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Predictability of chaotic systems is limited, in addition to the precision of the knowledge of the initial
conditions, by the error of the models used to extract the nonlinear dynamics from the time series. In this paper,
we analyze the predictions obtained from the anticipated synchronization scheme using a chain of slave neural
network approximate replicas of the master system. We compare the maximum prediction horizons obtained
with those attainable using standard prediction techniques.
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I. INTRODUCTION

Modeling and predicting the dynamics of nonlinear cha-
otic systems is a challenging problem with important real-
world applications �stock market returns �1�, weather fore-
cast �2�, etc.�. It is well known that chaotic behavior implies
long-term unpredictability, but the deterministic nature of
chaotic systems allows the prediction of their dynamics to
some extent. From a theoretical point of view, Lyapunov
theory provides a sound framework for this problem, and the
inverse of the largest Lyapunov exponent gives a theoretical
limit for the prediction horizon attainable for a particular
system. However, in practice, the original system is unknown
and approximate models fitted to the available data are used
to model and forecast its nonlinear dynamics �e.g., neural
networks �3��. In this situation, the attainable forecast hori-
zon depends not only on the dynamics of the original system,
but also on the error of the approximate model.

Anticipated synchronization is a recently discovered in-
triguing phenomenon which allows one to predict the dy-
namics of nonlinear systems using a particular achronal
master-slave synchronization scheme �4�. Theoretically, an
arbitrary large forecast horizon can be obtained using a chain
of anticipated synchronized exact replicas �slaves� of the
original system �5� �see Fig. 1�a��. However, it has been re-
cently shown that this scheme is unstable to propagating per-
turbations �the spatiotemporal character of the coupled chain
introduces a convectivelike instability into the synchroniza-
tion manifold� �6�. Therefore, in a practical problem where
the slave systems are approximate replicas, there is no infor-
mation about the maximum attainable anticipation time.

In this paper, we analyze this problem using neural net-
works, one of the most popular nonparametric statistical
learning techniques, for approximating the nonlinear dynam-
ics from the available data �time series� �7�. The obtained
neural models are used as slaves in the anticipated synchro-

nization scheme �see Fig. 1�b�� and the results are compared
with the exact-replicas case. Moreover, the practical forecast
horizon obtained is compared with an alternative standard
forecasting method �forward iteration of the neural model
from the initial state, Fig. 1�c��.

This paper is structured as follows. In Sec. II we analyze
the mechanism underlying anticipated synchronization and
describe its limitations: we show that the maximum attain-
able anticipation values with a master-slave scheme is close
to the linear prediction time given by the autocorrelation
�Sec. II A�. Section II B briefly describes the scheme with
chain of systems which gives larger anticipation times. Sec-
tion III presents some basic results about neural networks
and their application to chaotic systems forecasts. Section
III A shows the prediction performance of anticipated syn-
chronization using neural networks as slave models. Section
III B compares the results with a standard technique. Finally,
some conclusions are given in Sec. IV.

II. FORECASTING CHAOTIC SYSTEMS WITH
ANTICIPATED SYNCHRONIZATION

Given two chaotic systems: the so-called master �or
driver�, u0�t�, and the slave, u1�t�, defined as identical au-
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FIG. 1. Scheme of the three different approaches to prediction
studied. �a� Anticipated synchronization chain with identical slave
copies, �b� anticipated synchronization chain with slave neural net-
works, and �c� neural network forward iteration prediction.
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tonomous systems u̇0�t�= f(u0�t�), u̇1�t�= f(u1�t�), several
schemes have been presented in the literature �8–10� to
achieve synchronization of their outputs. The simplest syn-
chronization scheme uses a dissipative coupling between
them:

u̇0�t� = f�u0�t��

u̇1�t� = f�u1�t�� + K�u0�t� − u1�t�� . �1�

It might happen that, for particular values of coupling param-
eters matrix K, the fixed point solution u0�t�=u1�t� is glo-
bally asymptotically stable. In this case, the dynamics of
both systems will be restricted �after some transient� to the
synchronization manifold u0�t��u1�t� and, hence, they will
exhibit identical dynamical behavior. In most cases, no ana-
lytical results about stability are possible, and synchroniza-
tion regimes must be obtained numerically.

