas de aire, éste se evacúa mediante purgadores de aire. Estos dispositivos se sitúan en la parte más elevada del circuito, y consiste en un tramo de tubería el cual compone un pequeño depósito donde se acumula el aire. Al situarse en el punto más elevado del circuito, se asegura que el fluido circula a una baja velocidad, lo que permite que no se produzca el arrastre del aire.

Para llenar y presurizar el circuito, se utiliza el sistema de llenado, el cual puede ser manual o automático, y que se realiza por la parte inferior del circuito de la instalación.

4.4.5. Sistema de control

Este sistema se encarga de proteger a la instalación de posibles averías, así como de maximizar el rendimiento de ésta. Esto se logra mediante el uso de diferentes sondas con las que se mide una serie de parámetros para que, en caso de necesidad, se actúe sobre diferentes partes de la instalación.

Una forma de control y mejora del rendimiento energético de la instalación es mediante la utilización de dos sondas de temperatura, una a la salida de un grupo de captadores y otra en la parte baja del acumulador de agua. De esta forma, la bomba de circulación del circuito primario actuará de las siguientes diferentes formas:

- \circ Si la diferencia de temperaturas es mayor de 7°C (ΔT>7°C), la bomba se pone en marcha.
- $_{\odot}$ Si la diferencia de temperaturas es menor de 2°C (Δ T<2°C), la bomba se detiene.

Con este modo de funcionamiento, lo que se asegura es que exista un aporte energético por parte de los captadores al acumulador.

El control de la temperatura es uno de los parámetros a los que más atención se les presta en la instalación, destacando tres de ellos:

- Control del acumulador: en este caso, el sensor de temperatura se coloca en la parte más alta del acumulador solar, que es donde se encuentra a más temperatura. De lo que se encarga esta parte del sistema de control es de que no se supere la temperatura máxima soportada por el revestimiento del acumulador, evitando así posibles daños en esta zona de la instalación. En el caso de este proyecto, al ser el intercambiador interno al acumulador solar, se actúa sobre la bomba del circuito primario parándola o interrumpiendo la circulación de agua por el intercambiador.
- Control del circuito primario: con el control de temperatura en el circuito primario, se busca que el calor generado en los captadores solares se

- disipe. Para ello, cuando el sensor de temperatura indique un valor determinado, se desvía el fluido del circuito, de forma que pase por un disipador de calor, donde rebaja su temperatura.
- Control de los captadores: en este caso se utiliza para proteger a esta parte de la instalación frente a heladas, actuándose cuando el sensor mande sobre la bomba del circuito primario, que hará circular el fluido en el mismo.

4.4.6. Sistema de energía auxiliar

Las instalaciones de energía solar térmica no siempre lograr elevar la temperatura del agua de consumo a valores apropiados para su utilización. Es por esto por lo que se necesita un sistema de energía auxiliar que aporte la energía necesaria para elevar dicha temperatura a condiciones de confort. Este sistema, en este proyecto, se basa en una caldera instalada en cada apartamento, la cual ha de adaptar su potencia a las necesidades de consumo de cada momento. Es importante que el funcionamiento de dicha caldera siempre dé prioridad al aprovechamiento de la energía solar frente al consumo de la energía auxiliar, que suele ser gas.

5. HIGIENE Y MANTENIMIENTO EN LAS INSTALACIONES SOLARES TÉRMICAS

Las instalaciones solares térmicas pueden ser foco de enfermedades, debido a la probabilidad de presencia de bacterias en el agua de consumo a las temperaturas a las que se produce. Además, al ser una instalación que depende tanto de sus diferentes componentes, y estos están expuestos en gran parte a las inclemencias climatológicas, es importante llevar un control periódico del estado de los componentes. De esta forma, si se detectase alguna anomalía, podrían llevarse a cabo las determinadas labores de mantenimiento. En este apartado se hace hincapié en la legionelosis, una enfermedad causada por la bacteria *Legionella pneumophilia*, además de las labores de mantenimiento que han de llevarse a cabo.

5.1. HIGIENE EN LAS INSTALACIONES SOLARES TÉRMICAS

La legionelosis es una enfermedad infecciosa que puede manifestarse de forma leve (fiebre de Pontiac) o grave, causando la muerte a entre un 5% y un 30% de las

personas que sufren de esta enfermedad. La bacteria que produce la legionelosis se llama *Legionella pneumophilia*, la cual está presente en medios acuosos y prospera cuando dicho medio se encuentra a una temperatura de entre 20°C y 45°C, alcanzando su desarrollo óptimo para una temperatura de 35°C. En la siguiente tabla puede verse cómo afecta la temperatura del agua a la presencia de dicha bacteria.

Temperatura del agua (°C)	Comportamiento de la bacteria
70 – 80	Muerte instantánea
66	Muere en 2 minutos
60	Muere en 32 minutos
55	Muere en 5/6 horas
20 – 45	Se desarrolla (óptimo a 35°C)
<20	Se encuentra dormida

Tabla 3. Comportamiento de la Legionella pneumophilia en función de la temperatura del agua

En vista de lo que se observa en la tabla, se hacen diferentes indicaciones para la temperatura del agua, así como para su acumulación.

Respecto a la temperatura del agua de consumo:

- o Dicha temperatura debe ser, siempre, igual o superior a 55°C.
- Estas temperaturas han de alcanzarse en menos de un minuto después de abrir el grifo que solicite el agua de consumo.
- La acumulación de agua se realizará siempre a una temperatura mínima de 60°C.
- El sistema de calentamiento de la instalación ha de poder elevar la temperatura hasta los 70°C en la zona de los acumuladores, y hasta los 60°C en las zonas más alejadas de la distribución.

Respecto a los acumuladores del agua de consumo:

- Deben estar correctamente aislados térmicamente, evitando así un descenso en la temperatura de acumulación que facilitaría la aparición y desarrollo de la bacteria.
- Deben tener una boca de registro mediante la cual se pueda realizar una inspección interna del acumulador, así como las debidas labores de mantenimiento.

- Se debe colocar una sonda de temperatura con el fin de llevar un control de la temperatura dentro del acumulador.
- Se colocará una válvula de purga, de forma que se permita el vaciado completo del acumulador.
- Si no se puede asegurar la temperatura mínima de 60°C en el acumulador antes de su distribución, se colocará un acumulador adicional en el cual sí que se alcance dicha temperatura.

Para tratar y desinfectar el tanque acumulador, una vez al año se realiza un tratamiento de mantenimiento, el cual bien puede ser la hipercloración del agua o someter al tanque a un choque térmico que elimine cualquier posibilidad de que la bacteria prolifere.

5.2. MANTENIMIENTO EN LAS INSTALACIONES SOLARES TÉRMICAS

Las instalaciones solares térmicas están formadas por diferentes componentes que están expuestos a distintos tipos de condiciones que pueden hacer que se deterioren o no funcionen como es esperado. Por ello, es importante realizar una serie de labores de mantenimiento, con el objetivo de prevenir el mal funcionamiento de la instalación. Lo que diferencia principalmente a las instalaciones solares térmicas de otro tipo de instalaciones, es el mantenimiento de la parte de los captadores solares, así como del circuito primario y los sistemas de control. En el caso de los captadores solares, se tiene en cuenta que la suciedad en estos no repercute tanto como si se tratase de instalaciones del tipo fotovoltaico. Por ello, debido a los riesgos existentes a la hora de llevar a cabo la limpieza de los captadores (entrada de agua al rociar los captadores con agua, rayado del vidrio, movimiento de juntas, etc.), la opción que se toma es eliminar la limpieza por parte del usuario, y dejar que sea el propio clima, con agua de lluvia, el que se encargue de la limpieza de estos componentes. En el caso del presente proyecto, se puede seguir este modo de trabajo ya que, en el lugar donde se va a realizar la instalación solar térmica, las precipitaciones son de algún modo frecuentes. Además, no se encuentra en un lugar donde la contaminación ambiental sea elevada, en cuyo caso sí que sería recomendable llevar a cabo labores de limpieza manual de los captadores solares.

Para el resto de la instalación, se puede llevar a cabo lo que se conoce como programa de mantenimiento preventivo (control visual de presencia de fugas, saltos de temperatura, contrastar medidas con otros dispositivos, etc.). Con esto, se persigue conseguir el correcto funcionamiento de los diferentes componentes de la instalación, llevando a cabo pequeñas acciones de supervisión de los elementos, interviniendo sobre estos en caso de encontrar anomalías.

Además, el titular de la instalación debe contratar a una empresa que se encargue de las revisiones periódicas y de las inspecciones obligatorias, con las cuales se complementa el correcto mantenimiento de la instalación. También ha de llevar una memoria donde se vean reflejadas las diferentes actuaciones realizadas por dichas empresas, siendo recogidas en el conocido *Libro del Edificio*.

6. DATOS METEREOLÓGICOS

Para la elaboración del estudio de viabilidad propuesto en este proyecto, se ha de partir de ciertos datos ya recogidos para la ciudad de Santander, Cantabria. Estos datos son tomados en la estación metereológica situada en el Aeropuerto de Santander-Seve Ballesteros, siendo los datos utilizados en este proyecto:

 Temperatura media máxima mensual: se recogen la media de las temperaturas máximas en Santander.

MES	E	F	М	Α	М	J	J	Α	S	0	N	D
Tmax (°C)	13.6	13.8	15.7	16.6	19.1	21.6	23.6	24.2	22.8	20.3	16.3	14.2

Tabla 4. Temperatura media máxima mensual en Santander (Fuente: AEMET)

 Temperatura media mínima mensual: se recogen la media de las temperaturas mínimas en Santander.

MES	Е	F	М	Α	М	J	J	Α	S	0	N	D
Tmin (°C)	5.8	5.7	7.0	8.3	11.1	13.9	16.0	16.4	14.4	11.8	8.7	6.7

Tabla 5. Temperatura media mínima mensual en Santander (Fuente: AEMET)

 Irradiación global diaria media mensual: en esta tabla se recogen los valores de irradiación global diaria media mensual sobre una superficie horizontal expresada en KJ/m².

MES	E	F	М	Α	М	J	J	Α	S	0	N	D
H _T (KJ/m ²)	5400	8640	13320	16560	19800	21960	21240	18360	15480	10440	6120	5400

Tabla 6. Irradiación global diaria media mensual en Santander (Fuente: UNE 94003:2007)

 Temperatura diaria media mensual de agua fría: para realizar los cálculos se necesita saber la temperatura a la que se encuentra el agua fría que se toma de la red.

MES	E	F	М	Α	М	J	J	Α	S	0	N	D
T (°C)	10	10	11	11	13	15	16	16	16	14	12	10

Tabla 7. Temperatura diaria media mensual de agua fría en Santander (Fuente: UNE 94002:2005)

Partiendo de estos datos, y realizando los cálculos pertinentes, se persigue definir la viabilidad del proyecto, la cual se desarrollará a continuación.

ANEXO A: CÁLCULOS PARA ACS

1. INTRODUCCIÓN

En este anexo se hace uso de todos los datos anteriormente recogidos y mencionados en el apartado anterior de la memoria, con el objetivo de obtener los cálculos separados de ACS consumida en el edificio, producida por los captadores y aportada por el sistema auxiliar, de una manera discretizada para cada hora del día.

Para ello, primero se obtienen los valores de irradiación global diaria para un día del mes, hora a hora, desde las 5AM hasta las 6PM. Para este gráfico ha de tenerse en cuenta la latitud de la ciudad de Santander (λ =43.27°), la inclinación de los captadores solares (θ =30°) y la desviación de los faldones del tejado respecto al sur geográfico (β =-2°). Se obtiene entonces el siguiente gráfico.

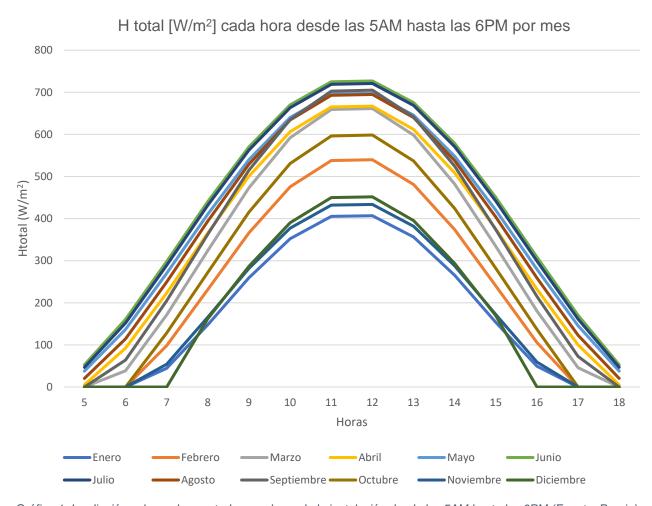


Gráfico 1. Irradiación solar en los captadores solares de la instalación desde las 5AM hasta las 6PM (Fuente: Propia)

Se puede observar que el mes que más irradiación solar recibe es el mes de junio, siendo enero el mes que menos.

Por su parte, para el cálculo de la demanda de ACS se siguen las indicaciones recogidas en el CTE, teniendo en cuenta las características del edificio sobre el que se va a desarrollar el proyecto.

Primero, ha de definirse la zona climática donde se encuentra la localidad en la cual se ubica el edificio. Mirando el siguiente mapa, se observa que la zona climática es zona I.

Figura 10. Zonas climáticas en España (Fuente: CTE)

El CTE también indica la demanda de referencia de ACS diaria para edificios multivivienda, siendo este valor de 28 litros/(día·persona) a 60°C. Además, para saber la ocupación de la vivienda a tener en cuenta, se sigue la siguiente tabla extraída del CTE.

Número de dormitorios	1	2	3	4	5	6	≥6
Número de Personas	1,5	3	4	5	6	6	7

Figura 11. Valores de ocupación (Fuente: CTE)

El edificio tiene un total de 60 apartamentos con 3 dormitorios cada uno, lo que hace que el número de personas que se deba tener en cuenta sea de 4 por vivienda. Tomando todo lo anterior en consideración, se obtiene un consumo total diario de 6720 litros de ACS.

$$(ec. 5) \ Consumo \ (l.) = 28 \frac{litros}{dia*persona}*4 \frac{personas}{apartamento}*60 \ apartamentos = 6720 \ litros$$

Una vez se han obtenido los parámetros en función del lugar de ubicación del proyecto, se tiene que determinar cuál será el valor de la cobertura solar mínima exigido por el CTE para la instalación solar térmica. Se acude a la siguiente tabla, que nos da este valor en función de la zona climática y el consumo diario de ACS.

Demanda total de ACS			Zona climática		
del edificio (I/d)	I	II	III	IV	V
50-5.000	30	30	50	60	70
5.000-6.000	30	30	55	65	70
6.000-7.000	30	35	61	70	70
7.000-8.000	30	45	63	70	70
8.000-9.000	30	52	65	70	70
9.000-10.000	30	55	70	70	70
10.000-12.500	30	65	70	70	70
12.500-15.000	30	70	70	70	70
15.000-17.500	35	70	70	70	70
17.500-20.000	45	70	70	70	70
> 20.000	52	70	70	70	70

Figura 12. Cobertura solar mínima en porcentaje (Fuente: CTE)

Es decir, en este caso (zona I, 6720 litros/día) se debe cubrir un mínimo del 30% de la demanda de ACS anual con la instalación solar térmica.

2. CÁLCULOS PARA LA INSTALACIÓN DE ACS

Teniendo en cuenta todo lo expuesto en el apartado anterior, se desarrollan los cálculos que definirán a la instalación solar térmica para la producción de agua caliente sanitaria (ACS). Dichos cálculos son:

- Cálculo de la superficie de captación
- Cobertura solar que proporciona el sistema
- Sistema de almacenamiento
- Fluido caloportador
- Tuberías
- Elección de la bomba hidráulica
- Vaso de expansión
- o Aislamiento térmico

Dichos cálculos se desarrollan en los siguientes subapartados.

2.1. CÁLCULO DE LA SUPERFICIE DE CAPTACIÓN

Para calcular la superficie de captación solar (en m²) que necesitará la instalación, se sigue el procedimiento que se describe a continuación.

Generalmente se diferencian dos métodos de cálculo, uno teniendo en cuenta el mes de menor irradiación global recibida, y otro en el que se tiene en cuenta el mes de mayor irradiación global recibida. En el caso del presente proyecto, se elige la primera forma de cálculo, ya que de esta manera no habrá un exceso de energía demandada, lo que supondría un aumento de los costes y un desaprovechamiento de la instalación.

Para el cálculo de la superficie de captación se utiliza la siguiente expresión matemática:

$$(ec. 6) S = \frac{Q}{\eta * H}$$

Siendo:

○ S: superficie de captación, en m²

o Q: consumo por día, en KJ/día

 \circ η : rendimiento de los captadores, en tanto por uno

 H: irradiación global diaria mensual para el mes en el cual el valor es mayor, en KJ/m²

Para los captadores solares se considera un rendimiento del 40% para una primera estimación. Por su parte, el mes en el cual la irradiación global diaria mensual es mayor es junio, con un valor de 21960 KJ/día. Con todo ello, se calcula el consumo por día del edificio.

$$(ec.7) Q = m * C_p * \Delta T$$

Siendo:

- o m: consumo de ACS en el edificio en un día, en este caso son 6720 litros
- o C_n : calor específico del agua, que tiene un valor de 4.186 KJ/(Kg $^{\circ}$ C)
- ΔT: salto térmico de temperatura entre la temperatura de consumo (60°C) y la del agua de red (para junio son 15°C), se expresa en °C

Entonces:

$$Q = 6720 * 4.186 * (60 - 15) = 1265846.4 KJ/dia$$

La superficie de captación será, por lo tanto:

$$S_{captacion} = \frac{Q}{\eta * H} = \frac{1265846.4}{0.4 * 21960} = 144.11 \, m^2$$

Sin embargo, dada la superficie disponible para colocar los captadores solares, se rebaja dicha superficie de captación hasta los 140 m². Se selecciona un modelo de captadores cuya superficie útil de captación es de 1.77 m², haciendo un número total de captadores igual a:

(ec. 8)
$$N_{captadores} = \frac{S_{captacion}}{S_{individual}} = \frac{140}{1.77} = 79.09 \ captadores$$

Se seleccionan por lo tanto 79 captadores del modelo PA-D de CHROMAGEN.

2.2. COBERTURA SOLAR

Como se ha mencionado anteriormente, la contribución solar mínima exigida por el CTE para la zona climática donde se ubica el proyecto es del 30%. Para ver si se cumple dicha exigencia, se llevan a cabo los cálculos que a continuación se describen para cada mes. El consumo total de cada día se distribuye en horas a lo largo del día, en función de la demanda de ACS. Esto es, la demanda será mayor a las horas de las comidas, a primera hora de la mañana o últimas horas de la tarde, siendo nula de madrugada.

El cálculo se lleva a cabo en hojas de cálculo convencionales, siendo estos los parámetros que intervienen:

 T_{amb}: a partir de las temperaturas máxima y mínima para cada mes se calcula la temperatura ambiente en la zona de ubicación del proyecto siguiendo la siguiente fórmula

$$(ec.9) T_{amb} = \frac{T_{max} + T_{min}}{2} + \frac{T_{max} + T_{min}}{2} * \cos(\frac{\pi}{12} * t - \frac{5}{4} * \pi)$$

 Consumos reales: se estiman los consumos de ACS para cada hora, sumando un total de 6720 litros al día.

- Radiación (I): valores de radiación solar recibida en los faldones del tejado donde se dispondrán los captadores solares (con una inclinación de 30º), se mide en KJ/m².
- T_{dep}: se calcula la temperatura del agua en el interior del depósito a lo largo del día, siendo condición necesaria que la temperatura en la última hora del día sea igual a la temperatura a final del día. Se mide en °C.
- T_{ce}: se trata de la temperatura del agua de entrada al colector, se mide en
 °C.
- Rendimiento: valor que refleja el rendimiento de los captadores solares a lo largo del día, depende directamente del coeficiente de pérdidas, la radiación recibida, la temperatura de entrada a los colectores y la temperatura ambiente. Se calcula de la siguiente manera:

$$(ec. 10) \eta = 0.797 - 3.689 * 3.6 * \frac{T_{ce} - T_{amb}}{I}$$

 Q_{util}: se calcula el calor útil producido por los captadores solares, se mide en KJ.

(ec. 11)
$$Q_{util} = I * \eta * S_{cantacion}$$

o T_{cs}: refleja la temperatura de salida del colector, se mide en ^oC.

$$(ec. 12) T_{cs} = T_{ce} + \frac{Q_{util}}{\dot{m} * C_n}$$

Siendo:

- \dot{m} : flujo másico del colector
- C_n : calor específico del agua
- Flujo másico del depósito: se mide en Kg/h

$$(ec. 13)$$
 Flujo másico del depósito = Consumos * $\frac{45 - T_{red}}{T_{dep} - T_{red}}$

 Q_{consumo}: se calcula el calor consumido por el edificio expresado en KJ para cada hora

$$(ec. 14) \ Q_{consumo} = Consumos * C_p * (45 - T_{red})$$

 Q_{perdido}: se ha de calcular el calor perdido en el acumulador debido a transmisión térmica, se mide en KJ.

$$(ec. 15) Q_{perdido} = S_{dep} * U_{dep} * (T_{dep} - T_{amb dep})$$

Siendo:

- S_{dep} : área de las paredes del acumulador, se mide en m².
- U_{dep} : transmitancia térmica del material que conforma las paredes del depósito, se mide en W/(m^{2*o}C).
- T_{amb dep}: temperatura ambiente de la sala donde se encuentra el volumen acumulador, se mide en °C.
- T_{dep nueva}: se calcula la temperatura nueva del depósito tras todo el proceso para esa hora.

$$(ec. 16) T_{dep \ nueva} = T_{dep} + \frac{Q_{util} - Q_{consumo} - Q_{perdido}}{V_{almacenador} * C_{p}}$$

 Q_{aux}: cuando el sistema no pueda proporcionar el calor necesario, se utilizará el sistema de energía auxiliar.

$$(ec. 17) Q_{aux} = (60 - T_{dep \, nueva}) * V_{almacenador} * C_p$$

A continuación, se adjuntan las tablas para cada uno de los meses en un año entero, así como un gráfico donde se refleja los valores de Qutil, Qconsumo y Qauxiliar para cada uno de ellos.

