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Abstract. A problem of sparse optimal control for the heat equation is consid-

ered, where pointwise bounds on the control and mixed pointwise control-state
constraints are given. A standard quadratic tracking type functional is to be

minimized that includes a Tikhonov regularization term and the L1-norm of

the control accounting for the sparsity. Special emphasis is laid on existence
and regularity of Lagrange multipliers for the mixed control-state constraints.

To this aim, a duality theorem for linear programming problems in Hilbert

spaces is proved and applied to the given optimal control problem.

1. Introduction. In a bounded domain Ω ⊂ RN with Lipschitz boundary Γ, we
investigate the following problem of optimal sparse control:

min J(y, u) :=

∫ T

0

∫
Ω

(1

2
|y − yQ|2 +

ν

2
|u|2 + κ |u|

)
dxdt (1.1)

subject to the parabolic initial-boundary value problem

∂ty −∆y = u in Ω× (0, T )

∂ny = 0 in Γ× (0, T )

y(x, 0) = 0 in Ω

(1.2)
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and to the mixed pointwise control-state constraints

ua ≤ u(x, t) ≤ ub, (1.3)

u(x, t) ≤ ud + y(x, t) (1.4)

to be fulfilled for a.a. (x, t) ∈ Q := Ω× (0, T ).
In this problem, a desired state function yQ ∈ Lq(Q) with some q > N/2 + 1,

q ≥ 2 if N = 1, and a fixed final time T > 0 are given. We denote by ∂n the
outward normal derivative on Γ and set Σ := Γ× (0, T ).

Remark 1.1. The integrability index q > N/2+1 of yQ is required for proving the
boundedness of the adjoint states ϕ̄ and ψ̄ defined in (3.2) and (3.10), respectively.
This is needed whenever the existence of Lagrange multipliers µi ∈ L∞(Q), i = 1, 2,
associated with the two upper constraints is claimed. In particular, part (ii) of
Theorem 3.8 on sparsity relies on bounded Lagrange multipliers. If the statement
“(µ̄1, µ̄2) ∈ (L∞(Q))2” is replaced by “(µ̄1, µ̄2) ∈ (L2(Q))2”, then associated results
remain true for q = 2.

Moreover, we fix real constants ν > 0 (Tikhonov parameter), κ > 0 (sparse
parameter) and real bounds ua < 0, ub > 0, ud > 0. The bounds might be functions
as well, but we keep them constant for simplicity. We will consider in parallel the
case ub =∞, where the upper bound for the control is missing.

We assume homogeneous initial data to simplify the presentation. The extension
to a non-homogeneous initial condition requires only some obvious modifications.
The weak solution y ∈ W (0, T ) := {y ∈ L2(0, T ;H1(Ω)) : ∂ty ∈ L2(0, T ;H1(Ω)′)}
of (1.2) is the state of our control system, while the function u ∈ L2(Q) is the
control.

The main novelty of our paper is the discussion of sparse optimal controls for a
problem that includes pointwise mixed control-state constraints. While the issue of
sparsity has been discussed quite extensively for problems with pointwise control
constraints, the extension to mixed control-state constraints seems to be new. It
requires special emphasis on existence and regularity of Lagrange multipliers as-
sociated with the mixed control-state constraints. To the best knowledge of the
authors, this case has not yet been discussed in literature. The associated main
result is Theorem 3.8 on sparsity of optimal controls.

To prove this theorem, we resolve two main difficulties: First, we show the exis-
tence of a Lagrange multiplier for inequality (1.4) that belongs to L∞(Q). We can-
not rely on a Slater type assumption since this would eventually lead to a Lagrange
multiplier in L∞(Q)∗; notice that the cone of non-negative measurable functions
has a non-empty interior only in L∞(Q). As a key tool for overcoming this obstacle,
we apply the duality theory for linear programming problems in Banach spaces, cf.
Krabs [6] and Tröltzsch [11]. Since the papers [6, 11] are published in German, the
associated duality theorem is recalled and improved in the Appendix. The proof of
the duality theorem is presented for Hilbert spaces.

Another difficulty is to show the boundedness of the Lagrange multiplier, uni-
formly with respect to the sparse parameter κ. This property is stated in Theorem
4.7. The result on existence and uniform boundedness of the Lagrange multiplier
associated with the mixed control-state constraint (1.4) has some auxiliary charac-
ter. Nevertheless, it is a second main achievement of our paper that is the core of
Theorem 3.4.
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The technique of our paper can be extended to some other types of mixed control-
state constraints, where the existence of bounded Lagrange multiplier functions can
be shown by our duality method. For instance, the two-sided constraints ua ≤
u ≤ ud + y or ud + y ≤ u ≤ ub can be handled completely analogous by obvious
modifications. In the latter case, the new control v = −u can be introduced to
transform the lower mixed control-state constraint to an upper one.

For the two-sided pure mixed constraints uc + y ≤ u ≤ ud + y, the existence of
bounded Lagrange multipliers can be proved by introducing the function v := u−y
as a new control. Then these constraints are transformed to pure control con-
straints, where associated Lagrange multipliers can be easily constructed. Sparsity
results can then be discussed after re-transforming the problem to u = v + y. The
same holds true, if an additional bound on the control u is added. Then we have
one control constraint and two-sided mixed control-state constraints. Here, the
transformation v = u − y leads to two-sided box constraints for v and one mixed
control-state constraint. Then the existence of bounded Lagrange multipliers can
be shown again as in this paper. The discussion of sparsity will need some modifi-
cations.

However, our method does not work for the full set of four-sided constraints

ua ≤ u ≤ ub and uc + y ≤ u ≤ ud + y.

Here, we were not able to prove the existence of associated Lagrange multipliers
by duality. This difficulty is known since long time. There is a detour via a Slater
assumption in L∞(Q), Lagrange multipliers in L∞(Q)∗, and certain structural as-
sumptions on active sets as in [10]. Unfortunately, the structural assumption cannot
in general be verified in advance and has to be required.

2. Well-posedness of the optimal control problem.

2.1. The reduced optimization problem. It is well known that the state equa-
tion (1.2) is uniquely solvable: For each control u ∈ L2(Q) there exists a unique
weak solution y ∈ W (0, T ) that we denote by yu. The mapping u 7→ yu is linear
and continuous, cf. Lions [8]. We consider this mapping with range in L2(Q) and
denote it by S, i.e. S : L2(Q)→ L2(Q), Su := yu.

Throughout the paper, for functions u ∈ L2(Q), we write u ≥ 0 if and only if
u(x, t) ≥ 0 holds for almost all (x, t) ∈ Q.

In this way, the optimal control problem (1.1)-(1.4) can be re-formulated as

min
u∈C

f(u) :=
1

2
‖Su− yQ‖2L2(Q) +

ν

2
‖u‖2L2(Q) + κ ‖u‖L1(Q) (P)

where the feasible set C ⊂ L2(Q) is defined by

C := {u ∈ L2(Q) : ua ≤ u ≤ ub, u ≤ ud + Su}.

The next results are basic for our theory and will be frequently used in this paper.

Lemma 2.1. If u ∈ L2(Q) is almost everywhere non-negative, then also Su has
this property, i.e.

u ≥ 0 ⇒ Su ≥ 0.

