

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS

INDUSTRIALES Y DE TELECOMUNICACIÓN

UNIVERSIDAD DE CANTABRIA

Trabajo Fin de Grado

ACELERANDO PAGERANK CON
ZCU102-ES2 FPGA

Accelerating PageRank with ZCU102-ES2
FPGA

Para acceder al Titulo de

Graduado en
Ingeniería de Tecnologías de Telecomunicación

Autor: Jorge Barredo Ferreira

Julio - 2020

 E.T.S. DE INGENIEROS INDUSTRIALES Y DE TELECOMUNICACION

GRADUADO EN INGENIERÍA DE TECNOLOGÍAS DE

TELECOMUNICACIÓN

CALIFICACIÓN DEL TRABAJO FIN DE GRADO

Realizado por: Jorge Barredo Ferreira

Director del TFG: Miquel Moretó Planas

Profesor Ponente del TFG: María del Carmen Martínez Fernández

Título: “Acelerando PageRank con ZCU102-ES2 FPGA”

Title: “Accelerating PageRank with ZCU102-ES2 FPGA”

Presentado a examen el día: 24 de julio de 2020

para acceder al Título de

GRADUADO EN INGENIERÍA DE TECNOLOGÍAS DE

TELECOMUNICACIÓN

Composición del Tribunal:

Presidente (Apellidos, Nombre): Martínez Fernández, María del Carmen

Secretario (Apellidos, Nombre): Stafford Fernández, Esteban

Vocal (Apellidos, Nombre): Lechuga Solaegui, Yolanda

Este Tribunal ha resuelto otorgar la calificación de:

Fdo.: El Presidente Fdo.: El Secretario

Fdo.: El Vocal Fdo.: El Director del TFG

 (sólo si es distinto del Secretario)

Vº Bº del Subdirector Trabajo Fin de Grado Nº

 (a asignar por Secretaría)

Agradecimientos

A mis padres, Adrián, mis abuelos y a quien ha podido ver de primera mano cómo

he trabajado e invertido tantas horas en este proyecto y a lo largo de estos cuatro años

de gran esfuerzo y, sobre todo, sacrificio.

A Carmen Mart́ınez, desde el primer d́ıa de Microprocesadores, que en cualquier

lugar y hora me ha aconsejado cómo afrontar ese futuro que parece tan oscuro y sin luz

al final del túnel, y ha dispuesto todos los medios y ayuda necesarios, más de los que

un tutor común habŕıa sido capaz de ofrecer, pudiendo encarrilar el trabajo y mi camino

académico en la dirección perfecta.

Muchas gracias a Miquel Moretó, que me dio la oportunidad de poner en práctica

lo aprendido en una institución del nivel y fama como es el Barcelona Supercomputing

Center, me ha estado dirigiendo y ayudando en todo en momento y puso en mis manos

la FPGA con la que todo este proyecto echó a rodar.

También a Nehir Sonmez, que me enseñó en dos meses una gran cantidad de

conocimientos sobre FPGAs y sus entresijos, sin los que avanzar habŕıa sido imposi-

ble en un mundo algo desconocido para un estudiante de Ingenieŕıa de Tecnoloǵıas de

Telecomunicación.

A Isaac Sánchez Barrera, que me dio las nociones suficientes de partición de grafos,

y que serán útiles en investigaciones futuras basadas en este trabajo.

Mención al resto de compañeros del verano de 2019 del BSC, con los que introducirse

en una ciudad nueva y tan grande como Barcelona fue mucho más fácil, y que con su

experiencia he podido aprender métodos que he aplicado en este trabajo.

A todos.

Muchas gracias, Jorge

Resumen

El siguiente proyecto trata de plantear y poner en práctica un procedimiento de

optimización de algoritmos de grafos ejecutados sobre una FPGA.

Para ello, se evaluarán de manera teórica los distintos problemas que aparecen en el

desarrollo e implementación de los programas, tanto desde el punto de vista del hardware

como del software, y se explicarán las soluciones por defecto que se han ido aplicando

hasta el d́ıa de hoy.

Después se pasará a un caso práctico. Implementaremos el algoritmo de valoración

de nodos comúnmente llamado PageRank y, tras definir su funcionamiento y una sim-

plificación matemática, pasaremos a programarlo sin sistema operativo sobre un único

procesador de la FPGA, obteniendo su tiempo base de ejecución. Más tarde, se utilizarán

distintas técnicas ofrecidas por el software de Vivado HLx para reducir dicho tiempo de

ejecución y obtener un algoritmo de grafos optimizado, de tal manera que los archivos

de entrada que la placa pueda soportar sean de una escala similar a los utilizados en el

mundo real.

Para terminar, pondremos en práctica una solución multiprocesador en la que no

interviene ningún sistema operativo, abriendo la puerta a su posible incorporación en una

investigación futura.

Palabras clave: FPGA, acelerador, algoritmos de grafos, optimización, Vivado

HLx, OpenCL.

Contents

List of Abbreviations 1

1 Introduction 2

1.1 Problem . 3

1.1.1 Irregular Memory Accesses . 3

1.1.2 Destructuring Issues . 5

1.1.3 Poor Data Locality . 5

1.2 Solution . 6

1.2.1 OpenCL Proprietary Code . 6

1.2.2 Algorithm Coding Optimization . 8

1.2.2.1 Algebraic Approximation 8

1.2.2.2 Compiler Flags . 11

1.2.2.3 HLS Pragmas . 11

1.2.2.4 Memory Reorganization 12

1.3 Document Structure . 13

2 Background and Experimental Environment 14

2.1 Hardware . 15

2.1.1 Ports in ZCU102-ES2 . 16

2.2 Software and Programming Languages . 17

2.3 PageRank . 18

2.4 Baseline Implementation . 18

2.4.1 Designing Blocks in Vivado HLS . 19

2.4.2 Building an FPGA Hardware Design in Vivado 20

2.4.3 Using Xilinx SDK to Program the FPGA 22

3 PageRank Acceleration using a ZCU102-ES2 FPGA 25

3.1 Single Core Performance . 25

3.1.1 SD Card Insertion . 25

3.1.2 Appropriate Memory Distribution 31

3.1.3 Large Scale Implementation . 32

3.1.4 Improving Hardware Design . 34

3.2 Multicore Performance . 37

3.3 Conclusions of the Practical Application 39

4 Conclusions and Future Work 41

4.1 OS insertion with PetaLinux . 42

4.2 Input Data through Ethernet . 42

4.3 Finding the Available Exact Size of Graphs 42

4.4 Graph Partitioning . 42

A ARM Cortex Processors Family 43

B PageRank Code 44

C Ubuntu Optimized Block Design 49

List of Figures 50

List of Tables 51

Bibliography 53

List of Abbreviations

Baremetal Computing system in which the software is programmed directly on the

FPGA, not using an Operative System (OS).

BSP Board Support Package, includes all the software components needed to

match a given operating system to a given hardware design (board) [4].

FPGA Field-programmable Gate Array, an electronic device containing one or

more processors and many logic blocks whose functionality can be config-

ured. It is used to execute and test software on it.

PL Programmable Logic, involves all the logic blocks of an FPGA: logic cells,

flip-flops, DSP, etc.

PS Processing System, refers to the processor and peripherals of an FPGA. It

can also be named as core.

WHS Worst Hold Slack, it is related to the worst slack of the timing paths for

minimum delay analysis. If positive it means that the path passes. If

negative, it fails [1].

WNS Worst Negative Slack, corresponds to the most negative of any single slack

of the timing paths. If positive it means that the path passes. If negative,

the path fails [1].

WPWS Worst Pulse Width Slack, refers to the maximum skew with minimum and

maximum delays included [1].

1

Chapter 1

Introduction

Graphs are the best choice when representing data, specially in social network an-

alytics. The way the links between nodes become more complex as its scale becomes

bigger, leads us to the issue of looking for a procedure of working with this kind of inputs

without spending too much resources on an optimal point of view, which is the objetive

of an algorithm acceleration.

Computational acceleration consists of using software or hardware tools to exe-

cute certain program functions in a more efficient way, even more than if it was executed

in a single central processing unit (CPU). This way, a computer will be able to carry out

an application without spending excessive resources (from electric energy to cache and

flip-flops), enabling a larger processes’ concurrency and a better components’ distribution.

This is why program acceleration is a demanded issue in this research field, and

every context requires an specific development for each process.

In this chapter, the most remarkable hardware and software bottlenecks that appear

when executing an algorithm without any kind of optimization will be described, as well as

their default solutions that have been applied so far, ending with a group of mathematical

and low-level optimizations that can be coded and used on algorithms.

2

1.1 Problem

A program that has not been optimized is processed directly in a CPU, without

taking into account previously the maximum amount of system’s resources the user wants

to spend. This situation leads to a computational overload: the CPU queues the cor-

responding tasks and executes them in a FIFO (first in, first out) order as its frequency

clock allows it to work. Besides, for every performed process, their corresponding mem-

ories and logic gates make the operation the processor asks them to do. This leads to

an excessive computational waste, and the point is that every task tends to demand the

highest available number of resources, in order to take advantage of all the system.

Not optimizing programs entails some bottlenecks, such as irregular memory

accesses, and some risks related to destructuring issues and poor data locality.

1.1.1 Irregular Memory Accesses

Owing to the lack of any previous workload planning related to every system memory

unit, a processor tends to send temporary instructions and data to the cache (indoors

there can be found L1, L2, L3 levels and sometimes, an L4 level), a very fast memory

that also acts as support. However, its weakpoint is its capacity, insufficient for big tasks,

and that overflows very frequently.