Hora Solar	Hora civil	Tiempo [horas]	T _{amb} [°C]	Consumos Reales	Radiación [KJ/m²]	T _{dep} [°C]	T _{ce} [ºC]	Rendimiento	Q _{util} [KJ]	T _{cs} [ºC]	Flujo másico	Q _{consumo}	Q _{perdido} [KJ]	T _{dep} nueva [ºC]	Q _{aux} [KJ]
0:00:00	1:00:00	0.5	6.60592197	0	0	60	60	0	0	60	dep [Kg/h] 0	0	2411.87638	59.9450472	2411.87638
1:00:00	2:00:00	1.5	6.09686982	0	0	60	60	0	0	60	0	0	2411.87638	59.9450472	2411.87638
2:00:00	3:00:00	2.5	5.83336504	0	0	60	60	0	0	60	0	0		59.9450472	2411.87638
3:00:00	4:00:00	3.5	5.83336504	0	0	60	60	0	0	60	0	0	2411.87638	59.9450472	2411.87638
4:00:00	5:00:00	4.5	6.09686982	0	0	60	60	0	0	60	0	0		59.9450472	2411.87638
	6:00:00	5.5	6.60592197	0	0		60		0		0	0		59.9450472	
5:00:00				•	0	60		0		60	•	-			2411.87638
6:00:00	7:00:00	6.5	7.32583043	700		60	60		0	60	498.076923	102410		57.4783806	110673.876
7:00:00	8:00:00	7.5	8.20753461	700	159.894537	60	44.2736977	-2.03208369	0	44.2736977	498.076923	102410		57.4783806	110673.876
8:00:00	9:00:00	8.5	9.19094785	700	532.078479	60	53.7100114	-0.24424336	0	53.7100114	498.076923	102410		57.4783806	110673.876
9:00:00	10:00:00	9.5	10.2090521	140	934.389874	60	63.893159	0.086084036	11261.0472		99.6153846	20482	2411.87638		12803.2292
10:00:00	11:00:00	10.5	11.1924654	140	1268.02706	60	72.3907458	0.201891262	35840.5016	113.872808	99.6153846	20482	2411.87638	60.2683123	0
11:00:00	12:00:00	11.5	12.0741696	560	1459.11212	60.2683123	77.5449087	0.244634734	49972.9307	135.383949	396.41609	81928	2426.25718	59.3782934	27286.7012
12:00:00	13:00:00	12.5	12.794078	280	1464.58114	60	77.7841444	0.250881209	51441.0243	137.322367	199.230769	40964	2411.87638	60.1304249	0
13:00:00	14:00:00	13.5	13.3031302	560	1283.02035	60.1304249	73.6364629	0.217491867	39066.5087	118.852329	397.464629	81928	2418.8668	58.99208	44237.6102
14:00:00	15:00:00	14.5	13.566635	420	955.044988	60	65.6681032	0.12262034	16395.1117	84.6439269	298.846154	61446	2411.87638	58.8385973	50973.9647
15:00:00	16:00:00	15.5	13.566635	280	553.133732	60	55.880382	-0.1538776	0	55.880382	199.230769	40964	2411.87638	58.9583806	45716.6764
16:00:00	17:00:00	16.5	13.3031302	140	177.769041	60	46.639326	-1.55281899	0	46.639326	99.6153846	20482	2411.87638	59.4517139	24064.2764
17:00:00	18:00:00	17.5	12.794078	140	0	60	60	0	0	60	99.6153846	20482	2411.87638	59.4517139	24064.2764
18:00:00	19:00:00	18.5	12.0741696	140	0	60	60	0	0	60	99.6153846	20482	2411.87638	59.4517139	24064.2764
19:00:00	20:00:00	19.5	11.1924654	140	0	60	60	0	0	60	99.6153846	20482	2411.87638	59.4517139	24064.2764
20:00:00	21:00:00	20.5	10.2090521	140	0	60	60	0	0	60	99.6153846	20482	2411.87638	59.4517139	24064.2764
21:00:00	22:00:00	21.5	9.19094785	700	0	60	60	0	0	60	498.076923	102410	2411.87638	57.4783806	110673.876
22:00:00	23:00:00	22.5	8.20753461	700	0	60	60	0	0	60	498.076923	102410	2411.87638	57.4783806	110673.876
23:00:00	0:00:00	23.5	7.32583043	140	0	60	60	0	0	60	99.6153846	20482	2411.87638	59.4517139	24064.2764
				6720					203977.124			983136			893244.48

Tabla 8. Hoja de cálculo para el mes de enero

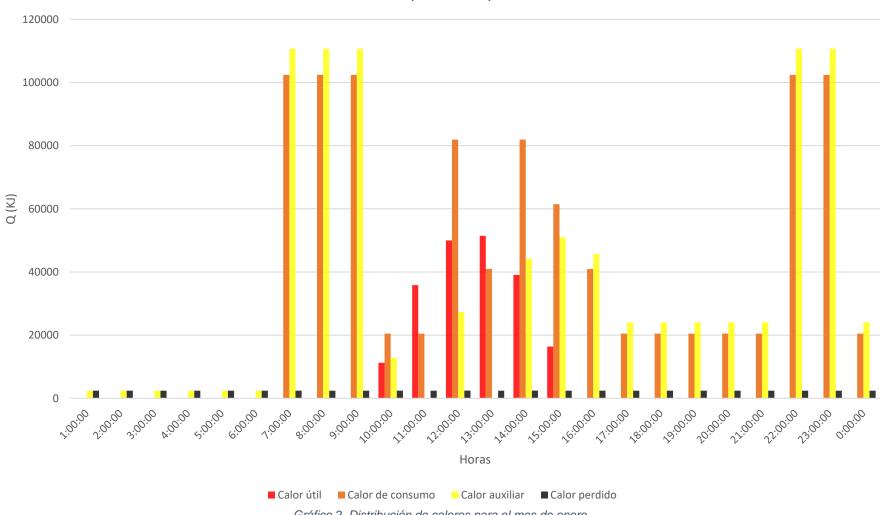


Gráfico 2. Distribución de calores para el mes de enero

Hora Solar	Hora civil	Tiempo [horas]	T _{amb} [°C]	Consumo s Reales	Radiación [KJ/m²]	T _{dep} [°C]	T _{ce} [ºC]	Rendimient o	Q _{util} [KJ]	T _{cs} [ºC]	Flujo másico dep [Kg/h]	Q _{consum} _o [KJ]	Q _{perdido} [KJ]	T _{dep} nueva [ºC]	Q _{aux} [KJ]
0:00:00	1:00:00	0.5	6.53691897	0	0	60	60	0	0	60	0	0	2519.07089	59.9426049	2519.07089
1:00:00	2:00:00	1.5	6.00828789	0	0	60	60	0	0	60	0	0	2519.07089	59.9426049	2519.07089
2:00:00	3:00:00	2.5	5.73464831	0	0	60	60	0	0	60	0	0	2519.07089	59.9426049	2519.07089
3:00:00	4:00:00	3.5	5.73464831	0	0	60	60	0	0	60	0	0	2519.07089	59.9426049	2519.07089
4:00:00	5:00:00	4.5	6.00828789	0	0	60	60	0	0	60	0	0	2519.07089	59.9426049	2519.07089
5:00:00	6:00:00	5.5	6.53691897	0	0	60	60	0	0	60	0	0	2519.07089	59.9426049	2519.07089
6:00:00	7:00:00	6.5	7.28451621	700	0	60	60	0	0	60	494.117647	102410	2519.07089	57.5426049	107855.071
7:00:00	8:00:00	7.5	8.2001321	700	353.897	60	48.995424	-0.64245842	0	48.995424	494.117647	102410	2519.07089	57.5426049	107855.071
8:00:00	9:00:00	8.5	9.22136892	700	833.625633	60	61.0650958	0.02639771	3080.81265	64.6308511	494.117647	102410	2519.07089	57.6127989	104774.258
9:00:00	10:00:00	9.5	10.2786311	140	1317.75982	60	73.2557029	0.20783328	38342.4088	117.633491	98.8235294	20482	2519.07089	60.3362073	0
10:00:00	11:00:00	10.5	11.2998679	140	1712.06795	60.3362073	83.4539782	0.27898031	66868.6549	160.848255	98.1763217	20482	2537.09067	61.3219527	0
11:00:00	12:00:00	11.5	12.2154838	560	1936.18409	61.3219527	89.8710442	0.30464513	82578.8678	185.448437	385.306721	81928	2589.92392	61.2244394	0
12:00:00	13:00:00	12.5	12.963081	280	1943.32284	61.2244394	90.2675282	0.30877807	84007.7656	187.498738	193.013082	40964	2584.69748	62.1196016	0
13:00:00	14:00:00	13.5	13.4917121	560	1731.90225	62.1196016	85.8751264	0.28339348	68713.372	165.404492	379.520919	81928	2632.67571	61.7051996	0
14:00:00	15:00:00	14.5	13.7653517	420	1345.94575	61.7051996	76.3221948	0.22437742	42279.9763	125.257353	286.878716	61446	2610.4649	61.169039	0
15:00:00	16:00:00	15.5	13.7653517	280	864.158232	61.169039	64.2562015	0.07380993	8929.68453	74.5914845	193.21805	40964	2581.72817	60.3536723	0
16:00:00	17:00:00	16.5	13.4917121	140	380.639019	60.3536723	51.8709388	-0.46043795	0	51.8709388	98.1429326	20482	2538.02675	59.8158453	8082.54866
17:00:00	18:00:00	17.5	12.963081	140	0	60	60	0	0	60	98.8235294	20482	2519.07089	59.4626049	23586.2709
18:00:00	19:00:00	18.5	12.2154838	140	0	60	60	0	0	60	98.8235294	20482	2519.07089	59.4626049	23586.2709
19:00:00	20:00:00	19.5	11.2998679	140	0	60	60	0	0	60	98.8235294	20482	2519.07089	59.4626049	23586.2709
20:00:00	21:00:00	20.5	10.2786311	140	0	60	60	0	0	60	98.8235294	20482	2519.07089	59.4626049	23586.2709
21:00:00	22:00:00	21.5	9.22136892	700	0	60	60	0	0	60	494.117647	102410	2519.07089	57.5426049	107855.071
22:00:00	23:00:00	22.5	8.2001321	700	0	60	60	0	0	60	494.117647	102410	2519.07089	57.5426049	107855.071
23:00:00	0:00:00	23.5	7.28451621	140	0	60	60	0	0	60	98.8235294	20482	2519.07089	59.4626049	23586.2709
				6720					394801.542			983136			677322.87

Tabla 10. Hoja de cálculo para el mes de febrero

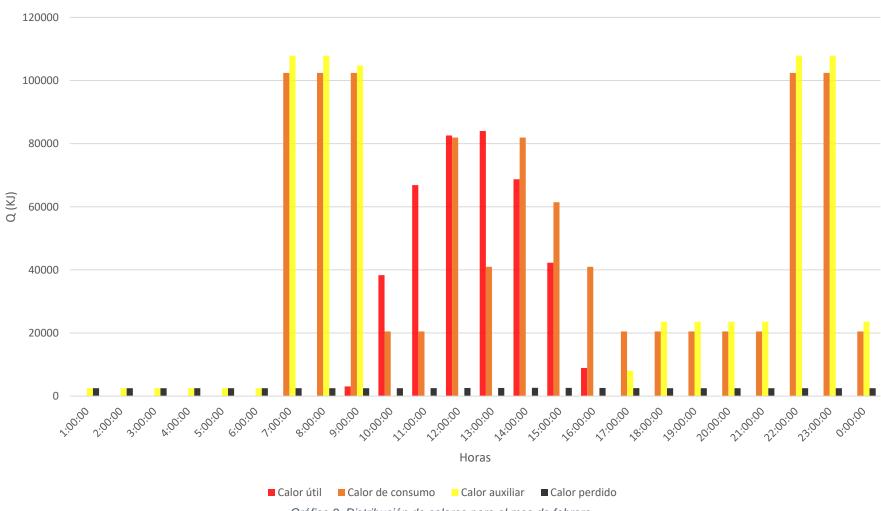
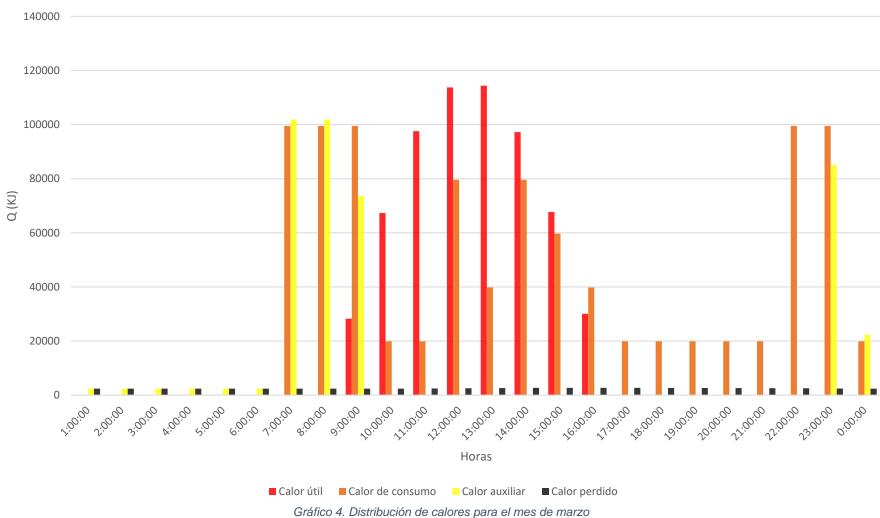



Gráfico 3. Distribución de calores para el mes de febrero

Hora Solar	Hora civil	Tiempo [horas]	T _{amb}	Consumos Reales	Radiación [KJ/m²]	T _{dep}	T _{ce} [°C]	Rendimiento	Q _{util} [KJ]	T _{cs} [°C]	Flujo másico dep [Kg/h]	Q _{consumo} [KJ]	Q _{perdido} [KJ]	T _{dep} nueva [ºC]	Q _{aux} [KJ]
0:00:00	1:00:00	0.5	7.8989	0	0	60	60	0	0	60	0	0	2411.876	59.945	2411.87638
1:00:00	2:00:00	1.5	7.3311	0	0	60	60	0	0	60	0	0	2411.876	59.945	2411.87638
2:00:00	3:00:00	2.5	7.0372	0	0	60	60	0	0	60	0	0	2411.876	59.945	2411.87638
3:00:00	4:00:00	3.5	7.0372	0	0	60	60	0	0	60	0	0	2411.876	59.945	2411.87638
4:00:00	5:00:00	4.5	7.3311	0	0	60	60	0	0	60	0	0	2411.876	59.945	2411.87638
5:00:00	6:00:00	5.5	7.8989	0	0	60	60	0	0	60	0	0	2411.876	59.945	2411.87638
6:00:00	7:00:00	6.5	8.7019	700	138.702	60	43.945	-2.39154	0	43.945	485.714	99484	2411.876	57.678	101895.876
7:00:00	8:00:00	7.5	9.6853	700	616.337	60	55.949	-0.13579	0	55.949	485.714	99484	2411.876	57.678	101895.876
8:00:00	9:00:00	8.5	10.7822	700	1166.695	60	69.768	0.17297	28252.9837	102.468	485.714	99484	2411.876	58.322	73642.8927
9:00:00	10:00:00	9.5	11.9178	140	1703.101	60	83.261	0.28218	67282.4978	161.134	97.143	19896.8	2411.876	61.025	0
10:00:00	11:00:00	10.5	13.0147	140	2131.633	61.0247	94.749	0.32687	97547.9828	207.652	95.153	19896.8	2466.797	62.738	0
11:00:00	12:00:00	11.5	13.9981	560	2372.890	62.7377	102.061	0.34239	113743.063	233.708	368.010	79587.2	2558.610	63.458	0
12:00:00	13:00:00	12.5	14.8011	280	2380.857	63.4576	103.006	0.34320	114395.294	235.408	181.480	39793.6	2597.196	65.098	0
13:00:00	14:00:00	13.5	15.3689	560	2153.963	65.0982	98.715	0.32245	97237.0042	211.258	351.953	79587.2	2685.126	65.439	0
14:00:00	15:00:00	14.5	15.6628	420	1735.461	65.4392	88.846	0.27866	67705.6272	167.209	262.311	59690.4	2703.400	65.560	0
15:00:00	16:00:00	15.5	15.6628	280	1203.041	65.5602	75.955	0.17853	30068.5857	110.757	174.486	39793.6	2709.887	65.277	0
16:00:00	17:00:00	16.5	15.3689	140	650.354	65.2769	62.209	-0.09748	0	62.209	87.699	19896.8	2694.702	64.762	0
17:00:00	18:00:00	17.5	14.8011	140	165.260	64.7621	49.860	-1.86303	0	49.860	88.538	19896.8	2667.114	64.248	0
18:00:00	19:00:00	18.5	13.9981	140	0	64.2480	64.248	0	0	64.248	89.393	19896.8	2639.559	63.735	0
19:00:00	20:00:00	19.5	13.0147	140	0	63.7346	63.735	0	0	63.735	90.263	19896.8	2612.038	63.222	0
20:00:00	21:00:00	20.5	11.9178	140	0	63.2217	63.222	0	0	63.222	91.150	19896.8	2584.551	62.709	0
21:00:00	22:00:00	21.5	10.7822	700	0	62.7095	62.709	0	0	62.709	460.264	99484	2557.098	60.385	0
22:00:00	23:00:00	22.5	9.6853	700	0	60.3846	60.385	0	0	60.385	481.932	99484	2432.488	58.062	85037.9889
23:00:00	0:00:00	23.5	8.7019	140	0	60	60	0	0	60	97.143	19896.8	2411.876	59.492	22308.6764
				6720					616233.038			955046.4			399252.569

Tabla 11. Hoja de cálculo para el mes de marzo

Distribución de calores por horas para el mes de marzo

Hora Solar	Hora civil	Tiempo [horas]	T _{amb} [°C]	Consumos Reales	Radiación [KJ/m²]	T _{dep} [ºC]	T _{ce} [ºC]	Rendimiento	Q _{util} [KJ]	T _{cs} [ºC]	Flujo másico dep [Kg/h]	Q _{consumo} [KJ]	Q _{perdido} [KJ]	T _{dep} nueva [ºC]	Q _{aux} [KJ]
0:00:00	1:00:00	0.5	9.15758364	0	0	60	60	0	0	60	0	0	2411.87638	59.9450472	2411.87638
1:00:00	2:00:00	1.5	8.61589994	0	0	60	60	0	0	60	0	0	2411.87638	59.9450472	2411.87638
2:00:00	3:00:00	2.5	8.33550383	0	0	60	60	0	0	60	0	0	2411.87638	59.9450472	2411.87638
3:00:00	4:00:00	3.5	8.33550383	0	0	60	60	0	0	60	0	0	2411.87638	59.9450472	2411.87638
4:00:00	5:00:00	4.5	8.61589994	0	0	60	60	0	0	60	0	0	2411.87638	59.9450472	2411.87638
5:00:00	6:00:00	5.5	9.15758364	0	19.0600624	60	41.203865	-20.3747756	0	41.203865	0	0	2411.87638	59.9450472	2411.87638
6:00:00	7:00:00	6.5	9.92364007	700	332.639076	60	49.1306364	-0.67511763	0	49.1306364	485.714286	99484	2411.87638	57.6783806	101895.876
7:00:00	8:00:00	7.5	10.8618638	700	803.279614	60	60.947539	0.02437131	2740.77714	64.1197348	485.714286	99484	2411.87638	57.7408271	99155.0992
8:00:00	9:00:00	8.5	11.9083163	700	1317.12604	60	73.8576316	0.21737534	40083.5006	120.250572	485.714286	99484	2411.87638	58.5916524	61812.3758
9:00:00	10:00:00	9.5	12.9916837	140	1802.27114	60	86.0827466	0.2990073	75444.9117	173.403246	97.1428571	19896.8	2411.87638	61.2106684	0
10:00:00	11:00:00	10.5	14.0381362	140	2182.62033	61.2106684	96.4938278	0.33399339	102057.306	214.615709	94.8005703	19896.8	2476.76488	63.0262013	0
11:00:00	12:00:00	11.5	14.9763599	560	2394.60132	63.0262013	103.139376	0.34610065	116028.229	237.431308	365.969445	79587.2	2574.07246	63.797834	0
12:00:00	13:00:00	12.5	15.7424164	280	2401.58412	63.797834	104.078948	0.34653912	116513.997	238.933111	180.310427	39793.6	2615.42985	65.4862588	0
13:00:00	14:00:00	13.5	16.2841001	560	2202.32115	65.4862588	100.480321	0.32829351	101221.085	217.634355	349.445904	79587.2	2705.92478	65.9175179	0
14:00:00	15:00:00	14.5	16.5644962	420	1831.23904	65.9175179	91.8174886	0.29221522	74916.2283	178.526086	260.026318	59690.4	2729.03908	66.2022477	0
15:00:00	16:00:00	15.5	16.5644962	280	1350.50664	66.2022477	80.2871083	0.21547874	40740.7655	127.440772	172.456746	39793.6	2744.29982	66.1613013	0
16:00:00	17:00:00	16.5	16.2841001	140	835.917201	66.1613013	67.6236863	0.0361449	4229.98039	72.519497	86.2923804	19896.8	2742.10521	65.7418681	0
17:00:00	18:00:00	17.5	15.7424164	140	360.19761	65.7418681	55.5727705	-0.58329759	0	55.5727705	86.9535543	19896.8	2719.62474	65.2265702	0
18:00:00	19:00:00	18.5	14.9763599	140	19.0600624	65.2265702	46.6547768	-20.1315921	0	46.6547768	87.7798463	19896.8	2692.00619	64.7119016	0
19:00:00	20:00:00	19.5	14.0381362	140	0	64.7119016	64.7119016	0	0	64.7119016	88.6209548	19896.8	2664.42136	64.1978614	0
20:00:00	21:00:00	20.5	12.9916837	140	0	64.1978614	64.1978614	0	0	64.1978614	89.4772811	19896.8	2636.87022	63.684449	0
21:00:00	22:00:00	21.5	11.9083163	700	0	63.684449	63.684449	0	0	63.684449	451.746207	99484	2609.35273	61.3583303	0
22:00:00	23:00:00	22.5	10.8618638	700	0	61.3583303	61.3583303	0	0	61.3583303	472.612969	99484	2484.67915	59.843795	6855.83745
23:00:00	0:00:00	23.5	9.92364007	140	0	60	60	0	0	60	97.1428571	19896.8	2411.87638	59.518381	21138.2579
									673976.781			955046.4	60925.2307		305328.705

Tabla 12. Hoja de cálculo para el mes de abril

Distribución de calores por horas para el mes de abril

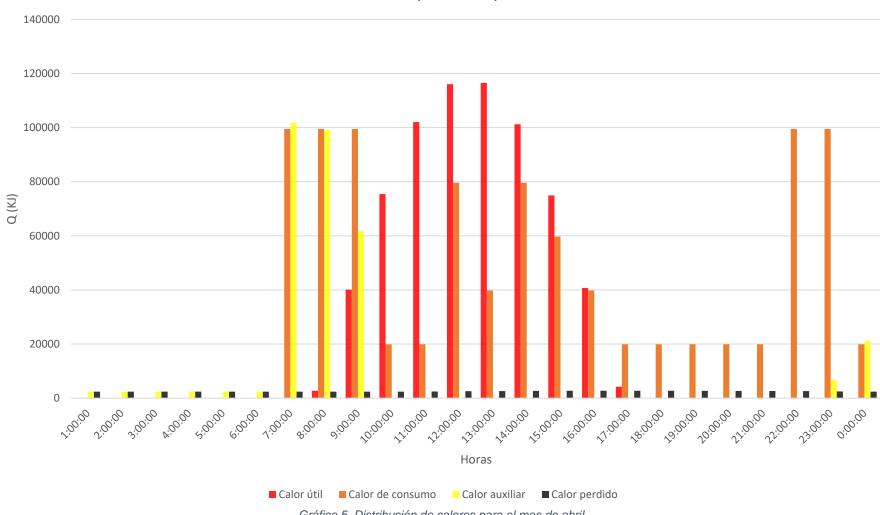


Gráfico 5. Distribución de calores para el mes de abril

Hora Solar	Hora civil	Tiempo [horas]	T _{amb} [°C]	Consumos Reales	Radiación [KJ/m²]	T _{dep} [ºC]	T _{ce} [ºC]	Rendimiento	Q _{util} [KJ]	T _{cs} [ºC]	Flujo másico dep [Kg/h]	Q _{consumo} [KJ]	Q _{perdido} [KJ]	T _{dep} nueva [ºC]	Q _{aux} [KJ]
0:00:00	1:00:00	0.5	11.9265866	0	0	62.2891039	62.2891039	0	0	62.2891039	0	0	2534.56606	62.2313557	0
1:00:00	2:00:00	1.5	11.4044819	0	0	62.2313557	62.2313557	0	0	62.2313557	0	0	2531.47092	62.1736781	0
2:00:00	3:00:00	2.5	11.1342206	0	0	62.1736781	62.1736781	0	0	62.1736781	0	0	2528.37956	62.1160709	0
3:00:00	4:00:00	3.5	11.1342206	0	0	62.1160709	62.1160709	0	0	62.1160709	0	0	2525.29197	62.0585341	0
4:00:00	5:00:00	4.5	11.4044819	0	0	62.0585341	62.0585341	0	0	62.0585341	0	0	2522.20815	62.0010675	0
5:00:00	6:00:00	5.5	11.9265866	0	135.742325	62.0010675	46.3374008	-2.38411251	0	46.3374008	0	0	2519.1281	61.9436711	0
6:00:00	7:00:00	6.5	12.6649543	700	492.776503	61.9436711	55.2762909	-0.27954635	0	55.2762909	452.614485	90706	2516.05181	59.8196781	7914.32796
7:00:00	8:00:00	7.5	13.5692663	700	972.624658	60	66.0972167	0.12951944	17636.3317	86.5096376	471.73913	90706	2411.87638	58.2802109	75481.5447
8:00:00	9:00:00	8.5	14.5778952	700	1477.95324	60	78.7855462	0.26261028	54337.6009	141.676288	471.73913	90706	2411.87638	59.1164212	38780.2755
9:00:00	10:00:00	9.5	15.6221048	140	1944.26603	60	90.5372054	0.3245056	88329.5303	192.770458	94.3478261	18141.2	2411.87638	61.5442345	0
10:00:00	11:00:00	10.5	16.6307337	140	2304.76494	61.5442345	100.657749	0.35062978	113136.69	231.602992	91.2834131	18141.2	2494.64311	63.6517954	0
11:00:00	12:00:00	11.5	17.5350457	560	2504.24985	63.6517954	107.167535	0.3590189	125870.222	252.850663	349.634889	72564.8	2607.60258	64.8069064	0
12:00:00	13:00:00	12.5	18.2734134	280	2511.07939	64.8069064	108.331093	0.35811195	125894.656	254.042501	170.842915	36282.4	2669.51336	66.7878301	0
13:00:00	14:00:00	13.5	18.7955181	560	2324.16006	66.7878301	105.207346	0.3415344	111129.286	233.829205	328.863679	72564.8	2775.68543	67.6032505	0
14:00:00	15:00:00	14.5	19.0657794	420	1973.1888	67.6032505	97.2690652	0.31062488	85809.0139	196.585053	242.895718	54423.6	2819.38972	68.2541054	0
15:00:00	16:00:00	15.5	19.0657794	280	1512.08729	68.2541054	86.4441831	0.24854572	52615.195	147.3414	159.987893	36282.4	2854.27376	68.5612032	0
16:00:00	17:00:00	16.5	18.7955181	140	1007.29552	68.5612032	74.2393993	0.11646678	16424.3056	93.2490122	79.5437004	18141.2	2870.73336	68.4566776	0
17:00:00	18:00:00	17.5	18.2734134	140	523.892228	68.4566776	62.204393	-0.24657292	0	62.204393	79.6963786	18141.2	2865.13107	67.9780645	0
18:00:00	19:00:00	18.5	17.5350457	140	135.742325	67.9780645	52.1747869	-2.40536219	0	52.1747869	80.4030311	18141.2	2839.47872	67.5000358	0
19:00:00	20:00:00	19.5	16.6307337	140	0	67.5000358	67.5000358	0	0	67.5000358	81.121441	18141.2	2813.8577	67.0225909	0
20:00:00	21:00:00	20.5	15.6221048	140	0	67.0225909	67.0225909	0	0	67.0225909	81.8519036	18141.2	2788.26796	66.545729	0
21:00:00	22:00:00	21.5	14.5778952	700	0	66.545729	66.545729	0	0	66.545729	412.973621	90706	2762.70947	64.4161161	0
22:00:00	23:00:00	22.5	13.5692663	700	0	64.4161161	64.4161161	0	0	64.4161161	430.417923	90706	2648.56807	62.2891039	0
23:00:00	0:00:00	23.5	12.6649543	140	0	62.2891039	62.2891039	0	0	62.2891039	89.8753477	18141.2	2534.56606	61.8180224	0
				6720					791182.832			870777.6			122176.148

