

Special Project:

Husky Robot

Navigation with

ROS

Baylor University

Spring 2020

ELC–4V97

Diego Alvaro

Special Project: Husky Robot Navigation with ROS Diego Alvaro

ELC - 4V97 Page. 1

Special Project:

Husky Robot Navigation with ROS

ELC-4V97, Spring 2020

Baylor University

Diego Alvaro1 and Dr. Scott Koziol2

Abstract – Robotics presence has been noticed more and more each day. Robotics quality and

effectiveness has increased exponentially in the last decades. Nowadays, one of the most

common and useful kind of robot is mobile robots due to the wide range of tasks they are able

to develop. Moreover, autonomous mobile robots have been the main topic of research in the

recent years. Some of their applications can be shown in recovering disaster efforts, research

fields and even service robots.

This project aims to show and explain how to approach one of the main issues in autonomous

robotics, robot navigation in an unknown environment. To accomplish that, this project will

present a simulation of a Husky robot navigating through an environment where there is no

prior acknowledge about it. To face this problem, the technique of SLAM will be used for

localization and mapping. This simulation will be done by using ROS, currently one of the most

popular tool to code robot software. Specifically, it will be the Indigo version.

In this report, there will be summarized a brief introduction to the main topics such as the

Husky robot, ROS, navigation and SLAM. Then, the software used will be explained part by

part. To continue, an implementation of the software and an explanation about how to

execute it will be shown. Lastly, the conclusion, learnings and possible next steps will be

presented at the end of this report.

Note: All the software cited in this report can be found in the Appendix section.

Keywords - ROS, navigation, Husky, mobile robot, Gazebo, RViz, SLAM

1 Undergraduate Student, Industrial Technologies Engineering Major, Baylor University
2 Professor, Department of Electrical & Computer Engineering, Baylor University

Special Project: Husky Robot Navigation with ROS Diego Alvaro

ELC - 4V97 Page. 2

Table of Contents

I. INTRODUCTION .. 4

I. I. HUSKY ROBOT .. 4

I. II. WHY ROS? ... 6

I. III. GUIDANCE, NAVIGATION, AND CONTROL SYSTEMS ... 7

I. IV. SLAM .. 8

II. UNDERSTANDING ROS .. 9

III. PACKAGES & NODES FOR NAVIGATION ... 12

III. I. GAZEBO .. 12

III. II. RVIZ ... 13

III. III. NAVIGATION .. 15
III. III. I. move_base ...15
III. III. II. gmapping ...19

IV. SIMULATION... 23

V. CONCLUSION .. 30

V.I. WHAT’S NEXT? .. 31

BIBLIOGRAPHY ... 32

APPENDIX .. 32

Special Project: Husky Robot Navigation with ROS Diego Alvaro

ELC - 4V97 Page. 3

Figures & Tables

Table 1. Husky Tech. Spec. ... 5

Figure 2 – Basic Launch Structure .. 10

Table 2. Main arguments in husky_gazebo package ... 13

Table 3. Main topics in husky_viz package .. 14

Table 4. Parameters of move_base ... 19

Table 5. Parameters of gmapping .. 22

Figure 3 – Commands to execute the required launch ... 23

Figure 4 – Husky and world launch in the Gazebo environment... 24

Figure 5 – Husky launch in the RViz visualizer ... 24

Figure 6 – Husky and map launch by gmapping in Rviz ... 25

Figure 7 – Example of a goal and the global plan in Rviz ... 25

Figure 8 – Zoom of Figure 7 to see the local plan in red ... 26

Figure 9 – More examples of a goal and the global plan in Rviz ... 26

Figure 10 – Example of selecting a new goal in the middle of a path to another goal 27

Figure 11 – Example of how a small rotation and how it affects mapping 27

Figure 12 – Example of the Husky avoiding an obstacle ... 28

Figure 13 – Example of Gazebo and RViz at the same moment .. 28

Special Project: Husky Robot Navigation with ROS Diego Alvaro

ELC - 4V97 Page. 4

I. Introduction

In the last decade, the number of robots and its quality have improved exponentially,

in some way because of the used of those robots which make the work easier and faster.

Nowadays, it is hard to think about one place in our daily life where robotics cannot be found.

This happens due to the lots of advantages they have, such as helping us and making our life

simpler. One of the biggest advantage they have is its effectiveness and capacity of doing

things that humans cannot do.

Specially, mobile robots, which are the ones that are capable to move around in its

environment and is not fixed to one physical location, are really useful in a lot of different

fields such as research, manufacturing, transportation and many more. Mobile robots are

now regularly used in many applications. One prominent application is aiding disaster

recovery efforts in mines and after earthquakes. Military uses, such as for roadside bomb

detection, form another broad category. Recently, products have been developed for

consumer applications, such as the Roomba®. Finally, wheeled mobile robots are exploring

Mars and are poised to return to the moon [1]. In this report, we are going to focus on the

one called Husky, a four-wheel ground mobile robot.

The big goal of this project is to learn about robot Guidance, Navigation and Control

systems. To accomplish that, this report shows the work done to simulate the Husky robot

navigating to a series of waypoints in the Gazebo simulation environment using ROS Indigo.

Moreover, the RViz visualizer will be used to see sensor data from the robot, and give it

commands. In order to keep track of the localization and mapping of the robot and its

environment, the technique of simultaneous localization and mapping (SLAM) will be used.