In order to understand this problem it is needed to be aware of the memory hierar-

chy. Figure 1.1 represents an overview of the memory hierarchy in the OpenCL model,

described in the following lines [2].

Host memory — PCIe memory (host)

Global memory — constant memory (context)

Local memory (work-group)

Private memory

(work-item)

Figure 1.1: FPGA memory hierarchy

3

• Private memory: belongs to a single work-item, and it is not visible for the rest

of them. It is the fastest one (2-3x words per cycle and work-item), but its capacity

is too small (multiples of 10 words for every work-item). If used too much, data

might advance to the global memory or the number of work-items that are being

executed simultaneously could be reduced. It is similar to CPU registers.

• Local memory: belongs to a work-group, made up of several work-items. It can

store 1-10x kilobytes per work-group and may be useful to collect necessary data for

all the work-items it has in common, although CPUs do not have specific hardware

destined for them, causing an important CPU kernels’ deceleration when operated

excessively. Speed of 10x words per cycle and per work-group.

• Global memory: visible for all the work-items belonging to the same context, as

well as for the host, who can read, write and map on it. Not very stable between

work-groups, but this effect can be reduced through synchronization. Size of 1-10x

gigabytes and a speed of 100-200x GB/s.

• Constant memory: reading region (cache) of the global memory for constants

initialized by the host. It has less latency1 than cache L1 level, and contributes to

reduce memory traffic inside the GPU.

• Host memory: host data-reachable region. It can hold 1-100x gigabytes and

reaches an speed between 1 and 100x GB/s.

• PCIe memory: host modifiable region by the host and the graphic processing unit

(GPU). Requires synchronization between CPU and GPU.

An embedded system cannot allow uncontrolled memory accesses; it requires a demanding

organization to monitor every single step given on an FPGA. Based on the fact of the

existence of limited resources, the cache memory should store temporarily instructions

and data that are really used in a continuous way. It should also be up to save that

kind of information not processed too much frequently to the biggest (and consequently

slowest) memories, following the hierarchy. This way, tasks will demand less clock cycles

to finish themselves, accelerating the labor of the CPU.

1Latency: amount of time that elapses from the moment an input enters a program to the obtention

of its respective output from its execution

4

1.1.2 Destructuring Issues

When executing a random task, it is assigned to a computing element. However,

in case of performing this task several occasions, the processor may turn overwhelmed,

specially in those situations where the number of iterations of the inner loops is not deter-

ministic. There should be a way to predict the number of occasions a part of the program

is going to be executed, or at least, to split the work in smaller programs on the FPGA.

This matter leads to a new challenge in terms of parallelism implementation [5].

Concurrency procedures are interesting because they give engineers the opportunity

to execute different tasks at a single instance in time in different parts of the board.

Once some enhances have been applied, the speedup obtained in the new parallelized

implementation can be calculated using Amdahl’s Law:

SpeedUp(N) = 1

S+P
N

Where N is the number of processors, S is the serial fraction of the code, and P is

the parallel percentage from the total.

1.1.3 Poor Data Locality

Graph algorithms are often launched over graph structures that grow within a short

period of time, and without any control. These memory operations show poor spatial and

temporal locality features [5]:

• Spatial locality: existent if data is located close in memory, enabling a sequential

read that saves time.

• Temporal locality: related to the fact that data enters the cache and leaves it

later, after being used.

A non-optimized implementation may distribute data randomly throughout the memory,

increasing the execution time unnecessarily.

5

1.2 Solution

Once unoptimized programs issues have been explained, there are two possible ways

of improving timing results: implementing a low-level code that reduces the execution

time only for our board, or designing a software improvement valid for any device.

1.2.1 OpenCL Proprietary Code

Coding OpenCL implementations is one of the most worthy solutions in order to

improve algorithms’ performance: the engineer works directly on hardware. Furthermore,

it does not lead to a big quantity of overhead, fact that could not be possible by using

other higher-level languages [6]. An OpenCL process program can be split in several

phases, adapted to the way of working of ZYNQ devices [7]:

1. Platform2 and devices3 discovery: requires to create memory space and initialize

arrays for platforms and devices, and then fill them with input data.

Listing 1.1: OpenCL: Platform and devices discovery

1 clGetPlatformIDs(cl_uint num_entries, cl_platform_id NULL, cl_uint 0);

2 (cl_platform_id*)malloc(numPlatforms*sizeof(cl_platform_id));

3 clGetPlatformIDs(numPlatforms, platforms, NULL);

4 clGetDeviceIDs(platforms[0], CL_DEVICE_TYPE_ALL, 0, NULL, 0);

5 clGetDeviceIDs(platforms[0], CL_DEVICE_TYPE_ALL, 0, NULL, &numDevices);

6 (cl_platform_id*)malloc(numDevices*sizeof(cl_platform_id));

7 clGetDeviceIDs(platforms[0], CL_DEVICE_TYPE_ALL, numDevices, devices, NULL);

2. Context4 creation: the host computer sets the conditions of the working platform.

Listing 1.2: OpenCL: Context creation

1 cl_context context=clCreateContext(NULL, numDevices, devices, NULL, NULL,

&status);

3. Creation of a command-queue per device: different threads for each device.

Listing 1.3: OpenCL: Creation of a command-queue per device

1 cl_command_queue cmdQueue=clCreateCommandQueueWithProperties(context,

devices[0], 0, &status);

2Platform: specific OpenCL implementation, ie: AMD, NVIDIA or Intel.
3Devices: processors or working items that perform calculations.
4Context: platform that contains a pack of available devices.

6

4. Creation of buffers to hold data: it needs to be stablished if the buffer will store

input data, or if it will be used to write output results.

Listing 1.4: OpenCL: Creation of buffers to hold data

1 cl_mem bufA=clCreateBuffer(context, CL_MEM_READ_ONLY, datasize, NULL,

&status);

2 cl_mem bufC=clCreateBuffer(context, CL_MEM_WRITE_ONLY, datasize, NULL,

&status);

5. Copying the input data onto the device

Listing 1.5: OpenCL: Copying the input data onto the device

1 status=clEnqueueWriteBuffer(cmdQueue, bufA, CL_TRUE, 0, datasize, A, 0,

NULL, NULL);

6. Creation and compilation of the program (in OpenCL C code)

Listing 1.6: OpenCL: Creation and compilation of the program (in OpenCL C code)

1 cl_program program=clCreateProgramWithSource(context, 1, (const char**)

&programSource, NULL, &status);

2 status=clBuildProgram(program, numDevices, devices, NULL, NULL, NULL);

7. Extraction of the kernel from the program: a program function is chosen.

Listing 1.7: OpenCL: Extraction of the kernel from the program

1 cl_kernel kernel=clCreateKernel(program, "nombre", &status);

8. Execution of the kernel: firstly, we set the buffers as arguments where data is

stored. Then, it’s needed to define a work-items’ index space for execution, and

last, the kernel is executed.

Listing 1.8: OpenCL: Execution of the kernel

1 status=clSetKernelArg(kernel, 0, sizeof(cl_mem), &bufA);

2 size_t indexSpaceSize[1], workGroupSize[1];

3 indexSpaceSize[0]=datasize/sizeof(int);

4 workGroupSize[0]=256;

5 status=clEnqueueNDRangeKernel(cmdQueue, kernel, 1, NULL, indexSpaceSize,

workGroupSize, 0, NULL, NULL);

7

9. Copying output data back to the host: saved in buffer C.

Listing 1.9: OpenCL: Copying output data back to the host

1 status=clEnqueueReadBuffer(cmdQueue, bufC, CL_TRUE, 0, datasize, C, 0, NULL,

NULL);

10. Releasing resources

Listing 1.10: OpenCL: Releasing resources

1 clReleaseKernel(kernel);

2 clReleaseProgram(program);

3 clReleaseCommandQueue(cmdQueue);

4 clReleaseMemObject(bufA);

5 clReleaseMemObject(bufC);

6 clReleaseContext(context);

1.2.2 Algorithm Coding Optimization

If developing a specific OpenCL code for an algorithm is not possible, there are more

available options in order to improve performance, which require to start the code from

the beginning and to know very well the hardware architecture that is being used.

1.2.2.1 Algebraic Approximation

It has been shown that computing savings are related to the way an algorithm is

mathematically resolved. It is never implemented directly, but optimized by hand by

specialists such as mathematicians, physicists or even engineers.

In this project we will face undirected graphs, which is more suitable to work

on than directed ones. This issue is common in the breadth-first search (BFS) al-

gorithm, which is very useful when travelling through a graph [8]. As its name says, it

moves “horizontally”, and finds the shortest path between the nodes of the graph.

8

Figure 1.2: Sample graph (left), BFS “handmade” resolution (right)

Considering the sample graph 5 in Figure 1.2, and the fact that node 3 needs to

know the shortest path to the rest of nodes. An engineer who needs to solve this

issue would initialize node 3, discard it and move to one of its neighbours, discard this

one, move to another neighbour, and so on, until the last node is reached. In Figure 1.2

there is the “handmade” solution, made after six iterations -including initialization

and ending.

This kind of solution can be done by hand, but what if a hardware implementation

is demanded? Then we would think about dynamic memory allocations (mallocs).

In fact, that is how this algorithm is coded in university degrees. On the other hand, it

is known that those techniques are very relevant when performing on powerful PCs, but

not on all FPGAs and other devices. A different choice should come into play. That is

the moment when algebraic approximations appear [9].