Tabla 13. Hoja de cálculo para el mes de mayo

Distribución de calores por horas para el mes de mayo

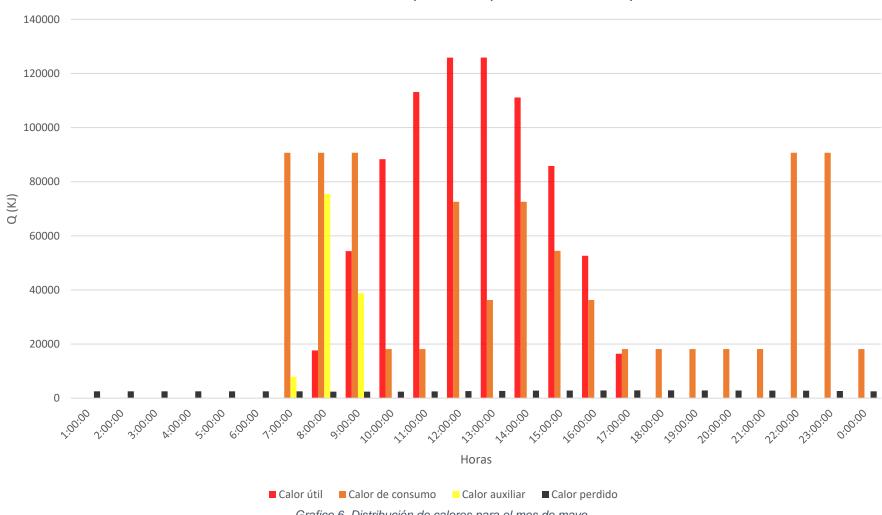


Grafico 6. Distribución de calores para el mes de mayo

Hora Solar	Hora civil	Tiempo [horas]	T _{amb} [°C]	Consumos Reales	Radiación [KJ/m²]	T _{dep} [ºC]	T _{ce} [ºC]	Rendimiento	Q _{util} [KJ]	T _{cs} [ºC]	Flujo másico dep [Kg/h]	Q _{consumo} [KJ]	Q _{perdido} [KJ]	T _{dep} nueva [°C]	Q _{aux} [KJ]
0:00:00	1:00:00	0.5	14.6955896	0	0	64.4470455	64.4470455	0	0	64.4470455	0	0	2489.43404	64.3903256	0
1:00:00	2:00:00	1.5	14.1930638	0	0	64.3903256	64.3903256	0	0	64.3903256	0	0	2486.39402	64.3336751	0
2:00:00	3:00:00	2.5	13.9329373	0	0	64.3336751	64.3336751	0	0	64.3336751	0	0	2483.3577	64.2770937	0
3:00:00	4:00:00	3.5	13.9329373	0	0	64.2770937	64.2770937	0	0	64.2770937	0	0	2480.32509	64.2205813	0
4:00:00	5:00:00	4.5	14.1930638	0	0	64.2205813	64.2205813	0	0	64.2205813	0	0	2477.29619	64.1641381	0
5:00:00	6:00:00	5.5	14.6955896	0	189.815757	64.1641381	50.0468599	-1.53662292	0	50.0468599	0	0	2474.27098	64.1077637	0
6:00:00	7:00:00	6.5	15.4062685	700	579.085296	64.1077637	59.7609215	-0.15508861	0	59.7609215	427.630957	87780	2471.24947	62.0514582	0
7:00:00	8:00:00	7.5	16.2766688	700	1073.25154	62.0514582	70.8477225	0.16933446	25443.3859	100.296086	446.319855	87780	2361.03714	60.5773718	0
8:00:00	9:00:00	8.5	17.2474742	700	1585.28868	60.5773718	82.7694291	0.289226313	64191.0081	157.064577	460.754958	87780	2282.03016	59.9879204	530.174631
9:00:00	10:00:00	9.5	18.2525258	140	2052.75248	60	94.1756349	0.343976364	98853.7668	208.589717	93.3333333	17556	2251.08462	61.801018	0
10:00:00	11:00:00	10.5	19.2233312	140	2411.73387	61.801018	104.404402	0.364975158	123231.213	247.03312	89.7416376	17556	2347.61424	64.1552582	0
11:00:00	12:00:00	11.5	20.0937315	560	2609.74162	64.1552582	111.018599	0.371008904	135553.233	267.908915	341.77422	70224	2473.79505	65.5873711	0
12:00:00	13:00:00	12.5	20.8044104	280	2616.77169	65.5873711	112.348619	0.369206089	135257.926	268.897144	166.049348	35112	2550.55237	67.8110069	0
13:00:00	14:00:00	13.5	21.3069362	560	2431.77008	67.8110069	109.414924	0.35347631	120340.236	248.697605	318.115503	70224	2669.73313	68.8920391	0
14:00:00	15:00:00	14.5	21.5670627	420	2082.85824	68.8920391	101.687949	0.325318353	94862.8818	211.482951	233.800766	52668	2727.67349	69.7912692	0
15:00:00	16:00:00	15.5	21.5670627	280	1621.26439	69.7912692	91.0053615	0.270345538	61362.2232	162.026453	153.309097	35112	2775.86975	70.3261143	0
16:00:00	17:00:00	16.5	21.3069362	140	1110.49255	70.3261143	78.800256	0.157662594	24511.639	107.170209	75.9135185	17556	2804.53598	70.420694	0
17:00:00	18:00:00	17.5	20.8044104	140	613.46231	70.420694	66.5644899	-0.12987355	0	66.5644899	75.7839662	17556	2809.60519	69.9566793	0
18:00:00	19:00:00	18.5	20.0937315	140	189.815757	69.9566793	55.6899934	-1.55288550	0	55.6899934	76.4238315	17556	2784.73528	69.4932312	0
19:00:00	20:00:00	19.5	19.2233312	140	0	69.4932312	69.4932312	0	0	69.4932312	77.0737925	17556	2759.89574	69.0303491	0
20:00:00	21:00:00	20.5	18.2525258	140	0	69.0303491	69.0303491	0	0	69.0303491	77.7340896	17556	2735.08653	68.5680323	0
21:00:00	22:00:00	21.5	17.2474742	700	0	68.5680323	68.5680323	0	0	68.5680323	392.024853	87780	2710.30762	66.50628	0
22:00:00	23:00:00	22.5	16.2766688	700	0	66.50628	66.50628	0	0	66.50628	407.717272	87780	2599.80336	64.4470455	0
23:00:00	0:00:00	23.5	15.4062685	140	0	64.4470455	64.4470455	0	0	64.4470455	84.939352	17556	2489.43404	63.9903256	0
				6720			. 44 11-11-		883607.513			842688			530.174631

Tabla 14. Hoja de cálculo para el mes de junio

Distribución de calores por horas para el mes de junio

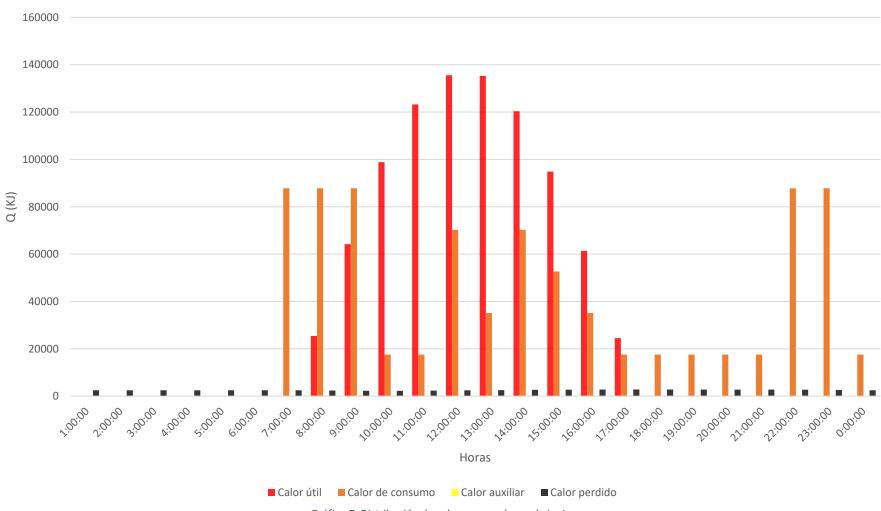


Gráfico 7. Distribución de calores para el mes de junio

Hora Solar	Hora civil	Tiempo [horas]	T _{amb} [ºC]	Consumos Reales	Radiación [KJ/m²]	T _{dep} [ºC]	T _{ce} [ºC]	Rendimiento	Q _{util} [KJ]	T _{cs} [ºC]	Flujo másico dep [Kg/h]	Q _{consumo} [KJ]	Q _{perdido} [KJ]	T _{dep} nueva [°C]	Q _{aux} [KJ]
0:00:00	1:00:00	0.5	16.7852573	0	0	66.9194474	66.9194474	0	0	66.9194474	0	0	2621.94799	66.8597083	0
1:00:00	2:00:00	1.5	16.2892578	0	0	66.8597083	66.8597083	0	0	66.8597083	0	0	2618.74614	66.8000422	0
2:00:00	3:00:00	2.5	16.0325095	0	0	66.8000422	66.8000422	0	0	66.8000422	0	0	2615.5482	66.7404489	0
3:00:00	4:00:00	3.5	16.0325095	0	0	66.7404489	66.7404489	0	0	66.7404489	0	0	2612.35417	66.6809285	0
4:00:00	5:00:00	4.5	16.2892578	0	0	66.6809285	66.6809285	0	0	66.6809285	0	0	2609.16403	66.6214807	0
5:00:00	6:00:00	5.5	16.7852573	0	168.388051	66.6214807	51.8430909	-1.8132782	0	51.8430909	0	0	2605.9778	66.5621054	0
6:00:00	7:00:00	6.5	17.4867066	700	547.299692	66.5621054	61.2995468	-0.19866453	0	61.2995468	401.486446	84854	2602.79545	64.5694694	0
7:00:00	8:00:00	7.5	18.345803	700	1040.17967	64.5694694	72.3902913	0.15534334	22621.8973	98.5730428	417.958035	84854	2495.99563	63.0946893	0
8:00:00	9:00:00	8.5	19.3040005	700	1554.0537	63.0946893	84.3515244	0.28260587	61485.8576	155.515711	431.046479	84854	2416.95147	62.5071957	0
9:00:00	10:00:00	9.5	20.2959995	140	2025.13795	62.5071957	95.8346668	0.34001364	96400.4347	207.409244	87.2983188	16970.8	2385.46343	64.2625881	0
10:00:00	11:00:00	10.5	21.254197	140	2387.84386	64.2625881	106.121019	0.36218096	121076.42	246.255764	84.1231306	16970.8	2479.54763	66.5780602	0
11:00:00	12:00:00	11.5	22.1132934	560	2588.16893	66.5780602	112.763286	0.36868804	133591.77	267.38339	321.087838	67883.2	2603.65058	68.0158575	0
12:00:00	13:00:00	12.5	22.8147427	280	2595.2097	68.0158575	114.093601	0.36683211	133280.875	268.353872	156.106241	33941.6	2680.71256	70.2181487	0
13:00:00	14:00:00	13.5	23.3107422	560	2407.88576	70.2181487	111.08762	0.35068059	118215.833	247.9115	299.5307	67883.2	2798.74932	71.3011718	0
14:00:00	15:00:00	14.5	23.5674905	420	2055.17395	71.3011718	103.268061	0.32136633	92464.9206	210.287645	220.248498	50912.4	2856.79638	72.1828242	0
15:00:00	16:00:00	15.5	23.5674905	280	1589.79355	72.1828242	92.4823406	0.2638114	58716.7925	160.441591	144.528156	33941.6	2904.05053	72.6811414	0
16:00:00	17:00:00	16.5	23.3107422	140	1076.94018	72.6811414	80.2051335	0.1443462	21763.3106	105.39415	71.6287622	16970.8	2930.75896	72.72356	0
17:00:00	18:00:00	17.5	22.8147427	140	580.916966	72.72356	67.9639624	-0.16927966	0	67.9639624	71.5751974	16970.8	2933.03248	72.2700664	0
18:00:00	19:00:00	18.5	22.1132934	140	168.388051	72.2700664	57.370245	-1.82817763	0	57.370245	72.1520385	16970.8	2908.72647	71.8171266	0
19:00:00	20:00:00	19.5	21.254197	140	0	71.8171266	71.8171266	0	0	71.8171266	72.7375314	16970.8	2884.45015	71.36474	0
20:00:00	21:00:00	20.5	20.2959995	140	0	71.36474	71.36474	0	0	71.36474	73.3318715	16970.8	2860.20347	70.9129058	0
21:00:00	22:00:00	21.5	19.3040005	700	0	70.9129058	70.9129058	0	0	70.9129058	369.676303	84854	2835.98639	68.9149567	0
22:00:00	23:00:00	22.5	18.345803	700	0	68.9149567	68.9149567	0	0	68.9149567	383.634444	84854	2728.90181	66.9194474	0
23:00:00	0:00:00	23.5	17.4867066	140	0	66.9194474	66.9194474	0	0	66.9194474	79.7337797	16970.8	2621.94799	66.4730417	0
				6720			= 11-:!{!		859618.111			814598.4			0

Tabla 15. Hoja de cálculo para el mes de julio

160000

Distribución de calores por horas para el mes de julio

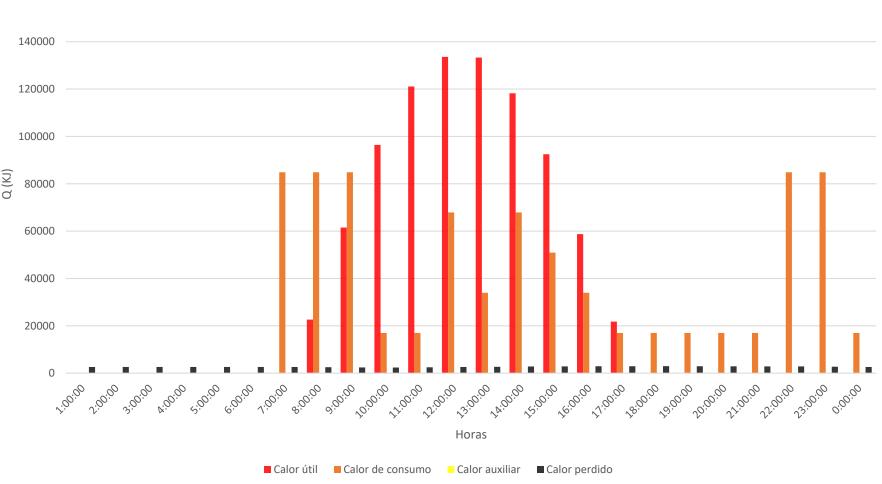


Gráfico 8. Distribución de calores para el mes de julio

Hora Solar	Hora civil	Tiempo [horas]	T _{amb} [ºC]	Consumos Reales	Radiación [KJ/m²]	T _{dep} [ºC]	T _{ce} [ºC]	Rendimiento	Q _{util} [KJ]	T _{cs} [ºC]	Flujo másico dep [Kg/h]	Q _{consumo} [KJ]	Q _{perdido} [KJ]	T _{dep} nueva [ºC]	Q _{aux} [KJ]
0:00:00	1:00:00	0.5	17.205922	0	0	63.2792664	63.2792664	0	0	63.2792664	0	0	2373.24704	63.2251938	0
1:00:00	2:00:00	1.5	16.6968698	0	0	63.2251938	63.2251938	0	0	63.2251938	0	0	2370.3489	63.1711872	0
2:00:00	3:00:00	2.5	16.433365	0	0	63.1711872	63.1711872	0	0	63.1711872	0	0	2367.45429	63.1172466	0
3:00:00	4:00:00	3.5	16.433365	0	0	63.1172466	63.1172466	0	0	63.1172466	0	0	2364.56322	63.0633718	0
4:00:00	5:00:00	4.5	16.6968698	0	0	63.0633718	63.0633718	0	0	63.0633718	0	0	2361.67568	63.0095629	0
5:00:00	6:00:00	5.5	17.205922	0	73.6495274	63.0095629	47.4516486	-4.36445486	0	47.4516486	0	0	2358.79167	62.9558196	0
6:00:00	7:00:00	6.5	17.9258304	700	412.25944	62.9558196	55.9371301	-0.35174993	0	55.9371301	437.903057	84854	2355.91118	60.902142	0
7:00:00	8:00:00	7.5	18.8075346	700	897.828046	60.902142	66.8204678	0.13619285	17118.8862	86.6339935	457.49499	84854	2245.8397	59.2410129	33311.9421
8:00:00	9:00:00	8.5	19.7909479	700	1418.63589	60	79.3158212	0.28131367	55871.4328	143.981831	466.666667	84854	2197.48737	59.2229197	34106.0546
9:00:00	10:00:00	9.5	20.8090521	140	1904.93867	60	91.5444062	0.34212905	91242.8807	197.149592	93.3333333	16970.8	2197.48737	61.628831	0
10:00:00	11:00:00	10.5	21.7924654	140	2283.65696	61.628831	102.151642	0.36662096	117213.111	237.814965	90.073028	16970.8	2284.78824	63.8473847	0
11:00:00	12:00:00	11.5	22.6741696	560	2494.03957	63.8473847	108.987201	0.37394269	130567.9	260.107455	343.928341	67883.2	2403.69662	65.1675078	0
12:00:00	13:00:00	12.5	23.394078	280	2501.16253	65.1675078	110.253414	0.37243242	130411.963	261.193185	167.439053	33941.6	2474.45159	67.282466	0
13:00:00	14:00:00	13.5	23.9031302	560	2303.82418	67.282466	106.954248	0.35577954	114751.491	239.768473	321.331439	67883.2	2587.80754	68.2380295	0
14:00:00	15:00:00	14.5	24.166635	420	1934.81883	68.2380295	98.6612775	0.32487319	87999.9064	200.513021	236.672922	50912.4	2639.02312	68.9829118	0
15:00:00	16:00:00	15.5	24.166635	280	1453.51898	68.9829118	87.4029139	0.26182889	53280.2565	149.069877	155.604797	33941.6	2678.94676	69.3358238	0
16:00:00	17:00:00	16.5	23.9031302	140	932.66154	69.3358238	74.8379021	0.12188529	15914.881	93.2579032	77.2970704	16970.8	2697.86188	69.2369634	0
17:00:00	18:00:00	17.5	23.394078	140	442.704793	69.2369634	62.6517636	-0.30732885	0	62.6517636	77.4379636	16970.8	2692.56324	68.7756155	0
18:00:00	19:00:00	18.5	22.6741696	140	73.6495274	68.7756155	53.1048856	-4.39610296	0	53.1048856	78.1023139	16970.8	2667.83625	68.3148309	0
19:00:00	20:00:00	19.5	21.7924654	140	0	68.3148309	68.3148309	0	0	68.3148309	78.7773295	16970.8	2643.13946	67.854609	0
20:00:00	21:00:00	20.5	20.8090521	140	0	67.854609	67.854609	0	0	67.854609	79.4632688	16970.8	2618.47283	67.3949491	0
21:00:00	22:00:00	21.5	19.7909479	700	0	67.3949491	67.3949491	0	0	67.3949491	400.801993	84854	2593.83632	65.3358505	0
22:00:00	23:00:00	22.5	18.8075346	700	0	65.3358505	65.3358505	0	0	65.3358505	417.197679	84854	2483.4743	63.2792664	0
23:00:00	0:00:00	23.5	17.9258304	140	0	63.2792664	63.2792664	0	0	63.2792664	86.9938653	16970.8	2373.24704	62.8251938	0
				6720					814372.708			814598.4			67417.9967

Tabla 16. Hoja de cálculo para el mes de agosto

Distribución de calores por horas para el mes de agosto

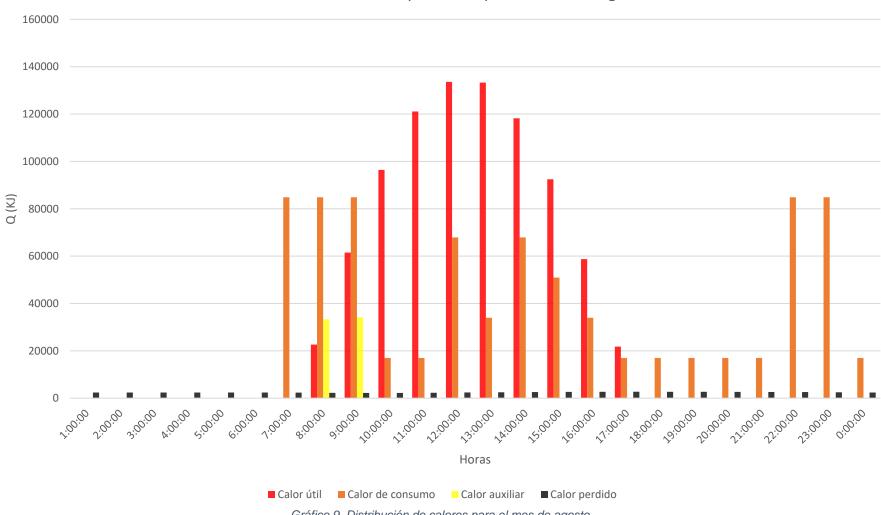


Gráfico 9. Distribución de calores para el mes de agosto

Hora Solar	Hora civil	Tiempo [horas]	T _{amb} [°C]	Consumos Reales	Radiación [KJ/m²]	T _{dep} [ºC]	T _{ce} [ºC]	Rendimiento	Q _{util} [KJ]	T _{cs} [ºC]	Flujo másico dep [Kg/h]	Q _{consumo} [KJ]	Q _{perdido} [KJ]	T _{dep} nueva [ºC]	Q _{aux} [KJ]
0:00:00	1:00:00	0.5	15.267916	0	0	62.1491407	62.1491407	0	0	62.1491407	0	0	2366.27266	62.095227	0
1:00:00	2:00:00	1.5	14.719706	0	0	62.095227	62.095227	0	0	62.095227	0	0	2363.38304	62.0413792	0
2:00:00	3:00:00	2.5	14.4359316	0	0	62.0413792	62.0413792	0	0	62.0413792	0	0	2360.49694	61.987597	0
3:00:00	4:00:00	3.5	14.4359316	0	0	61.987597	61.987597	0	0	61.987597	0	0	2357.61436	61.9338806	0
4:00:00	5:00:00	4.5	14.719706	0	0	61.9338806	61.9338806	0	0	61.9338806	0	0	2354.73531	61.8802298	0
5:00:00	6:00:00	5.5	15.267916	0	0	61.8802298	61.8802298	0	0	61.8802298	0	0	2351.85977	61.8266445	0
6:00:00	7:00:00	6.5	16.043202	700	230.394557	61.8266445	50.0935843	-1.05217427	0	50.0935843	453.721984	84854	2348.98775	59.7064579	12883.5627
7:00:00	8:00:00	7.5	16.9927296	700	737.131387	60	61.6591513	0.04650393	4799.13133	67.2137015	471.73913	84854	2251.08462	57.9913886	88157.9533
8:00:00	9:00:00	8.5	18.05179	700	1306.54066	60	75.9271389	0.25186246	46069.5955	129.24843	471.73913	84854	2251.08462	58.9317045	46887.4891
9:00:00	10:00:00	9.5	19.14821	140	1853.5676	60	89.6642036	0.3306533	85804.3537	188.974798	94.3478261	16970.8	2251.08462	61.4903638	0
10:00:00	11:00:00	10.5	20.2072704	140	2286.96924	61.4903638	101.545784	0.36186749	115861.174	235.644365	91.3869604	16970.8	2330.96403	63.6637293	0
11:00:00	12:00:00	11.5	21.156798	560	2529.99195	63.6637293	109.173849	0.37165282	131639.009	261.533813	349.550874	67883.2	2447.45045	64.9539266	0
12:00:00	13:00:00	12.5	21.932084	280	2538.25408	64.9539266	110.470193	0.37049311	131656.789	262.850735	170.349973	33941.6	2516.60148	67.0696201	0
13:00:00	14:00:00	13.5	22.480294	560	2310.22489	67.0696201	106.438905	0.35208852	113876.512	238.240424	327.117473	67883.2	2629.99684	67.9509533	0
14:00:00	15:00:00	14.5	22.7640684	420	1887.58812	67.9509533	96.8014206	0.31578697	83450.6037	193.387767	241.330305	50912.4	2677.23388	68.5513126	0
15:00:00	16:00:00	15.5	22.7640684	280	1345.3961	68.5513126	83.9703792	0.23678627	44599.9854	135.590733	159.116245	33941.6	2709.41149	68.6790906	0
16:00:00	17:00:00	16.5	22.480294	140	774.562287	68.6790906	70.0407692	0.03632176	3938.68515	74.5994326	79.3722053	16970.8	2716.26003	68.2936092	0
17:00:00	18:00:00	17.5	21.932084	140	261.206114	68.2936092	57.0919098	-0.88603152	0	57.0919098	79.9357431	16970.8	2695.59929	67.8188587	0
18:00:00	19:00:00	18.5	21.156798	140	0	67.8188587	67.8188587	0	0	67.8188587	80.6408776	16970.8	2670.15397	67.344688	0
19:00:00	20:00:00	19.5	20.2072704	140	0	67.344688	67.344688	0	0	67.344688	81.3576789	16970.8	2644.73972	66.8710963	0
20:00:00	21:00:00	20.5	19.14821	140	0	66.8710963	66.8710963	0	0	66.8710963	82.0864386	16970.8	2619.35651	66.3980829	0
21:00:00	22:00:00	21.5	18.05179	700	0	66.3980829	66.3980829	0	0	66.3980829	414.137289	84854	2594.00429	64.2723139	0
22:00:00	23:00:00	22.5	16.9927296	700	0	64.2723139	64.2723139	0	0	64.2723139	431.649119	84854	2480.06891	62.1491407	0
23:00:00	0:00:00	23.5	16.043202	140	0	62.1491407	62.1491407	0	0	62.1491407	90.1366033	16970.8	2366.27266	61.6818937	0
				6720					761695.839			814598.4			147929.005