I. I. Husky Robot

Husky is a medium-sized robotic development platform. It is an unmanned ground

vehicle (UGV) designed for robotics research in harsh outdoor environments. Its large payload

capacity and power systems accommodate an extensive variety of payloads, customized to

meet research need. Some of the features that can be added to the UGV are stereo cameras,

GPS, LIDAR, IMUs and many more [2]. The first model was created in 2011 by Clearpath

Special Project: Husky Robot Navigation with ROS Diego Alvaro

ELC - 4V97 Page. 5

Robotics, one of the most well-known Canadian robotics startups, and one of the “Top 50

Most Influential Companies in Robotics” according to Robotics Business Review [3].

Figure 1 – Husky Robot. Source: https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/

The choice to use Husky for this project is based on its efficiency to develop a wide

range of different types researches in a relatively simple and not expensive way. Moreover,

this robot is designed to change or improve its features quickly and easily. This flexible

customization makes uncomplicated to face unexpected problems and adapt to changes

saving a lot of time and head-breaks. Also, another reason for using Husky is its ease to be

used. Husky is fully supported in ROS and uses an open source serial protocol. This is very

helpful to get started producing research results faster by using existing researches and the

growing knowledge base in the thriving ROS community [2].

In the next table, the main technical specifications of Husky robot are summarized.

Technical Specifications

External Dimensions (L x W x H) 39 x 26.4 x 14.6 in

Internal Dimensions 11.7 x 16.2 x 6.1 in

Weight 110 lbs

Max Payload 165 lbs

Max Speed 2.2 mph

Run Time 3 hours

User Power 5V, 12V and 24V fused at 5V each

Table 1. Husky Tech. Spec.

https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/

Special Project: Husky Robot Navigation with ROS Diego Alvaro

ELC - 4V97 Page. 6

I. II. Why ROS?

Robot Operating System, or ROS, is a flexible framework for writing robot software. It

is a collection of tools, libraries, and conventions that aim to simplify the task of creating

complex and robust robot behavior across a wide variety of robotic platforms [4]. ROS was

originally developed in 2007 by the Stanford Artificial Intelligence Laboratory (SAIL) with the

support of the Stanford AI Robot project [5]. Nowadays, it is one of the most popular software

platforms in the robotics community. The main reason of this, and what it really makes the

difference, is that it makes the work easier saving time and effort. ROS allows to write a piece

of software for a specific robot, but changing little parameters of the code can work for other

robots. So the ROS community has shared a widespread number of packages that can be

reused in new and different projects.

Following are some of the advantages of software that uses ROS [6]:

◆ Distributed Computation. Many modern robot systems rely on software that

spans many processes and runs across several different computers. Some of

them carry multiple computers for sensors or actuators. Also, when multiple

robots work together, they usually need to communicate with one another.

Another case that applies that is that operator can send commands to the

robot from different devices such as a laptop or mobile phone.

◆ Rapid Testing. ROS provides a simple way to record and play back sensor data

and other kinds of messages. In addition, well-designed ROS systems separate

low-level direct control of the hardware and high level processing and decision

making into separate programs. Making possible to work independently with

either one. Thanks of that, testing is not as time consuming as usual. Also, this

allows to work without physical robots which are not always available.

◆ Software reuse. As I said, developers can focus more time on experimenting

with new ideas instead of spending that time on developing algorithms. This

ability to be reused are based on two important ways. First, ROS’s standard

packages provide stable, debugged implementations of many important

robotics algorithms. Secondly, ROS’s message passing interfaces to both the

Special Project: Husky Robot Navigation with ROS Diego Alvaro

ELC - 4V97 Page. 7

latest hardware and to implementations of cutting edge algorithms are

available.

I. III. Guidance, Navigation, and Control systems

In order to be able to go from a set point to another point, a mobile robot should

develop different operations to accomplish that successfully. The main competences required

for a mobile robot are guidance, navigation and control. One single mistake in any of them

could lead into an inefficient functioning and not to reach the purpose we want to achieve

using our robot.

◆ Guidance.

A guidance system is a device or group of devices used to navigate a ship,

aircraft, missile, rocket, satellite, or other vehicle. It is in charge of controlling

the craft’s course. Typically, this refers to a system that navigates without

direct or continuous human control. In this project, this part consists in

choosing one unoccupied grid square which would be the robot goal

destination.

◆ Navigation.

Navigation is one of the most challenging competences required for a mobile

robot. Success in navigation requires success at the four building blocks of

navigation: perception (the robot must interpret its sensors to extract

meaningful data), localization (the robot must determine its position in the

environment), cognition (the robot must decide how to act to achieve its goals)

and motion control (the robot must modulate its motor outputs to achieve the

desired trajectory) [7]. In our project, planer laser sensors are going to be used

as actuators which will provide the perception data. Then, the technique of

SLAM is going to be used for localization as well as mapping.

◆ Control.

Control is the key to create a system to behave in the desired manner. Control

in the process of making a system variable adhere to a particular value, called

reference value, by controlling the output. A control system is a set of

Special Project: Husky Robot Navigation with ROS Diego Alvaro

ELC - 4V97 Page. 8

mechanical or electronic devices that regulates other devices or systems by

way of control loops.

I. IV. SLAM

As I said, SLAM stands for Simultaneously Localization and Mapping. SLAM is a

technique used in robotics to address how a body can navigate in a previously unknown

environment while constantly building and updating a map of its workspace using feeds from

on board sensors only. SLAM is regularly used when a robot needs to be truly autonomous,

when there is no human input, when there is no prior knowledge about the environment, or

when there is no GPS available. So, the problem of SLAM is twofold. An unbiased map is

needed to know where the robot is localized, but at the same time, an accurate pose estimate

is needed in order to build this map of environment. Since in SLAM, pure localization cannot

be used neither known poses for mapping, that is why SLAM is one of the greatest challenges

in probabilistic robotics.