Proof. This is a well-known conclusion from the comparison principle for the linear
heat equation with homogeneous initial and boundary data: If u ≥ 0 holds, then the
solution y of (1.2) is a.e. nonnegative, too. This implies the claim. The comparison
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principle can be proven by testing the variational formulation of the heat equation
with the positive part y+ of the weak solution y.

Lemma 2.2 (Inverse non-negativity). For all g ∈ L2(Q), the equation

u− Su = g (2.1)

has a unique solution u ∈ L2(Q). If g ≥ 0 holds, then also u ≥ 0 is satisfied.
Further, if g ∈ L∞(Q), then u belongs to L∞(Q) as well.

Proof. The equation u− Su = g is equivalent to the statement u− y = g, where y
is the solution of (1.2). Subtracting y from both sides of the PDE, we find

∂ty −∆y − y = g in Q

∂ny = 0 in Σ

y(x, 0) = 0 in Ω.

First of all, given g ∈ L2(Q), this equation has a unique weak solution y. From
g ≥ 0 and the comparison principle for parabolic equations, we obtain y ≥ 0.

Adding now y to both sides, the differential equation reads

∂ty −∆y = g + y.

Setting u = g+y, we have y = Su and u−Su = g, hence the existence of a solution
u is shown. The uniqueness follows from the fact that y = 0 is the unique solution
to g = 0. Now we see u = y+ g ≥ 0, since both g and y are nonnegative. Finally, if
g ∈ L∞(Q), then we get from [7, §III.7] that y ∈ L∞(Q) holds as well and, hence,
u = y + g ∈ L∞(Q).

The next simple result will be applied several times in our paper.

Corollary 2.3. If u, v ∈ L2(Q) satisfy the relations

u ≤ g + Su,

v = g + Sv

with some g ∈ L2(Q), then u ≤ v holds.

Proof. We have u = g− e+Su with some a.e. nonnegative e ∈ L2(Q). Subtracting
this from the equation for v yields

v − u = e+ S(v − u).

Lemma 2.2 implies v − u ≥ 0, hence u ≤ v is fulfilled.

Next, we prove the existence of an optimal solution to (P).

Lemma 2.4. The optimization problem (P), and hence the optimal control problem
(1.1)-(1.4), has a unique optimal control ū.

Proof. In view of the assumptions ua < 0, ub > 0, and ud > 0, the set C is not
empty, since u = 0 satisfies all constraints. If both ua and ub are real numbers,
then the result is obvious, since the set {u ∈ L2(Q) : ua ≤ u ≤ ub} is weakly
compact. The additional pointwise control-state constraint does not change this,
i.e. C is weakly compact. Notice that C is convex and closed, hence also weakly
closed. Uniqueness follows by strict convexity of the functional f .

Let us therefore concentrate on the case ub = ∞, where the set of admissible
controls is defined by the constraints

ua ≤ u ≤ ud + Su.
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From Corollary 2.3 we know that u ≤ v holds a.e. in Q, where v ∈W (0, T )∩L∞(Q)
is the solution to the equation v = ud+Sv. Therefore, the feasible set C is bounded
also in this case. Again, we can invoke weak compactness to get the existence of an
optimal solution ū.

Remark 2.5. An inspection of the proof shows that the set C is bounded in L∞(Q).

3. Optimality conditions and sparsity of optimal controls.

3.1. A variational inequality. In this section, we derive first order optimality
conditions for the optimal control ū of (P). The main result is the “two-phase
minimum principle” of Theorem 3.6.

We define the following particular functionals I : L2(Q)→ R and j : L1(Q)→ R
that are included in the reduced objective functional f of (P):

I(u) =
1

2
‖Su− yQ‖2L2(Q) +

ν

2
‖u‖2L2(Q),

j(u) = ‖u‖L1(Q).

In this way, we have f = I + κ j, hence (P) can be re-written as

min
u∈C

f(u) := I(u) + κ j(u). (P)

The functional f is the sum of the convex differentiable functional I and the convex
directionally differentiable functional κ j.

In all what follows, by (·, ·)H the scalar product of a real Hilbert space H is
denoted.

Since C is convex, we obtain the following necessary and sufficient optimality
condition for the optimal solution ū:

Lemma 3.1. A control ū ∈ C is optimal for (P) if and only if an element λ̄ of the
subdifferential ∂j(ū) exists such that the variational inequality(

S∗(Sū− yQ) + ν ū+ κ λ̄ , u− ū
)
L2(Q)

≥ 0 ∀u ∈ C (3.1)

is satisfied.

The proof is standard; notice that we have I ′(ū) = S∗(Sū− yQ) + νū. Moreover,
we mention that ∂j(u) ⊂ L∞(Q) holds for all u ∈ L1(Q) and that λ ∈ ∂j(u) if and
only if

λ(x, t) ∈

 {1}, u(x, t) > 0,
[−1, 1], u(x, t) = 0,
{−1}, u(x, t) < 0

holds for a.a. (x, t) ∈ Q. It is well known that the Hilbert space adjoint operator
S∗ : L2(Q) → L2(Q) can be expressed in terms of an adjoint state. We have
S∗(Sū − yQ) = ϕ̄, where the adjoint state ϕ̄ is the unique solution of the adjoint
equation

−∂tϕ−∆ϕ = ȳ − yQ in Q

∂nϕ = 0 in Σ

ϕ(x, T ) = 0 in Ω.

(3.2)

By the adjoint state ϕ̄, the variational inequality (3.1) can be re-formulated as∫∫
Q

(ϕ̄+ ν ū+ κ λ̄)(u− ū) dxdt ≥ 0 ∀u ∈ C. (3.3)
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In other words, ū solves the linear optimization problem

min

∫∫
Q

(ϕ̄+ ν ū+ κ λ̄)udxdt

subject to

u− Su ≤ ud,
ua ≤ u ≤ ub.

(3.4)

The included mixed control-state constraint u− Su ≤ ud is posed in L2(Q), where
the interior of the cone of nonnegative functions is empty. Therefore, it is not an easy
task to show the existence of associated Lagrange multipliers. In the case of mixed
control state constraints, there are special techniques to overcome this difficulty, we
refer exemplarily to Rösch and Tröltzsch [10] and the references therein.

Here, we will employ the duality theory of continuous linear programming prob-
lems to establishing the next result. A similar technique was published in [12], but
the proof was not presented in all details.

The further analysis depends on the following assumption.

Assumption 3.2. The control u defined by u(x, t) = ua ∀(x, t) ∈ Q belongs to the
feasible set C, i.e.

ua ≤ ud + ya(x, t) ∀(x, t) ∈ Q,
where ya is the solution of (1.2) associated with u = ua.

This assumption is quite natural. In the context of optimal heating of Ω by a
heat source u, the state y stands for the temperature. The mixed control state
constraint excludes a too sudden heating, since the difference u− y cannot exceed
the bound ud. In this sense, Assumption 3.2 means that the minimal heat source
is not too large related to the associated temperature bounds.

For discussing the sparsity of the optimal control, we need the following conver-
gence result:

Lemma 3.3. Let, for κ ≥ 0, ūκ denote the optimal control of (P) corresponding to
the sparse parameter κ ≥ 0 and let ȳκ = Sūκ be the associated state. Then we have

lim
κ→∞

‖ūκ‖Lp(Q) = 0 ∀p ∈ [1,∞)

and

lim
κ→∞

‖ȳκ‖C(Q̄) = 0.