A different approach, named anticipated synchronization,
was proposed recently by Voss �4� and it has attracted a lot of
attention because of its potential applications for predicting
the dynamics of chaotic systems. Anticipated synchroniza-
tion describes the situation when the slave system becomes
synchronized with the future output of the master system by
appropriately including some delay times in feedback terms.
Amongst the different possibilities, we restrict ourselves in
this paper to the anticipated synchronization scheme of the
form

u̇0�t� = f„u0�t�…

u̇1�t� = f„u1�t�… + K„u0�t� − u1�t − ��… . �2�

Note the inclusion of the delay time � in the equation of the
slave. In this case, the synchronization manifold is u1�t�
=u0�t+�� and when it is stable, it allows the slave to antici-
pate by a time � the dynamics of the master. This achronal
synchronization occurs for some bounded region of coupling
parameters K and delay times �. Since its proposal by Voss,
several papers have analyzed theoretically anticipated syn-
chronization in chaotic dynamical systems �11� and chaotic
maps �12�. In addition, some experiments have been carried
out, demonstrating the existence of this phenomenon in elec-
tronic chaotic circuits �13�, in semiconductor lasers �14�, and
in an electronic circuits implementation of the FitzHugh-
Nagumo neuron model �15�.

We illustrate the scheme with two benchmark chaotic sys-
tems, the Lorenz and Rössler models, with different strong
and weak chaotic behaviors, respectively, indicating short
and long theoretical forecast horizons. The Lorenz model u
= �x ,y ,z� is defined by the set of differential equations �16�

�ẋ, ẏ, ż� = ���y − x�,− xz + rx − y,xy − bz� �3�

which we study for the parameter values �=10, b=8/3, and
r=28, with a corresponding largest Lyapunov exponent �
=0.9 �17�. This gives a bound for the prediction horizon t
=1/�=1.11. The Rössler model �18�

�ẋ, ẏ, ż� = �− y − z,x + ay,b + z�x − c�� �4�

with a=0.15, b=0.2, and c=10, has a largest Lyapunov ex-
ponent �=0.09, giving a prediction horizon t=1/�=11.1.
Note that the theoretical prediction horizons of both systems
differ by one order of magnitude.

We first take two identical Lorenz systems u0 and u1, and
couple them by using the scheme of Eq. �2� with coupling
only in the x variable, i.e., K(u0�t�−u1�t−��)= �K�x0�t�
−x1�t−��� ,0 ,0�. Figure 2�a� shows the stability region of the
anticipated manifold u1�t�=u0�t+�� by plotting in a gray
scale the maximum of the cross-correlation function between
x1�t� and x0�t+��. From this figure, we estimate that the
maximum anticipation time, �=0.13, is reached for K=19
�see Fig. 3�. A similar analysis �not shown� for the Rössler
system shows a maximum anticipation time �=0.91 for K
=0.5. In both cases, these maximum anticipation times are
shorter than the inverse of the largest Lyapunov exponents
and, in fact, they are similar to the linear prediction times of
the original systems: 0.16 �Lorenz� and 0.95 �Rössler�. These
values are obtained as the horizon where the error of a linear
prediction is larger than 5% of the system’s range, and agree
with those values obtained from the autocorrelation function.
This suggests that the anticipated synchronization mecha-
nisms is limited to a neighborhood of t, where u1�t−�� can
be linearly approximated in terms of u1�t�. In the following
section we theoretically derive this relationship.

A. First-order approximation

In order to eliminate the delay term u1�t−�� from Eq. �2�
we consider a linear expansion u1�t−��=u1�t�−�u̇1�t�, and
substitute it into the equation. Thus, we get

u̇1�t� = f„u1�t�… + K„u0�t� − u1�t� + �u̇1�t�… �5�

rearranging terms in the derivative, we get

u̇1�t� =
1

1 − K�
f„u1�t�… +

K

1 − K�
„u0�t� − u1�t�… . �6�

Thus, using a first-order approximation, the anticipated syn-
chronization scheme reduces to a nonanticipated one but
with different drive and response systems. Then the synchro-
nization manifold is not u1�t�=u0�t�, but u1�t�=u0�t�
+�f(u0�t�) in the first-order approximation. This approach
has been used to obtain anticipated synchronization in an
array of chaotic rf circuits �19�. The time evolution for the
response system given by Eq. �6� corresponds to that of the
drive system but with a different time scale t�= t / �1−K��.
Anticipation requires t�� t or, �at first order� 0�1−K��1,
giving the following two constraints for anticipated synchro-
nization K��0 and K��1.