The SLAM process consists of a number of steps. The goal of the process is to use the

environment to update the position of the robot. Since the odometry of the robot (which

gives the robots position) is often erroneous we cannot rely directly on the odometry. Lasers

scans of the environment are used to correct the position of the robot. This is accomplished

by extracting features from the environment and re-observing when the robot moves around.

An Extended Kalman Filter (EKF) is the heart of the SLAM process. It is responsible for updating

where the robot thinks it is based on these features. These features are commonly called

landmarks. The EKF keeps track of an estimate of the uncertainty in the robot’s position and

also the uncertainty in these landmarks it has seen in the environment. When the odometry

changes because the robot moves the uncertainty pertaining to the robot’s new position is

updated in the EKF using odometry update. Landmarks are then extracted from the

environment from the robot’s new position. The robot then attempts to associate these

landmarks to observations of landmarks it previously has seen. Re-observed landmarks are

then used to update the robot’s position in the EKF. Landmarks which have not previously

been seen are added to the EKF as new observations so they can be re-observed later. It

should be noted that at any point in these steps the EKF will have an estimate of the robot’s

current position [8].

Special Project: Husky Robot Navigation with ROS Diego Alvaro

ELC - 4V97 Page. 9

II. Understanding ROS

Before getting to the point, it will be useful to understand some of the basic ideas and

concepts that ROS uses. First, all ROS software is organized into packages. A ROS package is a

coherent collection of files, generally including both executables and supporting files, that

serves a specific purpose. Each package is defined by a manifest, which is a file called

package.xml. This file defines some details about the package, including its name, version,

maintainer, and dependencies. The directory containing package.xml is called the package

directory. (In fact, this is the definition of a ROS package: Any directory that ROS can find that

contains a file named package.xml is a package directory.) This directory stores most of the

package’s files. Thus, this is the basic idea about files and how they are organized into

packages. Now, let’s explain how to execute some ROS software.

One of the basic goals of ROS is to enable roboticists to design software as a collection

of small, mostly independent programs called nodes that all run at the same time. For this to

work, those nodes must be able to communicate with one another. The part of ROS that

facilitates this communication is called the ROS master. To start the master, this command

has to be used:

➢ roscore

The master should be allowed to continue running for the entire time that ROS is being

used. One reasonable workflow is to start roscore in one terminal, then open other terminals

for your “real” work. Once the master has been started, programs that use ROS can be run. A

running instance of a ROS program is called a node. The basic command to create a node (also

known as “running a ROS program”) is rosrun. There are two required parameters to rosrun.

The first parameter is a package name. The second parameter is simply the name of an

executable file within that package.

➢ rosrun package-name executable-name

However, having to start multiple nodes can be annoying and hardworking. In order

to work with more complex packages and goals, there is a type of file that allows the operator

to start the master and a lot of different nodes all at once. This file is called launch file. The

Special Project: Husky Robot Navigation with ROS Diego Alvaro

ELC - 4V97 Page. 10

use of launch files is widespread through many ROS packages. To execute a launch file, use

the roslaunch command:

➢ roslaunch package-name launch-file-name

 Before starting any nodes, roslaunch will determine whether roscore is already

running and, if not, start it automatically. An important fact about roslaunch is that all of the

nodes in a launch file are started at roughly the same time. As a result, the operator cannot

be sure about the order in which the nodes will initialize themselves. Well-written ROS nodes

do not care about the order in which they and their “siblings” start up. The basic idea of launch

files is to list, in a specific XML format, a group of nodes that should be started at the same

time. Launch files are XML documents, and every XML document must have exactly one root

element. For ROS launch files, the root element is defined by a pair of launch tags

(<launch>…</launch>). All of the other elements of each launch file should be enclosed

between these tags. The heart of any launch file is a collection of node elements, each of

which names a single node to launch. The simplest launch file would look like this:

Figure 2 – Basic Launch Structure

The pkg and type attributes identify which program ROS should run to start this node.

These are the same as the two command line arguments to rosrun, specifying the package

name and the executable name, respectively. The name attribute assigns a name to the node.

This overrides any name that the node would normally assign to itself.

To end this section, let’s explain how ROS nodes communicate. The primary

mechanism that ROS nodes use to communicate is to send messages. Messages in ROS are

organized into named topics. The idea is that a node that wants to share information will

publish messages on the appropriate topic or topics; a node that wants to receive information

will subscribe to the topic or topics that it’s interested in. The ROS master takes care of

Special Project: Husky Robot Navigation with ROS Diego Alvaro

ELC - 4V97 Page. 11

ensuring that publishers and subscribers can find each other; the messages themselves are

sent directly from publisher to subscriber. One really useful tool of ROS is a command used

to see graphically and visualize more clearly the pusblish-suscribe relationships between ROS

nodes.

➢ rqt_graph

In this name, the “r” is for ROS, and the “qt” refers to the Qt GUI toolkit used to

implement the program.

Special Project: Husky Robot Navigation with ROS Diego Alvaro

ELC - 4V97 Page. 12

III. Packages & Nodes for Navigation

In this section, the different package files as well as their nodes used in this project

will be explained. Four different packages are going to be used. Although, only three of them

are going to be called directly in the simulation. The other file is going to be called indirectly

during these main files calling. First, one of the package will be display the Gazebo

environment and the Husky. Gazebo is an open-source 3D high-fidelity robot simulator.