Proof. The control u = 0 is feasible for (P), hence

f(ūκ) =
1

2
‖ȳκ − yQ‖2L2(Q) +

ν

2
‖ūκ‖2L2(Q) + κ ‖ūκ‖L1(Q) ≤ f(0) =

1

2
‖yQ‖2L2(Q).

This immediately yields

‖ūκ‖L1(Q) ≤
1

2κ
‖yQ‖2L2(Q) → 0, κ→∞.

Moreover, we know from Remark 2.5 that the set of feasible controls is bounded in
L∞(Q). Therefore, the L1-convergence above implies also

‖ūκ‖Lp(Q) → 0, κ→∞ ∀p ∈ [1,∞).

Selecting an arbitrary p > N
2 +1, the continuity of the mapping u 7→ yu from Lp(Q)

to C(Q̄), [7, §III-7], immediately implies that limκ→∞ ‖ȳκ‖C(Q̄) = 0.
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In all what follows, to simplify the presentation, we suppress the dependence of
the optimal quantities on κ.

The next theorem is basic for the investigation of sparsity properties of the op-
timal control. Its proof relies on results of the duality theory of linear continuous
programming problems that is presented later in the Section 4. However, we for-
mulate the theorem right here in order to come faster to the theory of sparsity. The
results of Section 4 do not rely on Theorem 3.4.

Theorem 3.4. (i) Let Assumption 3.2 be satisfied, ū be optimal for the control
problem (1.1)-(1.4), and ȳ be the associated state. Then a pair (µ̄1, µ̄2) of Lagrange
multipliers µ̄i ∈ L∞(Q), i = 1, 2, exists such that the variational inequality∫∫

Q

(ϕ̄+ ν ū+ κ λ̄+ µ̄1 + µ̄2 − S∗µ̄2)(u− ū) dxdt ≥ 0 (3.5)

holds for all u ∈ L2(Q) with u ≥ ua. Moreover, the complementarity conditions

µ̄1 ≥ 0, ū− ub ≤ 0,

∫∫
Q

(ū− ub) µ̄1 dxdt = 0,

µ̄2 ≥ 0, ū− ȳ − ud ≤ 0,

∫∫
Q

(ū− ȳ − ud) µ̄2 dxdt = 0

(3.6)

are satisfied.
(ii) There exist a constant M > 0 not depending on κ and a pair of multipliers

(µ̄1, µ̄2) satisfying all conditions above such that ‖µ̄i‖L∞(Q) ≤M , i = 1, 2, holds.

Proof. Part (i): The existence of Lagrange multipliers (µ̄1, µ̄2) ∈ (L∞(Q))2 is en-
sured by Theorems 4.5 and 4.6 that are proven in Section 4 by duality theory. Once
this existence is shown, the variational inequality (3.5) and the complementarity
conditions (3.6) express well-known properties of Lagrange multipliers. To see this,
associated with the linear programming problem (3.4), we define the Lagrangian
function

L(u, µ1, µ2) =

∫∫
Q

(ϕ̄+ ν ū+ κ λ̄)udxdt

+

∫∫
Q

(u− ub)µ1 dxdt+

∫∫
Q

(u− Su− ud)µ2 dxdt.

Then (3.5) is the standard condition

∂L
∂u

(ū, µ̄1, µ̄2)(u− ū) ≥ 0 ∀u ≥ ua,

while (3.6) contains the associated complementarity conditions.
Part (ii) on uniform boundedness of (µ̄1, µ̄2) is nothing more than statement (ii)

of Theorem 4.7.

Remark 3.5. In Theorem 3.4, we introduced Lagrange multipliers only for the
two upper constraints, while the lower bound u ≥ ua was not “eliminated” by a
multiplier. We need the lower bound in the pointwise minimum principle below,
hence it is not useful to eliminate it. Nevertheless, we might define a Lagrange
multiplier µ̄3 ≥ 0 by

µ̄3 := ϕ̄+ ν ū+ κ λ̄+ µ̄1 + µ̄2 − S∗µ̄2.
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A simple discussion of the variational inequality (3.5) reveals that this function µ̄3

is nonnegative, indeed. Moreover, let us introduce the Lagrangian function

L̃(u, µ3) =

∫∫
Q

{
(ϕ̄+ ν ū+ κ λ̄+ µ̄1 + µ̄2 − S∗µ̄2)u+ µ3(ua − u)

}
dxdt

that is associated with the variational inequality (3.5) and the lower bound con-

straint, eliminated by µ3. It is easy to confirm that the derivative ∂L̃/∂u vanishes
at (ū, µ̄3). This is a direct consequence of the definition of µ̄3.

In addition the complementarity condition∫∫
Q

µ̄3(ua − ū) dxdt = 0

is satisfied. Therefore, µ̄3 defined above is a Lagrange multiplier associated with
the lower bound constraint.

The Lagrange multiplier rule of Theorem 3.4 is not yet easily applicable to the
discussion of sparsity. To facilitate this discussion, we perform an intermediate
step and derive a pointwise minimum principle as a useful tool for proving sparsity
properties of the optimal control ū. This type of minimum principles was introduced
in the framework of continuous linear programming by Grinold [4]. It was later
invoked to proving a generalized bang-bang principle in [12].

Theorem 3.6 (Pointwise minimum principle). Let Assumption 3.2 be satisfied. If
ū is an optimal control and (µ̄1, µ̄2) ∈ (L2(Q))2 is an associated pair of Lagrange
multipliers that exists according to Theorem 3.4, then for almost all (x, t) ∈ Q the
solution u of the problem

min (ϕ̄+ ν ū+ κ λ̄− S∗µ̄2)(x, t)u (3.7)

subject to
ua ≤ u ≤ min{ub, ud + ȳ(x, t)} (3.8)

is attained by u = ū(x, t).

Proof. For convenience, we define

e(x, t) = (ϕ̄+ ν ū+ κ λ̄− S∗µ̄2)(x, t).

For given (x, t) ∈ Q, the minimum in (3.7) is attained by

u =

{
ua, if e(x, t) > 0,
min{ub, ud + ȳ(x, t)}, if e(x, t) < 0.

The minimum is attained at any value on the set, where e(x, t) = 0.
Assume that the result of the theorem is not true. Then one of the following two

measurable sets E1, E2 must have positive measure,

E1 = {(x, t) ∈ Q : e(x, t) > 0 but ū(x, t) > ua},
E2 = {(x, t) ∈ Q : e(x, t) < 0 but ū(x, t) < min{ub, ud + ȳ(x, t)}.

In the points of E1, we have ū(x, t) > ua. Here, the variational inequality (3.5) can
only hold, if

(ϕ̄+ ν ū+ κ λ̄+ µ̄1 + µ̄2 − S∗µ̄2)(x, t) ≤ 0

is true a.e. in E1. From µ̄i ≥ 0, i = 1, 2, we get a.e. in E1

(ϕ̄+ ν ū+ κ λ̄− S∗µ̄2)(x, t) = e(x, t) ≤ 0

contradicting the definition of E1. Therefore, E1 cannot have positive measure.
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In a.a. points of E2, the functions µ̄1 and µ̄2 vanish, because µ̄1 is a Lagrange
multiplier for the inequality u ≤ ub, µ̄2 is a multiplier for the inequality u ≤ ud+Su,
and both inequalities are inactive in E2 at ū; notice that ȳ = Sū.