This simple prediction has been compared with the nu-
merical synchronization diagrams of the Lorenz and Rössler
systems in the case that all variables are coupled using a
diagonal coupling matrix K=K1 �this has been chosen in
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order to improve the quality of the approximation in Eq. �5��.
Figure 4�a� shows the stability region for the Lorenz system
together with the simple prediction curve K�=1. For com-
parison, we have included in Fig. 4�b� the synchronization
diagram coming directly from the approximation scheme Eq.
�6�. Note the similarity between the two figures so confirm-
ing the validity of our simple approximation. The bound K
�0 is only a necessary condition for the anticipated synchro-
nization, but it turns out that a minimum coupling value is
required in order to achieve synchronization. Figures 4�c�
and 4�d� show the equivalent results for the Rössler system.

The results shown in Fig. 4 show that in these chaotic
systems anticipated synchronization can be effectively con-
sidered as the standard synchronization scheme between two
nonidentical systems, in which the slave runs at a different
time scale than the master. This result complements that in
Ref. �20� showing that the anticipated synchronization in ex-
citable systems is determined by the fact that the delayed
coupling term lowers the excitability threshold of the slave
through changing the parameters of that system. In both
cases the response time of the slave system is shorter due to
the effect of the coupling.

It might look deceiving that the anticipated synchroniza-
tion scheme discussed here cannot forecast longer than the

linear prediction time and much less than the inverse of the
largest Lyapunov exponent. We will see in the next section
that the situation improves dramatically when we consider a
chain of coupled systems. In this case, the anticipation time
can be made much larger than any of those characteristic
times mentioned above.

B. Coupling of systems in a chain

To make anticipated synchronization longer it is necessary
to consider a chain of slave systems. Voss �5� already con-
sidered a chain of coupled systems and showed that the sta-
bility of the system can be enhanced and larger anticipation
times can be obtained. The behavior of a chain of connected
systems has been also studied for the FitzHugh-Nagumo
neuron model subjected to noise �21�. There it has been
shown that coupling of above systems in a chain decreases
the number of errors in the response neurons and makes an-
ticipated synchronization more stable.

A chain of identical N+1 unidirectionally coupled sys-
tems is defined in the following way:

FIG. 2. Maximum of the cross-correlation
function in the K and � parameter space for an-
ticipated synchronization scheme with identical
copies of �a� one Lorenz slave, �b� ten slaves, �c�
twenty slaves. Panels �d�–�f� as in �a�–�c� but for
the case of slave neural networks. White �black�
color corresponds to high �low� correlations.
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u̇0�t� = f„u0�t�…

u̇1�t� = f„u1�t�… + K„u0�t� − u1�t − ��… ,
�7�

. . .

u̇N�t� = f„uN�t�… + K„uN−1�t� − uN�t − ��… ,

where subsystem u0 is the master and subsystems ui , i
=1, . . . ,N are slaves. In this scheme, convectivelike instabili-
ties introduced by the spatiotemporal character of the chain
reduces the maximum delay time � in each unit as compared
to the case of a single slave �6�. However, since the antici-
pation time of the Nth slave as compared to the master is N�,
the total prediction time can be much larger than that of the
single slave scheme. Figures 2�b� and 2�c� show the maxi-
mum of the cross correlation function in the K vs � plane for
a chain of N=10 and N=20 coupled Lorenz systems, respec-
tively. These figures illustrate how, although the delay time �
decreases with N, the total anticipation time N� increases
significantly with N. The set of Figs. 5�a�–5�c� show a typi-

cal time series obtained by coupling a single, twenty, and two
hundred slave systems. For the latter we have reached an
anticipation time of four time units, much larger than the
characteristic times of the Lorenz system for which the in-
verse largest Lyapunov exponent is 1.1. Similar results �not
shown� were obtained for the Rössler system.

A word of caution is necessary here. The above results
consider that the slaves are perfect copies of the master. In
other words, that we know exactly the master’s equations of
motion and parameters. In most practical situations it might
not be possible to know the functional form of the chaotic
dynamics and only a time series of the system dynamics is
available. Then approximate models can be obtained and
used as slave systems �22�. Neural networks is one of the
most popular learning methods for this task. This is the topic
of the next section.

