Downloaded 03/21/13 to 193.144.185.28. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

SIAM J. CONTROL OPTIM. (© 2006 Society for Industrial and Applied Mathematics
Vol. 45, No. 5, pp. 1586-1611

ERROR ESTIMATES FOR THE NUMERICAL APPROXIMATION
OF DIRICHLET BOUNDARY CONTROL FOR SEMILINEAR
ELLIPTIC EQUATIONS*

EDUARDO CASAST AND JEAN-PIERRE RAYMOND?

Abstract. We study the numerical approximation of boundary optimal control problems gov-
erned by semilinear elliptic partial differential equations with pointwise constraints on the control.
The control is the trace of the state on the boundary of the domain, which is assumed to be a convex,
polygonal, open set in R?. Piecewise linear finite elements are used to approximate the control as
well as the state. We prove that the error estimates are of order O(h'~1/P) for some p > 2, which is
consistent with the Wl’l/p*p(F)-regularity of the optimal control.
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1. Introduction. In this paper we study an optimal control problem governed
by a semilinear elliptic equation. The control is the Dirichlet datum on the boundary
of the domain. Bound constraints are imposed on the control. The cost functional
involves the control in a quadratic way and the state in a general way. The goal is to
derive error estimates for the discretization of the control problem.

There are not many papers devoted to the derivation of error estimates for the
discretization of control problems governed by partial differential equations; see the
pioneering works by Falk [19] and Geveci [21]. However, recently some papers have
appeared, providing new methods and ideas. Arada, Casas, and Troltzsch [1] de-
rived error estimates for the controls in the L> and L? norms for distributed control
problems. Similar results for an analogous problem, but also including integral state
constraints, were obtained by Casas [8]. The case of a Neumann boundary control
problem has been studied by Casas, Mateos, and Troltzsch [11]. The novelty of our
paper with respect to the previous ones is twofold. First, here we deal with a Dirichlet
problem, the control being the value of the state on the boundary. Second, we con-
sider piecewise linear continuous functions to approximate the optimal control, which
is necessary because of the Dirichlet nature of the control, but it introduces some new
difficulties. In the previous papers the controls were always approximated by piece-
wise constant functions. In the present situation we have developed new methods,
which can be used in the framework of distributed or Neumann controls to consider
piecewise linear approximations. This could lead to better error estimates than those
deduced for piecewise controls.

As far as we know, there is another paper dealing with the numerical approx-
imation of a Dirichlet control problem of Navier—-Stokes equations, by Gunzburger,
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Hou, and Svobodny [23]. Their procedure of proof does not work when the controls
are subject to bound constraints, as considered in our problem. To deal with this
difficulty we assume that sufficient second order optimality conditions are satisfied.
We also see that the gap between the necessary and sufficient optimality conditions
is very narrow. It is of the same type as in the finite dimensional case.

Let us mention some recent papers which provide some new ideas for deriving
optimal error estimates. Hinze [26] suggested discretizing the state equation but not
the control space. In some cases, including the case of semilinear equations, it is
possible to solve the incompletely discretized problem on a computer. However, we
believe this process offers no advantages for our problem because the discretization of
the states forces the discretization of the controls. Another idea, due to Meyer and
Rosch [33], works for linear-quadratic control problems in the distributed case, but
we do not know if it is possible to adapt it to the general case.

In the case of parabolic problems, the theory is far from being complete, but
some research has been carried out; see Knowles [27], Lasiecka [28], [29], McKnight
and Bosarge [32], Tiba and Troltzsch [36], and Troltzsch [38], [39], [40], [41].

In the context of control problems of ordinary differential equations, great work
has been done by Hager [24], [25] and Dontchev and Hager [16], [17]; see also the work
by Malanowski, Biiskens, and Maurer [31]. The reader is also referred to the detailed
bibliography in [17].

The plan of the paper is as follows. In section 2 we set the optimal control problem
and we establish the results we need for the state equation. In section 3 we write the
first and second order optimality conditions. The first order conditions allow us to
deduce some regularity results of the optimal control, which are necessary to derive
the error estimates of the discretization. The second order conditions are also essential
to prove the error estimates. The discrete optimal control problem is formulated in
section 4 and the first order optimality conditions are given. To write these conditions
we have defined a discrete normal derivative for piecewise linear functions, which are
solutions of some discrete equation. Sections 6 and 7 are devoted to the analysis
of the convergence of the solutions of the discrete optimal control problems and to
the proof of error estimates. The main result is Theorem 7.1, where we establish
@ — @nll2ry = O(RI=1/P).

The numerical tests we have performed confirm our theoretical estimates. For a
detailed report we refer to [12]. A simple example is reported in section 8.

2. The control problem. Throughout this paper, £ denotes an open convex
bounded polygonal set of R?, and I' denotes its boundary. In this domain we formulate
the following control problem:

inf J(u)z/ L(z, yu () da +—/

subject to (yy,u) € L(Q) x L>=(T

uweU={uecLl®T)|a<u(z)<p aec zecT},

(yu,u) satisfying the state equation (2.1),

(2.1) —Ayu(z) = f(2,yu(x)) inQ, Yu(z) =u(z) onT,

where —00o < a < 8 < +oo and N > (0. Here u is the control, while y, is the
associated state. The following hypotheses are assumed about the functions involved
in the control problem (P).
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(A1) The function L : Q x R — R is measurable with respect to the first com-
ponent and is of class C? with respect to the second one, L(-,0) € L1(£), and for all
M > 0 there exist a function ¢1, oy € LP(Q) (p > 2) and a constant C, 3y > 0 such that

2

oL 0°L
‘%(xvy)’ < m(z), ‘

6:’./2 (xay)’ S CL,Ma

0%2L 0%L
‘ < Cr.mly2 — 1l

Tyg(%yz) - aiyg(xayl)

for a.e. x € Qand |y, |y;| < M,i=1,2.
(A2) The function f : @ xR — R is measurable with respect to the first variable
and is of class C? with respect to the second one,

f(-,0) € LP(Q) (p> 2), g—z(x,y) <0 ae z€QandyecR.

For all M > 0 there exists a constant C'y as > 0 such that
or o1
Ay dy?

0% f 0% f
aﬁyﬂ%@/z) - Tyg(%yﬂ

(x,y)‘—f— (x,y)‘<Cf,M a.e. ¢ € Qand |y| < M,

< Cumly2 —y1| ae z€Qand |y, |y2] < M.

Let us finish this section by proving that problem (P) is well defined. We will say
that an element y, € L>°(2) is a solution of (2.1) if

(2.2)

—Awydr = / flx,y(z))w(z)de — / u(z)0,w(x)de, Yw € H*(Q) N H(Q),
Q Q r

where 0, denotes the normal derivative on the boundary I'. This is the classical
definition in the transposition sense. To study (2.1), we state an estimate for the
linear equation

(2.3) —Az(z) = b(z)z(x) in £, z(z) =u(x) onT,

where b is a nonpositive function belonging to L>(£2).
LEMMA 2.1. For everyu € L>®(T"), the linear equation (2.3) has a unique solution
z € L>®(Q) (defined in the transposition sense), and it satisfies

(2.4)
I2llz2(0) < Cllullg-12ys 121 a1200) < Cllullzzery and [|z]|Le @) < llullze -

The proof is standard: the first inequality is obtained by using the transposition
method (see Lions and Magenes [30]), the second inequality is deduced by interpola-
tion, and the last one is obtained by applying the maximum principle.