Here, the variational inequality (3.5) can only be true, if

(ϕ̄+ ν ū+ κ λ̄+ µ̄1 + µ̄2 − S∗µ̄2)(x, t) ≥ 0 (3.9)

holds a.e. in Q. Since a.e. in E2 both multipliers vanish, we get

(ϕ̄+ ν ū+ κ λ̄− S∗µ̄2)(x, t) = e(x, t) ≥ 0

contradicting the definition of E2. Therefore, also E2 cannot have positive measure.
This completes the proof.

Remark 3.7. The constraints (3.8) have the form ua ≤ u ≤ min{ub, ud + ȳ} with
fixed function ȳ, hence in this context they are pointwise control constraints. This is
characteristic for a so-called two-phase maximum principle introduced by Grinold [4]
for continuous linear programming problems, here formulated as minimum principle.

Let us conclude this section by a slight reformulation of the variational inequality
(3.5). We know that ϕ̄ = S∗(ȳ−yQ), hence we have ϕ̄−S∗µ̄2 = S∗(ȳ−yQ−µ̄2) = ψ̄,
where ψ̄ is the unique weak solution to the adjoint equation

−∂tψ −∆ψ = ȳ − yQ − µ̄2 in Q

∂nψ = 0 in Σ

ψ(x, T ) = 0 in Ω.

(3.10)

By ψ̄ and the minimum principle (3.7)-(3.8), the variational inequality (3.5) admits
the form∫∫

Q

(ψ̄+ν ū+κ λ̄)(u− ū) dxdt ≥ 0 ∀u ∈ L2(Q) : ua ≤ u ≤ min{ub, ud+ ȳ}. (3.11)

3.2. Sparsity of the optimal control. The variational inequality (3.11) is the
main tool for proving sparsity properties of ū.

Theorem 3.8 (Sparsity). (i) Let Assumption 3.2 be satisfied and let ū be optimal
for the control problem (1.1)-(1.4). Then a pair of Lagrange multipliers (µ̄1, µ̄2) ∈
(L∞(Q))2 exists such that the implications

|ψ̄(x, t)| ≤ κ ⇒ ū(x, t) = 0

ū(x, t) = 0 ⇒ ψ̄(x, t) ≤ κ (3.12)

are satisfied for a.a. (x, t) ∈ Q with the adjoint state ψ̄ solving (3.10). Moreover,
for some constant κ0 > 0 and for a.a. (x, t) ∈ Q we have that

ū(x, t) = 0 ⇔ |ψ̄(x, t)| ≤ κ ∀κ ≥ κ0. (3.13)

(ii) There is a value κ1 > 0, such that ū vanishes for all sparse parameters
κ ≥ κ1.

(iii) The element λ̄ of the subdifferential ∂j(ū) is given by

λ̄(x, t) = P[−1,1]

{
− 1

κ
ψ̄(x, t)

}
, (3.14)

where the projection P[−1,1] : R→ [−1, 1] is defined by

P[−1,1](α) = max{−1,min{1, α}}.
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Proof. The main ideas are inspired by the proof of sparsity for pointwise control
constraints in [2]. However, some changes are needed to tackle mixed control-state
constraints.

(i) First, we confirm the sparsity relations (3.12). We define the sets

E+ = {(x, t) ∈ Q : ū(x, t) > 0},

E0 = {(x, t) ∈ Q : ū(x, t) = 0},

E− = {(x, t) ∈ Q : ū(x, t) < 0}.

Let us show (x, t) ∈ E0 ⇒ ψ̄(x, t) ≤ κ. In E0, we have ua < ū(x, t) = 0 < ub
and ū(x, t) ≤ ud + ȳ(x, t). The lower inequality is not active. From the variational
inequality (3.11), we find

0 ≥ ψ̄(x, t) + νū(x, t) + κλ̄(x, t) = ψ̄(x, t) + κλ̄(x, t) ≥ ψ̄(x, t)− κ (3.15)

a.e. in E0. Therefore, ψ̄(x, t) ≤ κ must hold. This confirms the lower implication
of (3.12). To show the upper one, assume conversely that |ψ̄(x, t)| ≤ κ. A standard
result for solutions ū of the variational inequality (3.11) is the projection formula

ū(x, t) = P[ua ,min{ub,ud+ȳ(x,t)}]
{
−ν−1(ψ̄(x, t) + κ λ̄(x, t))

}
.

For a.a. (x, t) ∈ E+, we have λ̄(x, t) = 1, hence the projection formula implies

0 < −1

ν
(ψ̄(x, t) + κ).

This yields ψ̄(x, t) < −κ and therefore |ψ̄(x, t)| > κ in contrary to the assumption
above. Hence the measure of E+ must be zero. Analogously, E− cannot have
positive measure. Therefore, ū(x, t) = 0 must be satisfied in a.a. points (x, t) with
|ψ̄(x, t)| ≤ κ. We have confirmed (3.12).

To show (3.13), we consider the points (x, t), where ū(x, t) = 0 holds. We invoke
Lemma 3.3 that implies ‖ȳ‖C(Q̄) < ud for all sufficiently large κ, say κ ≥ κ1. In this

case, for ū(x, t) = 0 also the upper inequality ū ≤ ud + ȳ is inactive. Now, instead
of (3.15), we obtain the equation

0 = ψ̄(x, t) + νū(x, t) + κλ̄(x, t) = ψ̄(x, t) + κλ̄(x, t)

that yields |ψ̄(x, t)| ≤ κ. Along with the upper implication of (3.12), this proves
(3.13).

(ii) According to Remark 2.5, the sets of all feasible controls u and associated
states yu are bounded in L∞(Q). The same follows for the associated adjoint states
ϕ solving equation (3.2). The adjoint state ψ̄ = ϕ̄−S∗µ̄2 depends on µ̄2. However,
by Theorem 3.4, part (ii), we can assume the Lagrange multiplier µ̄2 to be bounded
in L∞(Q) by some M > 0, independently of κ. Therefore, we can assume

‖ψ̄‖L∞(Q) ≤M1

with some constant M1 > 0 not depending on κ. Notice that the assumption
q > N/2 + 1 is invoked for this property. For all κ ≥ κ0 = max{M1, κ1}, the
relation (3.13) yields ū = 0.

(iii) The projection formula (3.14) is confirmed as follows: For a.a. (x, t) ∈ E+,
we have λ̄(x, t) = 1. Moreover, (3.11) implies

ψ̄(x, t) + νū(x, t) + κλ̄(x, t) ≤ 0
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and hence λ̄(x, t) = 1 ≤ −κ−1(ψ̄(x, t)+νū(x, t)). Therefore, the projection formula
is true a.e. in E+. In the same way, E− can be treated.

In E0, all inequalities are inactive, hence ψ̄(x, t) + ū(x, t) + κλ̄(x, t) = 0 follows
from (3.11). Again, the projection formula (3.14) is an immediate conclusion.

Remark 3.9. In view of Lemma 3.3 and the fact that ud > 0, the optimal state ȳ
satisfies ud+ ȳ > 0 for all sufficiently large κ. For such values of κ, all inequalities of
problem (P) are inactive in the points (x, t) where ū(x, t) = 0. Hence, for large κ, we
were able to prove (3.13) in the same way as for pure pointwise control constraints,
cf. [2].

4. Dual linear programming problems.

4.1. Dual problem and weak duality. Thanks to (3.4), the optimal control ū
solves the linear continuous programming problem

max
u∈C

∫∫
Q

a(x, t)u(x, t) dxdt (4.1)

where

a(x, t) = −(ϕ̄+ ν ū+ κ λ̄)(x, t).