Foremost, a graph is usually conceived as a matrix (AM, adjacency matrix), where

each value is “1” if a link exists and “0” if not. The row index represents the origin node

and the column value the destination node. For example, if Matrix(3,2)=1, then there is

a link from node 3 to node 2. In undirected graphs, this matrix will be symmetric.

We can obtain the BFS dealing with the matrix thanks to an initialization vector

(IV), a column vector. Its number of rows corresponds to the number of nodes of the

graph, and IV(initialization node,1)=1. The result of AM*IV is another column vector

full of zeros, but, not casually, with a “1” in the rows/nodes which are neighbours of the

initialization node (which is node 3 in this example).

5Graph made with Graphviz

9

If we multiply AM and the last result, we get another column vector. It is needed to

repeat this step until the column vector does not have any zero. However, every

step can overwrite values in the results column vector. That is why it has to be declared

another column vector (dist) where we will add the number of step to the positions of the

recently discovered nodes.

• Step 1 (initialization)

y = AM ∗ IV =



0 0 0 1 0

0 0 1 0 1

0 1 0 0 1

1 0 0 0 1

0 1 1 1 1


∗



0

0

1

0

0


=



0

1

0

0

1


dist =



0

1

0

0

1


This means that neighbours for node 3 are node 2 and node 5.

• Step 2

y = AM ∗ y =



0 0 0 1 0

0 0 1 0 1

0 1 0 0 1

1 0 0 0 1

0 1 1 1 1


∗



0

1

0

0

1


=



0

1

2

1

1


dist =



0

1

0

2

1


Node 4 discovered in step 2.

• Step 3

y = AM ∗ y =



0 0 0 1 0

0 0 1 0 1

0 1 0 0 1

1 0 0 0 1

0 1 1 1 1


∗



0

1

2

1

1


=



1

2

2

1

4


dist =



3

1

0

2

1


Node 1 discovered in step 3.

10

It can be seen that, if we try to solve BFS by hand, we need six iterations (number of

nodes + 1), but thanks to the algebraic approximation, the number of iterations

reduces to three. This is due to the fact that handmade BFS advances node

per node, and algebraic approximation allows to advance neighbourhood by

neighbourhood (represented as discontinuous green lines in Figure 3.2).

This leads now to a worse computing cost (many matrix products), but if we imple-

ment this to a large-scale graph we will find there is a computing benefit. In conclusion,

algebra makes things easier for coding algorithms [10].

1.2.2.2 Compiler Flags

When coding, it is important to use this kind of indications to the compiler in

order to optimize the execution time. There is a huge variability of them, but the most

important ones in terms of computing performance are these below [11]:

• -O0, -O1, -O2, -O3, -Ofast : the most common flags. Each one involves big

groups of recommended indications, making it easier to optimize any program.

• -ftree=loop-vectorize : tries to impose vectorization when a task is executed sev-

eral times, including loops.

• -pipe : tells the compiler to avoid temporary files, speeding up builds.

• -funroll-loops : asks for unrolling loops whose number of iterations can be deter-

mined at compile time or upon entry to the loop. It also exists a flag (-funroll-all-

loops) that works in the same way and unrolls those loops even when the number

of iterations is uncertain before entering the loop, fact that would deal to slower

programs.

1.2.2.3 HLS Pragmas

The HLS tool included in Vivado HLx software provides support for pragmas that

can be used to optimize designs in terms of decrementing area usage, rising throughput

performance, reducing latency... They can be added as a directive (implemented but not

visible along the RTL code) or as a line of code to indicate directly which part of the

program will be optimized. The most common pragmas are the following ones [12] [13]:

11

• Array-reshape: combines array partitioning with vertical array mapping.

• Dataflow: enables task-level pipelining (functions and loops overlaping). Without

other directives, HLS seeks to minimize latency and improve concurrency.

• Inline: dissolves a function into the calling function.

• Latency: specifies a minimum or maximum latency.

• Loop flatten: allows nested loops to be flattened into a single loop hierarchy with

improved latency.

• Loop merge: merges consecutive loops into a single loop to reduce overall latency.

• Loop tripcount: specifies the total number of iterations performed by a loop

manually.

• Pipeline: reduces the initiation interval for a function or loop by allowing the

concurrent execution of operations.

• Unroll: similar to the compiler flag.

1.2.2.4 Memory Reorganization

When discussing about data locality, there is a solution coming to our minds: in-

formation and instructions should be packed together in a location where memory works

faster. This issue is related to several parameters that are ought to be changed once this

point is reached:

• Data and instructions location: the most suitable places of the FPGA are the

RAM and cache memories. As well as their capability is the smallest compared to

other existent structures, it is enough for some large-scale graph algorithms, and

they are the fastest ones, so they will belong to the baseline of this project.

• Stack memory: in charge of temporary static variables, it holds very fast access

and works as a LIFO. Graph algorithms tend to make use of the same node many

times (the number of links with it as origin or destination node), so it’s dropped off

and taken back from stack memory continuously. It’s required to increase its

size in order to face bigger graphs.

12

• Heap memory: manages dynamic memory allocation. The elements of the heap

does not have dependencies with each other, and they can be accessed at any time.

Taking advantage of the FPGA, its size will also be grown.

1.3 Document Structure

The practical part of this project consists of several chapters:

• Experimental environment : in this chapter, hardware and software are de-

scribed, followed by the baseline procedure that will be optimized in the next chap-

ter.

• PageRank Acceleration using a ZCU102-ES2 FPGA: this block explains

how two implementations are built, one based on a single-core and a multicore

solutions.

13

Chapter 2

Background and Experimental

Environment

After discussing theoretical problems in algorithms’ optimization and possible fixes

that can solve them, we will build a procedure in order to improve the execution time of

the programs and reduce the number of components required to run them.

Firstly, the used hardware and software suites will be described, as well as the

possibilities they offer, and the algorithm we are going to enhance. Then, we will follow

a procedure over the three programs considered in this project, obtaining a baseline

implementation that will bring back a execution time and components’ usage that we will

take as reference for the optimizations that will be applied in the next steps.

Furthermore, after the hardware and software designs have been improved, it will

be detailed a multiprocessor baremetal solution that can be taken into account when

implementing an Operative System on the FPGA.

14

2.1 Hardware

In this project, we will make use of the Zynq UltraScale+ MPSoC ZCU102

Evaluation Kit. Graph algorithms will be executed in this board, as well as different

configurations in order to analyze the evolution of the performance while improving the

design. It includes:

Figure 2.1: Hardware used in the project

• Processor Zynq UltraScale XCZU9EG-L1FFVB1156I-2i-ES2, consisting of:

– Quad-Core ARM Cortex A-53 (Appendix A) with several levels: L1I (32KB/-

core), L1D (32KB/core) and L2 (128Kib-2MiB/cluster).

– Dual-Core Cortex-R5F CPU.

– Mali-400 MP2 GPU.

– 600K system logic cells.

– 32.1 Mb of memory.

– 2520 DSP slices.

– Maximum of 328 I/O pins.

• PS 4GB RAM DDR4-2666, with a working speed of 21.33 GB/s max.

• PL 512MB DDR4 component memory.

Appart from the FPGA, it will be used as host computer a Lenovo Legion Y530-

15ICH, with an Intel Core i7-8750H, 8GB RAM, 512GB SSD and powered by Windows

10 Home, v1909. Ubuntu 16.04 LTS was also tested for this project, but it was finally

abandoned due to issues related to drivers.

15

2.1.1 Ports in ZCU102-ES2

This FPGA includes several ports that can be used to introduce input information

for the different applications. It can be distinguished four categories [3]:

• UART (Universal Asynchronous Receiver-Transmitter) (Figure 2.2): used

for asynchronous serial communication over the computer serial port. In this project,

it will be used to send commands and receive timing results from the FPGA, with

an adjusted speed of 9600 bits per second.

• JTAG (Joint Test Action Group) (Figure 2.2): conceived as a hardware in-

terface that allows a computer to debug, program and test embedded devices. It

works as a master/slave interface, and it is where the algorithm code will be sent to

the FPGA through.

• Ethernet port (Figure 2.2): ZCU102-ES2 implements a 10/100/1000 Megabits

per second Ethernet interface, routed to an RJ45 Ethernet connector. It is linked

to the physical address 5’b01100 (0x0C).

Figure 2.2: UART, JTAG and Ethernet ports disposition over the FPGA

• SD-card port (Figure 2.3): provides access to non-volatile memory cards and

peripherals for I/O applications. In this project, we will insert through it the input

graphs that the FPGA needs to execute PageRank. The chosen memory card is a

SanDisk Ultra SDHC Memory Card Class 10 FFP, 16 GB with up to 80 MB/s.

Figure 2.3: SD-card port position on the FPGA

• USB port: not used in this project.

16

2.2 Software and Programming Languages

As well as it is going to be used a Xilinx-based FPGA, graph acceleration will be

configured through tools developed by this company, specially three ones included in

Vivado HLx software suite. We will use them in version 2017.4:

• Vivado HLS: converts a C, C++ or SystemC design specification into Register

Transfer Level (RTL) code, which could be used in other Vivado tools as part of a

logic design (HLS IPs) in an integrated circuit design. In this project, it will be

important to design hardware blocks based on HLS directives or pragmas,

included in a C program where PageRank is defined.