III. MODELING CHAOTIC SYSTEMS WITH NEURAL
NETWORKS

The deterministic low-dimensional nature of the chaotic
systems considered in this paper allows us to reconstruct its
functional structure from a time series using appropriate non-
linear techniques. In recent years new approaches for nonlin-
ear time series modeling have emerged �local and global pre-
diction �23�, neural networks �24�, delay embedding
reconstruction space �25�, functional networks �26�, etc.�,
providing more powerful methods and giving new insight
into the dynamics of these systems �see Refs. �3,7�, and ref-
erences therein for an updated survey of this topic�. Among
these techniques, artificial neural networks have been suc-
cessfully applied in many practical situations �27,29�. More-
over, it has been shown that the neural approximate model
and the original system exhibit similar dynamical behavior
�similar unstable periodic orbits �30�, or even similar
Lyapunov exponents or fractal dimensions �31��. We will
now briefly review the main points of this approach.

Let us assume that we have a time series un, obtained
from a dynamical system u̇�t�= f(u�t�), sampled at equally
spaced intervals un=u�n�t�, n=0,1 ,2 , . . . . We are inter-
ested in approximating the functional model which charac-
terizes the short-term evolution of the time series, un+p

=F�un�, where F is given in terms of f, the sampling time �t,
and the prediction step p. To this aim we consider simple
feed-forward neural networks with sigmoidal and linear ac-
tivation functions for hidden and output layers, respectively.
This type of network has shown to be an universal approxi-
mation for continuous �one hidden layer� or arbitrary �more
than one hidden layer� functions �32�. The training process is
carried out by considering input-output couples of the form
�un ,un+p�, where p is the prediction step.

In this paper we use time series consisting of 2000 sample
points obtained from the Lorenz and Rössler systems, Eqs.
�3� and �4�, respectively. The equations were integrated using
a fourth-order Runge-Kutta algorithm with a fixed time step
of �t=0.002 and �t=0.01 for the Lorenz and Rössler sys-
tems, respectively. The time series were sampled at steps of
t=0.01; in both cases the prediction step p=1. The sets were
divided in two parts; the first one �1500 sample points� was

FIG. 3. Time series of variable x�t� of master Lorenz system and
�a� first slave neural network with �i=0.08, K=0.2, �b� tenth slave
neural network with �i=0.03, K=0.4, and �c� twentieth slave neural
network with �i=0.01, K=0.7 for i=1, . . . ,N, where N is a number
of slave neural networks in a chain �slaves are drawn with dotted
line and master with solid line�.
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used for training purposes whereas the last 500 were re-
served for testing the models. We have considered different
neural networks with three input neurons �xn ,yn ,zn�, three
output neurons �xn+1 ,yn+1 ,zn+1�, and a single hidden layer
with a number of neurons ranging from one to twenty �this
type of architecture is usually referred to as a 3:a :3 feed-
forward network, where a is the number of hidden neurons�.
For each of these network structures, ten simulations were
performed with different initial network weights, using the
Levenberg-Marquardt method �28� as training algorithm. The
best solution in each case was considered as the representa-
tive neural approximate model. For instance, the root-mean-
square �r.m.s.� error obtained for predicting the x variable of
the Lorenz model with the best neural network with six hid-
den neurons for the training process was 0.13 �less than 0.5%
the range of the corresponding variable�, and 0.15 for the test
data, indicating no over-fitting of the model. However, al-
though the above analysis indicates a good accuracy in one-
step ahead prediction using a six neuron network, it does not
mean necessarily that the obtained neural model can repro-
duce the dynamics of the Lorenz system when iterated in
time �29�. Figure 6 shows the evolution of the above network
with a=6 hidden neurons iterated from two different initial
weight configuration; in the first case, the neural system con-
verges to a periodic trajectory �Fig. 6�a��, whereas in the
second case it converges to a fixed point �Fig. 6�b��, neither
of them resembling the chaotic behavior of the Lorenz
model. When increasing the number of hidden neurons
above a=10, the error decreases and the dynamical behavior
of the obtained neural models resembles the original chaotic
system. For instance, the training and test rms errors ob-
tained for a=10 hidden neurons were 2.2�10−2 and 2.4
�10−2, respectively, indicating that no over-fitting occurs. In
this case, the dynamical behavior of the neural model re-

sembles that of the original system. Thus, the neural model
can be considered as an approximate replica of the Lorenz
model. If we increase the number of hidden neurons above
a=20, the training error decreases even further but the neural
models start over-fitting the data. In the following we use the
neural model with a=10 hidden neurons.