THEOREM 2.2. For every u € L>®(I'), the state equation (2.1) has a unique
solution y, € L>(Q) N HY2(Q). Moreover the following Lipschitz properties hold:

(2.5) yu = Yol o) < [l — o]l Leo(ry,
1Y — yuHHl/Z(Q) < Cllu—wvllg2@y Vu,ve L>(T).
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Finally if u, — u weakly* in L>(T), then y,, — yu strongly in L"(Q) for all r <
+o0.
Proof. Let us introduce the following problems:

(2.6) —Az =0 in Q, z=u onl,
and
(2.7) —A¢=g(z,¢) in Q, ¢=0 onT,

where g : Q X R +— R is given by g(z,t) = f(x, z(x) +t), with z being the solution of
(2.6). Lemma 2.1 implies that (2.6) has a unique solution in L>(Q) N H'/2(Q). Tt is
obvious that assumption (A2) is fulfilled by ¢g and that (2.7) is a classically well-set
problem having a unique solution in H}(Q) N L>(£2). Moreover, since ) is convex,
we know that ¢ € H?(); see Grisvard [22]. Finally the solution y, of (2.1) can
be written as y, = z + (. Estimates (2.5) follow from Lemma 2.1; see Arada and
Raymond [2] for a detailed proof in the parabolic case. The continuous dependence in
L7 (Q) follows in a standard way by using (2.5) and the compactness of the inclusion
HY?(Q) C L*(Q) along with the fact that {y,,} is bounded in L>°(Q), as deduced
from the first inequality of (2.5). ad

Now the following theorem can be proved by standard arguments.

THEOREM 2.3. Problem (P) has at least one solution.

3. Optimality conditions. Before writing the optimality conditions for (P) let
us state the differentiability properties of J.

THEOREM 3.1. The mapping G : L>°(T) — L®(Q)NH/?(Q) defined by G(u) =
Yo is of class C?. Moreover, for all u,v € L°°(T'), z, = G'(u)v is the solution of

0
(3.1) —Az, = a—i(x,yu)zv n Q, zp=v on I,

and for every vi,ve € L®(Q), 24,0, = G (w)v1v2 is the solution of

of o2 f .
(32) _Azmvz = Fy(xvyu)zv1v2 + aiyg(xvyu)zmzvz in €,
Rujvg — 0 on F,

where z,, = G'(u)v;, i = 1,2.
Proof. Let us define the space

V={ye H/>(Q)NL®Q): Ay € L*(Q)}

endowed with the natural graph norm. Now we consider the function F' : L>®(T") x
V — L*®(T) x L?(Q) defined by F(u,y) = (y|r —u, Ay + f(x,y)). It is obvious that
F is of class C? and that for every pair (u,y) satisfying (2.1) we have F(u,y) = (0,0).
Furthermore

OF - of

By using Lemma 2.1 we deduce that (0F/9y)(u,y) : V. — L*®(T) x L%*(Q) is an
isomorphism. Then the implicit function theorem allows us to conclude that G is of
class C2, and now the rest of the theorem follows easily. 0
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Theorem 3.1, along with the chain rule, leads to the following result.
THEOREM 3.2. The functional J : L=¥(T') — R is of class C*. Moreover, for
every u, v, vy, vy € L>®(T),

(3.3) J'(u)v:/(NufauqSu)vdx
r
and
(3.4)
0%L 0% f
J" (u)vyvg :/Q [ayz(gu,yu)zvlzv2 —&—qbuayz(x,yu)zvlzv?} dsr:—l—/FNvlvg dz,

where z,, = G'(u)v;, i = 1,2, y, = G(u), and the adjoint state ¢, € H?() is the
unique solution of the problem
af oL

The first order optimality conditions for problem (P) follow readily from Theorem
3.2.

THEOREM 3.3. Assume that U is a local solution of problem (P) and let § be the
corresponding state. Then there exists ¢ € H*(S) such that

(3.6) NG = g;<x,g>a n g—jw) inQ  $=0onT,
and
(3.7) / (Na—0,8) (u—a)de >0, YueU™

I

which is equivalent to
_ . 1, - . 1. -
(3.8) u(x) = Proji, g (Na,,(/)(x)) = max {a, min {ﬁ, N&,(b(ﬂ;)}}.

THEOREM 3.4. Assume that @ is a local solution of problem (P) and let § and ¢
be the corresponding state and adjoint state. Then there exists p € (2,p] (with p > 2
as introduced in assumptions (Al) and (A2)) depending on the measure of the angles
of the polygon Q such that j € WHP(Q), ¢ € W?P(Q), and u € W'=1/P»(T) c C(T).

Proof. From assumption (Al) and using elliptic regularity results, it follows that
# belongs to W2P(Q) for some p € (2,p] depending on the measure of the angles of
I'; see Grisvard [22, Chapter 4]. To prove that @ belongs to W*~1/P?(T") we recall the
norm in this space,

o 5 p 1/p
||1_LHW1—1/p,p(r) = {A|ﬁ($)|pdx+/I‘Lded§} ,

where we have used the fact that @ C R?. Due to [22, Theorem 1.5.2.3] and the fact
that ¢ = 0 on T, it can be shown that d,¢ belongs to W' ~1/PP(T'). With the relation
(3.8) and

Projo(0060) ) = Proie (10.600)) | < 10,600) - 0,5(6)

one can prove that the integrals in the above norm are finite.
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Finally, decomposing (2.1) into two problems as in the proof of Theorem 2.3,
we get that § = z + ¢, with ( € H?(Q) and z € W'P(Q2), which completes the
proof. ]

In order to establish the second order optimality conditions, we define the cone
of critical directions

Cy = {v € L*(I") satisfying (3.9) and v(x) = 0 if |d(z)| > 0},

> U =
(3.9) v(z) = { =0 where u(z) for a.e. z €T,

e
<0 where a(z) =0

where d denotes the derivative J' (1),

(3.10) d(z) = Ni(z) — 0,(x).

Now we formulate the second order necessary and sufficient optimality conditions.

THEOREM 3.5. If @ is a local solution of (P), then J"(u)v?> > 0 holds for all
v € Cy. Conversely, if u € U satisfies the first order optimality conditions provided
by Theorem 3.3 and the coercivity condition

(3.11) J"(u)w? >0, YuveCy\{0},

then there exist > 0 and € > 0 such that J(u) > J(a) + p|lu — ﬂ||2L2(I‘) is satisfied
for every u € U obeying |lu — | = (q) < &

The necessary condition provided in the theorem is quite easy to get. The suf-
ficient conditions are proved by Casas and Mateos [9, Theorem 4.3] for distributed
control problems with integral state constraints. The proof can be translated in a
straightforward way into the case of boundary controls; see also Bonnans and Zidani
[4].