Gazebo allows to define the characteristics of both the robot and the world, and interact with

the robot via ROS in the same way the operator would interact with the real thing. Secondly,

a package is used to display the RViz visualizer. RViz is a powerful 3D visualization tool for

ROS. It is used to view wide variety of information, in this case, it is used to view the laser

sensor data and our robot. Lastly, a package is used to compute the SLAM technique this file

is called husky_navigation. This package is based on the use of a planner laser sensor for

SLAM. In addition, another package is required husky_description provided by Clearpath

Robotics which is the one that has the information needed to represent the Husky robot

(URDF). This is the package that Is going to be called indirectly.

III. I. Gazebo

First, a “world” is needed to be defined. This world is the environment where we are

going to display our robot. There are a countless number on the internet that are open source,

due to in this project creating a world is not the real purpose, we are going to choose one of

them. The one we are going to choose is “koridor3.world” from Instabul Technical University.

This package husky_gazebo contains two files “launch” and “worlds”. Inside worlds, it

is the koridor3.world cited before. On the other one, it contains four different launch files:

husky_empty_world.launch, spawn_husky.launch, koridor3.launch and

husky_koridor3.launch. Basically, husky_koridor3.launch is the main launch. It calls

koridor3.launch and spawn_husky.launch. This last launch uses the description package and

display our robot in the Gazebo environment. Koridor3.launch is the one responsible of

display the environment, the world cited before, in Gazebo. To accomplish that call the first

launch cited which is the most basic launch that makes possible to use Gazebo. The most

important arguments in these launches are shown next:

Special Project: Husky Robot Navigation with ROS Diego Alvaro

ELC - 4V97 Page. 13

Arguments

paused Start Gazebo in a paused state (default false)

used_sim_time
Tells ROS nodes asking for time to get the Gazebo-published

simulation time, published over the ROS topic /clock (default true)

gui Launch the user interface window of Gazebo (default true)

headless Enable gazebo state log recording

debug
Start gzserver (Gazebo Server) in debug mode using gdb (default

false)

verbose
Run gzserver and gzclient with --verbose, printing errors and

warnings to the terminal (default false)

Table 2. Main arguments in husky_gazebo package

III. II. RViz

The husky_viz package contains two files. One is the launch file that will be used in the

simulation. This launch file just call the node rviz with the robot.rviz in it. This file is the one

that is in the other file called “rviz” of this package. Its main function is to display the rviz

visualizer with all the required function and tools that we will need such as the robot itself,

its laser sensor or different tools to set the navigation goals. This package is also provided by

Clearpath Robotics, since the explanation of what these files contains is not the point in this

project, they are not going to be explained. However, I would like to explain the principal

topics used for navigation by RViz due to they are really interesting in order to understand

how it is able to communicate its data and itself to another package like the navigation

package. Hence, every topic listed next is very valuable at checking the navigation

functionalities at some point.

Name Topic Message Type

Robot Footprint /local_costmap/robot_footprint geometry_msgs/PolygonStamped

Local CostMap /move_base/local_costmap/costmap nav_msgs/GridCells

Obstacles Layer /local_costmap/obstacles nav_msgs/GridCells

Special Project: Husky Robot Navigation with ROS Diego Alvaro

ELC - 4V97 Page. 14

Name Topic Message Type

Inflated Obstacles

Layer
/local_costmap/inflacted_obstacles nav_msgs/GridCells

Static Map /map
nav_msgs/GetMap or

nav_msgs/OccupancyGrid

Global Plan /move_base/TrajectoryPlannerROS/global_plan nav_msgs/Path

Local Plan /move_base/TrajectoryPlannerROS/local_plan nav_msgs/Path

2D NAV Goal /move_base_simple/goal geometry_msgs/PoseStamped

Planner Plan /move_base/NavfnROS/plan nav_msgs/Path

Laser Scan /scan sensor_msgs/LaserScan

Table 3. Main topics in husky_viz package

To understand better all of these topics, let’s briefly explain each of them [9].

➢ Robot Footprint: These message is the displayed polygon that represents the

footprint of the robot. Here the footprint is being taken from the local_costmap,

but it is possible to use the footprint from the global_costmap and it is also

possible to take the footprint from a layer, for example, the footprint may be

available at the /move_base/global_costmap/obstacle_layer_footprint/footprint

stamped topic.

➢ Local CostMap: If a layered approach is not being used, the local_costmap in its

whole will be displayed in this topic.

➢ Obstacles Layer: One of the main layers when a layered costmap is being used,

containing the detected obstacles.

➢ Inflated Obstacles Layer: One of the main layers when a layered costmap is being

used, containing areas around detected obstacles that prevent the robot from

crashing with the obstacles.

➢ Static Map: When using a pre-built static map, it will be made available at this topic

by the map server.

Special Project: Husky Robot Navigation with ROS Diego Alvaro

ELC - 4V97 Page. 15

➢ Global Plan: This topic contains the portion of the global plan that the local plan is

considering at the moment.

➢ Local Plan: Display the real trajectory that the robot is doing at the moment, the

one that will imply in commands to the mobile base through the /cmd_vel topic.

➢ 2D NAV Goal: Topic that receives navigation goals for the robot to achieve. In order

to see the goal that the robot is currently trying to achieve the

/move_base/current_goal topic should be used.

➢ Planner Plan: Contains the complete global plan.

➢ Laser Scan: Contains the laser_scan data. Depending on the configuration this

topic can be a real reading from the laser sensor or it can be a converted value

from another type of sensor.

III. III. Navigation

This last package is consisted in three different files. As usual, a launch file, then a

maps file where when the robot maps the environment and the operator save the map, the

map will be saved there, and finally a file called config. The main file inside the launch file is

gmapping_demo.launch. This launch file runs another two launch files, gmapping.launch

which is the one in charge of carrying out the SLAM technique and move_base.launch which

is the one in charge of, given a goal in the world, making the robot attempt to reach it with a

mobile base.