Tabla 17. Hoja de cálculo para el mes de septiembre

Distribución de calores por horas para el mes de septiembre

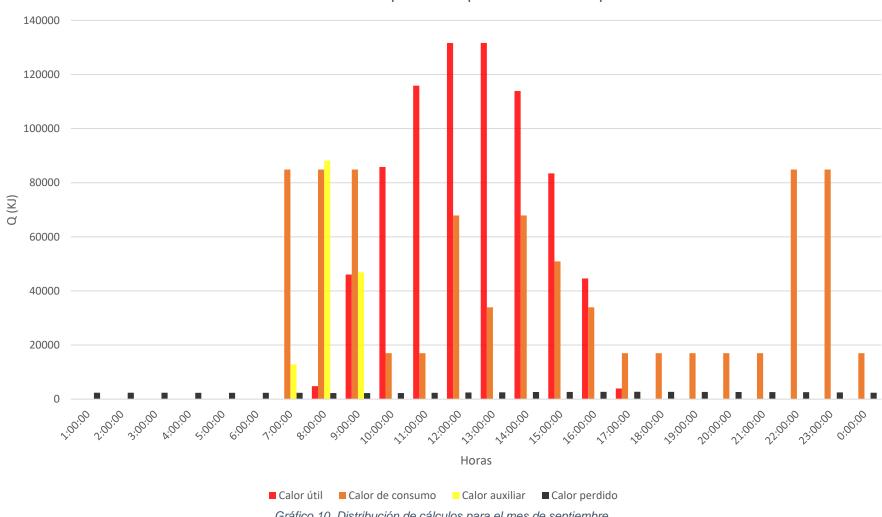


Gráfico 10. Distribución de cálculos para el mes de septiembre

Hora Solar	Hora civil	Tiempo [horas]	T _{amb} [ºC]	Consumos Reales	Radiación [KJ/m²]	T _{dep} [ºC]	T _{ce} [ºC]	Rendimiento	Q _{util} [KJ]	T _{cs} [ºC]	Flujo másico dep [Kg/h]	Q _{consumo} [KJ]	Q _{perdido} [KJ]	T _{dep} nueva [ºC]	Q _{aux} [KJ]
0:00:00	1:00:00	0.5	12.6782483	0	0	60	60	0	0	60	0	0	2411.87638	59.9450472	2411.87638
1:00:00	2:00:00	1.5	12.123512	0	0	60	60	0	0	60	0	0	2411.87638	59.9450472	2411.87638
2:00:00	3:00:00	2.5	11.8363593	0	0	60	60	0	0	60	0	0	2411.87638	59.9450472	2411.87638
3:00:00	4:00:00	3.5	11.8363593	0	0	60	60	0	0	60	0	0	2411.87638	59.9450472	2411.87638
4:00:00	5:00:00	4.5	12.123512	0	0	60	60	0	0	60	0	0	2411.87638	59.9450472	2411.87638
5:00:00	6:00:00	5.5	12.6782483	0	0	60	60	0	0	60	0	0	2411.87638	59.9450472	2411.87638
6:00:00	7:00:00	6.5	13.4627639	700	0	60	60	0	0	60	476.595745	90706	2411.87638	57.8117139	96043.8764
7:00:00	8:00:00	7.5	14.4235954	700	462.072943	60	53.9874207	-0.26884309	0	53.9874207	476.595745	90706	2411.87638	57.8117139	96043.8764
8:00:00	9:00:00	8.5	15.4952637	700	980.011349	60	67.0067174	0.14771755	20267.0825	90.4639889	476.595745	90706	2411.87638	58.2734838	75776.7939
9:00:00	10:00:00	9.5	16.6047363	140	1495.00437	60	79.9686066	0.27596493	57759.6286	146.820029	95.3191489	18141.2	2411.87638	60.8343894	0
10:00:00	11:00:00	10.5	17.6764046	140	1911.1237	60.8343894	91.0266123	0.32640356	87331.6609	192.104924	93.6564688	18141.2	2456.59736	62.341536	0
11:00:00	12:00:00	11.5	18.6372361	560	2146.7942	62.341536	98.0660717	0.34381497	103333.996	217.665604	363.182857	72564.8	2537.37628	62.9314431	0
12:00:00	13:00:00	12.5	19.4217517	280	2154.60157	62.9314431	98.9198335	0.34509928	104097.202	219.402706	179.446045	36282.4	2568.99368	64.3913521	0
13:00:00	14:00:00	13.5	19.976488	560	1932.92333	64.3913521	94.6383246	0.32330758	87490.0255	195.899928	348.6968	72564.8	2647.24079	64.6177632	0
14:00:00	15:00:00	14.5	20.2636407	420	1526.33173	64.6177632	84.9860449	0.27571098	58915.6974	153.17551	260.375482	54423.6	2659.3758	64.6195204	0
15:00:00	16:00:00	15.5	20.2636407	280	1014.66313	64.6195204	72.526501	0.16100427	22871.1133	98.997697	173.577746	36282.4	2659.46998	64.2266939	0
16:00:00	17:00:00	16.5	19.976488	140	493.624677	64.2266939	59.4848874	-0.19847031	0	59.4848874	87.4544044	18141.2	2638.41556	63.7399129	0
17:00:00	18:00:00	17.5	19.4217517	140	0	63.7399129	63.7399129	0	0	63.7399129	88.2934113	18141.2	2612.32544	63.2537264	0
18:00:00	19:00:00	18.5	18.6372361	140	0	63.2537264	63.2537264	0	0	63.2537264	89.1476179	18141.2	2586.26718	62.7681336	0
19:00:00	20:00:00	19.5	17.6764046	140	0	62.7681336	62.7681336	0	0	62.7681336	90.0174403	18141.2	2560.24074	62.2831338	0
20:00:00	21:00:00	20.5	16.6047363	140	0	62.2831338	62.2831338	0	0	62.2831338	90.9033101	18141.2	2534.24608	61.7987263	0
21:00:00	22:00:00	21.5	15.4952637	700	0	61.7987263	61.7987263	0	0	61.7987263	459.028374	90706	2508.28317	59.6082437	17194.1848
22:00:00	23:00:00	22.5	14.4235954	700	0	60	60	0	0	60	476.595745	90706	2411.87638	57.8117139	96043.8764
23:00:00	0:00:00	23.5	13.4627639	140	0	60	60	0	0	60	95.3191489	18141.2	2411.87638	59.5183806	21138.2764
				6720					542066.406			870777.6			416712.142

Tabla 18. Hoja de cálculo para el mes de octubre

Distribución de calores por horas para el mes de octubre

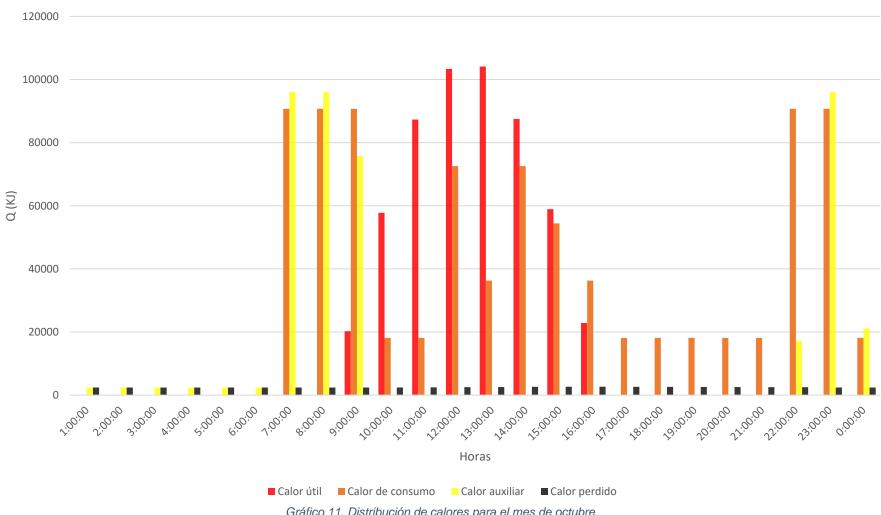


Gráfico 11. Distribución de calores para el mes de octubre

Hora Solar	Hora civil	Tiempo [horas]	T _{amb} [°C]	Consumos Reales	Radiación [KJ/m²]	T _{dep} [ºC]	T _{ce} [ºC]	Rendimiento	Q _{util} [KJ]	T _{cs} [ºC]	Flujo másico dep [Kg/h]	Q _{consumo} [KJ]	Q _{perdido} [KJ]	T _{dep} nueva [ºC]	Q _{aux} [KJ]
0:00:00	1:00:00	0.5	9.48525731	0	0	60	60	0	0	60	0	0	2411.87638	59.9450472	2411.87638
1:00:00	2:00:00	1.5	8.98925778	0	0	60	60	0	0	60	0	0	2411.87638	59.9450472	2411.87638
2:00:00	3:00:00	2.5	8.73250953	0	0	60	60	0	0	60	0	0	2411.87638	59.9450472	2411.87638
3:00:00	4:00:00	3.5	8.73250953	0	0	60	60	0	0	60	0	0	2411.87638	59.9450472	2411.87638
4:00:00	5:00:00	4.5	8.98925778	0	0	60	60	0	0	60	0	0	2411.87638	59.9450472	2411.87638
5:00:00	6:00:00	5.5	9.48525731	0	0	60	60	0	0	60	0	0	2411.87638	59.9450472	2411.87638
6:00:00	7:00:00	6.5	10.1867066	700	0	60	60	0	0	60	485.714286	96558	2411.87638	57.6783806	101895.876
7:00:00	8:00:00	7.5	11.045803	700	195.231601	60	46.209462	-1.45941797	0	46.209462	485.714286	96558	2411.87638	57.6783806	101895.876
8:00:00	9:00:00	8.5	12.0040005	700	597.078035	60	56.3585923	-0.12600472	0	56.3585923	485.714286	96558	2411.87638	57.6783806	101895.876
9:00:00	10:00:00	9.5	12.9959995	140	1014.38634	60	66.8970696	0.14047848	19949.9237	89.987259	97.1428571	19311.6	2411.87638	59.9462576	2358.75272
10:00:00	11:00:00	10.5	13.954197	140	1358.62627	60	75.643312	0.23789061	45248.6199	128.0144	97.1428571	19311.6	2411.87638	60.522669	0
11:00:00	12:00:00	11.5	14.8132934	560	1555.32707	60.522669	81.0836707	0.27313109	59473.1443	149.918328	384.470393	77246.4	2439.89	60.0087947	0
12:00:00	13:00:00	12.5	15.5147427	280	1561.06955	60.0087947	81.1700358	0.28007057	61209.35	152.014191	194.25085	38623.2	2412.34775	60.4417726	0
13:00:00	14:00:00	13.5	16.0107422	560	1374.42069	60.4417726	77.0814392	0.25013446	48130.5973	132.788149	385.099461	77246.4	2435.55418	59.6695658	14502.7568
14:00:00	15:00:00	14.5	16.2674905	420	1036.31257	60	68.6703554	0.17286009	25079.1915	97.6971975	291.428571	57934.8	2411.87638	59.1564574	37023.0848
15:00:00	16:00:00	15.5	16.2674905	280	619.771412	60	58.5263531	-0.0491259	0	58.5263531	194.285714	38623.2	2411.87638	59.0383806	42205.4764
16:00:00	17:00:00	16.5	16.0107422	140	213.560259	60	48.5366545	-1.1090204	0	48.5366545	97.1428571	19311.6	2411.87638	59.4917139	22308.6764
17:00:00	18:00:00	17.5	15.5147427	140	0	60	60	0	0	60	97.1428571	19311.6	2411.87638	59.4917139	22308.6764
18:00:00	19:00:00	18.5	14.8132934	140	0	60	60	0	0	60	97.1428571	19311.6	2411.87638	59.4917139	22308.6764
19:00:00	20:00:00	19.5	13.954197	140	0	60	60	0	0	60	97.1428571	19311.6	2411.87638	59.4917139	22308.6764
20:00:00	21:00:00	20.5	12.9959995	140	0	60	60	0	0	60	97.1428571	19311.6	2411.87638	59.4917139	22308.6764
21:00:00	22:00:00	21.5	12.0040005	700	0	60	60	0	0	60	485.714286	96558	2411.87638	57.6783806	101895.876
22:00:00	23:00:00	22.5	11.045803	700	0	60	60	0	0	60	485.714286	96558	2411.87638	57.6783806	101895.876
23:00:00	0:00:00	23.5	10.1867066	140	0	60	60	0	0	60	97.1428571	19311.6	2411.87638	59.4917139	22308.6764
				6720					259090.827			926956.8			753892.769

Tabla 19. Hoja de cálculo para el mes de noviembre

Distribución de calores por horas para el mes de noviembre

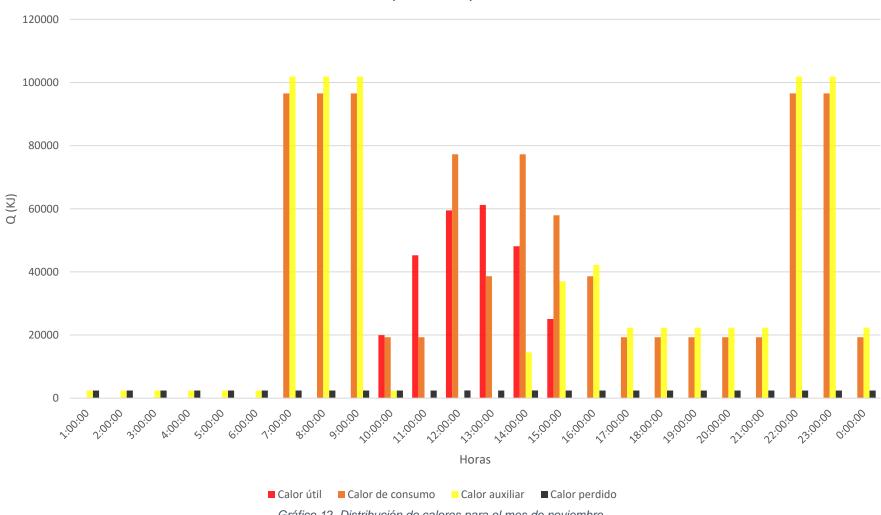
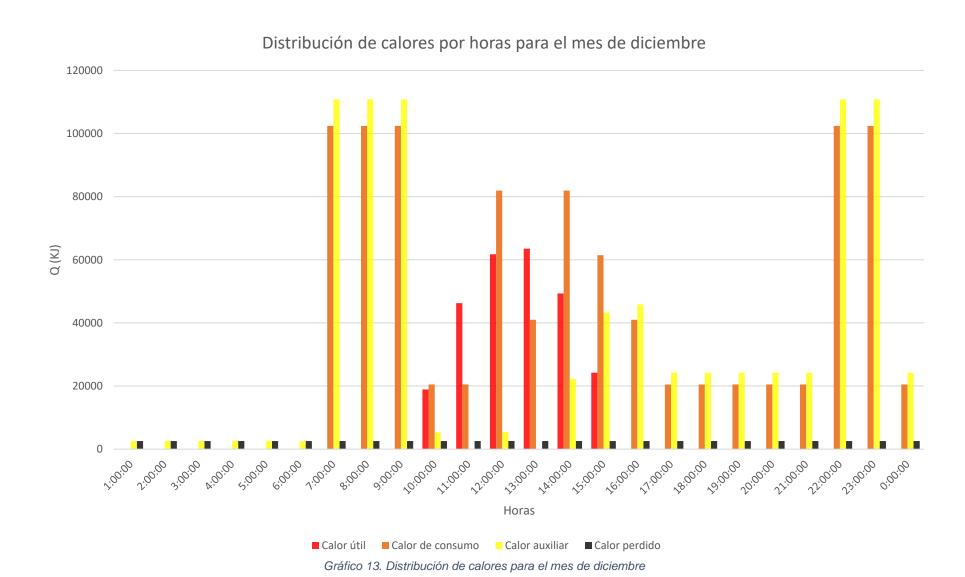



Gráfico 12. Distribución de calores para el mes de noviembre

Hora Solar	Hora civil	Tiempo [horas]	T _{amb} [°C]	Consumos Reales	Radiación [KJ/m²]	T _{dep} [ºC]	T _{ce} [ºC]	Rendimiento	Q _{util} [KJ]	T _{cs} [ºC]	Flujo másico dep [Kg/h]	Q _{consumo} [KJ]	Q _{perdido} [KJ]	T _{dep} nueva [ºC]	Q _{aux} [KJ]
0:00:00	1:00:00	0.5	7.47492497	0	0	60	60	0	0	60	0	0	2572.66814	59.9413837	2572.66814
1:00:00	2:00:00	1.5	6.98545175	0	0	60	60	0	0	60	0	0	2572.66814	59.9413837	2572.66814
2:00:00	3:00:00	2.5	6.73208177	0	0	60	60	0	0	60	0	0	2572.66814	59.9413837	2572.66814
3:00:00	4:00:00	3.5	6.73208177	0	0	60	60	0	0	60	0	0	2572.66814	59.9413837	2572.66814
4:00:00	5:00:00	4.5	6.98545175	0	0	60	60	0	0	60	0	0	2572.66814	59.9413837	2572.66814
5:00:00	6:00:00	5.5	7.47492497	0	0	60	60	0	0	60	0	0	2572.66814	59.9413837	2572.66814
6:00:00	7:00:00	6.5	8.16714464	700	0	60	60	0	0	60	498.076923	102410	2572.66814	57.4747171	110834.668
7:00:00	8:00:00	7.5	9.01493713	700	0	60	60	0	0	60	498.076923	102410	2572.66814	57.4747171	110834.668
8:00:00	9:00:00	8.5	9.96052678	700	583.510498	60	55.254067	-0.16804343	0	55.254067	498.076923	102410	2572.66814	57.4747171	110834.668
9:00:00	10:00:00	9.5	10.9394732	140	1031.69598	60	66.5395495	0.13096182	18915.7892	88.4328241	99.6153846	20482	2572.66814	59.8790322	5309.27893
10:00:00	11:00:00	10.5	11.8850629	140	1405.06947	60	75.9905039	0.23513265	46252.8801	129.52393	99.6153846	20482	2572.66814	60.5018868	0
11:00:00	12:00:00	11.5	12.7328554	560	1619.49695	60.5018868	81.8453676	0.27229127	61736.4822	153.299629	394.652483	81928	2599.56789	59.8759427	5444.87374
12:00:00	13:00:00	12.5	13.425075	280	1626.07322	60	81.9559879	0.27897256	63508.1723	155.460817	199.230769	40964	2572.66814	60.4017021	0
13:00:00	14:00:00	13.5	13.9145482	560	1423.16656	60.4017021	77.449566	0.24749295	49311.3169	134.522849	395.407004	81928	2594.19827	59.4927825	22261.7772
14:00:00	15:00:00	14.5	14.1679182	420	1056.85563	60	68.3752721	0.16373135	24225.6565	96.4142264	298.846154	61446	2572.66814	59.0133467	43304.2116
15:00:00	16:00:00	15.5	14.1679182	280	609.683894	60	57.485325	-0.0852169	0	57.485325	199.230769	40964	2572.66814	58.9547171	45877.4681
16:00:00	17:00:00	16.5	13.9145482	140	0	60	60	0	0	60	99.6153846	20482	2572.66814	59.4480504	24225.0681
17:00:00	18:00:00	17.5	13.425075	140	0	60	60	0	0	60	99.6153846	20482	2572.66814	59.4480504	24225.0681
18:00:00	19:00:00	18.5	12.7328554	140	0	60	60	0	0	60	99.6153846	20482	2572.66814	59.4480504	24225.0681
19:00:00	20:00:00	19.5	11.8850629	140	0	60	60	0	0	60	99.6153846	20482	2572.66814	59.4480504	24225.0681
20:00:00	21:00:00	20.5	10.9394732	140	0	60	60	0	0	60	99.6153846	20482	2572.66814	59.4480504	24225.0681
21:00:00	22:00:00	21.5	9.96052678	700	0	60	60	0	0	60	498.076923	102410	2572.66814	57.4747171	110834.668
22:00:00	23:00:00	22.5	9.01493713	700	0	60	60	0	0	60	498.076923	102410	2572.66814	57.4747171	110834.668
23:00:00	0:00:00	23.5	8.16714464	140	0	60	60	0	0	60	99.6153846	20482	2572.66814	59.4480504	24225.0681
				6720					263950.297			983136			837157.368

Tabla 20. Hoja de cálculo para el mes de diciembre

62

Observando las tablas anteriores, puede calcularse la cobertura energética que dará la instalación de energía solar térmica de media anual. Para ello, se realiza la siguiente relación entre los calores de consumo y auxiliar.

$$(ec. 18) \ Cobertura \ (\%) = \frac{Q_{consumo} - Q_{auxiliar}}{Q_{consumo}} * 100$$

Si la media anual es superior al 30%, se estará cumpliendo con las exigencias del CTE para zona I.

MES	COBERTURA SOLAR (%)
ENERO	9.14
FEBRERO	31.11
MARZO	58.19
ABRIL	68.03
MAYO	85.97
JUNIO	99.94
JULIO	100
AGOSTO	91.72
SEPTIEMBRE	81.84
OCTUBRE	52.14
NOVIEMBRE	18.67
DICIEMBRE	14.85
Media anual (%)	59.3

Tabla 21. Cobertura solar aportada por la instalación de energía solar térmica (Fuente: Propia)

Se puede observar que se cumple con creces el 30% mínimo exigido por el CTE, con lo cual se concluye que todos los valores y equipos considerados son válidos para una instalación de estas características.

2.3. SISTEMA DE ALMACENAMIENTO

Para dimensionar el sistema de almacenamiento de la instalación solar térmica se siguen las indicaciones recogidas en el CTE, así como otras recomendaciones.