Remark 3.6. It can be proved (see Casas and Mateos [9, Theorem 4.4]) that the
following two conditions are equivalent:

(1) J"(@)v? > 0 for every v € Cy \ {0}.

(2) There exist 6 > 0 and 7 > 0 such that J”(@)v® > é||v[|7.p for every v € CF,
where

CT = {v € L*(T) satisfying (3.9) and v(z) = 0 if |d(x)| > 7}.

It is clear that C7 contains strictly Cg, so condition (2) seems to be stronger than
(1), but in fact they are equivalent. For the proof of this equivalence, we use the fact
that u appears linearly in the state equation and quadratically in the cost functional.

4. Numerical approximation of (P). Let us consider a family of triangula-
tions {7 }ns0 of Q1 Q = Upeq, T. With each element T € 7}, we associate two
parameters p(T") and o(T"), where p(T') denotes the diameter of the set T', and o(T")
is the diameter of the largest ball contained in T. Let us define the size of the mesh

by h = maxrpeT, p(T). For fixed h > 0, we denote by {T };V:(T ) the family of triangles
belonging to 73 and having a side included in the boundary I'. If the vertices of T; NI’
are o} and "', then [z],21""] ;== T; NT, 1 < j < N(h), with x]FV(h)H = xf. We

N(h)
r

will also follow the notation 2% = x . We assume that every vertex of the polygon

2 is one of these boundary points 7. of the triangulation and that the numbering of
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the nodes {z%};v:(?) is made counterclockwise. The length of the interval [a], 25t"] is
denoted by h; = |x%+1 — mJF| The following hypotheses on the triangulation are also

assumed.

(H1) There exists a constant p > 0 such that h/p(T) < p for all T € 7}, and
h > 0.

(H2) All the angles of all triangles are less than or equal to /2.

The first assumption is not a restriction in practice and it is the usual one. The
second assumption is going to allow us to use the discrete maximum principle and it
is actually not too restrictive.

Given two points & and & of T', we denote by [£1,&2] the part of T obtained by
running the boundary from &; to & counterclockwise. With this convention we have
(&2,&1) =T\ [€1,&]. According to this notation,

/ 5 w(z)dz and / " (o) da

2

denote the integrals of a function u € L*(I") on the parts of I defined by [£1, &) and
[€2,&1], respectively. In particular we have

/ 5 u(z) dz = /F u(z) da — / 5 w(z) dz.

Associated with this triangulation, we consider the sets
Uy, = {uh eC): Uh‘[zf;’zfj»l] ePrfor 1<5< N(h)},
Vi={un € CQ) plr e PL VT € T,
Yho = {yh €Yy ynlr = 0},

where P; is the space of polynomials of degree less than or equal to 1. The space U,
is formed by the restrictions to I' of the functions of Y},.
Let us consider the projection operator IIj, : L?(T") —— Uy,

(Hhv,uh)Lz(p) = (’U,uh)Lz(p) Yup, € Up.

The following approximation property of II; is well known (see for instance [20,
Lemma 3.1]):

Iy — Myl ey + 22y = Tyl gz ey < ChE Y2yl (oy, Wy € H (),
and for every 1 < s < 2. Observing that, for 1/2 < s < 3/2,

ylr=u

is a norm equivalent to the usual one of H* /2 (I"), we deduce from the above in-
equality that

(41) ||7.L — HhuHLz(p) + h1/2||u — HhuHHl/2(F) < C’hSHuHHs(F), Yu € HS(F),

and for every 1/2 < s < 3/2.
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Let a : Yy x Y, —— R be the bilinear form given by

a(Yn, zn) :/QVyh(x)Vzh(x) dzx.

For all u € L>°(T"), we consider the following problem:

Find yp(u) € Y}, such that yp, = pu on T') and

(4.2) a(yp(u),wp) = /Qf(m,yh(u))wh dx Ywy, € Y.

PROPOSITION 4.1. For every u € L*>(T"), (4.2) admits a unique solution yp(u).

Proof. Let zp be the unique element in Y}, satisfying z; = IIpu on I', and let
zp(x;) = 0 for all vertices x; of the triangulation 7, not belonging to I'. The equation

Ch € Yo, a(Ch,wn) = —a(zn, wn) +/ f(x,zn + Cp)wn dx, Ywy € Yao,
Q

admits a unique solution (it is a consequence of the Minty—Browder theorem; see
Brézis [7]). The function zj + (p, is clearly a solution of (4.2). The uniqueness of the
solution to (4.2) also follows from the Minty—Browder theorem. |

Due to Proposition 4.1, we can define a functional J, in L*>(T") by

Tn(u) = /Q L(m,yh(u)(x))dx—i-% / Ww2(z) da.

r

The finite dimensional control problem approximating (P) is

min Jy (up) = /

[ Len(m)@) o+ 5 [ vi@)da

subject to uy, € Uﬁd,

(Pn)

where
UM =U,nU = {up €Uy |a <up(x) <BVYaxel}

The existence of a solution of (Pj) follows from the continuity of J in U and
the fact that U,‘Z‘d is a nonempty compact subset of U. Our next goal is to write the
conditions for optimality satisfied by any local solution uy. First, we have to obtain
an expression for the derivative of Jy, : L°°(T") — R analogous to the one of J given by
formula (3.3). Given u € L*°(I") we consider the adjoint state ¢p(u) € Yo solution
of the equation

(43)  a(wn, én(w)) = /Q [g(x,yh<u>>¢h<u>+g’;(x,th)) wn dz Yo € Yio.

To obtain the analogous expression to (3.3) we have to define a discrete normal deriva-
tive 0" ¢y, (u).
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PROPOSITION 4.2. Let u belong to L*°(T") and let ¢n(u) be the solution of (4.3).
There exists a unique element 0" ¢y, (u) € Uy, verifying

(00 dn(w), wh) r2(ry = alwn, dn(u))
(4.4)

,A |:g‘§(x7yh(u))¢h(u) + %(m,yh(u)) wp dx Ywp € Y.

Proof. The trace mapping is a surjective mapping from Y}, on Uj; therefore the
linear form

Hw) = atun o)~ | [giu,yh(u)m(u) n ?;<x,yh<u>>] wn dz

is well defined on Up, and it is continuous on Up. Let us remark that if in (4.4) the
trace of wy, on T' is zero, then (4.3) leads to

L(wh) =0.

Hence L can be identified with a unique element of U, which proves the above
proposition. O

Now the function G introduced in Theorem 3.1 is approximated by the function
Gy, : L®°(T") — Y}, defined by Gp,(u) = yn(u). We can easily verify that Gy, is of class
C? and that for u,v € L>(T'), the derivative 2, = G}, (u)v € Y}, is the unique solution
of

0
(45) a(zp,wp) = /Q %(x,yh(u))zhwh dx, Ywy € Yy,

zp = 1lpv on I
From here we deduce
, oL
Jp(wv= | —(z,yn(u))zpde+ N | uwvdz.
o 0y r

Now (4.4) and the definition of IIj, lead to

(4.6) Jp (u)v = N/Fuv dr — /F(’?ﬁth(u)ﬂhv dr = /F(Nu — 0" (u))v d

for all u,v € L>(T).

