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Abstract
Rare coding variants in TREM2, PLCG2, and ABI3 were recently associated with the susceptibility to Alzheimer’s disease
(AD) in Caucasians. Frequencies and AD-associated effects of variants differ across ethnicities. To start filling the gap on
AD genetics in South America and assess the impact of these variants across ethnicity, we studied these variants in
Argentinian population in association with ancestry. TREM2 (rs143332484 and rs75932628), PLCG2 (rs72824905), and
ABI3 (rs616338) were genotyped in 419 AD cases and 486 controls. Meta-analysis with European population was
performed. Ancestry was estimated from genome-wide genotyping results. All variants show similar frequencies and
odds ratios to those previously reported. Their association with AD reach statistical significance by meta-analysis.
Although the Argentinian population is an admixture, variant carriers presented mainly Caucasian ancestry. Rare
coding variants in TREM2, PLCG2, and ABI3 also modulate susceptibility to AD in populations from Argentina, and they
may have a European heritage.

Introduction
Alzheimer’s disease (AD) is the most common form of

dementia, and has an estimated genetic component of
60–80%1. Over the last decade, more than 20 loci con-
taining common genetic variants (minor allele frequency
(MAF) >5%) have been associated with AD2. The advent
of new genetic sequencing technologies has enabled the
identification of several rare variants (MAF <1%) with
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moderate effects on AD susceptibility3. In 2017, the
International Genomics of Alzheimer’s Project (IGAP)
reported four rare coding variants significantly associated
with AD4, all of them being involved in microglial-
mediated innate immunity. Two of them are novel non-
synonymous variants: a protective one in PLCG2
(rs72824905) and a risk one in ABI3 (rs616338). The other
two were previously reported in the susceptibility gene
TREM2 (rs143332484 and rs75932628), and are respon-
sible for p.R62H and p.R47H substitutions, respectively.
The findings in TREM2 have been consistently replicated
in Caucasian4–6 and African-American populations7.
However, the association of TREM2 p.R47H with AD
could not be found in East Asian population, because its
frequency is extremely low8,9. This latter observation
suggests ethnic variability fostering investigation of these
variants in different ethnic groups. Given the increasing
population diversity observed in countries all over the
world, understanding population-shared and -specific risk
factors of AD will translate into improved and specific
prevention and/or treatment for people.
Latin America is a vast territory, with a wide diverse

admixture of European, Native American, and African
ancestral populations. The genetic architecture of spora-
dic AD has not been studied in this population beyond
APOE-ε4. In this report, we provide the first evidence for
an association between TREM2, PLCG2, and ABI3 rare
variants and AD in the Argentinian population.

Methods
Subjects
Individuals with AD and without cognitive impairment

older than 60 years were recruited from outpatient Neu-
rology Departments of the following hospitals: Instituto
de Investigaciones Médicas “Alfredo Lanari” and Hospital
de Clínicas (Buenos Aires City), Hospital Interzonal
General de Agudos “Eva Perón” (General San Martín
county), Hospital El Cruce “Dr. Néstor Kirchner” (Flor-
encio Varela county), and several assistance centers
located across Jujuy province. Only samples from people
born in Argentina or in South America were included in
the analysis. This study was approved by the ethical
committee “Comité de Bioética Fundación Insituto Leloir
(HHS IRB #00007572, IORG # 006295, FWA00020769)”
by the approval of protocol CBFIL #22. All participants
and/or family members gave their informed consent.
Diagnosis of AD followed diagnostic criteria from the

National Institute of Neurological and Communicative
Disorders and Stroke and the Alzheimer’s disease and
Related Disorders Association (NINCDS-ADRDA)10. The
diagnosis of AD includes a clinical examination to eval-
uate functionality and activities of daily living that should
be compromised; a complete panel of neurocognitive tests
to evaluate memory, attention, language, and executive

function, of which one or more should be altered; a
computerized tomography and/or magnetic resonance
imaging to assess cortical–hippocampal atrophy and
vascular events, and a blood test analysis to exclude
metabolic or infectious causes of dementia. Individuals
were included as controls if neurocognitive and clinical
assessments were normal.

Genotyping and statistics
Genomic DNA was isolated using standard procedures

from whole blood or saliva samples. TREM2 (rs143332484
and rs75932628), PLCG2 (rs72824905), and ABI3
(rs616338) variants were genotyped using custom-
designed TaqMan assays (Thermo Fisher). Assay accu-
racy was checked by including positive and negative
controls in each experiment. APOE alleles were deter-
mined by genotyping rs429358 and rs7412. Association
with AD was calculated using Fisher’s exact test with
statistical significance of p < 0.05. All variants were in
Hardy–Weinberg equilibrium (HWE, p > 0.05). Power
calculations were performed using Genetic Power Cal-
culator for discrete traits (http://zzz.bwh.harvard.edu/
gpc/cc2.html). Meta-analysis for the effect of rare var-
iants in association with AD was conducted using beta
and standard error with Metafor R-package11. Populations
from France (n= 8514), Italy (n= 2306), Spain (n=
3966), and Sweden (n= 2286) from the European Alz-
heimer's Disease Initiative (EADI)4 were included in the
meta-analysis.