Con la acumulación del agua, se consigue almacenar energía durante los periodos de máxima producción para utilizarla cuando llegan las horas de máxima demanda y menor producción de ACS. Además, con la acumulación del agua se

consigue un aumento del rendimiento de la instalación, pues se consigue una reducción en la temperatura de funcionamiento de los captadores solares, que tiene una repercusión negativa en su rendimiento.

Para determinar el volumen de acumulación, el CTE dice lo siguiente:

$$50 < \frac{V}{A} < 180$$

Teniendo en cuenta que la superficie de captación en el presente proyecto es de 140 m².

Además, en diferentes documentos sobre instalaciones de energía solar térmica se recoge que un valor adecuado para determinar dicho volumen de almacenamiento es el de 75 litros por m² de captación solar. Lo que en este caso supondría un volumen de acumulación de:

$$(ec. 19) V = 75 \frac{l}{m^2} * 140 m^2 = 10500 l$$

Dicho valor se encuentra dentro de los márgenes que nos determina el método de cálculo del CTE.

Se selecciona por lo tanto un sistema de almacenamiento de ACS con capacidad para 10000 litros, ya que es el modelo comercial que más se asemeja a lo requerido. Dicho modelo se llama MXV-10000-RB, se añade su ficha técnica al final del proyecto.

La simulación se ha realizado con dicho volumen de acumulación, dando resultados satisfactorios.

2.4. FLUIDO CALOPORTADOR

El fluido caloportador, como su nombre indica, es el encargado de transportar el calor absorbido en los captadores solares desde el circuito primario hasta el agua sanitaria de consumo del circuito secundario. Dicho fluido, al estar expuesto a las inclemencias climatológicas, podría congelarse, lo que haría que la instalación no funcionase correctamente. Para que esto no suceda, se usa una mezcla de agua con anticongelante, de forma que se reduce la temperatura de congelación de la mezcla

por debajo de los 0°C. Para escoger el fluido de trabajo del circuito primario se acude a gráficas en las que se indica el porcentaje de mezcla anticongelante/agua y la temperatura de congelación de esta.

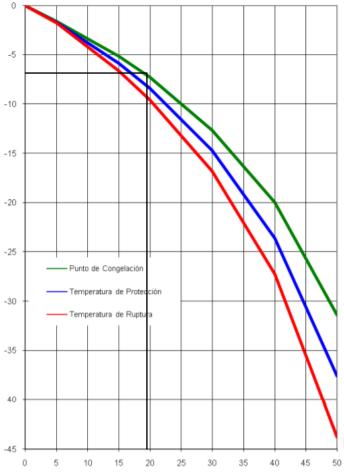


Figura 13. Características porcentaje-temperatura de congelación de la mezcla de agua con propilenglicol (Fuente: Carpemar)

Teniendo en cuenta que la temperatura mínima histórica registrada en Santander es de -1.7°C, se escoge un porcentaje de mezcla cuyo punto de congelación sea igual a -6.7°C, ya que así lo exige el CTE. Así, como se observa en la parte superior, se obtiene que el porcentaje adecuado para el presente proyecto sería del 19%.

Una vez obtenido el porcentaje en peso de la mezcla, se acude a las siguientes gráficas en las que se determina otras características del fluido, como son su calor específico, viscosidad y densidad.

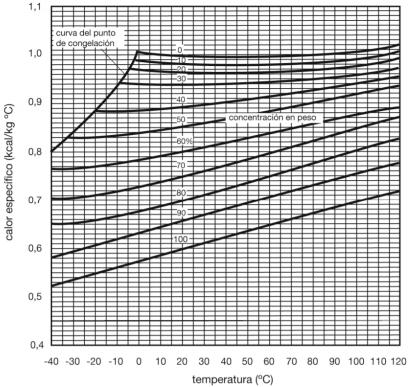


Figura 14. Calor específico de la mezcla propilenglicol-agua

De esta gráfica se obtiene que el calor específico de la mezcla es de 0.96 Kcal/(Kg·oC).

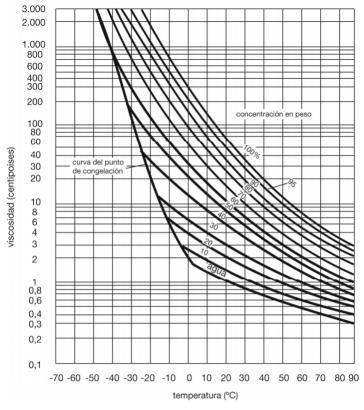


Figura 15. Viscosidad de la mezcla propilenglicol-agua

Se obtiene entonces una viscosidad de 1.1 centipoises.

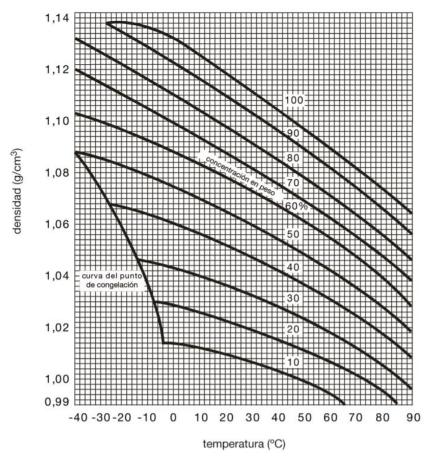


Figura 16. Densidad de la mezcla propilenglicol-agua

Se obtiene una densidad de la mezcla de 1.003 g/cm³.

Resumiendo, las características de la mezcla propilenglicol-agua que circula por el circuito primario son las siguientes:

- Porcentaje de propilenglicol en peso: 19%
- Calor específico: 0.96 Kcal/(Kg.ºC)
- Viscosidad: 1.1 centipoises
- Densidad: 1.003 g/cm³

2.5. SELECCIÓN DE TUBERÍAS

Para la construcción de las tuberías del circuito se selecciona cobre sanitario, de acuerdo con lo estipulado en el CTE. A su vez, se siguen las indicaciones para el cálculo de los diámetros de dichas tuberías.

Para el caudal que circula por el interior de las tuberías, el CTE exige lo siguiente:

$$1.2 \frac{l}{s} por 100 m^2 < C < 2 \frac{l}{s} por 100 m^2$$

Haciendo las conversiones pertinentes:

$$43.2 \frac{l}{h * m^2} < C < 72 \frac{l}{h * m^2}$$

Siendo C el caudal que circula por las tuberías.

Se selecciona un valor intermedio para el caudal. En el presente proyecto se trabaja con un valor de 58 $\frac{l}{h*m^2}$. Se tiene entonces:

(ec. 20)
$$C = 58 \frac{l}{h * m^2} * 140 m^2 = 8120 \frac{l}{h} = 8.12 \frac{m^3}{h}$$

El diámetro de las tuberías se calcula de la siguiente manera:

$$(ec. 21) D = j * C^{0.35}$$

Siendo:

- D: diámetro interior de la tubería, expresado en cm.
- *j*: valor constante, para tuberías metálicas su valor es 2.2.
- C: caudal, expresado en m³/h.

Al contar con varios grupos de captadores solares, no todos los tramos tendrán el mismo diámetro ya que el caudal que circule por cada uno de estos será diferente. De esta forma se tiene:

 1er tramo: el primer tramo une el interacumulador con la primera bifurcación del circuito. En este tramo el caudal es el total del circuito, con lo que:

$$D = 2.2 * 8.12^{0.35} = 4.58 cm = 45.8 mm$$

 2º tramo: abarca desde la primera bifurcación del circuito hasta la primera desviación para hacer la conexión con los captadores solares, con lo que el caudal será la mitad del total del circuito. Entonces:

$$D = 2.2 * 4.06^{0.35} = 3.59 cm = 35.9 mm$$

O 3er tramo: se trata del que existe después de la primera desviación del fluido al primer grupo de los captadores hasta los dos últimos grupos. El caudal en este caso será igual a 2 terceras partes el caudal después de la primera bifurcación.

$$D = 2.2 * 2.71^{0.35} = 3.12 cm = 31.2 mm$$

o 4° tramo: es la conexión a cada uno de los grupos de captadores, por ellos circula un caudal igual a $1.35 \, \frac{m^3}{h}$.

$$D = 2.2 * 1.35^{0.35} = 2.44 cm = 24.4 mm$$

Se acude entonces a la tabla adjunta en el CTE donde se recogen las características de los tubos de cobre.

Dext (mm)	Espesor (mm)	Dint (mm)	Peso lineal (Kg/m)	Superficie pared ext (cm³/m)	Sección interior (mm³)	Capacidad (l/m)	Resistencia útil (Kp/cm³)	Resistencia rotura (Kp/cm³)
22	1	20	0.587	691	314	0.314	44	220
	1.2	19.6	0.698	691	302	0.302	54	269
	1.5	19	0.860	691	284	0.284	69	347
28	1	26	0.753	880	531	0.531	34	169
	1.2	25.6	0.899	880	515	0.515	41	206
	1.5	25	1.111	880	491	0.491	53	264
35	1	33	0.951	1100	855	0.855	27	133
	1.2	32.6	1.134	1100	835	0.835	32	162
	1.5	32	1.405	1100	804	0.804	41	206
42	1	40	1.146	1319	1257	1.257	22	110
	1.2	39.6	1.369	1319	1232	1.232	27	133
	1.5	39	1.699	1319	1195	1.195	34	169
54	1.2	51.6	1.172	1696	2091	2.091	20	102
	1.5	51	2.202	1696	2043	2.043	26	129
63	1.5	60	2.579	1979	2827	2.827	22	110
	2	59	3.411	1979	2734	2.734	30	149

Tabla 22. Características de los tubos de cobre (Fuente: CTE)

Teniendo en cuenta los diámetros interiores calculados se acude a la tabla de arriba y se selecciona el diámetro inmediatamente superior, teniendo, por lo tanto:

- o 1er tramo: tubería de Dint igual a 51 mm y 54 de Dext.
- o 2º tramo: tubería de Dint igual a 39 mm y 42 de Dext.

- 3er tramo: tubería de Dint igual a 32 mm y 35 de Dext.
- o 4º tramo: tubería de Dint igual a 25 mm y 28 de Dext.

De igual forma, se tienen que calcular las pérdidas de carga presentes en el circuito. Las pérdidas de carga se calculan para cada uno de los diferentes tramos anteriormente descritos, y se obtienen de la siguiente gráfica.

Figura 17. Pérdidas de carga para tubería de cobre en mmca por m (Fuente: certificacionenergetica.com)

Se ha de tener en cuenta que esta gráfica sirve para agua cuando se encuentra a 60°C, con lo que a los valores hallados habrá que aplicarles el siguiente factor de corrección, en el que se relaciona la viscosidad del fluido caloportador del circuito primario y la viscosidad del agua a esa temperatura (0.4665 CPS).

(ec. 22) Factor de corrección =
$$\sqrt[4]{\frac{1.1}{0.4665}}$$
 = 1.24

Se obtiene, por lo tanto:

- 1er tramo: se obtienen unas pérdidas de carga de 23 mmca, que tras aplicar el factor corrector se convierten en 28.52 mmca. La velocidad del fluido es de 1.2 m/s.
- 2º tramo: se obtienen unas pérdidas de carga de 9 mmca, que tras aplicar el factor corrector se convierten en 11.16 mmca. La velocidad del fluido es de 0.6 m/s.
- 3er tramo: se obtienen unas pérdidas de carga de 10 mmca, que tras aplicar el factor corrector se convierten en 12.4 mmca. La velocidad del fluido es de 0.55 m/s.
- 4º tramo: se obtienen unas pérdidas de carga de 10 mmca, que tras aplicar el factor corrector se convierten en 12.4 mmca. La velocidad del fluido es de 0.5 m/s.

Con lo que, para dichos tramos las pérdidas de carga totales teniendo en cuenta la longitud de estos serían:

Tramo	Longitud (m)	Pdc unitarias (mmca/m)	Pdc (mmca)	Pdc (mca)
1	13.18	28.52	375.89	0.38
2	82.57	11.16	921.48	0.92
3	63.38	12.4	785.91	0.79
4	63.38	12.4	785.91	0.79
	_			2.87

Tabla 23. Pérdidas de carga en los diferentes tramos en mca (Fuente: Propia)

Para las pérdidas de carga en los colectores solares, se utiliza la fórmula dada por el fabricante:

$$(ec. 23) Pdc_{colectores} = 1.93 * Q^2 + 5.52 * Q$$

Siendo Q el caudal recomendado en l/min, partiendo del valor de 45 l/(h·m²).

$$45 \frac{l}{h*m^2} * 140 m^2 * \frac{1 h}{60 min} = 105 \frac{l}{min}$$

Luego, aplicando la ecuación 23:

$$Pdc_{colectores} = 1.93 * 105^2 + 5.52 * 105 = 21857.85 \ mmca = 21.86 \ mca$$

Además, se tiene en cuenta las pérdidas de carga debidas a los diferentes accidentes que aparecen en las tuberías de circulación del circuito primario. La fórmula de cálculo que da dichas pérdidas es la siguiente:

(ec. 24)
$$Pdc_{singularidades}(mca) = k * \frac{v^2}{2 * g}$$

Siendo:

- k: coeficiente de pérdidas de las singularidades, es adimensional. Se obtiene de distintas tablas.
- v: velocidad del fluido, se mide en m/s.
- g: gravedad, se mide en m/s².

Como para cada tramo del circuito el fluido circula a una velocidad diferente, se estudia dicho valor para cada uno de estos.

1er tramo

Tipo de singularidad	Cantidad (N)	Coeficiente (K)	Resultado (N*K)
Válvula de entrada	1	1.5	1.5
Válvula de salida	1	1	1
Válvula de seguridad	1	2	2
Válvula antirretorno	1	2	2
Codo 90°	3	0.9	2.7
Válvula T	2	1.8	3.6
		TOTAL	12.8

Tabla 24. Singularidades en el 1er tramo (Fuente: Propia)

Entonces, aplicando la ecuación número 24:

$$Pdc_{singularidades}(mca) = 12.8 * \frac{1.2^2}{2 * 9.81} = 0.94 mca$$

2º tramo

Tipo de singularidad	Cantidad (N)	Coeficiente (K)	Resultado (N*K)
Codo 90°	5	0.9	4.5
Válvula T	2	1.8	3.6
		TOTAL	8.1

Tabla 25. Singularidades en el 2º tramo (Fuente: Propia)

Entonces:

$$Pdc_{singularidades}(mca) = 8.1 * \frac{0.6^2}{2 * 9.81} = 0.15 mca$$

3er tramo

Tipo de singularidad	Cantidad (N)	Coeficiente (K)	Resultado (N*K)
Codo 90°	0	0.9	0
Válvula T	4	1.8	7.2
		TOTAL	7.2

Tabla 26. Singularidades en el 3er tramo (Fuente: Propia)

Entonces:

$$Pdc_{singularidades}(mca) = 7.2 * \frac{0.55^{2}}{2 * 9.81} = 0.111 mca$$

4º tramo

Tipo de singularidad	Cantidad (N)	Coeficiente (K)	Resultado (N*K)
Codo 90°	16	0.9	14.4
Válvula T	2	1.8	3.6
Válvula de corte	6	0.5	3
		TOTAL	21

Tabla 27. Singularidades en el 4º tramo (Fuente: Propia)

Entonces:

$$Pdc_{singularidades}(mca) = 21 * \frac{0.5^2}{2 * 9.81} = 0.27 mca$$

Sumando cada una de ellas, se obtiene:

$$Pdc_{singularidades}(mca) = 1.471 mca$$

Una vez obtenidas todas las pérdidas de carga, se obtiene el total del circuito primario:

$$Pdc_{TOTAL} = 26.201 mca$$

2.6. BOMBA DE CIRCULACIÓN

Teniendo en cuenta las pérdidas de carga en esta parte de la instalación, así como el caudal que circula por esta, se selecciona la bomba de circulación. Para ello, se acude a las gráficas características de las bombas, donde se ven reflejando los valores de caudal (Q) y altura (H) que la define.

$$H = 26.201 m$$

$$Q = 8.12 \frac{m^3}{h}$$

Con estos datos, se opta por la bomba de GRUNDFOS modelo CM 10-2, cuya curva característica es la siguiente.

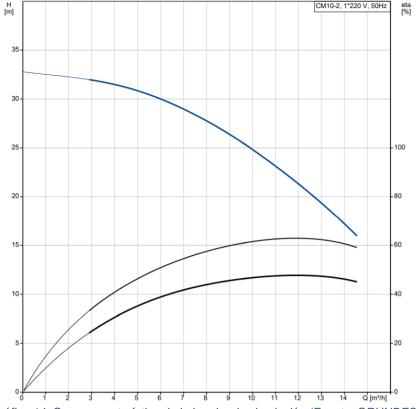


Gráfico 14. Curva característica de la bomba de circulación (Fuente: GRUNDFOS)

Siguiendo las exigencias del CTE, se instalarán dos bombas de este tipo en paralelo, ya que la instalación tiene una superficie superior a 50 m².

2.7. VASO DE EXPANSIÓN

Para el cálculo del vaso de expansión se ha de tener en cuenta el volumen de líquido dilatado, el de reserva y el vaporizado, donde la suma de estos tres es el volumen útil de la instalación.

El volumen dilatado se halla en función del volumen total de la instalación (presente en tuberías y captadores), y del coeficiente de expansión, cuyo cálculo se explica a continuación.

La temperatura máxima que se alcanza en este tipo de instalaciones es de 140°C, con lo cual se calcula el coeficiente de expansión de la instalación para esta temperatura. Dicho coeficiente también depende del porcentaje en peso de propilenglicol presente en la instalación, que para el presente proyecto es del 19%.

Las fórmulas que devuelven el valor del coeficiente de expansión, así como del factor corrector por el cual hay que multiplicar a dicho valor son las siguientes:

$$(ec. 25) C_e = (-33.48 + 0.738 * T) * 10^{-3} * f_c$$
$$(ec. 26) f_c = a * (1.8 * T + 32)^b$$

Siendo a y b factores dependientes del porcentaje de fluido caloportador en la mezcla (G).

$$(ec. 27) a = -0.0134 * (G^2 - 143.8 * G + 1918.2)$$
$$(ec. 28) b = 3.5 * 10^{-4} * (G^2 - 94.57 * G + 500)$$

Para el presente proyecto se obtiene, por lo tanto:

$$a = -0.0134 * (19^{2} - 143.8 * 19 + 1918.2) = 6.0702$$

 $b = 3.5 * 10^{-4} * (19^{2} - 94.57 * 19 + 500) = -0.3275$
 $f_{c} = 6.0702 * (1.8 * 140 + 32)^{-0.3275} = 0.954$
 $C_{e} = (-33.48 + 0.738 * 140) * 10^{-3} * 0.954 = 0.067$

Para el volumen dilatado, se calcula el volumen de líquido presente en las tuberías del circuito con la siguiente fórmula:

(ec. 29)
$$V_{tuberias} = S * L = \pi * (\frac{Dint}{2})^2 * L$$

Para los diferentes tramos, aplicando la ecuación número 29:

o 1er tramo:

$$V_{1er\ tramo} = \pi * (\frac{0.051}{2})^2 * 13.18 = 0.027 \ m^3 = 27 \ litros$$

o 2º tramo:

$$V_{2^{\circ} tramo} = \pi * (\frac{0.039}{2})^2 * 82.57 = 0.098 \, m^3 = 98 \, litros$$

o 3er tramo:

$$V_{3er\ tramo} = \pi * (\frac{0.032}{2})^2 * 63.38 = 0.051 \, m^3 = 51 \, litros$$

o 4º tramo:

$$V_{4^{\circ} tramo} = \pi * (\frac{0.025}{2})^{2} * 63.38 = 0.031 \, m^{3} = 31 \, litros$$

Luego:

$$V_{tuberias} = 207 \ litros$$

Para los colectores se usan los valores que nos facilita el fabricante:

$$(ec.\,30)\,V_{colectores} = 79\,colectores*1.2\frac{litros}{colector} = 94.8\,litros$$

Luego:

$$(ec.31)$$
 $V_{total} = V_{tuberias} + V_{captadores} = 207 + 94.8 = 301.8$ litros

Entonces:

$$(ec. 32) V_{dilatado} = V_{total} * C_e = 301.8 * 0.067 = 20.22 \ litros$$

Con vistas a la posibilidad de tener que purgar la instalación, se dispondrá de un volumen de reserva. Dicho volumen de reserva se calcula según la siguiente fórmula:

$$(ec. 33) V_{reserva} = 0.029 * V_{total} = 0.029 * 301.8 = 8.75 litros$$

Siendo 0.029 una estimación del coeficiente de contracción del líquido.

Para el volumen vaporizado, se considera un 110% del volumen de líquido presente en los captadores:

$$(ec.34) V_{vanorizado} = V_{colectores} * 1.10 = 104.28 litros$$

El volumen útil de la instalación será, por lo tanto:

$$(ec. 35) V_{itil} = 20.22 + 8.75 + 104.28 = 133.25 \ litros$$

Finalmente, se calcula el volumen del vaso de expansión de la siguiente forma:

$$(ec.36) V_{vaso} = V_{\text{útil}} * C_n$$

Siendo C_p el coeficiente de presión, el cual se calcula en función de los valores máximo y mínimo de la presión absoluta de la instalación.

La presión mínima es función de la presión mínima de funcionamiento de la instalación, más un debido coeficiente de seguridad (0.5). Entonces:

$$(ec. 37) P_m = P_{llengdo} + 1 + 0.5$$

(ec. 38)
$$P_{llenado} = P_{minima} + 0.1 * P_{estatica} = 1.5 + 0.1 * 13.18 = 2.82 bar$$

 $P_m = 2.82 + 1 + 0.5 = 4.32 bar$

El valor de P_{minima} varía entre 1.5 y 2.5, se escoge el valor mínimo.

El valor de $P_{estatica}$ se corresponde a la diferencia de altura entre el punto donde se sitúan los captadores y donde está la sala de máquinas.

Para el cálculo de la presión máxima, se utilizan dos fórmulas, utilizándose el menor resultado de los dos.

$$(ec.39) P_M = 0.9 * P_{vs} + 1$$

$$(ec. 40) P_M = P_{\nu s} + 0.65$$

Se selecciona un valor de P_{vs} de 6 bar.

$$P_M = 0.9 * 6 + 1 = 6.4 \ bar$$

$$P_M = 6 + 0.65 = 6.65 \ bar$$

Se selecciona el primero de los valores.

El cálculo del coeficiente de presión será, por lo tanto:

(ec. 41)
$$C_p = \frac{P_M}{P_M - P_m} = \frac{6.4}{6.4 - 4.32} = 3.08$$

Una vez realizados todos los cálculos, se puede determinar el volumen del vaso de expansión de la instalación aplicando la ecuación 36:

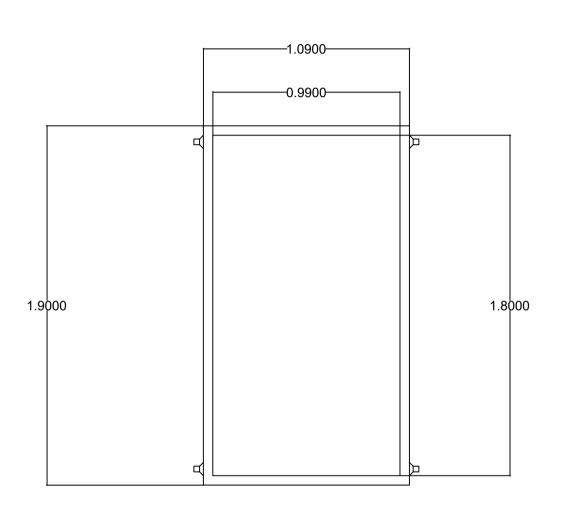
$$V_{vaso} = 133.25 * 3.08 = 410.41 \ litros$$

Se selecciona por lo tanto el modelo 500 CMR de IBAIONDO, con una capacidad de 500 litros.

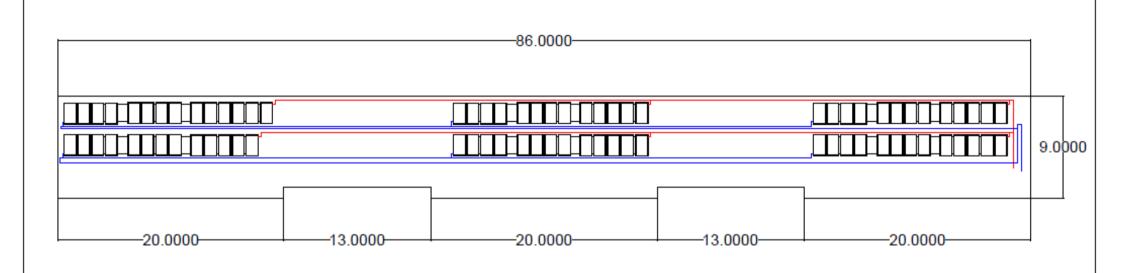
2.8. AISLAMIENTO TÉRMICO

Las tuberías que conforman el circuito primario han de estar correctamente aisladas, ya que al discurrir por el exterior estarán expuestas a las inclemencias climatológicas. Para determinar el aislamiento térmico de dichas tuberías se acude al RITE. De esta forma, haciendo caso a la siguiente tabla se determinan los espesores mínimos de aislamiento para los diferentes tramos que se han explicado.