• Vivado: allows the user to build his own hardware design from zero, taking as

reference the considered FPGA hardware template. We will use it to specify which

FPGA components are needed and the memory addresses that the program is going

to use, appart from testing its timing and power.

• Xilinx SDK: based on Eclipse IDE and working with Vivado hardware designs, it

enables the user to create software platforms and applications targeted for Xilinx

embedded processors [14]. Basically, this is the IDE that imports a BSP (including

a bitstream file) from a Vivado project and where PageRank algorithm will be

programmed into the FPGA (in C++ language), and where we will be able to

change how much quantity of heap and stack will be used and in which component

both will be placed. It is also important when choosing which processor execute

each computing task, in issues related to computing parallelization.

Figure 2.4: Software functionality scheme

17

2.3 PageRank

This algorithm was developed in 1998 by Google’s founders Serguéi Brin and Larry

Page, as a solution for those websites that had an important relevance for Internet users,

but due to the increasing expansion of Web’s size and the massive work of spammers,

they did not appear on the first pages when performing a search query.

Google’s PageRank way of working revolves around a popularity score system that

rates every website, taking into account if it is pointed to by other important pages. These

scores are displayed as an integer from 0 to 10, representing the “importance” of each

website in relation to the whole Internet graph, and they are updated as well as users

visit that page. This search resolution is still being applied nowadays.

This algorithm is executed iteratively. All the vertex scores are calculated along

every iteration thanks to the result of the update of their neighbours, whose value is

made up of the next equation [15]:

PRi+1(v) =
1−d
|V | + d

∑
uεNi(v)

PRi(u)
|N0(u)|

An implementation coded in C language is described on Appendix B.

2.4 Baseline Implementation

The basic process we have to follow in order to program an algorithm on the FPGA

consists of three phases that will be repeated several times, even when we want to optimize

designs. The procedure corresponds to the steps related in Figure 2.4.

1. Designing blocks in Vivado HLS: needed if the engineer needs to ”book” a

explicit and fixed number of components that will be executed on the board, as IP

hardware blocks.

2. Building an FPGA hardware design in Vivado: where a board design is

loaded. The previous created IP can be added to this design, that will be exported

to Xilinx SDK.

3. Using Xilinx SDK to program the FPGA: after importing the hardware design

to the SDK, the algorithm will be coded here, as well as the desired optimizations,

libraries... Finally, these changes will be saved and programmed on the board.

18

2.4.1 Designing Blocks in Vivado HLS

Vivado HLS manages the creation of hardware blocks that can be exported as part

of Vivado designs. These hardware blocks are compiled after coding the algorithm or

program the FPGA is going to execute, working as a kind of token that books the exactly

quantity of required resources to run the program. The operation mode of Vivado HLS

consists of two kind of files:

• Source files: containing the algorithms the FPGA will be able to perform. The

source files can hold pragmas and memory instructions such as callocs , allowing

several types of optimizations that direct hardware orders do not support.

• Testbench files: including the input data and functions calling, they are created

with the objective of testing the latency, timing, resources estimates... When exe-

cuting the program, one testbench file will be selected.

After defining different files, selecting a main function to test and running the pro-

gram, Vivado HLS will bring back a Synthesis Report (Figure 2.5) that explains the

function’s performance (timing and latency results), how much and which kind of re-

sources have been involved, and which type of interfaces have been used. It allows the

engineer to find out how optimizations affected on the original code.

Figure 2.5: Fragment of Synthesis Report, from Vivado HLS

19

2.4.2 Building an FPGA Hardware Design in Vivado

Firstly, in Vivado, we chose an Example Project provided by the program for our

FPGA (Figure 2.6), suitable for general purposes, and synthesized it in order to get

theoretical power and component use results (Table 2.1 and Table 2.2).

Figure 2.6: Block design of the Example Project in Vivado

On-chip power 4.977W Dynamic power 4.214W (85%) Clocks 0.196W

Signals 0.106W

Logic 0.205W

BRAM 0.071W

DSP 0.015W

PLL 0.059W

MMCM 0.114W

I/O 0.253W

PS 3.194W

Static power 0.763W (15%) PL 0.663W

PS 0.100W

Table 2.1: Windows basic implementation on-chip power

20

Element BRAM 18K DSP48E FF LUT URAM WNS WHS WPWS

Quantity 297 19 26948 26719 0 0.628ns 0.01ns 0.058ns

Table 2.2: Windows component usage and critical path stats

As it was said before, Ubuntu 16.04 LTS was also tested as host OS for Vivado

projects. When building the same block design as the previous implementation in Win-

dows, results were much better (Table 2.3 and Table 2.4). However, some driver problems

of the laptop showed up and Windows was finally set as main Operative System.

On-chip power 3.934W Dynamic power 3.209W (82%) Clocks 0.008W

Signals 0.006W

Logic 0.005W

BRAM 0.001W

DSP 0

PLL 0

MMCM 0

I/O 0

PS 3.190W

Static power 0.725W (18%) PL 0.626W

PS 0.099W

Table 2.3: Ubuntu basic implementation on-chip power

Element BRAM 18K DSP48E FF LUT URAM WNS WHS WPWS

Quantity 0 0 2318 2454 0 5.110ns 0.034ns 3.498ns

Table 2.4: Ubuntu component usage and critical path stats

Nevertheless, we included an specific PageRank hardware block (previously designed

in Vivado HLS) in the scheme as a way to compare the performance when it is used or

not. The next step implies to compile the project, getting its Board Support Package

(BSP) and its bitstream file, that will be exported to Xilinx SDK attached to a

defined hardware configuration. Those are the minimum files required for programming

the project on the FPGA.

21

2.4.3 Using Xilinx SDK to Program the FPGA

Once we enter the program, we will create a new application project in SDK. This

project contains source files, where we will code the algorithm (Appendix B) and a small

graph textfile (with a size of more than 450 nodes and 2025 edges1, ie: Figure 2.7); and

the previously mentioned BSP, whose content includes a key file: system.mss . This

file alludes to the target board and target processor for the project, its Operative System,

which peripheral drivers are being made use of, and last but not least, it is possible to

choose libraries, in charge of enabling some special features such as a Fat File System,

Power Management APIs, flash memories...

Figure 2.7: Graph textfile sample (left), Xilinx SDK project files hierarchy (right)

In system.mss it is also required to enable libmetal and xilmfs (Xilinx Memory File

System) libraries, used in baremetal implementations and containing files related to file

system applications respectively.

Before programming software on the FPGA, compiler flags or linker flags can be

imposed when building the project, depending on the requirements of the program itself.

It can be done by right clicking on the project folder and clicking Properties (Figure 2.8).

1Edge: refers to a link between two nodes.

22

Figure 2.8: C/C++ Build Settings in properties window

After this steps, it is time to program the project on the FPGA, setting COM3 as

the host laptop port. Then, we execute each compiler flag configuration ten times (right

click on project folder, click Run As and 1 Launch on Hardware (System Debugger)) and

we calculate the average. Henceforth, timing results tables will show the time that lapses

from the calling to the PageRank algorithm function to the instant it ends.

In Figure 2.9, they are compared the design that includes specific hardware block

and the one that it does not (x-scale: implemented compiler flags, y-scale: execution

time). It can be seen that the time difference between inserting and deprecating the

hardware block is minimal, as well as using more compiler flags results on a smaller ex-

ecution time. That is the reason why this block is not useful in our project, and will be

not be used in the optimization that will be applied later.

23

Finally, this chart also shows how the most restrictive compiler flags do not always

bring the best timing results, as it can be seen on the green bars. We will use a more

diverse repertory of flags that will impact on a smaller execution time.

Figure 2.9: Timing results comparison (with and without PageRank hardware block)

24

Chapter 3

PageRank Acceleration using a

ZCU102-ES2 FPGA

Once the basic PageRank disposal has been settled, it is time to build an improved

implementation. Based on the theoretical ideas and the procedure followed before, mono-

core results will be obtained after implementing an SD card driver. Then, stack and

heap memories will be redistributed and their size adapted thanks to the introduction

of a linker script, ending with the execution of large-scale graphs that will try out the

capability of the ZCU102-ES2.

Last but not least, it will be executed a multicore baremetal development that

has been tested, leaving some interesting results that can be considered when implement-

ing an Operative System on the FPGA in future research.

3.1 Single Core Performance

Monocore execution procedure consists on calculating the timelapse when inserting

graphs as a textfile in the SD card, and from that point a linker script will be configured

and added to the board. It will show hefty diferences that will make us reflect on how

memory accesses act as a bottleneck in terms of throughput and speed.

3.1.1 SD Card Insertion

However, what we have done so far is to calculate the value of each node belonging

to a graph placed in the same file where we coded PageRank, resulting on a very slow

data transfer rate through the serial port (9600 bits per second, corresponding to the

25

UART port). This is very inconvenient, not suitable for a modular implementation. That

is the reason why graphs should be defined in a file that would enter a different physical

port. There were several options attending to the possibilities of the FPGA, but after

considering the capability of each input port, we decided to work with an SD card.

When using the SD card port as input, there is the problem that a baremetal FPGA

(without any Operative System) cannot understand the binary content of the card on its

own. This issue could be solved by using the xilffs library (Generic Fat File System

Library), that builds a memory system by the usage of Xilinx proprietary commands that

mount the SD card and settle a virtual disk where the graph file will be placed. This

“driver” also turns the content of the textfile from ASCII characters to numbers.