Finally, we can write the first order optimality conditions.

THEOREM 4.3. Let us assume that uy, is a local solution of (Py) and gy the
corresponding state; then there exists ¢y, € Yy,o such that

(4.7) a(wp, ¢n) = /Q [gi(x,yh)% + gly;(x,yh)} wp dr Vwp € Yo

and

(48) /(Nﬂh — 85(]3}1)(1% - ﬂh) dx >0 Yuy € U;?d.
r
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This theorem follows readily from (4.6).

Remark 4.4. The reader could think that a projection property for @, similar to
that obtained for @ in (3.8) can be deduced from (4.8). Unfortunately this property
does not hold because up(z) cannot be taken arbitrarily in [a, 5]. Functions uy € Up

are determined by their values at the nodes {x%}j\]:(?) If we consider the basis of Uy,
{e; }jV:(T) defined by e;(z%) = é;;, then we have

N(h)
up = Z Up, €5 with Up,j = Uh(z%), 1< ] < N(h>
Jj=1

Now (4.8) can be written
N(h)

(4.9) 3 / (N, — dn)e; dr(upy — any) >0, Vun; YV < la, 6,
j=1 7%

where @y, ; = @, (z}). Then (4.9) leads to

- {a if fF(Nﬂh — 65&}1)6]‘ dx > 0,
h,j —

(4.10) ~
g if fF(Nﬂ}L - 83(]%)6]' dr < 0.

In order to characterize @ as the projection of 97¢y,/N, let us introduce the
operator Proj, : L*(I') — Up? as follows. Given u € L?(I'), Proj,u denotes the
unique solution of the problem

inf ||lu—w
thU}(fd || h||L2(F)’

which is characterized by the relation
(4.11) /(u(x) — Projj,u(z))(vn(z) — Proj,u(z)) de <0 Yo, € U,
r
Then (4.8) is equivalent to
_ (1
(4.12) up, = Proj,, Nau(bh .

Let us recall the result in [13, Lemma 3.3], where a characterization of Proj, (up)
is stated. Given u, € U, and u, = Proj,(up), @ is then characterized by the
inequalities

hj—1l(unj—1 = tnj-1) + 2(un,; — Un,;)](t = @n,;)
+hy[2(unj = tng) + (un g1 — Gnjp)](E = Gny) <O
for all t € [, 8] and 1 < j < N(h).

5. Numerical analysis of the state and adjoint equations. Throughout
the following, the operator I, € L(WP(2),Y}) denotes the classical interpolation
operator [6]. We also need the interpolation operator I} € £(W'=/P»(T"),Uy). Since
we have

I (ylr) = ny)lr, Yy € WHP(Q),



Downloaded 03/21/13 to 193.144.185.28. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1596 EDUARDO CASAS AND JEAN-PIERRE RAYMOND

we shall use the same notation for both interpolation operators. The reader can
observe that this abuse of notation does not lead to any confusion.

The goal of this section is to obtain the error estimates of the approximations
yn(u) given by (4.2) to the solution y, of (2.1). In order to carry out this analysis
we decompose (2.1) into two problems, as in the proof of Theorem 2.3. We take
z € HY2(Q) N L®(Q) and ¢ € H(Q) N H?(Q) as the solutions of (2.6) and (2.7),
respectively. Then we have y,, = z + (.

Let us consider now the discretizations of (2.6) and (2.7):

(5.1) Find z;, € Y}, such that z, = IIu on I' and
’ a(zn,wp) =0, Ywy € Yo,
and
Find ¢}, € Y0 such that
(5.2)

a(Ch,wp) = /Qgh(%(h(x))wh(fl?) dx, Ywy € Yy,

where gp(z,t) = f(z,zn(z) + t). Now the solution y,(u) of (4.2) is decomposed as
follows: yp(u) = 2z, + . The following lemma provides the estimates for z — zp,.

LEMMA 5.1. Let u € U%, and let z and z, be the solutions of (2.6) and (5.1),
respectively; then

(5.3) lenlle(e) < [Hpullzeery < Cla, B) and ||zp[lwrr) < CllHpullyr-1/mn s
(5.4)  Mlznllzz) < CllHpul g-1/2(ry,

where 1 < r < p is arbitrary, with p being as given in Theorem 3.4. If, in addition,
ue H5 ()N U with 0 < s < 1, then we also have

(5.5) |z — ZhHLz(Q) < Ch8+1/2HU||Hs(I‘) Vh>0and 0 <s < 1.

Proof. The first inequality of (5.3) is proved in Ciarlet and Raviart [14]; we have
only to notice that

(5.6) Mpull oy < Cllullzery < C(a, B),

where C is independent of h and u € U%; see Douglas, Dupont, and Wahlbin [18].
Inequality (5.5) can be found in French and King [20, Lemma 3.3] by just taking
into account that

20l o2y < Cllull s (ry-

The second inequality of (5.3) is established in Bramble, Pasciak, and Schatz [5,
Lemma 3.2] for r = 2. Let us prove it for all  in the range (1, p]. Let us consider the
2" € H'(Q) solution of the problem

—Az"=0 inQ, 2 =u onT.
This is a standard Dirichlet problem with the property (see Dauge [15])
HZh”Wl,r(Q) < CHHhuuwl—l/r,r(F).

Let us denote by Iy W (Q) — Y} the generalized interpolation operator, due
to Scott and Zhang [35], that preserves piecewise-affine boundary conditions. More
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precisely, it has the properties fh(yh) = yy, for all y, € Y}, and fh(WOl’T(Q)) C Yo
These properties imply that I;,(2") = II,u on T'. Thus we have

A= T,(z") = ALY inQ, P —1,(z")=0 onT,
and zp, — fh(zh) € Y}, satisfies

a(zn — In(2"), wr) = —a(In(z"), wn) Yw, € Yio.

Then by using the LP estimates (see, for instance, Brenner and Scott [6, Theorem
7.5.3]), we get

20 = Tn(z")lwrr () < Cll2" = Tn(z") lwir oy

< C(I2" lwrr ) + IR (M) lwrr @) < Cllz"lwrr ) < ClITRullyr-1/ee -
Then we conclude the proof as follows:

Iznllw @y < Mn(")lwrr@) + l2n = Tn(Z") lwir@) < ClThullpa-1/rr ry-

Finally, let us prove (5.4). Using (5.5) with s = 0, (2.4), and an inverse inequality,
we get

lznllz2e) < 12" — znllz2(Q) + ||ZhHL2(Q)

< C(h2| Myl 2y + Tpul g-12@y) < ClTpul g-12@y. O
Remark 5.2. The inverse estimate used in the proof,
lull 2y < Ch™V2\lull -2y, Vu € Un,
can be derived from the well-known inverse estimate [3],
el o2y < Ch_1/2||U”L2(F), Yu € Uy,
and from the equality
lullZery = lull gz el g1z )

Now we obtain the estimates for ¢ — (j.
LEMMA 5.3. There exist constants C; = Ci(a, ) > 0 (i = 1,2) such that, for all
u € U € H*(T), the following estimates hold:

(5.7) ICull oo (@) < C1, VR >0 and s =0,
(5.8) 1< = Gullrzee) < Coh™ 21+ [lullgery), Yh>0and 0<s <1,

where ¢ and (p, are the solutions of (2.7) and (5.2), respectively.
Proof. We are going to introduce an intermediate function (" € H?(Q) satisfying

(5.9) ~AC" = gp(x,¢M(z) inQ, "=0 onT.