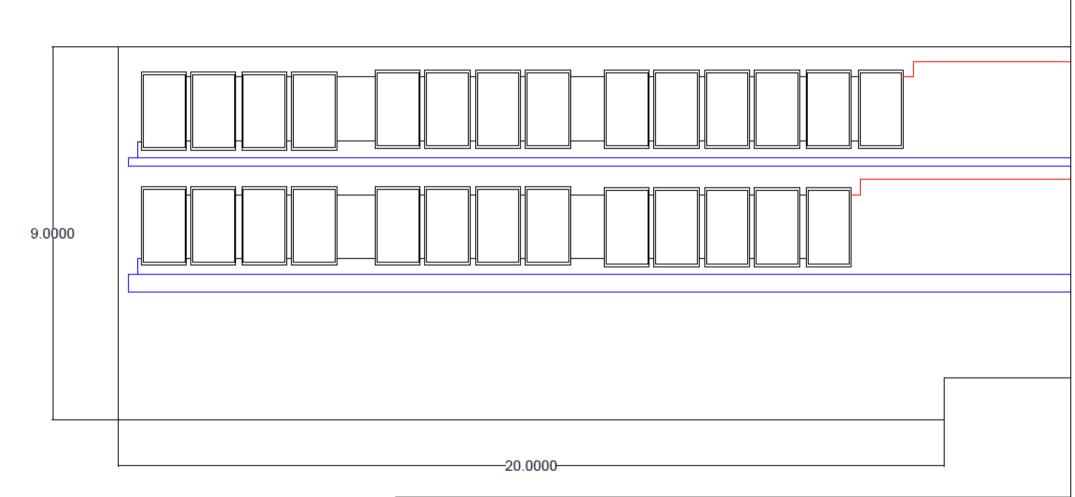
Doyt (mm)	Circulación por interior	Circulación por exterior
Dext (mm)	(mm)	(mm)
Dext < 35	30	40
35 < Dext < 60	35	45
60 < Dext < 90	35	45
90 < Dext < 140	35	45
140 < Dext	40	50

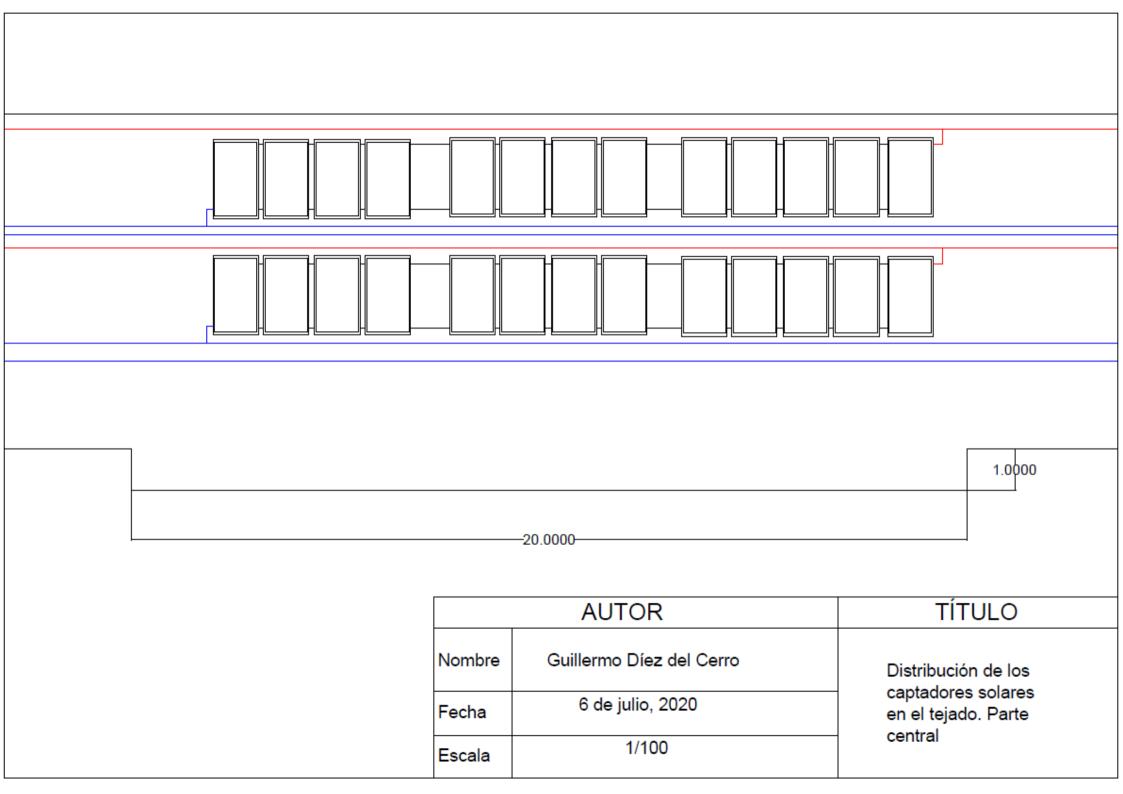

Tabla 28. Espesor mínimo del aislamiento térmico para tuberías de ACS (Fuente: RITE)

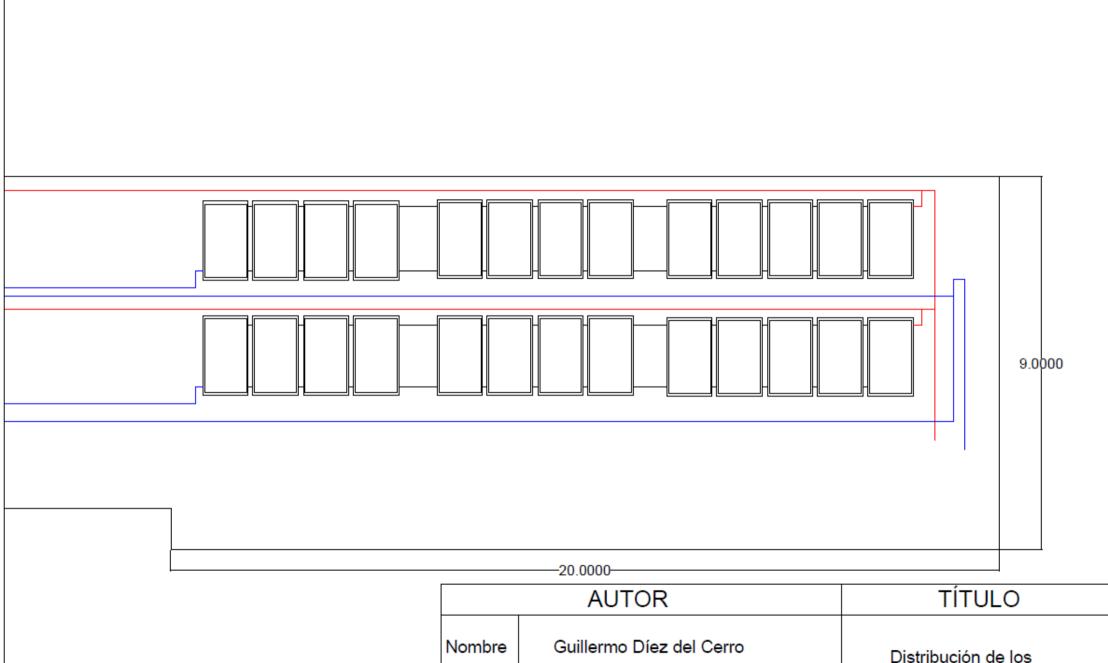
Ya que los tramos se encuentran por el exterior, se toman los valores de la última fila, quedando:


- 1er tramo: se selecciona un aislamiento térmico de 45 mm de espesor.
- o 2º tramo: se selecciona un aislamiento térmico de 45 mm de espesor.
- 3er tramo: se selecciona un aislamiento térmico de 40 mm de espesor.
- o 4º tramo: se selecciona un aislamiento térmico de 40 mm de espesor.

Con ello, se selecciona un aislamiento hecho a base de lana de vidrio con un recubrimiento exterior de chapa de aluminio. El nombre del producto es ULTIMATE PROTECT PIPE Section Alu 2 ISOVER. Como los modelos comerciales solo están disponibles para 25, 30, 40 y 50 mm de espesor, se selecciona el modelo de 50 mm para los tramos 1 y 2, y el de 40 mm para el 3º y 4º.


PLANOS


	AUTOR	TÍTULO
Nombre	Guillermo Díez del Cerro	- Captador solar
Fecha	6 de julio de 2020	- Captadol Solai
Escala	1/20	



	AUTOR	TÍTULO
Nombre	Guillermo Díez del Cerro	Distribución de los
Fecha	6 de julio, 2020	en el tejado. Vista
Escala	SD	- general

	AUTOR	TÍTULO
Nombre	Guillermo Díez del Cerro	Distribución de los
Fecha	6 de julio, 2020	captadores solares en el tejado. Parte
Escala	1/100	izquierda

	AUTOR	TÍTULO
Nombre	Guillermo Díez del Cerro	Distribución de los
Fecha	6 de julio, 2020	en el tejado. Parte
Escala	1/100	derecha

PLIEGO DE CONDICIONES

1. PLIEGO DE CONDICIONES

El objeto de este documento es fijar las condiciones técnicas mínimas que deben cumplir las instalaciones solares térmicas, extendiéndose su aplicación a todo sistema mecánico, hidráulico, eléctrico y electrónico que conforma la instalación.

2. GENERALIDADES DE LOS COMPONENTES

2.1. CAPTADORES SOLARES

Éstos se encontrarán en cajas de madera adecuadas para su traslado o elevación. Dichas cajas se almacenarán en suelo plano y zona cubierta.

Si se almacenan en el exterior se protegerán contra posibles lluvias.

Si han de ser dejados a la intemperie, se colocarán con un ángulo mínimo de 20º y uno máximo de 80º, con la cubierta de cristal mirando hacia arriba.

Nunca se colocarán de manera vertical u horizontal. Además, mientras no estén llenos de fluido caloportador se deberán cubrir para evitar dilataciones excesivas.

2.2. INTERACUMULADORES

Se ubicarán de forma que no molesten la habitabilidad de las estancias, colocándose sobre el suelo y sujeto a éste.

Previo a su instalación, se pueden almacenar de forma vertical u horizontal con su debido embalaje, evitando así golpes y demás daños.

2.3. TUBERÍAS Y DEMÁS ELEMENTOS

Serán de primera calidad, evitando que reciban golpes durante su almacenamiento.

2.4. MATERIALES

Todos los materiales serán de buena calidad y de reconocida marca comercial. Sus dimensiones serán las indicadas en los documentos del proyecto y las que fije la dirección facultativa.

Se someterá a una prueba de reconocimiento a todos los materiales, siendo la dirección facultativa la que dé el visto bueno a su empleo.

Los ensayos de la dirección facultativa se realizarán en laboratorios dedicados a estas prácticas.

Si todos los materiales pasan las pruebas entonces se dará por bueno el empleo de dichos materiales.

3. EJECUCIÓN DE LA OBRA

3.1. CONCEPTOS GENERALES

Las obras referentes a la instalación se realizarán de acuerdo con lo expuesto en el presente proyecto, atendiendo también a lo que dicte la dirección facultativa.

Será el contratista quien facilite los elementos necesarios para la ejecución de los replanteos indicados por el director de obra, así como de sus señalamientos. Si éste causara algún desperfecto en las propiedades colindantes a la del proyecto, las debería restaurar por su cuenta.

Toda la instalación se realizará con materiales y procedimientos que garanticen las exigencias de servicio, durabilidad, salubridad y mantenimiento.

Se seguirán siempre las consideraciones sobre los componentes dadas por los fabricantes, así como la normativa vigente para el montaje de estos.

Será el suministrador quien se encargue de comprobar que el edificio es capaz y cumple los requisitos para soportar la instalación. También será su responsabilidad comprobar la calidad del agua y los materiales empleados, observando que se ajuste a la normativa pertinente. También se encargará de la vigilancia de los materiales durante el almacenaje y montaje.

Los materiales especialmente frágiles deberán ser tratados con máximo cuidado.

Todos los materiales sobrantes de actuaciones anteriores deberán ser evacuados antes de seguir con la ejecución de la obra. Además, al finalizar ésta, se deberán limpiar correctamente todos los equipos.

Se prestará especial atención a la limpieza de las canalizaciones que conforman la instalación. La alineación de estas se realizará con accesorios que permitan centrar los ejes.

Si algún componente resultara dañado por roces, se aplicará pintura con zinc.

Los equipos que dispongan de elementos tipo válvula permitirán su acceso a efectos de labores de mantenimiento.

Las placas de características de los equipos deberán estar siempre a plena vista.

Los elementos de tipo metálico que no estén correctamente protegidos contra la oxidación se recubrirán con una doble mano de pintura antioxidante.

Se utilizarán ánodos de sacrificio para la protección de los circuitos de distribución de ACS.

Se dispondrán puntos de vaciado en todos los equipos y circuitos, de manera que se puedan vaciar de forma parcial o total.

3.2. MONTAJE DE CAPTADORES SOLARES

Se asegurará la estanqueidad de los puntos de anclaje. Se permitirá también el acceso a los captadores de forma sencilla, facilitando así su desmontaje en caso de que sea necesario.

Los captadores solares no podrán estar expuestos al sol un tiempo prolongado durante su montaje, siendo el suministrador el encargado de que esto no suceda. Así como, también se encargará de que no entre suciedad en dichos aparatos.

Si, una vez finalizado el montaje, se prevé que la puesta en marcha de la instalación todavía puede demorarse, se deberán tapar los captadores.

3.3. MONTAJE DEL INTERACUMULADOR

Se tendrán en cuenta las especificaciones del edificio para decidir la ubicación de este componente. Además, si el depósito es de más de 1000 litros, se requerirá el diseño de un profesional.

Toda la estructura de soporte se realizará de acuerdo con la normativa vigente.

Se facilitará el acceso al interacumulador, en vista de posibles operaciones de mantenimiento.

3.4. MONTAJE DEL CIRCUITO HIDRÁULICO

Previo al montaje, se someterá a un examen de comprobación a las tuberías que constituyen el circuito hidráulico.

Se evitarán, en la medida de lo posible, roces, golpes o cualquier tipo de acción que pudiera dañar los materiales. Además, durante su almacenamiento, se les protegerá contra la acción de los diferentes agentes atmosféricos. Las piezas especiales que sean más susceptibles de ser dañadas se almacenarán en locales cerrados.

Las tuberías se instalarán con una distancia mínima de 5 cm entre elementos estructurales y éstas, dejando hueco suficiente para la instalación del aislamiento y accesorios. Siempre discurrirán por debajo de canalizaciones eléctricas que se crucen paralelamente.

Siempre se guardarán las siguientes distancias mínimas en función de la tensión eléctrica:

- Cables bajo tubo (U<1000 V): 5 cm.
- Cables sin protección (U<1000 V): 30 cm.
- (U>1000 V): 50 cm.

Las tuberías del circuito eléctrico deben ser fácilmente desmontables y, además, no se instalarán nunca por encima de motores o cuadros eléctricos. Se evitarán siempre las conexiones que transmitan esfuerzos mecánicos a las tuberías.

En caso de que se produzcan cambios de sección en tramos horizontales, se realizarán en vista de evitar la formación de bolsas de aire. Para ello, se instalarán siempre con una pendiente ascendente del 1% en el sentido de la circulación.

En cuanto a las uniones de las tuberías, se realizarán con manguitos soldados por capilaridad.

Para los soportes de las tuberías se seguirá lo estipulado en la norma UNE 100152.

En tramos de gran longitud, los movimientos de tuberías se compensarán mediante dilatadores axiales.

Los sistemas de seguridad y expansión propios de esta parte de la instalación se realizarán en vista de evitar cualquier acumulación de suciedad o impurezas.

3.5. MONTAJE DE LA BOMBA HIDRÁULICA

El eje de rotación de las bombas se dispondrá de manera horizontal, guardando espacio suficiente en caso de que el conjunto necesite ser desmontado.

La bomba y tubería se acoplarán mediante unión de tipo roscado hasta un diámetro nominal de 32 mm. En dichas conexiones no se provocarán esfuerzos recíprocos, utilizando manguitos antivibración si la potencia fuese superior a 700 W. Además, se dispondrán de diferentes tomas para la medición de presiones, tanto en aspiración como en impulsión.

La bomba se protegerá mediante un filtro de tela metálica colocado aguas arriba.

3.6. MONTAJE DEL AISLAMIENTO

No se permitirá la interrupción del aislamiento térmico en los soportes de las conducciones, no pudiendo quedar interrumpido cuando atraviese elementos estructurales de la vivienda. Si se crean puentes térmicos, estos deberán anularse mediante la instalación de elementos elásticos.

Los instrumentos de medida y control deberán estar a la vista.

Se indicará el tipo de fluido que circula por el interior de las conducciones mediante una señalización hecha con pintura en la capa exterior del aislamiento.

4. MEDICIÓN DE LA OBRA

4.1. PRECIOS

El precio reflejado en el capítulo referente al presupuesto de la instalación incluye todos los aspectos referidos a transporte, descarga, instalación y accesorios de unión de los diferentes equipos.

4.2. ABONOS

El contratista recibirá el abono de las obras aprobadas en función del proyecto, incluyendo las posibles modificaciones previamente autorizadas y las órdenes que reciba del directo de la obra. Dicho abono se recibirá cuando las obras hayan sido finalizadas.

Si, por alguna razón, se introdujera alguna reforma que supusiera una variación del presupuesto inicial estimado, dicho contratista deberá ejecutarla con los precios que figuran en el contrato.

4.3. MEDICIONES

Las longitudes de los circuitos se medirán en metros lineales, utilizando partes proporcionales para diferentes elementos de anclaje y accesorios.

La totalidad de los elementos de la instalación se medirán en unidades totalmente instaladas.

Por su parte, la mezcla anticongelante se medirá en litros como unidad de volumen.

4.4. REPLANTEO

Si hay errores de replanteo, el contratista será el responsable. Además, correrán a su cuenta las operaciones y medios auxiliares necesarios para dichos replanteos.

4.5. COMIENZO DE LAS OBRAS

Las obras comenzarán en un periodo de 15 días tras la firma del contrato, ajustándose a los planos proporcionados por el director de obra. Además, dicho contratista seguirá las leyes, reglamentos y normas vigentes.

4.6. RESPONSABILIDADES

La responsabilidad de la ejecución de las obras recae sobre el contratista. Éste no tendrá derecho a indemnización por posibles errores durante la realización de la obra, ni por posibles excesivos costes. Será, además, responsable ante tribunales en caso de que ocurran posibles accidentes durante la construcción de la instalación.

5. DISPOSICIONES FINALES

5.1. CONDICIONES

5.1.1. Componentes

Los materiales empleados durante el montaje y puesta en marcha de la instalación serán los de mayor calidad, previstos para unas determinadas condiciones de trabajo, las cuales se exponen previamente en el proyecto.

5.1.2. Prescripciones generales de la instalación

Se aplica todo lo estipulado en el Reglamento de Instalaciones Térmicas en Edificios (RITE).

5.2. EJECUCIÓN

La ejecución de las obras se llevará a cabo por personal cualificado, teniéndose en cuenta todas las normas previamente establecidas.

El plazo de ejecución de las obras se verá reflejado en las bases de contratación.

Una vez se haya terminado el montaje, se llevarán a cabo las siguientes labores de control y verificación de funcionamiento:

- Sentido de la bomba
- Sentido de las válvulas antirretorno
- Sondas de temperatura
- Purgamiento de la instalación
- Puesta en marcha y parada del grupo de control
- Ajuste del caudal del circuito primario
- Presión de los circuitos, con comprobación de presencia de golpes de ariete
- Prueba final para la entrega

Además, antes de la prueba final de entrega, se llevará a cabo una simulación en condiciones reales de servicio para verificar su correcto funcionamiento.

5.3. CONDICIONES FACULTATIVAS

5.3.1. Dirección

Será la persona firmante de este proyecto la encargada de realizar la dirección del montaje.

Se seguirán en todo momento lo reflejado en los planos y documentos de este proyecto referentes a la instalación de los diferentes elementos.

El director de montaje será la persona capacitada para variar algún punto de este proyecto.

5.3.2. Interpretación

Será un técnico contratado por la empresa constructora la única persona capacitada para variar las condiciones en la interpretación de un proyecto. De esta forma, será el técnico quien realice la interpretación del proyecto.

5.3.3. Responsabilidades

En caso de que se produjesen sobrecostes en la instalación, o bien maniobras fallidas, será la empresa constructora la responsable de las indemnizaciones.

5.3.4. Duración

Si existiese algún retraso en la fecha señalada para la entrega de la obra, la empresa constructora abonará una cantidad por cada día fuera de plazo.

5.3.5. Exclusividad

Sin autorización por parte de la dirección técnica, no se podrá dar este proyecto a otra empresa por parte de la empresa constructora.

PRESUPUESTO

1. INTRODUCCIÓN

En las instalaciones de energía solar térmica de baja temperatura hay que asegurarse de que la inversión que se va a realizar resultará rentable. Para ello, se realiza un cálculo de un presupuesto orientativo, el cual representará la inversión inicial del proyecto. Teniendo en cuenta la energía ahorrada cada mes con el nuevo sistema a instalar, se calcula la rentabilidad del proyecto mediante el cálculo del VAN.

Este tipo de instalaciones suelen suponer un coste elevado. No obstante, la promoción de este tipo de energías hace que las comunidades autónomas donde se emplaza dicho proyecto subvencionen una parte de estas, haciendo más admisible la inversión inicial a realizar por parte del cliente.

2. PRESUPUESTO

Para el cálculo de la inversión inicial, se desglosan los precios individuales de cada parte del proyecto, añadiéndose un precio orientativo de la obra (10% del presupuesto inicial). Además, se acude al BOC (Boletín Oficial de Cantabria), en donde se hace público una ayuda del 30% del coste de la instalación en caso de que éstas sean de energía solar térmica de baja temperatura.

Teniendo todo esto en cuenta, el presupuesto de la instalación se reparte de la siguiente forma.

COMPONENTE	PRECIO UNITARIO (€/ud) ó (€/m)	UNIDADES (ud) ó (m)	PRECIO TOTAL (€)
Captador solar CHROMAGEN PA-D, instalación y comprobación	444.17	79	35089.43
Acumulador solar LAPESA MXV-10000- RB, instalación y comprobación	24487.00	1	24487.00
Vaso expansión 500 CMR IBAIONDO, instalación y comprobación	1059.65	1	1059.65

Bomba de circulación GRUNDFOS CM10-2 A-R-A-E-AVBE C-A-A- N, instalación y comprobación	447.00	2	894.00
Aislante térmico ULTIMATE PROTECT PIPE Section Alu 2 ISOVER 50 mm	18.20	95.75	1742.65
Aislante térmico ULTIMATE PROTECT PIPE Section Alu 2 ISOVER 40 mm	8.70	126.76	1102.81
Tubería cobre sanitario 54 mm de Dext	18.79	13.18	247.65
Tubería cobre sanitario 42 mm de Dext	12.18	82.57	1005.70
Tubería cobre sanitario 35 mm de Dext	9.96	63.38	631.26
Tubería cobre sanitario 28 mm de Dext	7.62	63.38	482.96
Sondas de temperatura, instalación y comprobación	75.00	2	150.00
Válvula antirretorno	16.85	1	16.85
Válvula de seguridad	18.43	1	18.43
Válvula de corte	9.45	6	56.70
Sistema de purga	19.05	1	19.05
Envase propilenglicol 30 litros	112.00	7	784.00
		Presupuesto total	67788.15
		Coste obra (10%)	6778.81
		Subvención (30%)	20336.45
		Presupuesto final	54230.51

Tabla 29. Desglose de precios y presupuesto de la instalación (Fuente: Propia)

Una vez calculada la inversión inicial a realizar, se estudia si la instalación es rentable o no.

3. RENTABILIDAD

Para estudiar la rentabilidad del proyecto se realiza el cálculo del valor actual neto (VAN) para un periodo de 25 años, ya que esta es la vida media de una instalación de dichas características.