By the definition of C, this problem is posed in the Hilbert space L2(Q).
Problem (4.1) does not yet have the standard form of continuous linear pro-

gramming that we prefer. Instead of the lower bound u ≥ ua we want to have a
nonnegativity restriction. To this aim, we introduce a new (shifted) control

v = u− ua
and transform problem (4.1) accordingly. Then ū is optimal for (P) if and only if
v̄ = ū− ua is optimal for the problem

max

∫∫
Q

a(x, t)v(x, t) dxdt

subject to the constraints

v(x, t) ≤ vb
v(x, t) ≤ b(x, t) + (S v)(x, t)

v(x, t) ≥ 0

to be satisfied a.e. in Q,

(PP)

where vb := ub − ua > 0 and the function b is defined by

b = ud + Sua − ua.
If Assumption 3.2 is satisfied, then b(x, t) ≥ 0 is fulfilled for a.a. (x, t) ∈ Q. We
consider this problem in L2(Q), i.e. we assume v ∈ L2(Q) and also the constraints
are viewed in L2(Q).

Problem (PP) is our primal problem. We know that v̄ = ū−ua solves this problem
and want to prove the existence of bounded and measurable Lagrange multipliers
associated with v̄. For this purpose, we invoke the theory of linear programming
problems in function spaces.

(PP) has the structure of linear continuous programming problems that were
discussed extensively in the 1970ties, cf. Grinold [3, 4] and Tyndall [13], related
to so-called bottleneck control problems for ordinary differential equations. For
an extension to the control of partial differential equations, we refer to Tröltzsch
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[12]. The associated dual problem, also considered in L2(Q), can be established by
Lagrange duality. For ub <∞, it is the following:

min

∫∫
Q

(vb µ1(x, t) + b(x, t)µ2(x, t)) dxdt

subject to the constraints

µ1(x, t) + µ2(x, t) ≥ a(x, t) + (S∗µ2)(x, t)

µ1(x, t) ≥ 0

µ2(x, t) ≥ 0

to be fulfilled a.e. in Q.

(DP)

If ub =∞, then the dual problem admits a simpler form, namely

min

∫∫
Q

b(x, t)µ(x, t) dxdt

subject to

µ(x, t) ≥ a(x, t) + (S∗µ)(x, t)

µ(x, t) ≥ 0

a.e. in Q.

(D̂P)

In what follows, we concentrate on the case ub <∞. As a rule of thumb, the theory
for the case ub =∞ remains true with µ1 = 0 and µ2 =: µ.

Let us state some important properties of this pair of dual linear problems. To
shorten the arguments, functions v and µ = (µ1, µ2) are said to be feasible for (PP)
or (DP), respectively, if v satisfies all restrictions of (DP) and µ the ones of (DP).

Lemma 4.1 (Weak duality). For all v ∈ L2(Q) that are feasible for the primal
problem (PP) and all pairs (µ1, µ2) ∈ L2(Q)2 being feasible for the dual problem
(DP), we have∫∫

Q

a(x, t) v(x, t) dxdt ≤
∫∫

Q

(vb µ1(x, t) + b(x, t)µ2(x, t)) dxdt. (4.2)

Proof. The statement follows from Lemma 5.3 of the Appendix that we prove for
more general pairs of dual linear programming problems posed in Hilbert spaces.

4.2. Strong duality. Next, we discuss the solvability of the dual problem. The
dual feasible set is never empty:

For (DP), the pair (µ1, µ2) = (|a|, 0) satisfies all constraints. If ub =∞, then the

dual problem is (D̂P). In this case, the solution µ of the equation µ = |a|+ S∗µ is
feasible by inverse non-negativity.

For the solvability, the following result is essential:

Lemma 4.2. Let Assumption 3.2 be satisfied. Then, to any feasible pair (µ1, µ2)
for (DP), another feasible pair (µ̂1, µ̂2) exists such that

µ̂1(x, t) + µ̂2(x, t) = [a(x, t) + S∗(µ̂2)(x, t)]+ ∀(x, t) ∈ Q (4.3)

and the objective value of (µ̂1, µ̂2) is not larger, i.e.∫∫
Q

(vb µ̂1 + b µ̂2) dxdt ≤
∫∫

Q

(vb µ1 + b µ2) dxdt. (4.4)
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Proof. Let E ⊂ Q be the set of all points with

µ1(x, t) + µ2(x, t) > [a(x, t) + S∗(µ2)(x, t)]+ ∀(x, t) ∈ E. (4.5)

If the Lebesgue measure |E| of E is zero, then we can easily modify µ1, µ2 on
E such that (4.3) is satisfied everywhere in Q and (4.4) holds with equality. As-
sume therefore |E| > 0. We construct a componentwise and pointwise monotone
decreasing sequence of feasible pairs (µ1,k, µ2,k) ∈ (L2(Q))2 converging to a pair
(µ̂1, µ̂2) having the desired properties. To this aim, we define the first element of
the sequence by

µi,1 := µi, i = 1, 2,

and set k = 1. Let E0 := {(x, t) ∈ E : [a(x, t) + S∗(µ2,k)(x, t)]+ = 0} and E+ =
E \E0. The next feasible pair (µ1,k+1, µ2,k+1) with not greater objective functional
value is constructed as follows: For i = 1, 2 we set

µi,k+1(x, t) =

 µi,k(x, t), (x, t) ∈ Q \ E,
0, (x, t) ∈ E0,

α(x, t)µi,k(x, t), (x, t) ∈ E+,

where

α(x, t) =
[a(x, t) + S∗(µ2,k)(x, t)]+
µ1,k(x, t) + µ2,k(x, t)

, (x, t) ∈ E+.

Notice that 0 < α(x, t) ≤ 1. We have that

0 ≤ µi,k+1(x, t) ≤ µi,k(x, t), i = 1, 2, ∀(x, t) ∈ Q

and

µ1,k+1(x, t) + µ2,k+1(x, t) = [a(x, t) + (S∗µ2,k)(x, t)]+.

With S, also the operator S∗ is nonnegative. This follows from

(S∗v, w)L2(Q) = (v, Sw)L2(Q) ≥ 0 ∀v ≥ 0, w ≥ 0.

The last inequalities and S∗ ≥ 0 ensure

µ1,k(x, t) + µ2,k(x, t)

≥ µ1,k+1(x, t) + µ2,k+1(x, t) = [a(x, t) + (S∗µ2,k)(x, t)]+ (4.6)

≥ [a(x, t) + (S∗µ2,k+1)(x, t)]+,

hence (µi,k+1, µ2,k+1) is feasible as well. Next, we set k := k+ 1 and determine the
next iterate.

In this way, pointwise monotone decreasing sequences of functions (µi,k)∞k=1,
i = 1, 2, are constructed. All pairs (µ1,k, µ2,k) are feasible for (DP). The sequences
are bounded by 0 ≤ µi,k ≤ µi, i = 1, 2, and pointwise convergent to measurable
limit functions µ̂i, i = 1, 2. In the limit, the equation (4.3) must be satisfied. This
follows from passing to the limit k →∞ in (4.6).

By Assumption 3.2, we have that b = ud + Sua − ua ≥ 0 and vb = ub − ua ≥ 0.
Therefore, the smaller the multipliers are, the smaller is the associated objective
value of (DP), hence (4.4) must hold.