III. III. I. move_base

The move_base launch provides an implementation of an action that, given a goal in

the world, will attempt to reach it with a mobile base. The move_base node links together a

global and local planner to accomplish its global navigation task. It supports any global planner

adhering to the nav_core::BaseGlobalPlanner interface and any local planner adhering to the

nav_core::BaseLocalPlanner interface. The move_base node also maintains two costmaps,

one for the global planner, and one for a local planner that are used to accomplish navigation

tasks [10]. To understand a bit more clearly, let’s take a look of the different topics it uses and

Special Project: Husky Robot Navigation with ROS Diego Alvaro

ELC - 4V97 Page. 16

its services. They can be divided in four groups: action subscribed topics, action published

topics, subscribed topic and published topics.

For the action topics, the move_base node provides an implementation of

the SimpleActionServer , that takes in goals containing

geometry_msgs/PoseStamped messages. You can communicate with the move_base node

over ROS directly, but the recommended way to send goals to move_base if you care about

tracking their status is by using the SimpleActionClient.

➢ Action Subscribed Topics

o move_base/goal (move_base_msgs/MoveBaseActionGoal): A goal for

move_base to pursue in the world.

o move_base/cancel (actionlib_msgs/GoalID): A request to cancel a

specific goal.

➢ Action Published Topics

o move_base/feedback (move_base_msgs/MoveBaseActionFeedback):

Feedback contains the current position of the base in the world.

o move_base/status (move_base_msgs/GoalsStatusArray): Provides

status information on the goals that are sent to the move_base action.

o move_base/result (move_base_msgs/MoveBaseActionResult): Result

is empty for the move_base action.

➢ Subscribed Topics

o move_base_simple/goal (geometry_msgs/PoseStamped): Provides a

non-action interface to move_base for users that do not care about

tracking the execution status of their goals.

➢ Published Topics

o cmd_vel (geometry_msgs/Twist): A stream of velocity commands

meant for execution by a mobile base.

➢ Services

Special Project: Husky Robot Navigation with ROS Diego Alvaro

ELC - 4V97 Page. 17

o ̴make_plan (nav_msgs/GetPlan): Allows an external user to ask for a

plan to a given pose from move_base without causing move_base to

execute that plan.

o ̴clear_unknown_space (std_srvs/Empty): Allows an external user to tell

move_base to clear unknown space in the area directly around the

robot. This is useful when move_base has its costmaps stopped for a

long period of time and then started again in a new location in the

environment.

o ̴clear_costmaps (std_srvs/Empty): Allows an external user to tell

move_base to clear obstacles in the costmaps used by move_base. This

could cause a robot to hit things and should be used with caution

Lastly, a briefly explanation about the parameters used in this launch file is shown

next. The config file cited before contains all the information and values needed to set up the

costmap.

Parameters

̴base_global_planner (string,

default: "navfn/NavfnROS”)

The name of the plugin for the global planner to use

with move_bas. This plugin must adhere to

the nav_core::BaseGlobalPlanner interface.

̴base_local_planner (string,

default: "base_local_planner/TrajectoryPlann

erROS”)

The name of the plugin for the local planner to use

with move_base. This plugin must adhere to

the nav_core::BaseLocalPlanner interface.

̴recovery_behaviors (list, default: [{name:

conservative_reset, type:

clear_costmap_recovery/ClearCostmapRecove

ry}, {name: rotate_recovery, type:

rotate_recovery/RotateRecovery}, {name:

aggressive_reset, type:

clear_costmap_recovery/ClearCostmapRecove

ry}])

A list of recovery behavior plugins to use with move_base.

These behaviors will be run when move_base fails to find

a valid plan in the order that they are specified. After each

behavior completes, move_base will attempt to make a

plan. If planning is successful, move_base will continue

normal operation. Otherwise, the next recovery behavior

in the list will be executed. These plugins must adhere to

the nav_core::RecoveryBehavior interface.

Special Project: Husky Robot Navigation with ROS Diego Alvaro

ELC - 4V97 Page. 18

Parameters

̴controller_frequency (double, default: 20.0)
The rate in Hz at which to run the control loop and

send velocity commands to the base.

̴planner_patience (double, default: 5.0)

How long the planner will wait in seconds in an

attempt to find a valid plan before space-clearing

operations are performed.

̴controller_patience (double, default: 15.0)

How long the controller will wait in seconds without

receiving a valid control before space-clearing

operations are performed.

̴conservative_reset_dist (double, default: 3.0)

The distance away from the robot in meters beyond

which obstacles will be cleared from

the costmap when attempting to clear space in the

map. This parameter is only used when the default

recovery behaviors are used for move_base.

̴recovery_behavior_enabled (bool,

default: true)

Whether or not to enable the move_base recovery

behaviors to attempt to clear out space.

̴clearing_rotation_allowed (bool, default: true)

Determines whether or not the robot will attempt

an in-place rotation when attempting to clear out

space. This parameter is only used when the default

recovery behaviors are in use.

̴shutdown_costmaps (bool, default: false)

Determines whether or not to shut down the

costmaps of the node when move_base is in an

inactive state.

̴oscillation_timeout (double, default: 0.0)

How long in seconds to allow for oscillation before

executing recovery behaviors. A value of 0.0

corresponds to an infinite timeout.

̴oscillation_distance (double, default:

0.5)

How far in meters the robot must move to be considered not to

be oscillating. Moving this far resets the timer counting up to

the oscillation_timeout

̴planner_frequency (double, default: 0.0)

The rate in Hz at which to run the global planning

loop. If the frequency is set to 0.0, the global

planner will only run when a new goal is received or

the local planner reports that its path is blocked.

http://wiki.ros.org/costmap_2d

Special Project: Husky Robot Navigation with ROS Diego Alvaro

ELC - 4V97 Page. 19

Parameters

̴max_planning_retries (int32_t, default: -1)

How many times to allow for planning retries before

executing recovery behaviors. A value of -1.0

corresponds to an infinite retries.