El cálculo del VAN se realiza siguiendo la siguiente fórmula:

$$(ec. 42) VAN = -I_0 + \sum_{i=0}^{n} \frac{CF}{(1+r)^i}$$

Siendo:

- I_0 : inversión inicial a realizar teniendo en cuenta el 30% subvencionado.
- *CF*: flujo de caja, que se calcula de la siguiente manera.

$$(ec. 43) CF = DE_t * C_{KWh} - (DE_t - DE_u) * C_{KWh} - C_m$$

Siendo:

- DE_t : demanda energética total anual, en KWh
- C_{KWh}: coste medio del KWh en España (0.09503 €/KWh)
- DE_u : demanda energética cubierta con la instalación solar térmica, en KWh
- C_m: costes de mantenimiento anual de la instalación (alrededor del 1% del presupuesto), en €
- r: tasa de interés
- i: periodo de cálculo

La tabla que refleja el balance de energía en la instalación a lo largo de un año es la siguiente:

MES	KWh consumido	KWh solar	KWh auxiliar
Enero	8228.85	1707.29	7476.46
Febrero	7432.51	2984.7	5120.56
Marzo	7993.74	5157.87	3341.74
Abril	7735.88	5459.21	2473.16
Mayo	7288.41	6622.2	1022.61
Junio	6825.77	7157.22	4.29
Julio	6598.25	6598.25	0
Agosto	6818.18	6816.29	564.28
Septiembre	6598.25	6169.74	1198.22
Octubre	7288.41	4537.1	3487.91
Noviembre	7508.35	2098.64	6106.53

Diciembre	8228.85	2209.26	7007
TOTAL	88545.45	57517.77	37802.76

Tabla 30. Balance de energía consumida y su forma de obtención (Fuente: Propia)

Se calcula entonces el valor de CF:

 $CF = 88545.45 * 0.09503 - (88545.45 - 57517.77) * 0.09503 - 677.88 = 4788.03 \in$

Para la tasa de interés se supone un valor del 1.5%.

El VAN desglosado en un periodo de 25 años entonces quedaría de la siguiente manera.

Periodo	VAN
1	-49513.24
2	-44865.68
3	-40286.81
4	-35775.60
5	-31331.06
6	-26952.20
7	-22638.06
8	-18387.67
9	-14200.09
10	-10074.40
11	-6009.68
12	-2005.03
13	1940.44
14	5827.60
15	9657.31
16	13430.43
17	17147.79
18	20810.21
19	24418.51
20	27973.48
21	31475.91
22	34926.59
23	38326.27
24	41675.71
25	44975.65

Tabla 31. VAN para periodo de 25 años (Fuente: Propia)

En forma de gráfico:

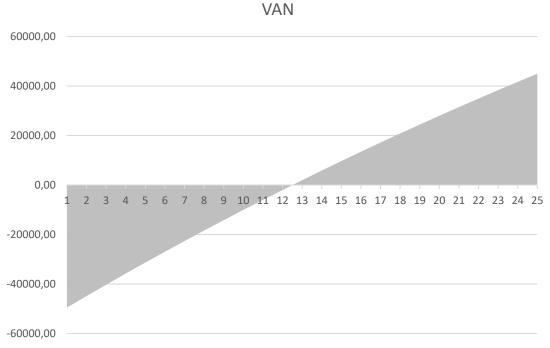


Gráfico 15. Evolución del VAN a lo largo de los años (Fuente: Propia)

Se observa que la instalación empieza a ser rentable una vez han pasado 12 años desde su puesta en funcionamiento. Además, se observa que al final del periodo se han obtenido unas ganancias de 44975.65 €, lo que supone un beneficio de 749.59 € por vivienda.

BIBLIOGRAFÍA

- Reglamento de Instalaciones Térmicas en Edificios (RITE), de: https://energia.gob.es/desarrollo/EficienciaEnergetica/RITE/Paginas/InstalacionesTermicas.aspx
- Código Técnico de la Edificación (CTE). Documento Básico de ahorro de energía (DB-HE), de: https://www.codigotecnico.org/index.php/menu-ahorro-energia.html
- Código Técnico de la Edificación (CTE). Documento básico de salubridad, de: https://www.codigotecnico.org/index.php/menu-salubridad.html
- Atlas de Radiación Solar en España utilizando datos del SAF de Clima de EUMETSAT, de: https://www.aemet.es/documentos/es/serviciosclimaticos/datosclimatol ogicos/atlas radiacion solar/atlas de radiacion 24042012.pdf
- Boletín Oficial de Cantabria (BOC), extracto referente a subvenciones para actuaciones en energías renovables y ahorro y eficiencia energética en Cantabria, de:
 https://boc.cantabria.es/boces/verAnuncioAction.do?idAnuBlob=34609
- Guía Técnica. Condiciones climáticas exteriores del proyecto del IDAE,
 de:
 https://www.idae.es/uploads/documentos/documentos_12_Guia_tecnic_a_condiciones_climaticas_exteriores_de_proyecto_e4e5b769.pdf
- Datos metereológicos para la ciudad de Santander, obtenido de la AEMET, desde:
 http://www.aemet.es/es/serviciosclimaticos/datosclimatologicos/valores climatologicos?l=1109&k=can

 Cálculo del vaso de expansión en instalaciones de energía solar térmica, de la página:

http://javiponce-formatec.blogspot.com/2013/09/calculo-del-vaso-de-expansion-de-una

- Impacto de la Energía Solar Térmica en la Calificación Energética de Edificios del IDEA, de: https://www.idae.es/publicaciones/impacto-de-la-energia-solar-termica-en-la-calificacion-energetica-de-edificios
- Manual de cálculo y diseño de instalaciones de producción de agua caliente sanitaria en edificaciones de viviendas mediante energía solar y apoyo individual a gas natural de Gas Natural.
- Guía Técnica de Energía Solar Térmica del IDAE, de: https://www.idae.es/publicaciones/guia-tecnica-de-energia-solar-termica
- Guía Técnica de mantenimiento de instalaciones térmicas del IDAE, de: https://www.idae.es/en/publications/guia-tecnica-mantenimiento-de-instalaciones-termicas
- Normativa antilegionela, de: http://www.lapesa.es/sites/default/files/legionela_c_4.pdf
- Ejemplo de Pliego de Condiciones Técnicas de Instalaciones de Baja Temperatura, de:
 https://www.idae.es/uploads/documentos/documentos_5654_ST_Pliegode
 o de Condiciones Tecnicas Baja Temperatura 09 082ee24a.pdf
- Rueda Sañudo, C. (2012). ACS, calefacción y refrigeración mediante energía solar térmica en edificio multivienda (Trabajo de Fin de Carrera).
 Obtenido del repositorio UCrea de UNICAN.

 Santoveña Fernández, V. (2016). Proyecto de instalación solar térmica para la producción de ACS de un hotel (Trabajo de Fin de Grado). Obtenido del repositorio UCrea de UNICAN.

FICHAS TÉCNICAS

PA - D

Dimensiones y Pesos

Largo Total	1.900 mm
Ancho Total	1.090 mm
Fondo	90 mm
Área Total	2,10 m ²
Área de Apertura	1,87 m ²
Área del Absorbedor	1,77 m ²

Peso en vacío	31 Kg
Capacidad del fluido	1,2
Fluido caloportador	agua ó agua glicolada
T ^a de estancamiento	220 ℃
Flexión máxima del captador	1.000 Pa

Presiones de prueba y caudal recomendado

Presión de timbre	14 bar
Presión máxima de trabajo	10 bar
Caudal recomendado	45 l/h⋅m2
Caida de presión (mm.c.a.)	1,93·qi ² +5,52·qi (l/min)

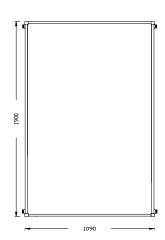
Calidades de fabricación

Absorbedor: Aleta de aluminio soldada por láser a parrilla de conductos de cobre. Recubrimiento selectivo de titanio de alta eficiencia.

Absortividad 0,95 y Emisividad 0,05

Aislamiento: Capa de poliuretano rígido inyectado más capa adicional de lana mineral, ambas de 25mm de espesor.

Vidrio Solar: Panel único de vidrio solar de 3,2mm de espesor rodeado por una junta de goma de EPDM.

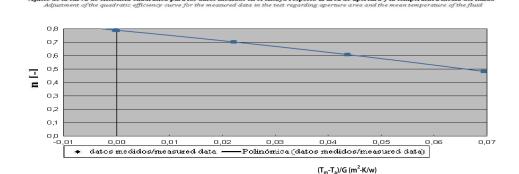

Parrilla de tubos: Cobre de 8mm de díametro conectada a tuberías colectoras de 22mm

Dorso: Polipropileno negro moldeado.

Lámina de aluminio: Adherida al aislamiento actúa como barrera contra pérdidas de calor por el dorso del captador.

Carcasa: Aluminio anodizado AL6063-T5.

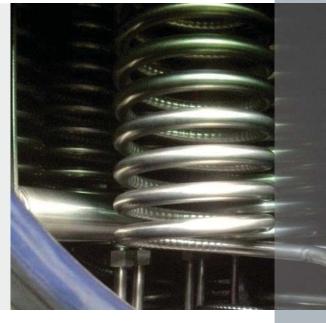
Conexiones roscadas: Conexiones hembra roscadas de 3/4" de bronce



Curva de rendimiento térmico y certificaciones

 η o = 79,7 % k1 = 3,689 W/m2·K k2 = 0,012W/m2·K2

correx-up", o con aislamiento desmontable en fibra de vidrio de 50 ó 100 mm. de espesor con forro en PVC (suministro por separado).


DEPÓSITOS ACUMULADORES ACS DE CAPACIDAD INDUSTRIAL

lapesa

EQUIPAMIENTO

CON SERPENTINES

Los modelos **MXV** y **MV**, pueden ir equipados con uno o dos conjuntos de serpentines desmontables en acero inoxidable **lapesa**, hasta 10 m² de superficie de intercambio por conjunto, adecuándolos a la potencia térmica de la fuente externa y las necesidades de la instalación.

UIPAMIENTO

CON RESISTENCIAS ELÉCTRICAS DE CALENTAMIENTO

La boca de hombre lateral DN400, puede equiparse con resistencias eléctricas de calentamiento de Incoloy 800 de baja densidad de carga, para alcanzar una potencia máxima de 200 kW.

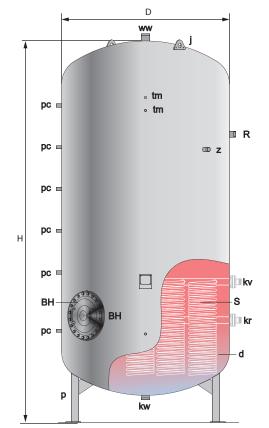
La opción de equipamiento con nuestro sistema "seco" con resistencias cerámicas, permite alcanzar una potencia máxima de 48 kW.

Como fabricación especial, esta gama de depósitos acumuladores puede incorporar una segunda boca de hombre lateral DN400, para alcanzar hasta 400 kW. con resistencias de inmersión, y 96 kW de potencia eléctrica con resistencias cerámicas.

PLICACIONES

DEPÓSITOS ACUMULADORES DE CAPACIDAD INDUSTRIAL 7.000 a 12.000 litros

- Aplicaciones industriales
- Industria alimentaria
- Industria textil
- Instalaciones con gran volumen de acumulación
- Instalaciones centralizadas de ACS
- Centros de gestión energética
- Proyectos específicos



lapesa

DEPÓSITOS ACUMULADORES ACS DE CAPACIDAD INDUSTRIAL

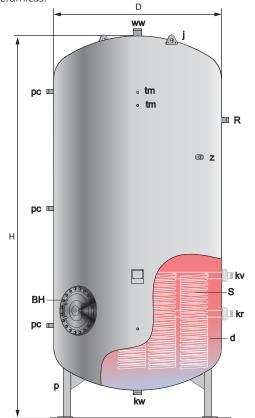
DEPÓSITOS ACS: ACERO INOXIDABLE

- Capacidad: **7.000 a 12.000 litros**.
- Material: acero inoxidable AISI 304 L ó AISI 316 L.
- Presión de trabajo: **8 bar** (opcional 10, 12 bar).
- Temperatura máxima de trabajo: 90°C.
- Boca de hombre lateral **DN400**.
- Tratamiento interno: decapado y pasivado químicos.
- Instalación: vertical (opcional horizontal).
- OPCIONAL: sistema de serpentines desmontables lapesa para producción ACS.
- OPCIONAL: equipo de protección catódica "lapesa correx-up".
- OPCIONAL: resistencias eléctricas de calentamiento, de inmersión o cerámicas.
- OPCIONAL: aislamiento térmico, forro flexible PVC, con fibra de vidrio de 50 ó 100 mm., suministrado aparte.

BH - Boca de paso de hombre lateral DN400

- d Depósito acumulador
- j Orejetas manipulación
- p Pies de elevación
- S serpentines de calentamiento (OPCIONAL)

CARACTERÍSTICAS GENER	ALES	MXV-7000-RB	MXV-8000-RB	MXV-10000-RB	MXV-12000-RB
Capacidad ACS	l.	7000	8000	10000	12000
D: Diámetro exterior H: Altura total	mm. mm.	1750 3633	1750 4058	1750 4808	1750 5808
kw: entrada agua red / vaciado ww: salida ACS z: recirculación ACS R: conexión lateral pc: conexión "lapesa correx-up" tm: conexión sensores Peso en vacío (aprox.) Boca de hombre lateral	" GAS/M " GAS/M " GAS/M " GAS/H " GAS/H " GAS/H Kg DN	3 3 1 1/2 2 3/4 1/2 677 DN400	3 3 1 1/2 2 3/4 1/2 757 DN400	3 3 1 1/2 2 3/4 1/2 887 DN400	3 3 1 1/2 2 3/4 1/2 1059 DN400
OPCIÓN SERPENTINES (superficie intercambio 10 m²)		MXV-7000-SB	MXV-8000-SB	MXV-10000-SB	MXV-12000-SB
kv: entrada primario kr: retorno primario	" GAS/M " GAS/M	2 2	2 2	2 2	2 2
Peso en vacío (aprox.)	Kg	760	860	990	1162


DEPÓSITOS ACUMULADORES DE CAPACIDAD INDUSTRIAI

DEPÓSITOS ACUMULADORES ACS DE CAPACIDAD INDUSTRIAL

lapesa

DEPÓSITOS ACS: ACERO REVESTIDO

- Capacidad: 7.000 a 12.000 litros.
- Material: acero carbono S275JR.
- Presión de trabajo: 8 bar (opcional 10, 12 bar).
- Temperatura máxima de trabajo: 75°C.
- Tratamiento interno: granallado interior SA 2 ½ con 400 micras de revestimiento epoxídico de calidad alimentaria.
- Boca de hombre lateral DN400.
- Tratamiento externo: imprimación antioxidante.
- Protección catódica con ánodo de magnesio.
- Instalación: vertical (opcional horizontal).
- OPCIONAL: sistema de serpentines desmontables lapesa para producción ACS.
- OPCIONAL: resistencias eléctricas de calentamiento, de inmersión o cerámicas.
- OPCIONAL: aislamiento térmico, forro flexible PVC, con fibra de vidrio de 50 ó 100 mm., suministrado aparte.

BH - Boca de paso de hombre lateral DN400

- d Depósito acumulador
- j Orejetas manipulación
- p Pies de elevación
- S serpentines de calentamiento (OPCIONAL)

CARACTERÍSTICAS GENEI	RALES	MV-7000-RB	MV-8000-RB	MV-10000-RB	MV-12000-RB
Capacidad ACS	l.	7000	8000	10000	12000
D: Diámetro exterior H: Altura total	mm. mm.	1750 3633	1750 4058	1750 4808	1750 5808
kw: entrada agua red / vaciado ww: salida ACS z: recirculación ACS R: conexión lateral pc: protección catódica tm: conexión sensores Peso en vacío (aprox.) Boca de hombre lateral	" GAS/M " GAS/M " GAS/M " GAS/H " GAS/H " GAS/H Kg DN	3 3 1 1/2 2 1/2 1 1/2 3/4 1010 DN400	3 3 1 1/2 2 1/2 1 1/2 3/4 1057 DN400	3 3 1 1/2 2 1/2 1 1/2 3/4 1205 DN400	3 3 1 1/2 2 1/2 1 1/2 3/4 1437 DN400
OPCIÓN SERPENTINES (superficie intercambio 10 m²)		MV-7000-SB	MV-8000-SB	MV-10000-SB	MV-12000-SB
kv: entrada primario kr: retorno primario	" GAS/M " GAS/M	2 2	2 2	2 2	2 2
Peso en vacío (aprox.)	Кд	1113	1160	1308	1540

lapesa

DEPÓSITOS ACUMULADORES DE CAPACIDAD INDUSTRIAL

DEPÓSITOS: INERCIA

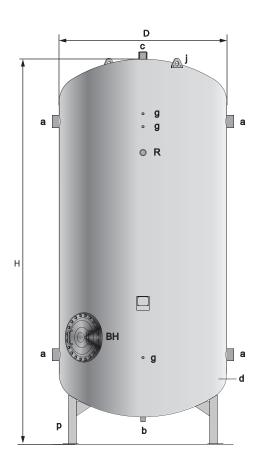
Capacidad: 7.000 a 12.000 litros.

Material: acero carbono S235JR.

Presión de trabajo: 6 bar.

Temperatura máxima de trabajo: 110°C.

Boca de hombre lateral **DN400**.


Tratamiento interno: limpio de partículas.

Tratamiento externo: imprimación antioxidante.

Instalación: vertical (opcional horizontal).

OPCIONAL: resistencias eléctricas de calentamiento.

OPCIONAL: aislamiento térmico, forro flexible PVC, con fibra de vidrio de 50 ó 100 mm., suministrado aparte.

BH - Boca de paso de hombre lateral DN400 d - Depósito acumulador

j - Orejetas manipulación p - Pies de elevación

CARACTERÍSTICAS GE	NERALES	MV-7000-IB	MV-8000-IB	MV-10000-IB	MV-12000-IB
Capacidad	l.	7000	8000	10000	12000
D: Diámetro exterior H: Altura total	mm. mm.	1750 3652	1750 4090	1750 5013	1750 5835
a: conexión lateral b: conexión inferior c: conexión superior R: conexión lateral g: conexión sensores Boca de hombre lateral	" GAS/H " GAS/H " GAS/H " GAS/H " GAS/H DN	4 1 1/4 2 2 2 3/4 DN400	4 1 1/4 2 2 3/4 DN400	4 1 1/4 2 2 3/4 DN400	4 1 1/4 2 2 3/4 DN400
Peso en vacío (aprox.)	Kg	1005	1044	1243	1420

CM10-2 A-R-A-E-AVBE C-A-A-N

Grundfos pump 96935481

Thank you for your interest in our products. Please contact us for more information, or visit our website

https://www.lenntech.com/grundfos/CMBASIS/96935481/CM10-2-A-R-A-E-AVBE.html

info@lenntech.com

tel. +31 152 610 900 fax. +31 152 616 289

Position | Qty. | Description

1

CM10-2 A-R-A-E-AVBE

Product No.: On request

Compact, reliable, horizontal, multistage, end-suction centrifugal pump with axial suction port and radial discharge port. The shaft, impellers and chambers are made of stainless steel. The inlet and discharge parts are made of cast iron. The mechanical shaft seal is a special designed, unbalanced O-ring seal. Pipework connection is via internal Whitworth pipe threads, Rp (ISO 7/1).

The pump is fitted with a 1-phase, foot-mounted, fan-cooled asynchronous motor.

Further product details

Pump and motor are integrated in a compact and user-friendly design. The pump is fitted to a low base plate, making it ideal for installation in systems where compactness is important.

The state-of-the-art design and materials of the shaft seal ensure high wear resistance, improved sticking and dry-running capabilities and long operating life.

Servicing the pump requires no special service tools. Service parts are in stock for quick delivery and are available as kits, single parts or bulk. Service videos are available on www.youtube.com.

Pump

A combination of a stop ring and a Nord-lock® washer secures a tight and reliable fixation of the impeller spacing pipes to the splined pump shaft. It is possible to remove and fit the hydraulic parts from the pump side. The inlet part, chambers and discharge part are hold together by four staybolts.

The pump is fitted with an unbalanced O-ring seal with a rigid torque-transmission system. It has a fixed seal driver ensuring a reliable rotation of all parts. The dynamic secondary seal is an O-ring.

Primary seal:

- Rotating seal ring material: aluminium oxide (alumina)
- Stationary seat material: carbon graphite, resin-impregnated

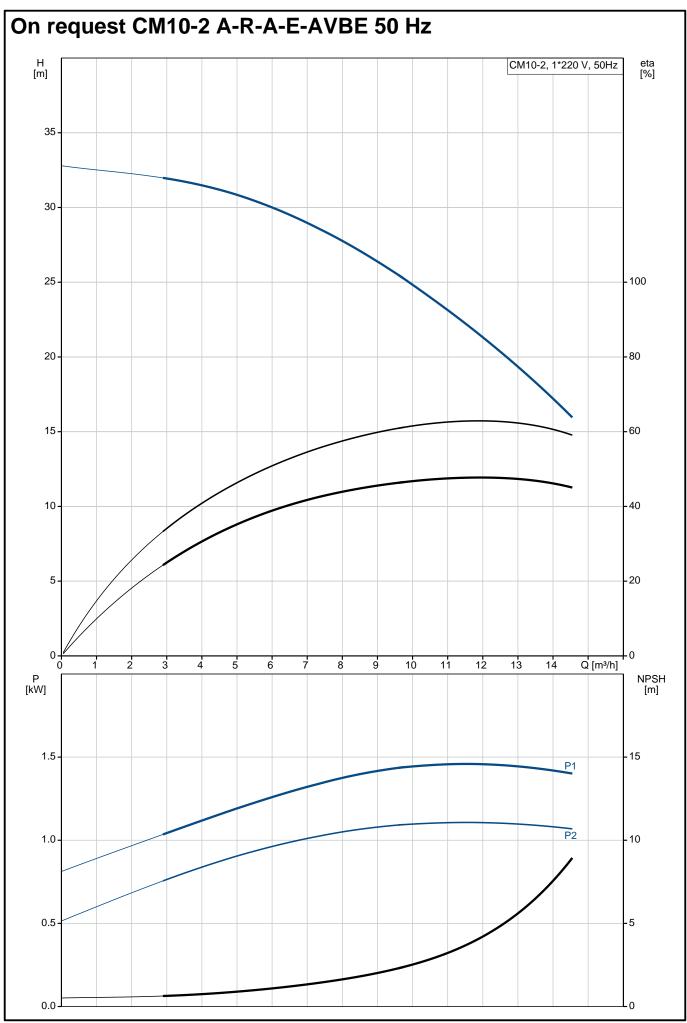
Carbon graphite against alumina is a good all-round seal for not too demanding applications. The corrosion resistance is often limited in water to a range between pH 5 and pH 10. Usage in liquids above 90 °C is not recommended. The seal can handle dry-running conditions for short periods.

Secondary seal material: EPDM (ethylene-propylene rubber)

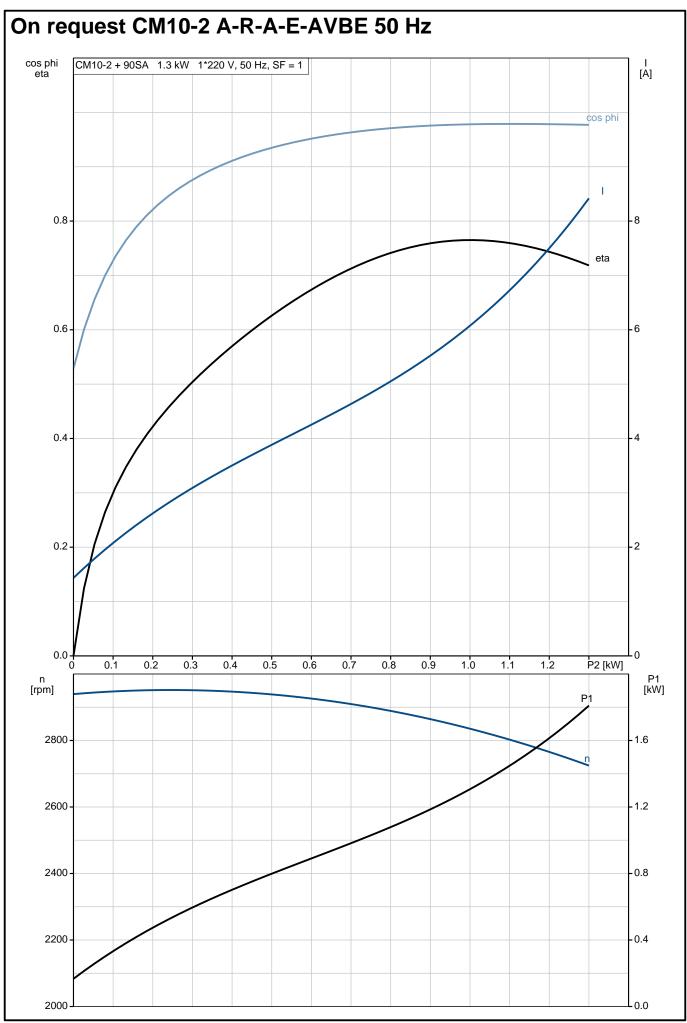
EPDM has excellent resistance to hot water. EPDM is not suitable for mineral oils.