Corollary 4.3. All feasible pairs (µ1, µ2) for (DP) that obey the equation (4.3)
satisfy the inequalities

0 ≤ µ1(x, t) ≤ |a(x, t)|+ (S∗µ2)(x, t), (4.7)

0 ≤ µ2(x, t) ≤ |a(x, t)|+ (S∗µ2)(x, t). (4.8)
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Proof. The second inequality follows from

[a(x, t) + (S∗µ2)(x, t)]+ ≤ |a(x, t) + (S∗µ2)(x, t)| ≤ |a(x, t)|+ (S∗µ2)(x, t),

since S∗µ2 ≥ 0. Now the first inequality is a conclusion of (4.3) and the non-
negativity of µ̄1 and µ̄2.

Lemma 4.4. If Assumption 3.2 is fulfilled, then the set of all feasible pairs (µ1, µ2)
for (DP) satisfying the equation (4.3) is bounded in (L∞(Q))2.

Proof. By Corollary 4.3, (4.8) and Corollary 2.3 applied to S∗ instead of S, we get

0 ≤ µ2 ≤ µ,

where µ ≥ 0 is the solution to the equation

µ = |a|+ S∗µ

that corresponds to the inequality (4.8). Since a is bounded and measurable, the
solution µ enjoys the same property. This can be shown by a bootstrapping argu-
ment. First, we know µ ∈ L2(Q). By the smoothing property of parabolic solution
operators, we have that S∗µ ∈ L∞(0, T ;L2(Ω)). Hence, µ = |a| + S∗µ belongs to
L∞(0, T ;L2(Ω)). Finally, from [7, Theorem III-7.1], we infer that S∗µ ∈ L∞(Q)
and µ = |a|+ S∗µ ∈ L∞(Q).

By Corollary 4.3, (4.7), we also have ‖µ1‖L∞(Q) ≤ ‖µ‖L∞(Q) completing the
proof.

Later, we shall prove that this boundedness is even uniform with respect to the
sparse parameter κ.

Theorem 4.5 (Dual existence). If Assumption 3.2 is fulfilled, then the dual problem
(DP) has at least one optimal solution (µ̄1, µ̄2) that belongs to (L∞(Q))2.

Proof. By Lemma 4.2, the search for an optimal solution of (DP) can be restricted
to the set of all feasible pairs (µ1, µ2) that solve equation (4.3). Thanks to Lemma
4.4, this set is bounded in (L∞(Q))2, hence also in (L2(Q))2. Therefore, the search
for the minimum can be restricted to the intersection of the feasible set of (DP)
with a sufficiently large closed ball of (L2(Q))2. This is a non-empty, convex and
closed set, hence weakly compact. Now the claim follows immediately.

Theorem 4.6 (Strong duality). Let Assumption 3.2 be fulfilled, let v̄ be optimal
for (PP) and (µ̄1, µ̄2) ∈ (L2(Q))2 be optimal for (DP). Then∫∫

Q

a(x, t) v̄(x, t) dxdt =

∫∫
Q

(vb µ̄1(x, t) + b(x, t) µ̄2(x, t)) dxdt.

We prove this theorem in the Appendix. Thanks to the theorem, the optimal
solution v̄ of the primal problem (PP) is a Lagrange multiplier for the inequality
µ1 + µ2 ≥ a + S∗µ2 of (DP) while any pair of solutions (µ̄1, µ̄2) of (DP) is a pair
of Lagrange multipliers for the upper restrictions of (PP), i.e. µ̄1 is a multiplier for
the inequality v ≤ ub − ua while µ̄2 is one for the mixed control-state constraint
v − Sv ≤ b.
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Therefore, the following complementarity conditions are satisfied by v̄ and (µ̄1,
µ̄2):

v̄ ≥ 0, µ̄1 + µ̄2 ≥ a+ S∗µ̄2,

∫∫
Q

v̄ (µ̄1 + µ̄2 − a− S∗µ̄2) dxdt = 0,

µ̄1 ≥ 0, v̄ ≤ vb,
∫∫

Q

µ̄1 (v̄ − vb) dxdt = 0,

µ̄2 ≥ 0, v̄ ≤ b+ Sv̄,

∫∫
Q

µ̄2 (v̄ − b− Sv̄) dxdt = 0.

(4.9)

4.3. Uniform boundedness of Lagrange multipliers with respect to κ. All
Lagrange multipliers µi satisfying the equation (4.3) are bounded and measurable.
However, their L∞(Q)-norm might grow with the sparse parameter κ. We show
that this case can be excluded.

Theorem 4.7 (Uniform boundedness of Lagrange multipliers). (i) There is some
constant κ0 > 0 with the following property: For all κ ≥ κ0, we find an optimal
solution (µ̄1, µ̄2) of (DP) satisfying the inequalities

µ̄i(x, t) ≤ |ϕ̄(x, t)|+ (S∗µ̄2)(x, t) a.e. in Q, i = 1, 2. (4.10)

(ii) A constant M > 0 not depending on κ exists, such that

‖µ̄i‖L∞(Q) ≤M, i = 1, 2, (4.11)

is satisfied for at least one optimal solution (µ̄1, µ̄2) of (DP).

Proof. Part (i): In view of Lemma 4.2 and Corollary 4.3, there is a solution (µ̄1, µ̄2)
of (DP) that obeys

µ̄i(x, t) ≤ [a(x, t) + (S∗µ̄2)(x, t)]+ a.e. in Q, i = 1, 2. (4.12)

Now we distinct between two cases for (x, t):

Case 1. a(x, t) + (S∗µ̄2)(x, t) ≤ 0. Then µ̄i(x, t) = 0, hence we can estimate

µ̄i(x, t) = 0 ≤ |ϕ̄(x, t)|+ (S∗µ̄2)(x, t), i = 1, 2.

Case 2. a(x, t) + (S∗µ̄2)(x, t) > 0. Here, we get from (4.12)

µ̄i(x, t) ≤ a(x, t) + (S∗µ̄2)(x, t), i = 1, 2.

To verify the claim in Case 2, we show for the associated points (x, t) that

a(x, t) ≤ |ϕ̄(x, t)|.

We recall that a(x, t) = −ϕ̄(x, t) − ν ū(x, t) − κλ̄(x, t). The further discussion
depends on the sign of ū(x, t).

Case 2a. ū(x, t) ≤ 0.
Here both upper inequalities of (PP) are inactive, if κ is large enough. Let us

show this:
Since ub > 0 and ū(x, t) ≤ 0, the upper control constraint ū ≤ ub cannot be

active in this case. Moreover, we know from Lemma 3.3 that ‖ȳ‖L∞(Q) < ud holds
for all suffiently large κ, say κ ≥ κ0. Then we have ud + ȳ = ud + Sū > 0 a.e. in Q
and the inequality ū ≤ ud + Sū is also inactive.

Therefore, µ̄1(x, t) = µ̄2(x, t) = 0 follows from the second and third complemen-
tary condition of (4.9) in Case 2a, provided that κ ≥ κ0. The first restriction of
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(DP) implies 0 ≥ a(x, t) + (S∗µ̄2)(x, t) and hence we are not in Case 2. We found
out that ū(x, t) > 0 must hold a.e. in Case 2.