By using classical methods (see for instance Stampacchia [34]), we get the boundedness
of ¢ and ¢" in L*°() for some constants depending on [|u||zr) and [[Ipul ze(ry,
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which are uniformly estimated by a constant depending only on « and 8; see (5.6).
On the other hand, from (2.7), (5.9), and assumption (A2), we deduce

Cill¢ = MlFn () < al¢ = ¢ ¢=¢M
= /Q l9(,¢(2)) = gn(, ¢"(2))] (¢ () = ¢"(x)) da
= /Q l9(z,¢(w)) = g(a, ¢"(@))](¢(2) = ¢"(w)) da
+ /Q l9(, ¢"(2)) = gn(w,¢"(@))](((x) = "(2)) da
< /Q l9(,¢"(2)) = gn (@, ¢"(@)))(¢(2) = ¢"(@)) da < Collz = znll () I = ¢"llz2@)

< Oyllz = 2l + G~ C e,
This inequality, along with (5.5), implies
(5.10) 1€ = ¢ e ) < CREFY2 | oy
Thanks to the convexity of Q, ¢" belongs to H?(f2) (see Grisvard [22]) and

1<" 12y < Cllgn(, ¢ l20) = Cllull Ly [ITnull L= (ry)-

Now using the results of Casas and Mateos [10, Lemma 4 and Theorem 1] we deduce
that

(5.11) I" = Cullz2(@) < CP2,
(5.12) 16" = Gullz= (@) < Ch.

Finally (5.8) follows from (5.10) and (5.11), and (5.7) is a consequence of the
boundedness of {¢"}},~¢ and (5.12). 0

THEOREM 5.4. There exist constants C; = Ci(a, 3) > 0 (¢ = 1,2) such that for
every u € U N H*(T), with 0 < s < 1, the following inequalities hold:

(5.13) ||yh(u)||Loo(Q) <Cy, YVh>0ands=0,
(5.14)  |lyu — yn(u)| 20y < Coh™2(1+ |Jull o)) Yh>0and 0 <s < 1.

Furthermore if u, — u weakly in L*(T), {un}nso C U, then yn(up) — vu strongly
in L™(Q) for every r < 4+o0.

Proof. Remembering that y, = 24 ¢ and yp,(u) = 2 + (i, we see that (5.3), (5.5),
(5.7), and (5.8) lead readily to inequalities (5.13) and (5.14). To prove the last part
of the theorem, it is enough to use Theorem 2.2 and (5.14) with s = 0 as follows:

e = yn(ur)llz2@) < 1Yu = Yun l22@) + 1Wun — yn(un)llz2) — 0 as h — 0.

The convergence in L"(Q) follows from (5.13). |
COROLLARY 5.5. There exists a constant C = C(a, ) > 0 such that, for all
ue U and v e U N H¥(T), with 0 < s < 1, we have

(5.15) 1y = yn (W)l L2y < C{llu = vllzzry + 221 + ol g=ry) }-
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This corollary is an immediate consequence of the second estimate in (2.5) and
of (5.14).
Let us finish this section by establishing some estimates for the adjoint states.
THEOREM 5.6. Given u,v € U, let ¢, and ¢p(v) be the solutions of (3.5)
and (4.3) with u replaced by v in the last equation. Then there exist some constants
C; = Ci(a, 8) >0 (1 <14 <3) such that

(516) ||¢h(’l))||Loo(Q) <Ci Vh> 0,
(5.17)  |lpu — dn(v)l|L2(0) < Ca(llu — vl L2y + B?),
(5.18)  |ldu — ou(V)ll Lo () + [[Pu — On (V) a1 () < Cs(llu — v L2y + ).

Proof. All the inequalities follow from the results of Casas and Mateos [10] just
by taking into account that

[u = En(v)llx < lldu = Pollx + lP0 — Pn(V)llx < Cllyu = vollL2@) + ldv — dr(v)lx),

with X equal to L>(Q), L?(2), and H*(f), respectively. |

Now we provide an error estimate for the discrete normal derivative of the adjoint
state defined by Proposition 4.2.

THEOREM 5.7. There ezists a constant C' = C(a, ) > 0 such that the following
estimate holds:

(5.19)

Ch'? Yu e U,
|10y o, — aﬁéﬁh(U)HL?(F) < {

Cllull graszry + DA™YP Yu e U 0 HY(T).

Proof. First, let us remember that ¢, € H?(Q) and therefore 9,4, € H/?(T).
Observe that the definition of the projection operator Il leads to

[ 10w6u = 3on = [ 10,62~ masou* + [ Mdso, - dbonw)l = 1+ I
r r r
Since 0"y, (u) belongs to Uy, we can write

o= [ (0,6~ 0bon() [0, ~ 3o (w)
r
Let us introduce z; € Y}, as the solution to the variational equation

a(zp,wp) =0 Ywy € Yo,
Zh = Hhay(bu — aﬁ(bh(u) on I

From (5.3) it follows that
(5.20) znll i1 () < ClMRDyGu — O b (W) |1/

Now using the definition of 8¢y, (u) stated in Proposition 4.2 and a Green formula
for ¢, we can write

I = a(zh, du — dn(w) + /Q (ZJ;@ () (u) — ggu,yum)zh

5.21
(5-21) oL oL

+/Q <8y(33,yh(u)) - By(m’yu)> s
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Due to the equation satisfied by z,

a(zn, Ingu) = alzn, ¢n(u)) =0,

we also have

of

(5.22)
I, = (l(Zh, Gy — Ih(bu) +A ( (xayh(u)) - @(x, yu))(buzh
oL oL

of
+Aaiy(x7yfb(u))(¢h(u) _(bu)Zh‘F/Q (ay(xayh(u)) - &'J(1'7yu)>zh

of
dy

From well-known interpolation estimates, the second inequality of (5.3), and an inverse
inequality, it follows that

a(zn; pu — Indu) < |l2nllwrs () |éu — Indullwie(q)

(5.23) < Chl|pullw2r(@)llznlrllwi-1/0 0 0y < Chllzalrll gi-1re oy
< ChYY ||zl L2y = CRYP VI,

where p’ =p/(p—1).

From assumptions (A1) and (A2) and inequalities (5.13), (5.14) with s = 0, (5.16),
and (5.17), we get

15} 0
(5.24) ] / (3§<x,yh<u>> - azw,yu)) buzn| < N on 2,
0
(5.25) ‘/Qa]yc(%yh(u))(f/)h(u) — du)zn| < Clign(u) — (/>u||L2(sz)||Zh||L2(sz)
< Ch®|\znl 20
and
oL oL
(5.26) ‘/Q <6y($ayh(u)) - 8y(CU»yu)>Zh < Ch1/2th”L2(Q)-

Collecting together the estimates (5.23)—(5.26) and using (5.20) and the fact that
p’ < 2, we obtain

(5,27 I < CRVP' /T + ChV2|| 2| L2
' < C(WMP' VI + W2 |10, 60 — 05 (u)l|2(r)) < ChY/2V/T;,
which implies that

(5.28) I, < Ch.