The pump shaft is connected to the motor shaft through a left thread and tight fit. The shaft cannot be dismantled.

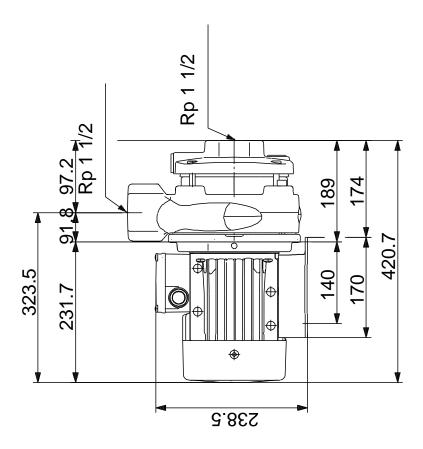
Motor

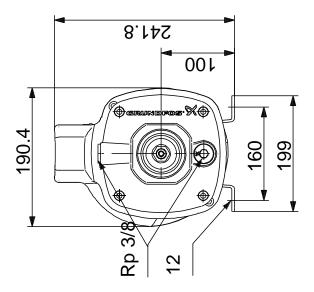

The motor is a totally enclosed, fan-cooled motor with principal dimensions to EN 50347. Electrical tolerances comply with EN 60034.

The motor has built-in thermal protection (PTO current and temperature sensors) in accordance with IEC 60034-11 and requires no further motor protection. The protection reacts to both slow- and quick-rising temperatures, e.g. constant overload and stalled conditions.

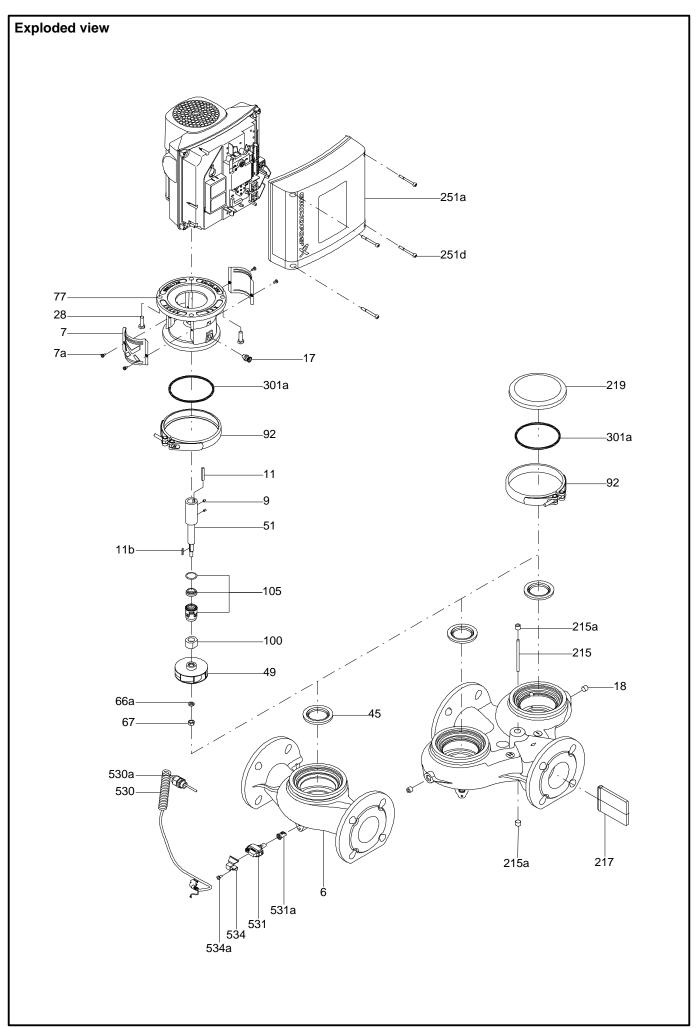

As the thermal protection incorporates automatic reset, the motor must be connected in a way which ensures that the automatic reset cannot cause accidents.

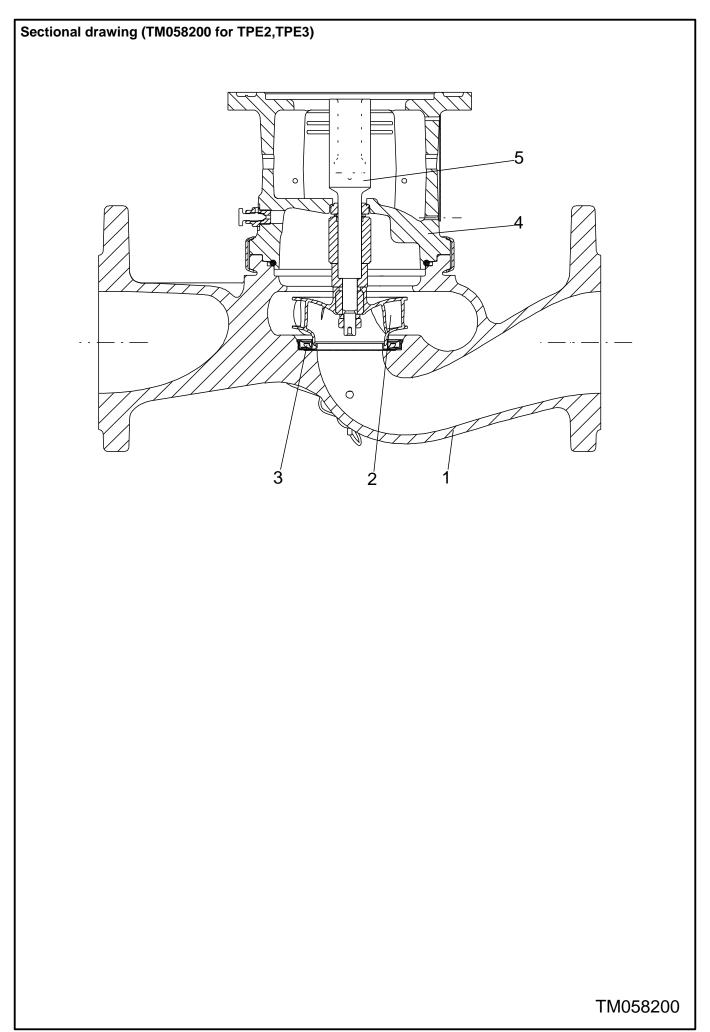
Technical data

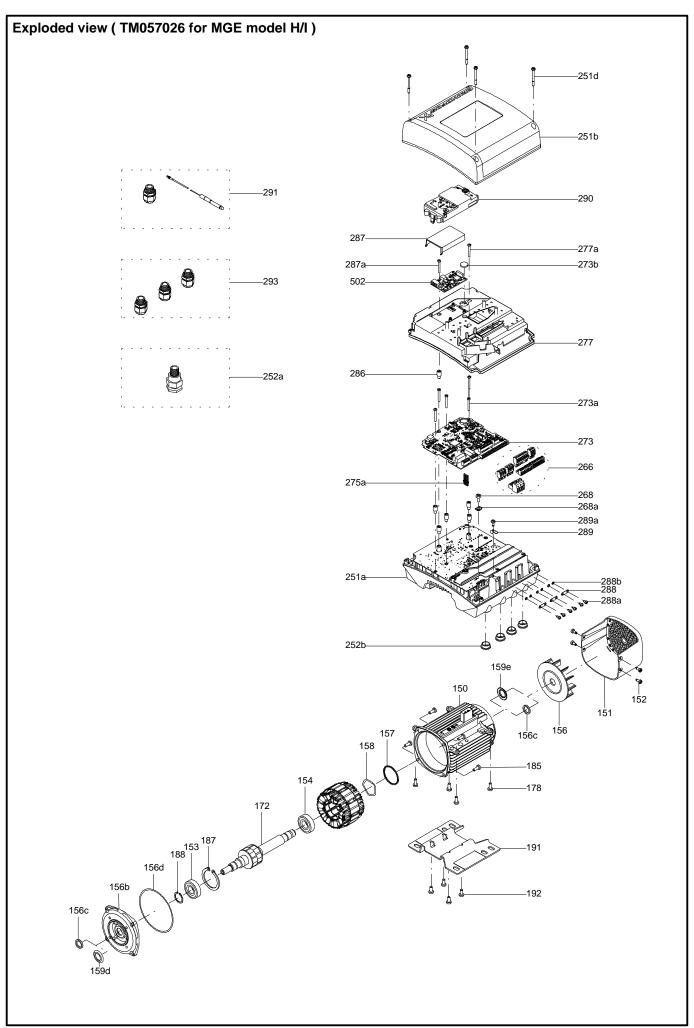

Position	Qty.	Description	
		Liquid:	
		Pumped liquid:	Water
		Liquid temperature range:	-20 90 °C
		Liquid temperature during opera	
		Density:	998.2 kg/m³
		Technical:	40 00
		Rated flow:	10 m³/h
		Rated head:	27.1 m
		Primary shaft seal: Approvals on nameplate:	AVBE CE,WRAS,ACS,TR,EAC
		Curve tolerance:	ISO9906:2012 3B
		Materials:	
		Pump housing:	Cast iron
		· · · · · · · · · · · · · · · · · · ·	EN-JL1030
			ASTM 30 B
		Impeller:	Stainless steel
			DIN WNr. 1.4301
			AISI 304
		Rubber:	EPDM
		Installation:	
		Maximum ambient temperature:	
		Maximum operating pressure:	
		Max pressure at stated temp:	6 bar / 90 °C
		<u>_</u>	10 bar / 40 °C
		Flange standard:	WHITWORTH THREAD RP
		Pump inlet:	Rp 1 1/2
		Pump outlet:	Rp 1 1/2
		Electrical data:	0004
		Motor type:	90SA
		Rated power - P2:	1.3 kW 50 Hz
		Mains frequency: Rated voltage:	1 x 220-240 V
		Service factor:	1 x 220-240 v
		Rated current:	8.4-8.0 A
		Starting current:	340 %
		Rated speed:	2710-2710 rpm
		Enclosure class (IEC 34-5):	IP55
		Insulation class (IEC 85):	F
		Others:	
		Minimum efficiency index, MEI	: 0.7
		Net weight:	29.8 kg
		Gross weight:	32.3 kg



Description	Value	H [m]		CM10-2	, 1*220 V, 50Hz eta [%]
General information:					
Product name:	CM10-2 A-R-A-E-AVBE	35 -			
Product No:	On request	-			
EAN number:	On request	30 -			
Technical:	•				
Rated flow:	10 m³/h				
Rated head:	27.1 m	25 -			100
Impellers:	2				
Primary shaft seal:	AVBE	20			-80
Approvals on nameplate:	CE,WRAS,ACS,TR,EAC	20-			
Curve tolerance:	ISO9906:2012 3B				
Pump version:	A	15			-60
Model:	A				
Materials:	A				
	Continue	10			- 40
Pump housing:	Cast iron				
	EN-JL1030	5 -			-20
	ASTM 30 B				
Impeller:	Stainless steel		/		
	DIN WNr. 1.4301	0 <u>//</u>	2 4 6	9 12	0 [m3/h]
	AISI 304	0 P [2 4 6	8 10 1	2 Q [m³/h] NPSH
Material code:	A	[kW]			[m]
Rubber:	EPDM				
Code for rubber:	Е	1.5			P1 - 15
Installation:					
Maximum ambient temperature:	55 °C				
Maximum operating pressure:	10 bar	1.0			P2 10
Max pressure at stated temp:	6 bar / 90 °C	•			
ax p. eesare at etatea temp.	10 bar / 40 °C	0.5			5
Flange standard:	WHITWORTH THREAD RP	0.5			/
Pump inlet:	Rp 1 1/2				
Pump outlet:	Rp 1 1/2	0.0 <u></u>			0
		-			
Connect code:	R				
Liquid:	107			323.5	→
Pumped liquid:	Water			231.7	91.8 97.2
Liquid temperature range:	-20 90 °C		190.4		Rp 1 1/2
Liquid temperature during operation:	20 °C				
Density:	998.2 kg/m³	Rp 3/8/		0	Rp 1 1/2
Electrical data:		AT	24.8	238.5	
Motor type:	90SA	12	9 5		
Rated power - P2:	1.3 kW	ì	160	140	189
Mains frequency:	50 Hz	<u> </u>	199	170	174
Rated voltage:	1 x 220-240 V			420.7	
Service factor:	1				
Rated current:	8.4-8.0 A				
Starting current:	340 %				
Rated speed:	2710-2710 rpm				
Enclosure class (IEC 34-5):	IP55				
Insulation class (IEC 85):	F				
Motor protec:	TP211	-			
Others:	11 411	[·····i	
	0.7		F		
Minimum efficiency index, MEI:	0.7	X ≥			
Net weight:	29.8 kg	BLACK			
Gross weight:	32.3 kg	E E			
		<u> </u>	<u> </u>		
		AUX		2) (U2) (V2)	
		AUX		ı) (V1) (W1)	_
		.	■		
		Z S		1	1
		LUE			
		BLUE			
		-		3 1	
				\triangle	




On request CM10-2 A-R-A-E-AVBE 50 Hz



Note! All units are in [mm] unless others are stated. Disclaimer: This simplified dimensional drawing does not show all details.

Parts list CM10-2, Product No. On request Valid from 2.7.2009 (0927)

Pos	Description	Annotation	Données de classification	Référence	Quantité	Unité
	MG90SA				1	pcs
	Cross recess countersunk screw				4	pcs
2	Discharge				1	pcs
4	Chamber				1	pcs
	Retainer for seal ring				1	
	Guide vane				10	
	Front plate				1	
3a	Intermediate chamber				1	
45	Seal ring				1	
65	Neck ring retainer				1	
6	Inlet part cpl.				1	pcs
6	Inlet part cpl.				1	
45	Seal ring				1	
65	Neck ring retainer				1	
25	Drain plug cpl.				2	pcs
11	O-ring		Diameter: 18,5		1	•
			Material type: EPDM			
			Thickness: 2			
25	Plug				1	
26	Hex socket head cap screw		Length (mm): 40		4	pcs
	The second mean cap cone in		Thread: M08		•	Poo
26	Hex socket head cap screw		Length (mm): 80		2	pcs
	The second mean cap cone in		Thread: M8		<u>-</u>	Poo
36	Lock nut		Thread: M8		1	pcs
49	Impeller cpl.		THI GGG. IVIO		2	pcs
51	Pump shaft		Diameter: D16		1	pcs
64	Spacing pipe		Biameter. B to		1	pcs
64.a	Spacing pipe				1	pcs
64.c	Clamp				1	pcs
66	Wedge lock washer				1	pcs
76	Nameplate				2	•
105	Shaft seal				1	pcs pcs
103	O-ring		Diameter: 22,00		1	pcs
102	O-IIIIg		Material type: EPDM		'	
			Thickness: 2,75			
103	Cool ring stationers		THICKHESS. 2,75		1	
	Seal ring, stationary					
104	Seal ring, rotating		Diameter 45 5		1	
107	O-ring		Diameter: 15.5		1	
			Material type: EPDM			
400	Companyage in the second secon		Thickness: 3.18			
108	Compression spring				1	
111	Retainer				1	
112	Driver for shaft seal				1	
	Stop ring				1	pcs
139.b	Gasket		Internal diameter: D139		1	pcs
40-			Outer diameter: D146,5			
	Gasket				1	pcs
151	Fan cover				1	pcs
152	Pan head thread forming screw				4	pcs
156	Fan				1	pcs
191	Foot				1	pcs

Disclaimer: The information about the Grundfos pump in this document may be outdated. Data may be subject to alterations without further notice.

Please contact us to verify the data above is still accurate/up-to-date.

All information is copyright Grundfos.

info@lenntech.com https://www.lenntech.com tel. +31 152 610 900 fax. +31 152 616 289

SMR-P VERTICAL (200 – 1.000 Litros)

 ϵ

Vasos de expansión de membrana Sistemas cerrados de energía solar

- Vasos de expansión de membrana para sistemas cerrados de energía solar
- Material: Acero
- Membrana recambiable, según EN 13831, especial para soportar picos de temperatura de hasta 130°C durante una hora
- Conexión de agua en acero cincado (R 1 1/2")
- Tapa superior en acero cincado (R 1")
- Aptos para uso de anticongelantes hasta el 50%
- Válvula de hinchado
- Gas precarga: Aire
- Acabado exterior mediante pintura en color Blanco
- Fabricados conforme a la Directiva 2014/68/UE
- 2 años de garantía

Especificaciones técnicas

Volumen:

Membrana:

Presión máxima servicio:

• Presión de prueba:

Precarga EXWORKS:

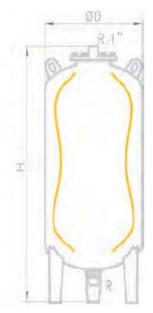
Temperatura máxima de servicio:

Temperatura mínima de servicio:

Conexión de agua:

200 – 1.000 Litros

Recambiable 10 Bar


15 Bar

2,5 Bar

100°C

-10°C

R 1 1/2" G.M

Peso (Kg)	Código	Modelo	Volumen (Lts.)	Presión (Bar)	ØD (mm)	H (mm)	Conexión agua R
49	03200070	220 SMR	200	10	485	1.400	1 ½"
60	03300070	350 SMR	300	10	485	1.965	1 ½"
90	03500070	500 SMR	500	10	600	2.065	1 ½"
158	03700070	700 SMR	700	10	700	2.145	1 ½"
274	03910070	1000 SMR	1.000	10	800	2.375	1 ½"

INDUSTRIAS IBAIONDO, S.A. – Plentzia bidea, 3 – 48100 MUNGIA (BIZKAIA) ESPAÑA Tel.: (+34) 946740400 Fax: (+34) 946740962

www.ibaiondo.com

ULTIMATE PROTECT Pipe Section Alu2

Aislamiento para Tuberías

Coquilla de Lana ULTIMATE, de forma cilíndrica y con una apertura practicada en su generatriz, revestida por su cara exterior con una lámina de aluminio reforzada con malla de vidrio, que actúa como barrera de vapor. Por sus altas prestaciones térmicas y su excelente comportamiento contra el fuego, ULTIMATE PROTECT Pipe Section Alu2, es la solución idónea para el aislamiento de redes de tuberías en las instalaciones térmicas y equipos en el interior de los edificios, tanto residenciales como industriales.

RITE Propiedades técnicas

1 Topicadaes tecineas					
Símbolo	Parámetro	Icono	Unidades	Valor	Norma
$\lambda_{_{ m D}}$	Conductividad termica declarada en función de la temperatura*		W/m·K (°C)	0,037 (50) 0,052 (150) 0,062 (200) 0,089 (300)	EN-ISO 8497
_	Reacción al fuego	(b)	Euroclase	A2L-s1, d0	EN 13501-1 EN 15715
ST	Temperatura máxima de servicio		°C	620°	EN 14707
MU	Resistencia a la difusión de vapor de agua de la lana mineral, µ		-	1	EN 12086
Z	Resistencia a la difusión de vapor de vapor de agua del revestimiento		m²•h•Pa/mg	130	EN 12086
MV	Espesor de la capa de aire equivalente a la difusión del vapor de agua. Sd		m	200	EN 12086

Espesor d (mm)	Diámetro interior d _{I,} mm	Código de designación
EN 13467		EN 14303
25 120	21-140	MW-EN 14303-T8-ST(620)-MV2
25-120	150-273	MW-EN 14303-T9-ST(620)-MV2

Presentación

	Espesor d (mm) (1)									
Temp. máx. (°C)	40-60	30, 40				40 FO				
	60-100	30, 40			40		40, 50			
	100-180	4	0	50 ⁽²⁾		50				
Diámetro interior	D _{int} (mm)	42	48	60	76	89	114	140	169	219
	D _{int} (pulgadas)	11/4	11/2	2	2 1/2	3	4	5	6	8
Longitud I (m)		1,20								

También disponible en diámetros de 21, 27, 34 mm ($\frac{1}{2}$, $\frac{3}{4}$, 1 pulgadas), en espesor de 25 mm.

ISOVERes

18			
18			
18			
	18	18	
	12	18	
	12	12	
	12	12	
	12(1)	12	
	12	12	12
	12	12	12
	12	12	40
		32	28

Espesores

40 Cajas/

30

50

Cajas/

Palet

Cajas de 1,22 x 0,39 x 0,37 m. Cajas de 1,22 x 0,51 x 0,46 m.

Embajale Individual

Palets/Camión: 24. Palets/Camión: 20 - 18⁽¹⁾ Palets/Camión: 24.

Palet

Ventajas

- Facilidad de colocación sobre la tubería gracias a su apertura Iongitudinal.
- Incorpora lengüeta autoadhesiva que facilita el cierre de forma sencilla.
- Evita condensaciones en las tuberías.
- Material inerte que no es medio adecuado para el desarrollo de microorganismos.
- Producto sostenible. 100% reciclable. Material reciclado > 50%.
- No corrosivo frente a metales. Ver curva de Karnes:

Curva de Karnes ppm Zona corrosiva Zona no corrosiva

(1): posición de las lanas minerales de

Na+ SiO3

Certificados

Guía de instalación

Información adicional disponible en: www.isover.es

www.isover.es

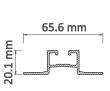
@ISOVERes

f ISOVERaislamiento

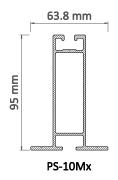
ISOVER Aislamiento

S ISOVER Aislamiento

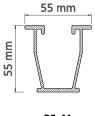
ISOVERaislamiento

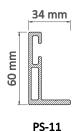

^{*}Se estima una conductividad térmica a 10°C de 0,032 W/m·K. ** La temperatura del revestimiento no debe superar los 80° C

[©] Cumplimiento de las exigencias del RITE
Disponible en 50 mm bajo pedido.

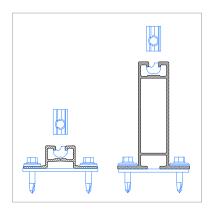


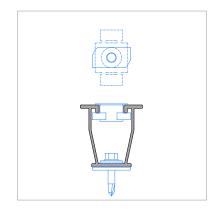
Perfiles de aluminio sin mecanizar

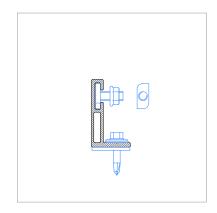

Perfiles serie PS Direct


PS-10

- Perfiles base para montar sobre cubierta con la mínima inversión en fijaciones.
- Posibilidad de cortarlos a largos de hasta 12m con una tolerancia para medidas pequeñas de hasta 0,1mm
- Se complementan con junta de EPDM autoadhesiva (pre -montada bajo pedido).
- Guía carril para tuercas y tornillos T-Slot y tuercas y tornillos 28/15.
- Fabricados en aluminio de alta calidad 6082-T6

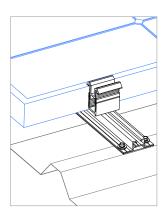


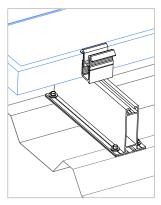

PS-41

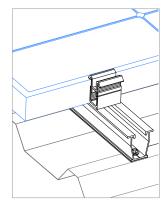


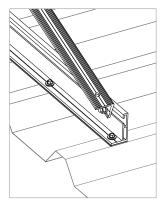
Referencia	Denominación
1.01.0018-0	Perfil aluminio largo sin mecanizar serie PS10 Direct
1.01.0023.0	Perfil aluminio largo sin mecanizar serie PS10MX Direct
1.01.0009-0	Perfil aluminio largo sin mecanizar serie PS11 Direct
1.01.0003-0	Perfil aluminio largo sin mecanizar serie PS41 Direct

Solarstem® c/Cal Ros dels Ocells, 20 | Pol. Ind. Coll de la Manya 08403 Granollers | SPAIN Tel. +34 933 072 817 mail: info@solarstem.com www.solarstem.com






Perfiles de aluminio sin mecanizar


Perfiles serie PS Direct

	F _{y0,2}	F _u (N/mm ²)	E (N/mm²)	G (N/mm²)	V	ρ (Kg/m3)
Perfilería, Aluminio EN AW- 6082-T6	250	290	70.000	27.000	0,3	2.700
PROPIEDADES MECÁNICAS	AREA (cm²)	I _X (cm ⁴)	I _Y (cm ⁴)	W _X (cm ³)	W _Y (cm³)	Av _y (cm²)
Y	2,15	1,00	5,32	0,82	1,63	0,60
PS-10MX	6,47	74,69	12,38	14,01	3,88	3,31
Y	4,43	19,84	12,25	8,63	6,97	2,05
PS-11	4,18	16,92	3,13	4,59	1,22	1,51