Table 4. Parameters of move_base

III. III. II. gmapping

This launch contains a ROS wrapper for OpenSlam's Gmapping. The gmapping launch

provides laser-based SLAM. This launch file runs a node called slam_gmapping. Using

slam_gmapping, a 2-D occupancy grid map (like a building floorplan) can be created from laser

and pose data collected by a mobile robot [11]. To use slam_gmapping, it is needed a mobile

robot that provides odometry data and is equipped with a horizontally-mounted, fixed, laser

range-finder. The slam_gmapping node will attempt to transform each incoming scan into

the odom (odometry) tf frame. The tf transforms used in this node are shown next:

➢ <the frame attached to incoming scans> → base_link

 usually a fixed value, broadcast periodically by a robot_state_publisher, or

a tf static_transform_publisher.

➢ base_link → odom

usually provided by the odometry system (e.g., the driver for the mobile base)

➢ map → odom

the current estimate of the robot's pose within the map frame.

To keep getting into this launch file, let’s explain its topics, services and parameters.

The slam_gmapping node takes in sensor_msgs/LaserScan messages and builds a map

(nav_msgs/OccupancyGrid). The map can be retrieved via a ROS topic or service.

➢ Subscribed Topics

o tf (tf/tfMessage): Transforms necessary to relate frames for laser, base,

and odometry.

o scan (sensor_msgs/LaserScan): Laser scans to create the map from.

http://wiki.ros.org/tf
http://wiki.ros.org/robot_state_publisher
http://wiki.ros.org/tf#static_transform_publisher
http://docs.ros.org/api/sensor_msgs/html/msg/LaserScan.html
http://docs.ros.org/api/nav_msgs/html/msg/OccupancyGrid.html
http://wiki.ros.org/Topics
http://wiki.ros.org/Services

Special Project: Husky Robot Navigation with ROS Diego Alvaro

ELC - 4V97 Page. 20

➢ Published Topics

o map_metadata (nav_msgs/MapMetaData): Get the map data from this

topic, which is latched, and updated periodically.

o map (nav_msgs/OccupancyGrid): Get the map data from this topic,

which is latched, and updated periodically.

o ̴entropy (std_msgs/Float64): Estimate of the entropy of the distribution

over the robot’s pose (a higher value indicates greater uncertainty)

➢ Services

o dynamic_map (nav_msgs/GetMap): Call this service to get the map

data.

In the next table, the principle parameters used in this launch file and a brief

explanation about each of them are shown.

Parameters

̴throttle_scans (int, default: 1)
Process 1 out of every this many scans (set it to a

higher number to skip more scans)

̴base_frame (string, default: "base_link") . The frame attached to the mobile base.

̴map_frame (string, default: "map") The frame attached to the map.

̴odom_frame (string, default: "odom") The frame attached to the odometry system.

̴map_update_interval (float, default: 5.0)

How long (in seconds) between updates to the map.

Lowering this number updates the occupancy grid

more often, at the expense of greater

computational load.

̴maxUrange (float, default: 80.0)
The maximum usable range of the laser. A beam is

cropped to this value.

̴sigma (float, default: 0.05) The sigma used by the greedy endpoint matching.

̴kernelSize (int, default: 1) The kernel in which to look for a correspondence

̴lstep (float, default: 0.05) The optimization step in translation.

Special Project: Husky Robot Navigation with ROS Diego Alvaro

ELC - 4V97 Page. 21

Parameters

̴astep (float, default: 0.05) The optimization step in rotation.

̴iterations (int, default: 5) The number of iterations of the scanmatcher.

̴lsigma (float, default: 0.075)
The sigma of a beam used for likelihood

computation.

̴ogain (float, default: 3.0)
Gain to be used while evaluating the likelihood, for

smoothing the resampling effects.

̴lskip (int, default: 0)

Number of beams to skip in each scan. Take only

every (n+1)th laser ray for computing a match (0 =

take all rays)

̴minimumScore (float, default: 0.0)

Minimum score for considering the outcome of the

scan matching good. Can avoid jumping pose

estimates in large open spaces when using laser

scanners with limited range (e.g. 5m). Scores go up

to 600+, try 50 for example when experiencing

jumping estimate issues.

̴srr (float, default: 0.1)
Odometry error in translation as a function of

translation (rho/rho)

̴srt (float, default: 0.2)
Odometry error in translation as a function of

rotation (rho/theta)

̴str (float, default: 0.1)
Odometry error in rotation as a function of

translation (theta/rho)

̴stt (float, default: 0.2)
Odometry error in rotation as a function of rotation

(theta/theta)

̴linearUpdate (float, default: 1.0)
Process a scan each time the robot translates this

far.

̴angularUpdate (float, default: 0.5) Process a scan each time the robot rotates this far.

̴temporalUpdate (float, default: -1.0)

Process a scan if the last scan processed is older

than the update time in seconds. A value less than

zero will turn time based updates off.

̴resampleThreshold (float, default: 0.5) The Neff based resampling threshold.

Special Project: Husky Robot Navigation with ROS Diego Alvaro

ELC - 4V97 Page. 22

Parameters

̴particles (int, default: 30) Number of particles in the filter.