Using again that ¢, € W2P?(Q), we get that 9,¢, € W'~1/»»(T') ¢ H'=Y/(T).
Hence from (4.1) with s =1 — 1/p, we can derive

(5.29) I < Ch|Dudullipory < Chllullieay < CAZEHP).
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So the first estimate in (5.19) is proved.

To complete the proof let us assume that « € H'/?(T'); then we can use (5.14)
with s = 1/2 to estimate y, —yp,(u) in L?(Q) by Ch. This allows us to change h'/? in
(5.24) and (5.26) by h. Therefore (5.27) can be replaced with I, < ChY/?" = Cht=1/7;
thus Iy < Ch2(1=1/P)  So the second estimate in (5.19) is proved. 0

COROLLARY 5.8. There exists a constant C' independent of h such that

Haﬁfﬁh(“)HHlm(r) <C YueU™,
(5.30) 108 én(u)lwi-1/0@y < Cllull /ey +1) Yu € U N HYA(T),
[ alul(lsh(U)HN(F) < C{HU - UHL2(F) + h”} Yu,v € U“d7

where k =1 —1/p if v € HY?(T) and k = 1/2 otherwise.
Proof. Let us make the proof in the case when u € U**N H'/?(T"). The case when
u € U can be treated similarly. We know that

10ubullws-s/om(ry < Clldullweniay < C Vu € U,

On the other hand, the projection operator IIj, is stable in the Sobolev spaces W*:4(T"),
for 1 < g <ooand 0<s<1 (see Casas and Raymond [13]); therefore

R0y Gullwi-1/ve@ry < CllOydulliwr-1/vm(r)-

Finally, with an inverse inequality and the estimate I, < Ch?~2/? obtained in the
previous proof, we deduce

||3ﬁ¢h(u)\|vvlfl/p=p(r) < | 1p0y b — aﬁ¢h(u)||W1*1/P=P(F) + [Th 00 dullwr-1/0.5 (1)
< C||Hhal/¢u - 8ﬁ¢h(u)“H1*1/z’(I‘) + thau(bunwlfl/wd(r)
< Ch™"YP|10,0, ¢4 — Ol én (u)| L2y + 10y bullwr-1/p.0 @y < C.

The third inequality of (5.30) is an immediate consequence of Theorem 5.7. 0

6. Convergence analysis for (P). In this section we will prove the strong
convergence in L?(T") of the solutions uy, of discrete problems (Pj) to the solutions of
(P). Moreover, we will first prove that {ay,};, remains bounded in H'/?(I"), and then
that it is also bounded in W=/ P-2(T). Finally, we will prove the strong convergence
of the solutions @, of discrete problems (Pp) to the solutions of (P) in C(T').

THEOREM 6.1. For every h > 0 let @y, be a global solution of problem (Pp,). Then
there exist weakly* -converging subsequences of {up}n>o in L (L) (still indexed by h).
If the subsequence {ip}n>o is converging weakly* in L°°(T) to some 4, then @ is a
solution of (P),

(6.1) im Jy (@) = J(a) =inf(P) and ’llirrb |2 — @n| L2y = 0.

1
h—0

Proof. Since Ufd C U holds for every h > 0 and U is bounded in L>°(T'),
{@p}r>o is also bounded in L>°(T"). Therefore, there exist weakly*-converging sub-
sequences as claimed in the statement of the theorem. Let {@,} be one of these
subsequences and let @ be the weak* limit. It is obvious that @ € U®. Let us
prove that @ is a solution of (P). Let us take a solution of (P), & € U%; therefore
@ € W=Y/PP(T') for some p > 2; see Theorem 3.4. Let us take uj = I,%. Then



Downloaded 03/21/13 to 193.144.185.28. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1602 EDUARDO CASAS AND JEAN-PIERRE RAYMOND

up, € U4 and {up}y, tends to @ in L>°(T); see Brenner and Scott [6]. By taking
u =1, v=up, and s = 0 in (5.15) we deduce that yp(us) — yz in L*(Q). Moreover,
(5.13) implies that {yp(un)}r>0 is bounded in L*°(2). On the other hand, Theo-
rem 5.4 implies that 4, = ypn(un) — § = ya strongly in L2(2), and { }no is also
bounded in L*°(€2). Then we have

J(w) < li}rniélf Jp(tp) < limsup Jp(ap) < limsup Jp, (Ipa) = J(a@) = inf (P).
11— h—0 h—0

This proves that @ is a solution of (P) as well as the convergence of the optimal costs,
which leads to ||un| r2ry — [|@[/z2(r); hence we deduce the strong convergence of
the controls in L?(T). |

THEOREM 6.2. Let p > 2 be as in Theorem 3.4, and for every h let uy denote a
local solution of (Pp). Then there exists a constant C' > 0 independent of h such that

(6.2) an w1700y < C VA >0,

Moreover, the convergence of {up}n>o to @ stated in Theorem 6.1 holds in C(T').

Proof. By using the stability in H'/2(I") of the L?(T')-projections on the sets U4
(see Casas and Raymond [13]) along with (4.12) and the first inequality of (5.30), we
get that {iy, }ro is uniformly bounded in H'/?(T"). Using now the second inequality
of (5.30) and the stability of ITj, in W'~1/P?(T"), we deduce (6.2). Finally, the conver-
gence is a consequence of the compactness of the imbedding W'=/P»(T") ¢ C(T) for
p> 2. 0

7. Error estimates. The goal in this section is to prove the following theorem.

THEOREM 7.1. Let us assume that @ is a local solution of (P) satisfying the
sufficient second order optimality conditions provided in Theorem 3.5, and let up, be a
local solution of (Py,) such that @, — @ in L*(T); see Theorem 6.1. Then the following
inequality holds:

(7.1) 1o — tn|lL2ry < Ch'=1/,

where p > 2 is given by Theorem 3.4.

We will prove the theorem arguing by contradiction. The statement of the the-
orem can be stated as follows. There exists a positive constant C' such that for all
0 < h<1/C, we have

1@ — @nl|L>(ry
T =¢

Thus if (7.1) is false, for all k£ > 0, there exists 0 < hy < 1/k such that

@ — tn,[|L2(r)
W > k.
k

Therefore there exists a sequence of h such that

(7.2) ||1Z — ﬂhHLz(I‘) = 4o00.

pm 1

We will obtain a contradiction for this sequence. For the proof of this theorem, we
need some lemmas.
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LEMMA 7.2. Let us assume that (7.1) is false. Let & > 0 as given by Remark
3.6(2). Then there exists ho > 0 such that

I o _ e
(7.3) 3 min{é, N'}||u — uh||%2(F) < (J'(ap) — J'(w))(up —u) Vh < hg.