Ancestry of the population
European (CEU, n= 85), Yorubas African (AFR, n=

88), and Native American (NAM, n= 46) ancestral
populations were obtained from 1000 Genomes (http://
www.internationalgenome.org/). Argentinian samples
(ARG) were subjected to genome-wide genotyping using
the Infinium Global Screening Array (GSA) v.1.0+GSA
shared custom content (Illumina). Quality controls (QC)
were performed as described before12, using PLINK v1.913

and R v3.4.414. After QC, remaining samples (n= 834)
have <5% of missing genotypes and passed sex-check and
identity-by-state filters. Remaining single nucleotide
polymorphisms (SNPs) have >95% call rate, MAF >1%, are
in HWE (p > 10−6), and without differences in call rate
between cases and controls (p < 1 × 10−5).
For the ancestry analyses, overall population ancestry

was first evaluated for ARG by extracting 446 ancestry
informative markers (AIMs), which were specifically
selected to estimate ancestry in Latin America15, from the
genotyped data. Second, ancestry of chromosomes con-
taining rare variants was evaluated by extracting from the
446 AIMS, the AIMs in chromosome 6 from people
carrying TREM2 p.R47H and TREM2 p.R62H, those
AIMs in chromosome 16 from people carrying PLCG2
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p.P522R, and finally AIMs in chromosome 17 from people
carrying ABI3 p.S209F. For each ancestry estimation, the
same AIMs were extracted from CEU, AFR, and NAM.
Ancestry was predicted using ADMIXTURE v1.3.016.

Results
To evaluate the association of the four rare variants

recently reported by IGAP4 with AD in an Argentinian
population sample (ARG), 905 participants were recruited
from different regions of the country. Demographic and
clinical information of the 419 AD cases and 486 controls
is summarized in Table 1. We first explored the risk effect
of APOE-ε4 allele on AD susceptibility confirming thereby
previous reports (odds ratio (OR)= 3.14, p < 0.0001)17.
For APOE-ε2, we observed the expected protective effect,
although it did not reach statistical significance (OR=
0.77, p < 0.33). Next, we genotyped the recently described
rare variants4, i.e., TREM2 p.R47H (rs75932628) and p.
R62H (rs143332484), PLCG2 p.P522R (rs72824905) and
ABI3 p.S209F (rs616338). All of them were detected in
ARG with MAFs similar to those reported by IGAP (Table
2)4. They also showed similar magnitude of association,
even though neither of these variants reached statistical
significance (Table 2)4. This observation was expected,
since our sample had a power of 60% to detect OR= 3 of
a variant with MAF= 0.01. Notwithstanding, the fact that
all variants showed similar effect sizes and effect direc-
tions as in the report of IGAP prompted us to perform a
meta-analysis using samples from France, Italy, Spain, and
Sweden (EADI)4. Despite larger sample size, statistical
power associated with EADI does not allow to reach
nominal significant association with AD risk. However,
when meta-analyzing both EADI and ARG samples, this

gain in power is enough to help in reaching statistical
significance for the variants analyzed, in particular the
TREM2 p.R47H variant (Table 3, Figure S1). Unfortu-
nately, information for TREM2 p.R62H was not available.
This can be explained by the observation that the variant
effects in ARG are similar to those detected in the other
European populations analyzed (as indicated by hetero-
geneity statistic (I2), see Table 3). All these results toge-
ther support the hypothesis that these rare variants are
also associated to AD in ARG at a similar level than the
one observed in Europe.
Although it is generally accepted that the population

from Argentina is mostly originated from Europe, several
studies have shown that this population is an admixture of
predominantly European and Native American ancestry18.
To estimate the ancestry of ARG, we used a panel of 446
SNPs, reported to be precisely balanced to study Latin
American populations15. ARG showed to be an admixture

Table 1 Argentinian sample demographics

No. of subjects

(female %)

Age (years) AAO mean

(SD)

MMSE mean

(SD)

CDR mean

(SD)

APOE freq (%) APOE-ε4

carriers (%)
Mean (SD) Range ε2 ε3 ε4

Cases 419 (64.4) 77.2 (6.3) 62–96 72.5 (6.5) 18.3 (5.8) 1.4 (0.75) 3.5 69.5 27.0 45.6

Controls 486 (65.6) 74.6 (7.5) 59–105 28.5 (1.2) 0.3 (0.3) 5.5 84.2 10.4 19.6

SD standard deviation, AAO age at onset, MMSE Mini-Mental State Examination, CDR Clinical Dementia Rating scale, APOE freq apolipoprotein E allele frequency

Table 2 Genotyping results for TREM2, PLCG2, and ABI3

Gene Protein variation MAF cases MAF controls Allele cases Alleles controls OR 95% CI P value ORIGAP