̴xmin (float, default: -100.0) Initial map size (in metres)

̴ymin (float, default: -100.0) Initial map size (in metres)

̴xmax (float, default: 100.0) Initial map size (in metres)

̴ymax (float, default: 100.0) Initial map size (in metres)

̴delta (float, default: 0.05)
Resolution of the map (in metres per occupancy grid

block)

̴llsamplerange (float, default: 0.01) Translational sampling range for the likelihood.

̴llsamplestep (float, default: 0.01) Translational sampling step for the likelihood.

̴lasamplerange (float, default: 0.005) Angular sampling range for the likelihood.

̴lasamplestep (float, default: 0.005) Angular sampling step for the likelihood.

̴transform_publish_period (float, default: 0.05)

How long (in seconds) between transform

publications. To disable broadcasting transforms, set

to 0.

̴occ_thresh (float, default: 0.25)

Threshold on gmapping's occupancy values. Cells

with greater occupancy are considered occupied

(i.e., set to 100 in the

resulting sensor_msgs/LaserScan).

̴maxRange (float)

The maximum range of the sensor. If regions with no

obstacles within the range of the sensor should

appear as free space in the map, set maxUrange <

maximum range of the real sensor <= maxRange.

Table 5. Parameters of gmapping

As we can see, this launch file is considerably more complex than the other ones. That

is because the complexity of the SLAM technique. It has to manage all data from the sensors

as well as computing the robot’s localization and building the map at the same time. Although,

it is fair to say that it is a really interesting and fascinating field of mobile robot and

autonomous mobile robots.

http://docs.ros.org/api/sensor_msgs/html/msg/LaserScan.html

Special Project: Husky Robot Navigation with ROS Diego Alvaro

ELC - 4V97 Page. 23

IV. Simulation

After understanding the most important information about each package and their

nodes, it is time to test and simulate how to use move_base with gmapping to perform

autonomous planning and movement with simultaneous localization and mapping (SLAM),

on a simulated Husky, or a factory-standard Husky with a laser scanner publishing on

the scan topic.

The first thing to do is to start the Clearpath-configured Husky simulation

environment, start the Clearpath-configured RViz visualizer and start the gmapping demo. To

do that, the different launch files cited in the last section should be executed by writing the

next commands in three separate terminal windows:

➢ $ roslaunch husky_gazebo husky_koridor3.launch

➢ $ roslaunch husky_viz view_robot.launch

➢ $ roslaunch husky_navigation gmapping_demo.launch

Figure 3 – Commands to execute the required launch

The first command will start the Gazebo environment shown in Figure 4.

http://wiki.ros.org/move_base
http://wiki.ros.org/gmapping

Special Project: Husky Robot Navigation with ROS Diego Alvaro

ELC - 4V97 Page. 24

Figure 4 – Husky and world launch in the Gazebo environment

The second terminal window will open the RViz visualizer with our Husky robot in it.

Figure 5 – Husky launch in the RViz visualizer

Special Project: Husky Robot Navigation with ROS Diego Alvaro

ELC - 4V97 Page. 25

The third one will change the way we view the RViz window. We will see how the map,

that the SLAM technique is creating, looks like.

Figure 6 – Husky and map launch by gmapping in Rviz

In the Rviz visualizer, we have to make sure the visualizers in the Navigation group are

enabled. Then, we will use the 2D Nav Goal tool in the top toolbar to select

a movement goal in the visualizer, click and hold at some point on the map and then choose

the direction, so the robot knows where to go and in what position it should stop. The green

arrow indicates the final orientation of the robot once it arrives to the goal location. It is

important to be sure to select an unoccupied (dark grey) or unexplored (light grey) location.

Figure 7 – Example of a goal and the global plan in Rviz

Special Project: Husky Robot Navigation with ROS Diego Alvaro

ELC - 4V97 Page. 26

Figure 8 – Zoom of Figure 7 to see the local plan in red

As the robot moves, you should see the grey static map (map topic) grow.

Occasionally, the gmapping algorithm will relocalize the robot, causing a discrete jump in

the map->odom transform. Furthermore, as you can see in Figure 7, Figure 8 and Figure 9, a

global plan is drawn from the start point to the finish point (purple color) and a local plan is

being drawn along the way (red color), trying to follow the global path without crashing.

Figure 9 – More examples of a goal and the global plan in Rviz

In Figure 10, we can see that when the robot is in the middle of a path to a goal

location, if the operator selects a new goal, the robot will change immediately its path to the

new goal and it will forget about achieving the last goal. Also, Figure 11 shows pretty clearly

that a little rotation of the robot will make its laser sensor to achieve and map previously

unknown obstacles comparing it to the previous orientation in the second image.

Special Project: Husky Robot Navigation with ROS Diego Alvaro

ELC - 4V97 Page. 27

Figure 10 – Example of selecting a new goal in the middle of a path to another goal

Figure 11 – Example of how a small rotation and how it affects mapping

In Figure 12, we can see, in the Gazebo environment, how accurate and careful is our

robot to avoid any kind of obstacles.

Special Project: Husky Robot Navigation with ROS Diego Alvaro

ELC - 4V97 Page. 28

Figure 12 – Example of the Husky avoiding an obstacle

In the last figure, Figure 13, we can compare the position of our robot in the Gazebo

environment and the RViz visualizer at the exactly same moment.

Figure 13 – Example of Gazebo and RViz at the same moment

We can continue moving our Husky robot all around the corridor until it has mapped

everything. After we finished, in order to save the generated map, the map_saver utility can

be run in a terminal window:

Special Project: Husky Robot Navigation with ROS Diego Alvaro

ELC - 4V97 Page. 29

➢ $ rosrun map_server map_server –f <filename>

 The map file is stored as two files: one is the YAML file, which contains the map

metadata and the image name, and second is the image in a PGM file, which has the encoded

data of the occupancy grid map [12].