The first step to implement the SD card into the project consists on declaring the

SD-card device library and two huge buffers that will hold the origin and the destination

nodes for all the graph edges. A pointer to the file and the name of the textfile declarations

are also required.

Listing 3.1: SD-card input driver: libraries and global variables

1 #include "xsdps.h" // SD device library

2

3 /************************** Function Prototypes ******************************/

4 int FileInitialization(void);

5

6 /************************** Variable Definitions *****************************/

7 static FIL fil; /* File object */

8 static FATFS fatfs;

9

10 /* To test logical drive 0, FileName should be "0:/<File name>" or "<file_name>". For

logical drive 1, FileName should be "1:/<file_name>" */

11

12 static char FileName[32] = "FILE.txt"; // Name of the textfile (32 characters MAX)

13 static char *SD_File; // Pointer to the file

14

15 #ifdef __ICCARM__

16 #pragma data_alignment = 32

17 u8 DestinationAddress[10*1024]; // Buffer for the destination node of the links

18 #pragma data_alignment = 32

19 u8 SourceAddress[10*1024]; // Buffer for the origin node of the links

20 #else

21 u8 DestinationAddress[10*1024*1024] __attribute__ ((aligned(32)));

22 u8 SourceAddress[10*1024*1024] __attribute__ ((aligned(32)));

23 #endif

26

When the program is executed, the main function will call the FileInitialization

function, in charge of managing the data from the SD-card.

Listing 3.2: SD-card input driver: main function calling

1 /**/

2 int main(void) {

3 int Status;

4 ...

5 Status = FileInitialization();

6 ...

7 }

Once the execution reaches the FileInitialization function, a classical file system

performance is emulated: the file system is mounted, then the textfile will be opened.

The pointer will be required to indicate the beginning of file, after the file will be read,

finally, the file will be closed.

Listing 3.3: SD-card input driver. FileInitialization function (1): filling the data buffers

1 /**/

2 int FileInitialization(void) {

3 FRESULT Res;

4 UINT NumBytesRead;

5 u32 FileSize = (1451*1024*1024);

6 TCHAR *Path = "0:/"; // To test logical drive 0, Path should be "0:/". For logical

drive 1, Path should be "1:/"

7

8 Res = f_mount(&fatfs, Path, 0); // Register volume work area, initialize device

9 if (Res != FR_OK) return XST_FAILURE;

10

11 SD_File = (char *)FileName;

12 Res = f_open(&fil, SD_File, FA_READ); // Open file

13 if (Res) return XST_FAILURE;

14

15 Res = f_lseek(&fil, 0); // Pointer to beginning of file

16 if (Res) return XST_FAILURE;

17

18 // Read data from file

19 Res = f_read(&fil, (void*)DestinationAddress, FileSize, &NumBytesRead);

20 if (Res) return XST_FAILURE;

21

22 Res = f_close(&fil); // Close file

23 if (Res) return XST_FAILURE;

27

Thereafter, once the two data buffers contain the whole data, the pointer will travel

through both buffers with the aim of turning each detected character to a digit of the

corresponding number. When a blank space is detected, the array tempArray[] (in charge

of storing each digit of a number) will hold the complete enteger.

Listing 3.4: SD-card input driver. FileInitialization function (2): file characters reading

1 int count = 0; // Number of digits per number iterator

2 int tempArray[10]={0}; // Temporary char, its digits will form the definitive number

3 int i=0; // Coefficient for number of element of DestinationAddress array

4

5 // Getting number of nodes

6 while(DestinationAddress[i]<58 && DestinationAddress[i]>47) {

7 tempArray[count]= (int)DestinationAddress[i] - 48;

8 count++;

9 i++;

10 }

11

12 int n = sd_input(tempArray, count);

13 count=0;

14 i++;

15

16 // Getting number of edges

17 while(DestinationAddress[i]<58 && DestinationAddress[i]>47) {

18 tempArray[count]= (int)DestinationAddress[i] - 48;

19 count++;

20 i++;

21 }

22

23 int e = sd_input(tempArray, count);

24 count=0;

25 i++;

26 ...

27 }

28

After the array tempArray[] is full of digits (the whole number is stored), the

SD input function shows up, turning the array to the corresponding integer, thanks to

pow() function, included in the math.h library that was declared at the top of the program.

That is how all the read digits are joined, obtaining the corresponding number.

Listing 3.5: SD-card input driver: char to integer converter

1

2 /*********************** SD card char to int converter ***********************/

3

4 int sd_input(int tempArray[], int count) {

5 int number = 0;

6

7 for(int j=(count-1); j>=0; j--) {

8 number+=tempArray[count-j-1]*pow(10,j);

9 tempArray[count-j-1]=0; // reset

10 }

11 return number;

12 }

After applying these changes, programming the board and executing the program,

we found out that using the SD card softly impacted on latency, due to the need of

mounting a baremetal file system, leading to a slow increment in execution time.

Optimization Average time (µseconds)

-O0 6295.70

-O1 4517.01

-O1 -fstrict-overflow -foptimize-sibling-calls -fpartial-inlining 4419.85

-O2 4405.12

-O2 -ftree-loop-vectorize 4348.47

-O3 4241.92

Table 3.1: Timing results (including SD-card input, without hardware or software modi-

fications) over a small graph (450+ nodes, 2025+ edges)

29

Optimization Average time (µseconds)

-O0 6298.49

-O1 4527.34

-O1 -fstrict-overflow -foptimize-sibling-calls -fpartial-inlining 4423.37

-O2 4413.28

-O2 -ftree-loop-vectorize 4358.21

-O3 4248.13

Table 3.2: Timing results (including SD-card input, with PageRank hardware block in

the architecture) over a small graph (450+ nodes, 2025+ edges)

It can be observed that the final average time (Table 3.1) is quite worse than the

one in the previous configuration (Table 3.2): the program accesses a textfile placed in a

mounted file system, not directly in the code as in the baseline execution. The remaining

time is lost in the typical SD-card file reading procedure.

Optimization Speed up

-O0 1.000

-O1 1.002

-O1 -fstrict-overflow -foptimize-sibling-calls -fpartial-inlining 1.000

-O2 1.001

-O2 -ftree-loop-vectorize 1.002

-O3 1.001

Table 3.3: Speed-up (SD-card with no optimization / SD-card with optimization) over a

small graph (450+ nodes, 2025+ edges)

A remarkable fact is that the speed-up results (Table 3.3) do not show important

differences between the implementation with an specific PageRank hardware block (that

includes HLS directives) and the baseline without an inserted hardware block. This leads

to the conclusion that including a designed IP in a Vivado project is not very effective

in our case, as well as it consumes more resources and does not give back any benefit.

Later in this project, the PageRank hardware block will be deprecated and will not be

used anymore.

30

3.1.2 Appropriate Memory Distribution

Timing results hardly improved after introducing the functionalities of the SD card,

but circumstances change when dealing with memory organization. In Xilinx SDK, there

is an specific file that gets along in this issue, specially the memory addresses each part

of the program occupies and the stack and heap memories’ measures, called linker script.

In order to configure this file, it is necessary to right click on the SDK project folder,

choosing “Generate linker script”.

Once a window shows up and clicked on Advanced tab (Figure 3.1), there are several

options that can be modified, but three stand out: the Code Section Assignments, in

charge of deciding which memory is most suitable for the code (instructions); The Data

Section Assignments, managing the place where data stays, and the Heap and Stack

Section Assignments, the most relevant option in terms of optimization; It makes the

difference from the previous ones due to the fact that it allows to assign an specific

size for heap and stack memories, appart from the memory part it occupies.

Figure 3.1: Linker script generation tab

31

After the memory features have been correctly adjusted, we will click Generate and

changes will be applied to the project, so after programming the FPGA and executing

the program again, performance improves in a very notorious way. Furthermore, when

including new compiler flags, such as -Ofast, -pipe and -funrol-loops, average time reduces

on 0.5 milliseconds, implying the best speed result so far (Table 3.4).

Optimization Average time (µseconds)

-O0 4007.09

-O1 2343.92

-O1 -fstrict-overflow -foptimize-sibling-calls -fpartial-inlining 2242.29

-O2 2228.00

-O2 -ftree-loop-vectorize 2192.76

-O3 2044.80

-Ofast -pipe 1513.77

-funroll-loops 1512.74

Table 3.4: Timing results (with SD card input, pragmas, PageRank block, 252KB stack

and 1.62GB heap and -mcmodel=large flag) over a small graph (450+ nodes, 2025+ edges)

3.1.3 Large Scale Implementation

Remapping memory is one of the best ways to reduce the execution time, leaving

the path free to bigger graphs. After testing around twenty-five graphs containing big

differences of quantity of nodules and links between them, the biggest graph that could be

reached covered more than 36000 elements and around 1.6 million edges, leading

to an average time of almost 4 seconds (Table 3.5).

Graph size Average time (µseconds)

453 nodes, 2025 edges 1513.00

1446 nodes, 59589 edges 52888.56

3482 nodes, 155043 edges 159948.10

18448 nodes, 973918 edges 1902219.65

36364 nodes, 1590651 edges 3854160.64

Table 3.5: Large-scale graphs timing results (Optimized configuration, with 1’62GB heap

in DDR and 252KB stack in OCM RAM)

32

In Figure 3.2, the x-scale describes the main features of the considered graph (num-

ber of nodes and links between them), and the y-scale represents the execution time.