Case 2b. If ū(x, t) > 0, then λ̄(x, t) = 1, hence

a(x, t) = −ϕ̄(x, t)− νū(x, t)− κ < −ϕ̄(x, t) ≤ |ϕ̄(x, t)|.
Part (ii): For all κ ≤ κ0, we have for at least one solution (µ̄1, µ̄2) of (DP) that

|a(x, t)| = |ϕ̄(x, t) + ν ū(x, t) + κλ̄− (S∗µ̄2)(x, t)|
≤ |ϕ̄(x, t)|+ ν |ū(x, t)|+ κ0 + (S∗µ̄2)(x, t)

≤ c+ (S∗µ̄2)(x, t),

because the set of all feasible controls u and hence also the set of all possible adjoint
states ϕ are uniformly bounded in L∞(Q) with respect to κ, cf. Remark 2.5 and
the proof of Lemma 4.4. Here, again the assumption q > N/2 + 1 enters.

Now we invoke the inequality (4.8) and get

µ̄2 ≤ c+ S∗µ̄2.

Since I − S∗ is inverse non-negative, we obtain the estimate

µ̄2 ≤ z,
where z ∈ L∞(Q) is the unique solution to z = c+S∗z. This proves part (ii), since
‖µ̄2‖L∞(Q) ≤ ‖z‖L∞(Q) =: M . The estimate for µ̄1 is now obtained from (4.7) by

|µ̄1| ≤ |a|+ S∗µ̄2 ≤ c+ S∗µ̄2 = z a.e. in Q.

Now we are able to complete the proof of Theorem 3.4.

Proof of Theorem 3.4. Part (i): The existence of a pair of Lagrange multipliers
(µ̄1, µ̄2) ∈ (L∞(Q))2 is ensured by Theorems 4.5 and 4.6. The variational inequality
(3.5) and the complementarity conditions (3.6) are standard properties of Lagrange
multipliers (cf. the remarks after Theorem 3.4).

Part (ii) on uniform boundedness of µ̄2 is nothing more than statement (ii) of
Theorem 4.7. �.

5. Appendix – A duality theorem.

5.1. Duality theorem in Hilbert spaces. The result of this section will be
proved for general pairs of dual linear programming problems that are not nec-
essarily related to the specific pair of dual problems defined in Section 4. However,
this general result will be applied to them.

Let {U, ‖ · ‖U} and {V, ‖ · ‖V } be real Hilbert spaces with inner products (· , ·)U
and (· , ·)V , respectively, A : U → V a linear and continuous operator, and let
KU ⊂ U and KV ⊂ V be nonempty, convex and closed cones.

In U and V we define partial orderings ≥U and ≥V by u ≥U 0 iff u ∈ KU and
v ≥V 0 iff v ∈ KV . The converse inequalities ≤U and ≤V are defined accordingly,
e.g. u ≤U 0 iff −u ≥U 0. Moreover, we fix elements a ∈ U and c ∈ V .

We consider the primal linear programming problem

max (a , u)U subject to Au ≤V c, u ≥U 0. (PP)

By the Riesz theorem, we identify the dual spaces U∗ of U and V ∗ of V with U and
V , respectively. To the cones KU and KV , we associate dual cones K∗U and K∗U by

K∗U = {w ∈ U : (w , u)U ≥ 0 ∀u ∈ KU}.
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The dual cone K∗V ⊂ V is defined analogously.

Remark 5.1. If U = L2(Q) and KU is the cone of a.e. nonnegative functions of
U , then we have K∗U = KU . This is the case of interest for the application to our
control problem (P), where KU = KV = L2(Q)+.

The partial orderings induced in U and V by K∗U and K∗V are denoted by ≥∗U
resp. ≥∗V . We have

(w , u)U ≥ 0 ∀w ≥∗U 0, ∀u ≥U 0.

Let A∗ : V → U be the Hilbert space adjoint operator to A defined by (Au , v)V =
(u , A∗v)U ∀u ∈ U, v ∈ V .

The dual problem is defined by

min (c , v)V subject to A∗v ≥∗U a, v ≥∗V 0. (DP)

If an element u ∈ U (resp. v ∈ V ) obeys the constraints of (PP) (resp. (DP)),
then it is called feasible for the associated problem.

Remark 5.2. The pair of linear dual problems (PP) and (DP) fits in the duality
theory of convex optimization, a well elaborated part of nonlinear programming.
Associated strong duality theorems are often based on a Slater condition as in
Luenberger [9] or on the assumption of calmness that is discussed in Bonnans and
Shapiro [1], Sect. 1.5. A Slater condition cannot be satisfied in the space selected
for our given optimal control problem and calmness is difficult to verify. Therefore,
we invoke another method. We prove a duality theorem that relies on a certain
boundedness condition. It turns out that this condition is fulfilled in our application,
if Assumption 3.2 is satisfied.

Lemma 5.3 (Weak duality). For all u that are feasible for (PP) and all v being
feasible for (DP), we have

(a , u)U ≤ (c , v)V .

Proof. We obtain

(a , u)U ≤ (A∗v , u)U = (v , Au)V ≤ (v , c)V ,

where we employed the inequalities u ≥U 0, a ≤∗U A∗v to get the first inequality
and v ≥∗V 0, Au ≤V c for the second one.

Let us define for (varying) d ∈ V and e ∈ U the sets

P (d) = {u ∈ U : u ≥U 0, Au ≤V d},
D(e) = {v ∈ V : v ≥∗V 0, A∗v ≥∗U e}.

Then P (c) is the primal feasible set and D(a) is the dual one. As a consequence of
the last lemma, the relation of weak duality

sup
u∈P (c)

(a , u)U ≤ inf
v∈D(a)

(c , v)V

is fulfilled. In this section, we show that the associated equality holds, if the bound-
edness condition below is satisfied for the primal problem.

Assumption 5.4 (Boundedness condition). There exist η > 0 independent of d
and, for all d ∈ V, a closed set K(d) ⊂ P (d) such that the following two conditions
are satisfied:

‖u‖U ≤ η ‖d‖V ∀u ∈ K(d)

∀u ∈ P (d) ∃û ∈ K(d) : (a , u)U ≤ (a , û)U .
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Theorem 5.5 (Strong duality). If the feasible set P (c) of the primal problem (PP)
is nonempty and Assumption 5.4 is satisfied, then the primal problem has an optimal
solution. Moreover, the strong duality relation

max
u∈P (c)

(a , u)U = inf
v∈D(a)

(c , v)V (5.1)

is fulfilled.

Proof. (i) Solvability of the primal problem. Let s = supu∈P (c)(a , u)U be the primal

supremum. Since P (c) is non-empty, we have s > −∞. Thanks to the boundedness
condition, the search for a maximum in the primal problem can be restricted to
the bounded set K(c). Taking a sequence (un)n of feasible elements for (PP) with
limn→∞(a , un)U = s, we can assume without limitation of generality un ∈ K(c).
By the boundedness of K(c), a weakly convergent subsequence can be selected,
w.l.o.g. (un)n itself. In this way, we can assume un ⇀ ū, n → ∞. It is easy to
verify that ū is a feasible solution, hence it attains the primal supremum and is
optimal.
(ii) A convex closed cone. We define the set

K = {(d, δ) ∈ V × R : ∃u ∈ P (d) with (a , u)U ≥ δ}.
It is easy to verify that K is a convex cone. Moreover, the boundedness condition
implies that K is closed: To this end, take a sequence of elements (dn, δn)n of
elements of K converging to (d, δ) as n→∞. Then we find un ∈ U such that

Aun ≤V dn, un ≥U 0, (a , un)U ≥ δn ∀n ∈ N.