Special Project: Husky Robot Navigation with ROS Diego Alvaro

ELC - 4V97 Page. 30

V. Conclusion

Robotics today is a much richer field than even a decade or two ago, with far-ranging

applications. The continuous improvements sometimes make a bit difficult to catch up the

latest advancements. Nevertheless, autonomous mobile robots seem to have a bright future

in the modern world thanks to their wide range of applications and the solid base of

researches and knowledge that they are supported to be developed and applied. The use of

ROS also seem to have a bright future. The open source of packages and information allows

people to start using ROS in a short amount of time as well as to help new researches to begin

and see some examples that can be very useful to them.

This report has presented the information and basic concepts to understand and being

able to simulate in ROS the navigation of a Husky robot using the technique of mapping and

localization called SLAM. To sum up, I can conclude that this project has been quite a success.

As I have shown in the Simulation section, our simulated Husky is able to navigate through

different waypoints avoiding every kind of obstacles and mapping the previous unknown

environment during this process. However, as I said, the gmapping algorithm sometimes will

relocalize the robot, causing a discrete jump in the map->odom transform. This could be an

important issue in running a robot in the real world. One possible measure to figure out this

problem is to use the AMCL technique that will be discussed in the next section. Also, I hope

this report can help people to understand and have a basic idea of ROS and one example of

its countless implementations like navigating a Husky robot for an unknown environment and

mapping that environment.

Personally, I have enjoyed and learned a lot in the process of doing this project. I find

satisfying to have been able to learn about such an interesting and useful tool in robotics

nowadays, like ROS is, that I had no idea about it before starting this project. In addition, not

only I have learned about ROS but I could understand better and get it touch to different fields

about the robotics industry such as guidance, navigation and control.

Lastly, I would like to say that robotics is a fascinating area of the world that can be

shown in so many different applications from the simplest model and functionality to

incredible complex examples. Also, the limits of robotics are being expanded each day in

Special Project: Husky Robot Navigation with ROS Diego Alvaro

ELC - 4V97 Page. 31

unprecedented ways that we cannot even imagine. In my opinion, I cannot wait to continue

exploring this amazing world.

V.I. What’s next?

Even though, simulating robot navigation can be very useful and interesting at some

points like when the robot is not available, or to ensure that the software works properly or

in order to test the software more quickly, it would not be practical at all unless what you are

simulating can be implemented in real world. Now, that we have been able to simulate and

control successfully our Husky robot. The next interesting step is to implement our software

to a real Husky robot and, then, test how well and accurate our robot performs. After that, if

it is needed, the correspondent changes and improvements will be implemented to our code

until our robot works as we desire. Moreover, although, in theory, the gmapping is self-

sufficient, in practice, the robots get lost easily when using gmapping only, that being because

the odometry errors. Gmapping bases its mapping and localization on the odometry and the

odometry errors make it confused. In order to solve that, it is interesting to work as well with

AMCL technique (Adaptive Monte Carlo Localization) applying an AMCL node to the

navigation package. Even though AMCL is only used for static maps, it can be used to help

gmapping. When the map is created with gmapping and send it to the AMCL node, it will trust

the map and adapt the odometry, that will produce much better results.

Special Project: Husky Robot Navigation with ROS Diego Alvaro

ELC - 4V97 Page. 32

Bibliography

[1] M. W. Spong and M. Fujita, "Control in Robotics," 2011.

[2] Clearpath Robotics, "Husky. Unmanned Ground Vehicle.," [Online]. Available:

https://clearpathrobotics.com/husky-unmanned-ground-vehicle-robot/.

[3] Robotics Business Review, "The 2017 RBR50 List Names Robotics Industry Leaders, Innovators,"

2017.

[4] Open Source Robotics Foundation, "About ROS," [Online]. Available:

https://www.ros.org/about-ros/.

[5] A. Martinez and E. Fernandez, Learning ROS for Robotics Programming, 2013.

[6] J. M. O'Kane, A Gentle Introduction to ROS, Jason Matthew O’Kane, 2013.

[7] R. Siegwart, I. Nourbakhsh and D. Scaramuzza, Introduction to Autonomous Mobile Robots,

Segunda ed., The MIT Press, 2011.

[8] S. Riisgaard and M. Blas, "SLAM for Dummies: A Tutorial Approach to Simultaneous

Localization and Mapping," 2005. [Online]. Available: http://ocw.mit.edu/courses/aeronautics-

and-astronautics/16-412j-cognitive-robotics-spring-2005/projects/1aslam_blas_repo.pdf.

[9] J. Fabro, R. Longhi, A. Scheneider and T. Becker, "ROS Navigation: Concepts and Tutorial," in

The ROS Multimaster Extension for Simplified Deployment of Multi-Robot Systems, Springer

International Publishing, 2016, pp. 121-160.

[10] ROS, "ROS.org," [Online]. Available: http://wiki.ros.org/move_base.

[11] ROS, "gmapping," ros.org, [Online]. Available: http://wiki.ros.org/gmapping.

[12] L. Joseph and J. Cacace, "Building a map using SLAM," in Mastering ROS for Robotics

Programming, Second ed., 2018.

Appendix

o https://github.com/DiegoAlvaro1/ELC4V97HuskyNavigation

https://github.com/DiegoAlvaro1/ELC4V97HuskyNavigation

Special Project: Husky Robot Navigation with ROS Diego Alvaro

ELC - 4V97 Page. 33

	I.
	II.
	III.
	III. I.
	III. II.
	III. III.
	III. III. I. move_base
	III. III. II. gmapping