It is remarkable the way the timing curve stabilizes below the fourth graph, meaning

that when approaching the million edges the network turns more complex, increasing

significantly the execution time. If the board, with the actual configuration, could hold

a denser-edged input, timing would extend to quite higher numbers, as it can be seen

that the curve starts to turn to an exponential function when the number of nodes

and edges increase abruptly. Consequently, it makes intelligible that our FPGA cannot

support them right now.

Nonetheless, the biggest reached graph would not be very useful in real life, so it is

required to find a way of inserting larger inputs, which is described in the next sections.

Figure 3.2: Large-scale graphs timing comparison (Optimized configuration, with 1’62GB

heap in DDR and 252KB stack in OCM RAM)

33

3.1.4 Improving Hardware Design

This practical application of algorithm acceleration has been built so far on the idea

of accomodating software which is programmed directly on the hardware of the FPGA.

Nevertheless, hardware organization is one of the main factors that enforce the latency of

the execution, and it is the issue that is going to be improved in this paragraph.

Instead of choosing an Example Project block design, we decided to build my own

hardware organization from zero. There are several components which are essential for

our purposes:

• Zynq UltraScale+ MPSoC: the processor is the most important part of the

FPGA.

• DDR4 RAM memory: it is the fastest memory placed in the FPGA, and it

should become the first option when storing or importing data is required.

Once these two IPs are positioned in the block design, we chose the autobuild

option in order to set automatically all the connections between the components, without

including the specific PageRank hardware block that did not bring back any remarkable

benefit (Figure 3.3).

Figure 3.3: Block design of the optimized project in Vivado

Power and components usage reports (Table 3.6 and Table 3.7) reflected a small

upturn talking about on-chip power, but a big reduction of used logic gates. When tested

on Ubuntu 16.04 LTS, it also brang good results (Appendix C).

34

On-chip power 4.773W Dynamic power 4.041W (85%) Clocks 0.160W

Signals 0.086W

Logic 0.159W

BRAM 0.021W

DSP 0.001W

PLL 0.059W

MMCM 0.114W

I/O 0.247W

PS 3.194W

Static power 0.731W (15%) PL 0.631W

PS 0.100W

Table 3.6: Windows final implementation on-chip power

Element BRAM 18K DSP48E FF LUT URAM WNS WHS WPWS

Quantity 25.50 3 18658 16563 0 0.617ns 0.014ns 0.058ns

Table 3.7: Windows final implementation component usage and critical path stats

After the bitstream is generated, hardware has to be exported to Xilinx SDK and

the previous explained ways of software optimizing are applied. The configuration that

best suited the considered graphs was: 1.88GB heap on DDR0, 1.4GB stack on

DDR1, and -Ofast -pipe -funroll-loops compiler flags addition.

After changes are saved, the project is programmed on the FPGA and the algorithm

is executed. These features resulted on a impressive improvement on performance and the

capability of elements and links, allowing the FPGA to work on graphs with almost

300000 nodes and more than 2300000 edges (Table 3.8 and Figure 3.4, where the

x-scale represents the quantity of nodes and links of each graph, and the y-scale shows

the required time to execute the algorithm).

35

Graph size Average time (µseconds)

36364 nodes, 1590651 edges 2033100.06

325729 nodes, 1497134 edges 3082364.29

281903 nodes, 2312497 edges 2901177.71

Table 3.8: Large-scale graphs timing results (new design, optimized configuration, with

everything in DDR, 1’88GB heap and 1’4GB stack)

Figure 3.4: Large-scale graphs timing comparison (new design, optimized configuration,

with everything in DDR, 1’88GB heap and 1’4GB stack)

In order to end with the monocore optimization, it was considered a massive graph

aiming a customized configuration that enforced its performance.

Heap and stack memories configuration was modified, reaching 1.88GB heap and

11.64MB stack (Figure 3.5), executing PageRank function in 2032818.84 µseconds

for a graph where 36364 nodes represent pages from Texas University and 1590651 directed

edges represent hyperlinks between them.

36

DDR4 ADDRESS BLOCK (512MB)

OCM RAM (256KB)

QSPI (512MB)

DDR1 (2 GB)

DDR0 (2GB)

DATA
1.88GB HEAP
11.64MB STACK

Figure 3.5: Final memory distribution

Finally, when using as input graph the biggest available one (281903 nodes and

2312497 edges), a network representing nodes and hyperlinks of the webpage of Stanford

University (stanford.edu), its performance also improved, reaching 2900341.48 µseconds.

3.2 Multicore Performance

After building a monocore PageRank on a baremetal implementation, testing the

execution of the algorithm in several processors at the same time is an unavoidable issue.

In order to make it possible, SDK projects for each ARM Core need to be defined

in the project settings before creating it. The programs should work normally in each

processor. However, as we are executing the same code in all the projects, each code

accesses the SD card and its respective file system at the same time, causing collisions

(Figure 3.6). The SD-card input driver needs to be launched in different periods of time.

Figure 3.6: 2-Core file system accesses. Without manual delays (left), with manual delays

(right)

If the project had been powered by an Operative System such as Ubuntu or CentOS,

it would automatically take control of time distribution, delaying the processes that would

be possible to run into each other. Nevertheless, this implementation is baremetal, and

it exists a basic order that skips this problem manually: using big for loops that do not

contain instructions.

37

Furthermore, code might not be executed by the FPGA due to memory require-

ments, specially stack and heap, so the linker script needed to be modified. We finally

decided to spread the total size equally, giving approximately 1GB for each memory

block (972 MB). This change resulted on a bottleneck that does not allow the engineer

to implement the algorithm on more than two cores, that brought back the timing re-

sults detailed on Table 3.9 and Figure 3.7, where it is compared the timing performance

difference (y-scale) between the two working processors (x-scale).

Core Average time (µseconds)

Cortex A53 #0 2899348.042

Cortex A53 #1 5736850.54

Table 3.9: Multicore timing results (972MB heap and 972MB stack)

Figure 3.7: Multicore timing comparison (972MB heap and 972MB stack)

38

3.3 Conclusions of the Practical Application

After analyzing and executing different ways of improving the board’s performance,

we have reached several conclusions.

In the first sections, we put into practice an unoptimized algorithm, without inserting

an specific PageRank hardware block into the reference design. However, when we added

it, the speedup was less than one: reserving a fixed quantity of resources in order

to execute an algorithm faster is not always the best choice. In our case, the

FPGA works faster without including a hardware block into the design of Vivado, as it

can be seen in Figure 3.8, where the red line represents the unoptimized implementation

and the blue one shows how it affects the introduction of a PageRank IP into the design.

Figure 3.8: Baseline timing results comparison

The next step consisted on bringing to stage the SD card and its portability advan-

tages. Implying a file system will always increase the execution time (green and yellow

lines of Figure 3.8), as it is required to mount it, find the file, point to its beginning, read

the data, and to close the file. Nonetheless, using an SD card is more convenient,

due to the higher reading speed rates compared to other input ports. On the other hand,

in Figure 3.8 the difference between optimized and unoptimized paths is minimal, so we

will not use PageRank IP block in order to let the FPGA choose the required resources

in each execution. The baseline implementation has been set up.

39

Once the bedrock of the project is built, it was time to improve those results. The

linker script is modified, altering the location of data, code and heap and stack memories.

That is our way to avoid the problem of poor data locality and uncontrolled memory

accesses. In fact, moving data and instructions to other memory appropriate

positions granted a reduction of execution time from 4248.13 µseconds to

1512.74 µseconds (speedup of 2.8). That relocation also opened the gate of real-life

graphs, reaching more than 36000 nodes and almost 1.6 million links.

First software changes brought good results, but there was an structural issue

that had to be solved: the Vivado design. A simpler design was tested, consuming

less resources and enabling the entrance of even bigger graphs than before ones. After

optimizing software features on the new BSP, it could be possible to execute

graphs of almost 300k nodes and 2.5 million edges, ten times more nodes and

50% more links.

40

Chapter 4

Conclusions and Future Work

This end-of-degree project is focused on building an algorithm accelerator that in-

creases the performance of the executions of an algorithm on an FPGA. For this purpose,

it was used a laptop that can program a considered board, in our case a ZCU102-ES2.

We employed a basic program on the device, which was optimized with several

options that reduced the execution time by rellocating data and instructions, modifying

the size of the memories and using compiler flags. Finally, it resulted on higher speed

rates, opening doors to real-life graphs that are run in a small quantity of time.

This work put the spotlight on issues from different fields treated along the degree:

• Memory slowness: the slow memory speed and data memory accesses without

control issues are partially avoided thanks to modifying features of a linker script.

• Compiler options are very relevant: using a compiler that has not been config-

ured and works by default is not desirable. When choosing the appropriate settings,

performance can be improved easily.

• Maths make computing simpler: algorithms can be coded as their theorical

description, but it usually exists an approximation that reduces substantially the

time needed to execute it.

• Proprietary solutions are not a good choice: an OpenCL code could have

solved the timing problem in a faster way, but it would not have been possible to

use it in other different board or device. The exposed procedure of this work can

be used in any FPGA, just deploying Vivado HLx software suite.

Despite the big quantity of advances reached in this project, there are several paths that

could be followed, obtaining a richer work as a result.

41

4.1 OS insertion with PetaLinux

The multicore implementation that is proposed in this end-of-degree project is based

on a baremetal point of view: the different components of the board are controlled

manually by the engineer, which is not the most suitable option.

The distinct parts of the FPGA cannot be under the supervision of the expert

constantly, and that issue can be solved by the introduction of an Operative System

that distributes the access according to the requirements of each process, thanks to a tool

based on PetaLinux. In this work, it was tested the insertion of Ubuntu and CentOS,

but it was finally deprecated. However, it is the most logic way of improving performance.