Proof. Let {up}n be a sequence satisfying (7.2). By applying the mean value
theorem, we get for some 4y, = @+ 05, (un — ),

(7.4) (" (n) = J' (@) (@n — @) = J" (i) (7, — )2
Let us take

1
Vp = %(ah - @)
llan *UHL?(F)

Taking a subsequence if necessary, we can assume that v, — v in L?(T"). Let us prove
that v belongs to the critical cone Cj defined in section 3. First, we remark that every
v, satisfies the sign condition (3.9); hence v also does. Let us prove that v(z) = 0
if d(x) # 0, with d being defined by (3.10). We will use the interpolation operator
I, € L(W'=YPP(T),Up), with p > 2 given in Theorem 3.4. Since @ € U%, it is
obvious that I,u € U8, For any y € WHP(Q) such that y|r = 4, it is clear that I
is the trace of Iy (see the beginning of section 5). Now, by using a result of Grisvard
[22, Chapter 1], we get

@ = Dl ey < C (72 lly = Dyl + &7y = Tyl ey )

for every € > 0 and for some constant C' > 0 independent of € and y. Setting ¢ = hP
and using that (see, for instance, Brenner and Scott [6])

ly — Inyllr o) < Cibllyllwir), [ayllwir@) < Callyllwrr @),

and

imf71 yllwr) < Cslltllwi-1/0 ),

Ir=
we conclude that
(75)  la—Lllzey < 0% 1@ — L@l ooy < B2l wa-a/mm -
Let us define
(7.6) dn(z) = Ny (x) — 0"én(x).

The third inequality of (5.30) implies that dj, — d in L*(T"). Now we have

/FCZ(.’L‘)’U(Z‘) dx = flbli% g dp, (z)vp () dz

1 - _
=lim-——-—— dp(Ipu —u d:l:+/d,,ﬂ —Iﬂdaz}.
h—0 ||uh_u||L2(F) {/r w(dn ) r (i W)
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From (4.8), (7.2), and (7.5) we deduce

/ i(2)o(z) do < lim ——— / dn(2) (Ini(z) — a(x)) do
T T

h—0 ||ﬂh — ﬂ”L?(I‘)

1-1/p
<tim P T
h—0 ||uh — UHL2(F)

Since v satisfies the sign condition (3.9), then d(z)v(x) > 0; hence the above inequality
proves that v is zero whenever d is not, which allows us to conclude that v € Cz. Now
from the definition of vy, (3.4), and (3.11) we get

9°L 0*f
. 1"( 2 3 . - - 2
lim J"(ap)vj, = lim {/Q [ayg (@ yan) + ban 53 (@) yuh)} 2, AT + N}

0?L -0 f 9
= —(x, ¥y —|—¢x,y]zvdx+]\7
/Q [31/2( ) 3y2( )
= J"(@)v* + N(1 - ||U||2L2(r)) >N+ (6- N)H”H%?(ry
Taking into account that ||v[|z2(ry < 1, these inequalities lead to

}llir% J" (ap)vi > min{s, N} > 0,

which proves the existence of hg > 0 such that
1
J (ap)vi > 3 min{6, N} Vh < he.

From this inequality, the definition of v, and (7.4) we deduce (7.3). a
LEMMA 7.3. There exists a constant C > 0 independent of h such that for every
ve L*(T),

(7.7) |(Jh(@n) = J' (@)l < Ch*=2|[o]l2(r.

Proof. From (3.3), (4.6), (7.6), (6.2), and Theorem 5.7 we get

(Jp(an) — J'(an))v = /(3u¢ah — Ol dn)vdr < ||0yda, — O nllL2mllvllLa(r
T
< C(lanllgrrery + DR VP ]l g2y < CROYP Ju||p2ry. O

LEMMA 7.4. There exists a constant C > 0 independent of h such that for every
v e L*(T),

(7.8)  |(Jh(an) = @)l < (Nla = anllzery + Ch=7) ol aqry.

Proof. Arguing in a way similar to the previous proof, and using (5.30) and (6.2),
we have

(L (@n) — (@) = /F (N, — 3 ) My de /F (N~ 2,6) v
= N/F(ﬂh —a)vdx +/F (8,,(5 — 8S$h)vdx

< <N||ﬂh — || g2(ry + Ch(l_l/p)) lvllL2ry. 0O
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One key point in the proof of the error estimates is to get a discrete control
up, € U2 that approximates @ conveniently and satisfies J' (@) = J'(@)uy,. Let us
find such a control. For every 1 < j < N(h), let us set

Jj+1
T

I - L d(x)e; () dz.

T

Now we define uj, € U;, with uh(xjp) = uy,; for every node x% € I" by the expression

7/@,7 d(@)i(x)e;(x) dx i I; #0,
(7.9) Up,j =

I dr i I
T if I; = 0.
hj_1+h; /331;1 aw)deiE

Remember that the measure of [xr ! xffl] is hj_1+hj = |zh — ol + 2t — 2,

which coincides with |z — 217 '] if 21 is not a vertex of Q.
In the following lemma, we state that the function w; defined by (7.9) satisfies
our requirements.
LEMMA 7.5. There exists hg > 0 such that, for every 0 < h < hg, the element
up, € Uy, defined by (7.9) obeys the following properties:
1. up € U;lld.
2. J(wa = J(@)up.
3. The approximation property

(7.10) @ — up|| g2y < CRIY/P

is fulfilled for some constant C' > 0 independent of h.
Proof. Since @ is continuous on I', there exists hg > 0 such that

0 —«

[u(&2) —u(é1)| < 5

, VYh<hy, V&,& € [ah 2l 1< < N(h),

which implies that « cannot admit both the values o and (3 on one segment [z% ! a:{fl]

for any h < hg. Hence the sign of d on [z} ", #:™'] must be constant due to (3.7).
Therefore, I; = 0 if and only if d(z) = 0 for all z € [z} ', ). Moreover if I; # 0,
then d(x)/I; > 0 for every = € [z}, 21""]. As a first consequence of this we get that
a < up; < (3, which means that uj, € U#¢. On the other hand,

N (h) w{'jrl N(h)

J(@up = / d(z)e;(z) dzup ; = Z/ﬂc x)ej(x) dx = J'(4)a.

Jj=1

Finally, let us prove (7.10). Let us remember that @ € W=1/»»(I") ¢ H'=Y/?(I)
and p > 2. We note that the norm in H*(I"), 0 < s < 1, is given by

1/2
u
(7.11) uIIHs(r)=<|u||L2(r)+//| _§|1+2s d d§> :



Downloaded 03/21/13 to 193.144.185.28. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1606 EDUARDO CASAS AND JEAN-PIERRE RAYMOND

N(h)

Using that } ;" e;(z) =1 and 0 < e;(x) < 1 we get

N(h)

i — unl e, /Za ) — uny)e; (x)

2
‘dm

(7.12)

1 1
a:"" a:7+

< Z/ uh,]| €J dCL‘ < Z/ —uh,j|2dm.