By the boundedness condition, there exists an η > 0 and ûn ∈ U such that

Aûn ≤V dn, ûn ≥U 0, (a , ûn)U ≥ (a , un)U ≥ δn ∀n ∈ N

and

‖ûn‖U ≤ η ‖dn‖V ∀n ∈ N
hold. By the last inequality, the sequence (ûn)n is bounded in U , hence we can
select a weakly convergence subsequence, w.l.o.g. ûn ⇀ u, n→∞. Since the cones
KU and KV are convex and closed, they are also weakly closed. This permits to
show in turn

Au ≤V d, u ≥U 0, (a , u)U ≥ δ,
hence (d, δ) ∈ K is proved.
(iii) Convex cones Cn to be separated from K.

For all n ∈ N, we have

(c, s+ 1/n) /∈ K.
Since K is closed, there are open balls Brn ⊂ V × R of radius rn > 0 centered at
(c, s+ 1/n) such that

K ∩Brn = ∅ ∀n ∈ N.
Define for all n ∈ N

Cn =
⋃
λ>0

λBrn .

These sets have the following properties:
– Obviously, all Cn are cones.
– All intersections Cn ∩K are empty: If Cn ∩K would contain an element u, then
there are λ > 0 and ũ ∈ Brn such that u = λũ. Since K is a cone, also u/λ = ũ
belongs to K and also to Brn contradicting K ∩Brn = ∅.
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– Cn is convex as it can be readily verified. Moreover, Brn is contained in Cn, hence
the interior of Cn is not empty.
Therefore, all Cn are convex cones with nonempty interior.
(iv) Separation of K and Cn. By the Eidelheit separation theorem, see [5], there
is a closed hyperplane separating the convex closed cone K and the convex set Cn
with nonempty interior. Therefore, zn ∈ V , ξn ∈ R, and σn ∈ R exist such that

(d , zn)V + δ ξn ≤ σn < (w , zn)V + α ξn ∀(d, δ) ∈ K, ∀(w,α) ∈ Cn. (5.2)

From this inequality, we draw several conclusions to finally arrive at strong duality.
– We have that (d, δ) ∈ K for all d ≥V 0 and δ ≤ 0. Therefore, (5.2) yields σn ≥ 0,
zn ≤∗V 0, and ξn ≥ 0.
– Since Cn is a cone, with (w,α) also λ (w,α) belongs to Cn for all positive λ. By
λ↘ 0, we obtain σn = 0 from (5.2).
– For all u ≥U 0, the pair (Au, (a , u)U ) belongs to K. Inserting this in (5.2), we
deduce

(u , A∗zn + ξna)U ≤ 0 ∀u ≥U 0,

hence

A∗zn + ξna ≤∗U 0. (5.3)

– The numbers ξn cannot vanish. If ξn = 0 would hold, inserting (c, (c , u)U ) in
the left hand side of (5.2) and (c, s + 1/n) in the right hand side, we arrive at the
contradiction (c , zn)V < (c , zn)V . Therefore, ξn > 0 must hold.
– Define vn = −zn/ξn, then A∗vn ≥∗U a follows from (5.3). Moreover, zn ≤∗V 0 and
ξn ≥ 0 yield vn ≥∗V 0, hence vn is feasible for the dual problem (DP).
– Finally, dividing the right-hand side of (5.2) by ξn, we get

0 < (w , zn/ξn)V + α.

Inserting the elements w = c and α = s+ 1/n, we arrive in view of vn = −zn/ξn at

(c , vn)V < s+ 1/n ∀n ∈ N.

Passing to the limit n → ∞, we see that the dual objective value (c , vn)V can be
taken arbitrarily close to the primal maximum s. In view of the weak duality result
of Lemma 5.3, this shows (5.1).

5.2. Application to the optimal control problem (P). Finally, we prove The-
orem 4.6. We consider the primal and dual problem defined in Section 4. To show
Theorem 4.6 on strong duality, we can take two ways: The first is to view the
dual problem (DP) as primal one and to verify the boundedness assumption 5.4 for
(DP). This can be done invoking Lemma 4.2. The other way around is to verify
the boundedness assumption for the primal problem. We prefer this variant and
consider two different primal problems.

The first is related to the case, where ub < ∞, i.e. where the pointwise control
constraints have upper and lower bounds. Then the primal problem (PP) can be
written as

max(a , v)L2(Q)

v ≤ vb
v ≤ b+ Sv

v ≥ 0,
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where v is taken from U = L2(Q). Now we set V = U × U , KU = L2(Q)+,
KV = KU ×KU , and

A =

(
Id

Id − S

)
, c =

(
vb
b

)
.

Then the primal problem (PP) is equivalent to

max (a , u)U , Au ≤V c, u ≥U 0.

Let us verify Assumption 5.4 of boundedness. We select a varying d = (d1, d2) ∈ V
and consider the set

P (d) = {u ∈ L2(Q) : u ≥ 0, u ≤ d1, u ≤ d2 + Su}.

For all u ∈ P (d), we have

‖u‖L2(Q) ≤ ‖d1‖L2(Q).

Moreover, by inverse non-negativity, we find

‖u‖L2(Q) ≤ ‖z‖L2(Q)

where z is the unique solution to z = d2+Sz. Since (I−S) is continuously invertible
and non-negative, an α > 0 exists such that ‖z‖L2(Q) ≤ α ‖d2‖L2(Q). Therefore,

‖u‖L2(Q) ≤ max{1, α}
(
‖d1‖L2(Q) + ‖d2‖L2(Q)

)
holds for all u ∈ P (d). This property is even stronger than Assumption 5.4. There-
fore, by Theorem 5.5 the strong duality relation is satisfied. This proves Theorem
4.6 for the first form of (PP).

In the second form of (PP), the upper control constraint is missing, i.e. ub =∞,
hence vb =∞. Here, the primal problem takes the form

max (a , v)L2(Q)

v ≤ b+ Sv

v ≥ 0.

We define V = L2(Q), KV = KU , and A = I − S. For d ∈ L2(Q), the set P (d) is

P (d) = {u ∈ L2(Q) : u ≥ 0, u ≤ d+ Su}.

By inverse non-negativity, Corollary 2.3, we find

‖u‖L2(Q) ≤ α ‖d‖L2(Q) ∀u ∈ P (d).

Again, Assumption 5.4 is fulfilled and Theorem 4.6 is proved by Theorem 5.5.

REFERENCES

[1] J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer
Series in Operations Research, Springer-Verlag, New York, 2000.

[2] E. Casas, R. Herzog and G. Wachsmuth, Optimality conditions and error analysis of semilinear
elliptic control problems with L1 cost functional, SIAM J. Optim., 22 (2012), 795–820.

[3] R. C. Grinold, Continuous programming. I. Linear objectives, J. Math. Anal. Appl., 28 (1969),

32–51.

[4] R. C. Grinold, Symmetric duality for continuous linear programs, SIAM J. Appl. Math., 18
(1970), 84–97.

[5] J. Jahn, Vector Optimization. Theory, Applications, and Extensions, Springer-Verlag, Berlin,
2004.

[6] W. Krabs, Zur Dualitätstheorie bei linearen Optimierungsproblemen in halbgeordneten Vek-
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