TREM2 p.R47H 0.005 0.001 4|816 1|948 4.68 0.46–230.84 0.19 2.46

TREM2 p.R62H 0.012 0.009 10|816 9|956 1.31 0.47–3.68 0.64 1.67

PLCG2 p.P522R 0.004 0.006 3|810 6|944 0.58 0.09–2.73 0.52 0.68

ABI3 p.S209F 0.012 0.004 9|772 4|912 2.70 0.75–12.07 0.10 1.43

MAF minor allele frequency, OR odds ratio, CI confidence interval, IGAP International Genomics of Alzheimer’s Project

Table 3 Contribution of Argentinian samples to meta-
analysis

Gene Protein

variation

Populations OR 95% CI P value I2

TREM2 p.R47H EADI 2.10 1.04–4.27 0.04 0.00

EADI+ARG 2.29 1.17–4.47 0.02 0.00

PLCG2 p.P522R EADI 0.60 0.35–1.03 0.06 4.17

EADI+ARG 0.60 0.36–0.99 0.05 0.00

ABI3 p.S209F EADI 1.49 0.90–2.48 0.12 0.00

EADI+ARG 1.58 0.98–2.57 0.06 0.00

OR odds ratio, CI confidence interval, I2 heterogeneity statistic
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of mainly CEU and NAM, and to a lesser extent of AFR
(Fig. S2). Proportions of ancestries are equally distributed
among cases and controls (Fig. 1a), indicating that asso-
ciation analysis may not be biased by population stratifi-
cation. Furthermore, we looked at the ancestry of people
carrying the rare variant mutations in ARG (Fig. S3) and
detected that CEU component was predominant in all the
carriers (Fig. 1b). Although ancestry estimation at the
specific locus was not possible due to the lack of AIMs in
close proximity to the rare variants, the ancestry of the
chromosomes containing the rare variants showed to be
CEU (Fig. 2), suggesting a European heritage for the
studied variants.

Discussion
Here we show information from a case–control study

performed in Argentina, being the first study on sporadic
AD genetics in South America, beyond APOE. Our results
strongly suggest that rare coding variants described by
IGAP in TREM2, PLCG2, and ABI3 might also modulate

the susceptibility to AD in this population. In addition, we
confirmed, as previously reported18, that ARG is an
admixture of mainly NAM and CEU. NAM ancestry
stemmed from the first settlers of the Americas, who
originated from an East Asian population that migrated
from Siberia19. On the other hand, CEU ancestry is a
consequence of the pro-immigration legislation to popu-
late Argentina during nineteenth–twentieth century20. In
this context, we observed that while APOE-ε4 OR was
similar to that reported for Caucasians (ORARG= 3.14 vs
ORCEU= 3.6, http://www.alzgene.org/), its frequency in
AD cases was lower (26.9% in ARG vs. 38% in CEU,
http://www.alzgene.org/). This lower frequency is in
agreement with data previously reported in other Latin
American countries21. Interestingly, it is among the lowest
worldwide together with that of Mediterranean basin and
Native Americans22,23, which are the main contributors to
Argentinian admixture.
It is of note that the rare variants studied here showed

MAFs similar to those reported by IGAP in Caucasians4.

Fig. 1 Ancestry analysis of DNA samples that passed quality controls. a Distribution of genetic ancestry in Alzheimer’s disease (AD) cases and
controls. Bar-plots represent each participant on the x-axis, and his percent of European (CEU), African (AFR), and Native American (NAM) ancestry on
the y-axis. b Ancestry of rare variant carriers. Box-plots show ancestry composition in percent of people carrying TREM2 p.R47H (n= 3), TREM2 p.R62H
(n= 16), PLCG2 p.P522R (n= 6), and ABI3 p.S209F (n= 11) mutations
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Unfortunately, since there are no reports in Amer-
indians, we could not compare their MAFs. However,
TREM2 p.R47H is almost absent in East Asians8,9, sug-
gesting that it might also be extremely rare in Native
Americans. For the rest of the variants, we performed a
search in ExaC database (exac.broadinstitute.org), and
found that PLCG2 p.P522R, and TREM2 p.R62H were
not detected in approximately 4300 East Asian indivi-
duals. Unfortunately, results for ABI3 p.S209F are not
reliable due to low quality. Notwithstanding, these
observations, together with our results showing that the
chromosomes containing these rare variants have
mainly Caucasian ancestry in the identified carriers,
strongly suggest a European origin for these variants.
However, the possibility still remains open that the loci
containing the studied rare variants might have an
ancestry other than Caucasian. To answer this question,
additional studies comparing SNPs among ancestral
populations are needed to identify AIMs that better
explain the ancestry of these loci.
In conclusion, we report the first genetic data from

Argentinian population, which support the contribution
of rare coding variants to AD susceptibility. Although this
population size is not enough to reach statistical sig-
nificance for the rare variants studied here, it is a relevant
opportunity to start filling the gap on AD genetic archi-
tecture in Latin American admixed populations. Our
analysis fosters further analysis of these rare variants in
other Latin populations to confirm our initial observation.
Importantly, expanding research to admixed populations,
like this one, will help to identify potential population-
specific effects on the genetic structure of AD, in addition
to better define conserved relevant pathways involved in
the disease.
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