4.2 Input Data through Ethernet

We decided to work with the SD-card port, but there is a better option but less

portable: deploying Ethernet cable. Its throughput is quite higher, and data could be

directly transferred from the host computer. On the other hand, it would be necessary

to find the procedure to move that data from the computer to the board, as Xilinx SDK

prioritizes the use of flashcards.

4.3 Finding the Available Exact Size of Graphs

The number of nodes and edges of the graphs used in the project are predefined by

networks existent in real infrastructures, but it would be a good idea to generate our own

graphs in order to test which is the approximate size that we could use as an input of

PageRank. There is a synthetic graph generator that enables this option, called gpart.

4.4 Graph Partitioning

Graph partitioning is a practice that can be very useful in terms of evaluating the

capabilities of an FPGA when working with multicore implementations.

This issue can be treated in different ways: split up too big graphs so each core

executes the algorithm with each fragment, or generating directly graphs of similar size,

enough to fulfil the capacity of each processor of the board.

42

Appendix A

ARM Cortex Processors Family

ARM Cortex series [16] provide different cores depending on the functionality they

are going to perform and their scalability. It can be distinguished three categories:

• Cortex-A: deployed for performance-intensive implementations.

• Cortex-R: high-performance cores specially designed for real-time applications.

• Cortex-M: used in a wide range of embedded systems.

43

Appendix B

PageRank Code

The code of the algorithm (using a pseudocode as reference [17]) aims to analyze

the input graph stored in the SD card, and addresses its data in three buffers:

• FileSize: saves the whole graph data. From this buffer we will extract the different

origin and destination nodes for each link, after stored in two new buffers.

• DestinationAddress: where all the corresponding destination nodes will be kept.

• SourceAddress: buffer where it will be stored the origin nodes for each edge or

link.

When the three buffers hold all the information, then PageRank algorithm is com-

puted and brings back its results for each node, including the time that it took to execute

the complete algorithm (Figure B.1).

Figure B.1: PageRank code scheme

44

Listing B.1: Used libraries in PageRank code

1 /***************************** Include Files *********************************/

2

3 #include "xparameters.h" // SDK generated parameters

4 #include "xsdps.h" // SD device driver

5 #include "xil_printf.h"

6 #include "ff.h"

7 #include "xil_cache.h"

8 #include "xplatform_info.h"

9 #include <stdlib.h>

10 #include <math.h> // Math library

11 #include "xtime_l.h" // XTime measure

12

13 /************************** Function Prototypes ******************************/

14 int FileInitialization(void);

15

16 /************************** Variable Definitions *****************************/

17 static FIL fil; // File object

18 static FATFS fatfs;

19

20 /*

21 * To test logical drive 0, FileName should be "0:/<File name>" or

22 * "<file_name>". For logical drive 1, FileName should be "1:/<file_name>"

23 */

24 static char FileName[32] = "FILE.txt";

25 static char *SD_File;

Listing B.2: SD-card graph number of nodes and edges reading

1 // Data buffer declaration

2 #pragma data_alignment = 32

3 u8 DestinationAddress[10*1024];

4 #pragma data_alignment = 32

5 u8 SourceAddress[10*1024];

6 TCHAR *Path = "0:/"; // Logical drive declaration

7 f_mount(&fatfs, Path, 0); // File system mounting

8 f_open(&fil, SD_File, FA_READ); // Open file with read permissions

9 f_lseek(&fil, 0); // Pointer to beginning of the file

10 f_read(&fil, (void*)Data_buffer, FileSize, &NumBytesRead); // Read data from file

11 f_close(&fil); // Close file

12

13 int count = 0; // Number of digits per number iterator

14 int tempArray[10]={0}; // Temporary char, after its digits will form the definitive

number

45

15 XTime_GetTime(&tStart);

16 Turn each character to integer and join all digits to form the whole number of nodes

and edges

Listing B.3: PageRank initialization

1

2 u32 FileSize = (1451*1024);

3 int granularity = 1;

4

5 float *val = calloc(n, sizeof(float));

6 int *col_ind = calloc(n, sizeof(int));

7 int *row_ptr = calloc(n+1, sizeof(int));

8

9 // The first row always starts at position 0

10 row_ptr[0] = 0;

11

12 int cur_row = 0;

13 int iterator = 0; // Number of analyzed edges iterator

14 int j = 0;

15 // Elements for row

16 int elrow = 0;

17 // Cumulative numbers of elements

18 int curel = 0;

19

20 while(iterator < Number of edges) {

21 Read origin node

22 Read destination node

23 if (Origin node > cur_row) { // change the row

24 curel = curel + elrow;

25 for (int k = cur_row + 1; k <= Origin node; k++) row_ptr[k] = curel;

26 elrow = 0;

27 cur_row = Origin node;

28 }

29

30 val[iterator] = 1.0;

31 col_ind[iterator] = Destination node;

32 elrow++;

33 iterator++;

34 }

35 row_ptr[cur_row+1] = curel + elrow - 1;

36

37 // Fix the stochastization

38 int out_link[n];

46

39 for(i=0; i<n; i++) {

40 out_link[i] = 0;

41 }

42

43 int rowel = 0;

44 for(i=0; i<n; i++){

45 if (row_ptr[i+1] != 0) {

46 rowel = row_ptr[i+1] - row_ptr[i];

47 out_link[i] = rowel;

48 }

49 }

50

51 int curcol = 0;

52 for(i=0; i<n; i++) {

53 rowel = row_ptr[i+1] - row_ptr[i];

54 for (j=0; j<rowel; j++) {

55 val[curcol] = val[curcol] / out_link[i];

56 curcol++;

57 }

58 }

59

60 /* PageRank algorithm */

61 PageRank(n, val, col_ind, row_ptr, granularity);

62 XTime_GetTime(&tEnd);

63 xil_printf("%d\n", 2*(tEnd - tStart)); // Zynq SoC’s counter increases every two

clock cycles

64

65 return 0;

66

67 }

Listing B.4: PageRank algorithm code

1

2 int PageRank(int n, float val[], int col_ind[], int row_ptr[], int granularity) {

3

4 float d = 0.85; // Set the damping factor ’d’

5 float p[n]; // Initialize p[] vector

6 for(int i=0; i<n; i++) p[i] = 1/n; // P_INITIALIZE_1DIVN:

7 float p_new[n]; // Initialize new p vector

8 int looping = 1; // Set the looping condition

9

10 // LOOPING_WHILE:

11 while (looping){

47

12 // Initialize p_new as a vector of n 0.0 cells

13 // P_INITIALIZE_0:

14 for(int i=0; i<n; i++) p_new[i] = 0.0;

15

16 int rowel = 0;

17 int curcol = 0;

18

19 // Page rank modified algorithm + parallelization

20 // PAGERANK_LOOP1:

21 // This part of the code uses many resources

22 for(int i=0; i<n; i = i + granularity){

23 rowel = row_ptr[i+1] - row_ptr[i];

24 // PAGERANK_SUBLOOP:

25 for (int j=0; j<rowel; j++) {

p_new[col_ind[curcol]]=p_new[col_ind[curcol]]+val[curcol]*p[i];

26 curcol++;

27 }

28 }

29

30 // PAGERANK_LOOP2:

31 for(int i=0; i<n; i++) p_new[i] = d * p_new[i] + ((1.0 - d) / n);

32

33 // TERMINATION: check if we have to stop

34 double error = 0.0;

35 // ERROR_CHECK:

36 for(int i=0; i<n; i++) error = error + fabs(p_new[i] - p[i]);

37 // If two consecutive instances of pagerank vector are almost identical,

stop

38 if (error < 0.0001)

looping = 0;

39

40 // Update p[]

41 // P_UPDATE:

42 for (int i=0; i<n;i++) p[i] = p_new[i];

43

44 // Increase the number of iterations

45 k = k + 1;

46 }

47 return 0;

48 }

48

Appendix C

Ubuntu Optimized Block Design

A deprecated path of investigation was based on building the project with Ubuntu

16.04 LTS as the Operative System used in the laptop where Vivado HLx was installed.

If the optimized block design of Windows is implemented on Linux, it resulted on better

on-chip power and components usage (Table C.1 and Table C.2).