Let us estimate every term of the sum.
Let us start by assuming that I; = 0 so that uy_; is defined by the second relation
n (7.9). Then we have

g1 I+l
Ty r

g1
a(2) -y Pde= [ |1 / T ) — ’
/001,71 |u(l‘) uh7]| dr = /m%l ‘hjfl —+ hj a:{fl (u(x) u(g)) df dx

r
Jj+1 Jj+1
T r

xT 1 T
(7.13) = /.7‘—1 W/j‘l |u(z) _ﬂ(‘f)Pdfdaj

af 2
2(1—1/p) v z) —u(§)|
< (hj_1 + h;) p/ / |xi§|1+21 ) s e
< (2h) 21-1/p) ||UHH1 Up (gt @ity

Now let us consider the case I; # 0:

(7.14)

I+l i+1 j+1
r

[t wnas = [ i d(©)e; (€) (@) — () de] da

I [ [,
/

IN

©)

(z) —@
L i) - P 199 g,
xi. xd, f

IN

i+l = Jj+1
T r

j—1
ge[mJ 1 J+1 "L’F

IN

—1
(/ F
j—1
T
j+1
T

— s / la(z) — a(€) 2 da.

gefzf 2t
To obtain the estimate for the last term we are going to use Lemma 7.6 stated below,
with

J+1
r

f(é) = /il |a(z) — a(€)|? da.

r

Since H'~Y/?»(T") ¢ C%9(T) for = 1/2 — 1/p (see, e.g., [37, Theorem 2.8.1]), it is
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easy to check that

J+1
T

&) - @l < [ | Jlatw) ~ aten)] + fata) - a(6))| a(ee) - a(6y)|da

T
< 2(hj1 + hy) 0 Cypul?

— j—1 J+1y -
H! 1/p($%‘ 71%} )

On the other hand, we have

pit1

u(é)? 142(1-1
[ rou= [T [T |1+2<1 L OT 1421 g

yLr2a-1 o a(é)[?
< (hj—r + hy) /ml /Q |x_|Hm1Updd€

< (hj1 + )2 )2

Hl- 1/p J 1 J+1)
Then we can apply Lemma 7.6 to the function f, with

M (h] 1+h )29max{409p,1}”u”]_11 1/1’(m] 1 ]+1 <Ch29Hu||Hl 1/p(x] L ]+1)

to deduce that

(7.15) F(&) < Clal; i1 gy BT

Hl- l/p(w

This inequality, along with (7.14), leads to

af
- 2 —2 1+26
(7.16) L 1)~ S Ol o
in the case when I; # 0.
Since
N(h)
S gt gty < 2211700
j=1

inequality (7.10) follows from (7.12), (7.13), (7.16), and the fact that 1 4 20 =

2(1-1/p). O
LEMMA 7.6. Given —o0o < a < b < 400 and f : [a,b] — RT, a function
satisfying

b
F) — F(an)| < (b~ a) and / f(x)dr < M(b— a)?,

we have that f(z) < 2M(b—a) for all x € [a,b].
Proof. We argue by contradiction and we assume that there exists a point £ € [a, b]
such that f(£) > 2M (b — a); then

b b
/ f(2) di = / {7@) — £ + O de >~ (b a)> +2M(b—a)* = (b~ 0)?,

which contradicts the second assumption on f. 1]



Downloaded 03/21/13 to 193.144.185.28. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1608 EDUARDO CASAS AND JEAN-PIERRE RAYMOND
Proof of Theorem 7.1. Setting u = @y, in (3.7), we get

(7.17) J' (@) (i, — u) = /F (Nu — 0,9) (up — 1) dx > 0.

From (4.8) with uy, defined by (7.9), it follows that

J;l(@h)(uh — ﬂh) = /F (Nﬁh — 8L’<Eh) (uh — ﬂh) dz >0

and then that
(7.18) Jp (up) (@ — ap) + Jy, (n) (up, — @) > 0.
By adding (7.17) and (7.18) and using Lemma 7.5(2), we derive
(J'(@) = Ty, (un)) (@ = un) < Ty (an)(un = w) = (Jy (@) — J'(@)) (un — w).

For h < hg, this inequality and (7.3) lead to

1 : = — 12 1 (= 1( = — —
i _ < _ _
(7.19) 5 in{N, 6} @ — anllzer) < (J'(a) = J'(an)) (@ — an)
< (Jp(an) = J'(an)) (@ —ap) + (Jy () — J'(@)) (up — @).
Now from (7.7) and Young’s inequality, we obtain

(T (@n) = J'(an)) (@ — ap)| < Ch*=VP|[a — ap| 2 (ry

(7.20) 11 1 I
< Cp2(-1/p) gmln{]\f, OHlw — |72y

On the other hand, using again Young’s inequality, (7.8), and (7.10), we deduce
[ @n) = I @) (wn = @)| < (M@ = @nllzar + ORI =2 ) = unllaqr)

(7.21)

IN

N = @yl a(ry + CHI=VP ) pi=17
1
8
From (7.19)—(7.21) we get

IN

min{N, 6}”@ - ﬂh”%}(F) + ChQ(l_l/p).

1
7 min{ N, 8}a - Un||72(ry < CRPTHP),

which contradicts (7.2). O

8. Numerical tests. In this section we present some numerical tests which

illustrate our theoretical results. Let Q be the unit square (0,1)2. Consider
(01,02) = ——
21,22) = —5——5 7=
Ya\T1, T2 ("E% +I‘%)1/3
We are going to solve the following problem:

Min J(u) = %/ﬂ(yu(a:) — ya(@))2ds + %/Fu(a:)de,

u€Uy={uecL?T): —1<u(xr)<2ae xel},
—Ay, =0in Q, y, =uon I

(P)
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Fia. 8.1.

We remark that yq € LP(Q) for all p < 3, but yq & L3(Q); therefore the optimal
adjoint state ¢ is actually in W2P () for p < 3. Consequently we can deduce that the
optimal control belongs to W'=/P2(T), but W'~/P?(T) is not included in H(T).
There is no reason for the normal derivative 9, to be more regular than W'=1/P2(T).
For our problem, the plot in Figure 8.1 shows that the optimal control has a singularity
in the corner at the origin, and it seems that @ ¢ H'(T'). So we cannot hope to have a
convergence order of O(h). Instead of that, we have a convergence of order O(h'~1/P)
for some p > 2, as predicted by the theory.

Since we do not have an exact solution for (P), we have solved it numerically for
h = 2794/2, and we have used this solution for comparison with other solutions for
bigger values of h. We have solved it using an active set strategy, as is explained in
[11]. Figure 8.1 shows a plot of the optimal solution. The control constraints are not
active at the optimal control. In Table 8.1 we show the norm in L?(T) of the error
of the control and the order of convergence step by step. The order of convergence is
measured as

o, — 08lln, — allz2r)) —log(ll@n,_, —ullzzr))
’ log(h;) — log(hi—1) '

Let us remark that 1 —1/p < 2/3 for p < 3. The values o; are approximately 2/3.
We believe that the order of convergence could be closer to 2/3 if we could compare
the computed controls with the true optimal control instead of with its numerical
approximation. We refer to [12] for more details and numerical tests.

TABLE 8.1

hi/V2 | |lan, —allp2(ry 0i
23 0.1055 —
24 0.0652 0.6944
25 0.0393 0.7302
2-6 0.0237 0.7314
27 0.0146 0.7008
2-8 0.0093 0.6493
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