On-chip power 4.724W Dynamic power 3.993W (85%) Clocks 0.162W

Signals 0.078W

Logic 0.121W

BRAM 0.022W

DSP 0.001W

PLL 0.059W

MMCM 0.114W

I/O 0.245W

PS 3.190W

Static power 0.731W (15%) PL 0.631W

PS 0.100W

Table C.1: Ubuntu final implementation on-chip power

Element BRAM 18K DSP48E FF LUT URAM WNS WHS WPWS

Quantity 0 3 25463 23719 0 0.736ns 0.016ns 0.058ns

Table C.2: Ubuntu final implementation component usage and critical path stats

49

List of Figures

1.1 FPGA memory hierarchy . 3

1.2 Sample graph (left), BFS “handmade” resolution (right) 9

2.1 Hardware used in the project . 15

2.2 UART, JTAG and Ethernet ports disposition over the FPGA 16

2.3 SD-card port position on the FPGA . 16

2.4 Software functionality scheme . 17

2.5 Fragment of Synthesis Report, from Vivado HLS 19

2.6 Block design of the Example Project in Vivado 20

2.7 Graph textfile sample (left), Xilinx SDK project files hierarchy (right) . . . 22

2.8 C/C++ Build Settings in properties window 23

2.9 Timing results comparison (with and without PageRank hardware block) . 24

3.1 Linker script generation tab . 31

3.2 Large-scale graphs timing comparison (Optimized configuration, with 1’62GB

heap in DDR and 252KB stack in OCM RAM) 33

3.3 Block design of the optimized project in Vivado 34

3.4 Large-scale graphs timing comparison (new design, optimized configura-

tion, with everything in DDR, 1’88GB heap and 1’4GB stack) 36

3.5 Final memory distribution . 37

3.6 2-Core file system accesses. Without manual delays (left), with manual

delays (right) . 37

3.7 Multicore timing comparison (972MB heap and 972MB stack) 38

3.8 Baseline timing results comparison . 39

B.1 PageRank code scheme . 44

50

List of Tables

2.1 Windows basic implementation on-chip power 20

2.2 Windows component usage and critical path stats 21

2.3 Ubuntu basic implementation on-chip power 21

2.4 Ubuntu component usage and critical path stats 21

3.1 Timing results (including SD-card input, without hardware or software

modifications) over a small graph (450+ nodes, 2025+ edges) 29

3.2 Timing results (including SD-card input, with PageRank hardware block

in the architecture) over a small graph (450+ nodes, 2025+ edges) 30

3.3 Speed-up (SD-card with no optimization / SD-card with optimization) over

a small graph (450+ nodes, 2025+ edges) 30

3.4 Timing results (with SD card input, pragmas, PageRank block, 252KB

stack and 1.62GB heap and -mcmodel=large flag) over a small graph (450+

nodes, 2025+ edges) . 32

3.5 Large-scale graphs timing results (Optimized configuration, with 1’62GB

heap in DDR and 252KB stack in OCM RAM) 32

3.6 Windows final implementation on-chip power 35

3.7 Windows final implementation component usage and critical path stats . . 35

3.8 Large-scale graphs timing results (new design, optimized configuration,

with everything in DDR, 1’88GB heap and 1’4GB stack) 36

3.9 Multicore timing results (972MB heap and 972MB stack) 38

C.1 Ubuntu final implementation on-chip power 49

C.2 Ubuntu final implementation component usage and critical path stats . . . 49

51

Listings

1.1 OpenCL: Platform and devices discovery 6

1.2 OpenCL: Context creation . 6

1.3 OpenCL: Creation of a command-queue per device 6

1.4 OpenCL: Creation of buffers to hold data 7

1.5 OpenCL: Copying the input data onto the device 7

1.6 OpenCL: Creation and compilation of the program (in OpenCL C code) . . 7

1.7 OpenCL: Extraction of the kernel from the program 7

1.8 OpenCL: Execution of the kernel . 7

1.9 OpenCL: Copying output data back to the host 8

1.10 OpenCL: Releasing resources . 8

3.1 SD-card input driver: libraries and global variables 26

3.2 SD-card input driver: main function calling 27

3.3 SD-card input driver. FileInitialization function (1): filling the data buffers 27

3.4 SD-card input driver. FileInitialization function (2): file characters reading 28

3.5 SD-card input driver: char to integer converter 29

B.1 Used libraries in PageRank code . 45

B.2 SD-card graph number of nodes and edges reading 45

B.3 PageRank initialization . 46

B.4 PageRank algorithm code . 47

52

Bibliography

[1] Xilinx, “Vivado Design Suite User Guide: Design Analysis and Closure Techniques”.

UG906, 2012.

[2] Úrsula Iturrarán-Viveros and Miguel Molero-Armenta, “GPU computing with

OpenCL to model 2D elastic wave propagation: exploring memory usage.”, in Com-

putational Science & Discovery, Vol. 8, 2015.

[3] Xilinx, “ZCU102 Evaluation Board User Guide”. UG1182, 2019.

[4] Xilinx. “Board Support Packages”, https://www.xilinx.com/support/

documentation/sw_manuals/xilinx11/SDK_doc/concepts/sdk_c_bsp.htm

[5] Brahim Betkaoui, David B. Thomas, Wayne Luk and Natasa Przulj, “A Framework

for FPGA Acceleration of Large Graph Problems: Graphlet Counting Case Study”,

in 2011 International Conference on Field-Programmable Technology, 2011.

[6] Xinyu Chen, Ronak Bajaj, Yao Chen, Jiong He, Bingsheng He, Weng-Fai Wong and

Deming Chen, “On-The-Fly Parallel Data Shuffling for Graph Processing on OpenCL-

based FPGAs”, 2019 29th International Conference on Field Programmable Logic and

Applications (FPL), 2019.

[7] Bo Joel Svensson and Rakesh Tripathi, “Getting Started with OpenCL on the ZYNQ”,

https://svenssonjoel.github.io/writing/ZynqOpenCL.pdf, 2018.

[8] Maciej Besta, Dimitri Stanojevic, Johannes de Fine Licht, Tal Ben-Nun and Torsten

Hoefler, “Graph Processing on FPGAs: Taxonomy, Survey, Challenges. Towards Un-

derstanding of Modern Graph Processing, Storage, and Analytics.”, arXiv preprint

arXiv:1903.06697v3, 2019.

53

https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/SDK_doc/concepts/sdk_c_bsp.htm
https://www.xilinx.com/support/documentation/sw_manuals/xilinx11/SDK_doc/concepts/sdk_c_bsp.htm
https://svenssonjoel.github.io/writing/ZynqOpenCL.pdf

[9] Yaman Umuroglu and Magnus Jahre, “Hybrid breadth-first search on a single-chip

FPGA-CPU heterogeneous platform”, in 2015 25th International Conference on Field

Programmable Logic and Applications (FPL), 2015.

[10] Soroosh Khoram, Jialiang Zhang, Maxwell Strange and Jing Li, “Accelerating Graph

Analytics by Co-Optimizing Storage and Access on an FPGA-HMC Platform”, in 2018

ACM/SIGDA International Symposium, 2018.

[11] Free Software Foundation, Inc., “Using the GNU Compiler Collection (GCC)”.

[12] Xilinx, “SDSoC Profiling and Optimization Guide”. UG1235, 2016.

[13] Xilinx, “Improving Performance. Vivado HLS 2013.3 Version”. 2013.

[14] Xilinx, “Xilinx Software Development Kit (SDK) User Guide - Getting Started with

Xilinx SDK”.

[15] Kartik Lakhotia and Viktor Prasanna, “Accelerating PageRank using Partition-

Centric Processing”, in 2018 USENIX Annual Technical Conference (USENIX ATC

’18), 2018.

[16] Silicon Labs, “Which ARM Cortex Core Is Right for Your Application: A, R or M?”.

[17] Shijie Zhou, Charalampos Chelmis and Viktor K. Prasanna, “Optimizing Memory

Performance for FPGA Implementation of PageRank”, in 2015 International Confer-

ence on ReConFigurable Computing and FPGAs (ReConFig), 2015.

[18] Scott Beamer, Krste Asanović, David Patterson, “Reducing Pagerank Communica-

tion via Propagation Blocking”, in 2017 IEEE International Parallel and Distributed

Processing Symposium (IPDPS), 2017.

[19] Frank McSherry, “A uniform approach to accelerated PageRank computation”, in

WWW ’05: Proceedings of the 14th international conference on World Wide Web,

2005.

[20] Xilinx, “SDSoC Environment User Guide”. UG1027, 2018.

[21] Xilinx, “SDSoC Environment Tutorial”. UG1028, 2017.

[22] Xilinx, “Vivado Design Suite User Guide”. UG906, 2012.

[23] Xilinx, “SDAccel Environment User Guide”. UG1023, 2019.

54

[24] Xilinx, “SDAccel Programmers Guide”. UG1277, 2018.

[25] Jorge Luiz e Silva, Bruno de Abreu Silva, Joelmir Jose Lopes and Antonio Carlos

F. da Silva, “Accelerating Algorithms using a Dataflow Graph in a Reconfigurable

System”, arXiv preprint arXiv:1110.3655v1, 2018.

[26] Takaaki Miyajima, David Thomas and Hideharu Amano, “An Automatic Mixed

Software Hardware Pipeline Builder for CPU-FPGA Platforms”, arXiv preprint

arXiv:1408.4969v1, 2014.

55

	List of Abbreviations
	Introduction
	Problem
	Irregular Memory Accesses
	Destructuring Issues
	Poor Data Locality

	Solution
	OpenCL Proprietary Code
	Algorithm Coding Optimization
	Algebraic Approximation
	Compiler Flags
	HLS Pragmas
	Memory Reorganization

	Document Structure

	Background and Experimental Environment
	Hardware
	Ports in ZCU102-ES2

	Software and Programming Languages
	PageRank
	Baseline Implementation
	Designing Blocks in Vivado HLS
	Building an FPGA Hardware Design in Vivado
	Using Xilinx SDK to Program the FPGA

	PageRank Acceleration using a ZCU102-ES2 FPGA
	Single Core Performance
	SD Card Insertion
	Appropriate Memory Distribution
	Large Scale Implementation
	Improving Hardware Design

	Multicore Performance
	Conclusions of the Practical Application

	Conclusions and Future Work
	OS insertion with PetaLinux
	Input Data through Ethernet
	Finding the Available Exact Size of Graphs
	Graph Partitioning

	ARM Cortex Processors Family
	PageRank Code
	Ubuntu Optimized Block Design
	List of Figures
	List of Tables
	Bibliography