Once we have established that the neural network is a
good copy of the dynamical system, the next step is to use
this copy as the slave in a synchronization scheme. For in-

FIG. 4. Maximum of the cross-correlation
function in the K and � parameter space for an-
ticipated synchronization scheme with an identi-
cal copy of a Lorenz slave for �a� anticipated syn-
chronization scheme �Eq. �2�� and �b� the first-
order approximation scheme �Eq. �6��. Panels �c�,
�d� as in �a�, �b� but for the Rössler system. The
dashed lines in the top-right corners corresponds
to the curves K�=1. White �black� color corre-
sponds to high �low� correlations.

FIG. 5. Time series of the master Lorenz system �solid line� and
�a� the first slave, �b� the twentieth slave, and �c� the two hundredth
slave. Time series for slave are drawn with dashed line.
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stance, let us consider the simplest scheme Eq. �1� where u0

is the Lorenz system and u1 is its neural network copy with
a=10 hidden neurons. Figure 7�c� shows the evolution of the
synchronization error, measured as the difference x1

n−x0
n be-

tween the x variables of the master and the slave. Notice that
after n=500 steps, the two systems synchronize rather well
although there is a residual error. In the case that the slave is
a perfect copy the error vanishes after the transient time, as
shown in Fig. 7�a�. The residual error observed in the syn-
chronization of the neural network copy can be assimilated
to the slave being an imperfect copy of the master. To quan-
tify this imperfection, we have used as slave a Lorenz system
with mismatch parameters �=10.1, r=27.5, and b=8/3, i.e.,
assuming a certain mismatch in two of the parameters. As
shown in Fig. 7�b� the resulting synchronization errors are
similar to that of the neural network. From these figures, we
could state that the dynamical accuracy of the neural ap-
proximate model is roughly equivalent to a 2% mismatch in
the system’s parameters.

In the case of the Rössler model we performed the same
simulations obtaining a similar behavior. A neural network
with 12 hidden neurons was found to be appropriate for ap-
proximating the system dynamics. In this case, the obtained
rms errors were 2.4�10−4 and 3.2�10−4 for the training and
test data.

A. Anticipated synchronization with neural network replicas

In this subsection we present the results of the general
anticipated synchronization scheme Eq. �7� using as master
u0 the Lorenz system, and as a chain of slaves u1 , . . . ,uN, N
identical neural network models as discussed previously. Fig-
ure 2�d� shows the maximum of the cross correlation func-
tion in K vs � plane obtained when coupling the Lorenz
system to N=1 neural network with two hidden layers each
containing four neurons. Comparing �a� and �d� we observe
the reduction of the stability region when the slave is a neu-
ral network with respect to the identical slaves case. In fact,
the performance of the chain of neural network slaves wors-
ens as the number N increases, see Figs. 2�e� and 2�f�. There-
fore, we get a maximum anticipation time of 0.33 for N
=20, which has to be considered as the maximum prediction
horizon for the Lorenz system using the anticipated synchro-
nization scheme with neural network slaves �see Fig. 3�. A
similar analysis in the Rössler model using this technique
yields a maximum anticipation time of 4.1 for N=20. These
prediction horizons are much shorter than those obtained
with anticipated synchronization when the slaves are perfect
copies of the master, as discussed in the previous section.

B. Standard prediction with neural networks

We now compare the use of the anticipated synchroniza-
tion scheme with neural networks as slave systems with the
standard prediction technique consisting on iterating forward
in time the neural approximate model from an initial condi-
tion. Whereas in the former method the maximum anticipa-
tion time does not depend on the initial point, it turns out
that in the latter case, the attainable forecast horizon depends

FIG. 6. �Color online� Phase space of two different 3:6:3 neural
models trained with the same method, but starting from different
initial weight configurations. The shadow in the background corre-
sponds to the original chaotic orbit and is shown for illustrative
purposes.

FIG. 7. �a� Synchronization error with two identical systems; �b�
synchronization error with a slave system with mismatch param-
eters ��=10.1,r=27.5,b=8/3�; and �c� synchronization error with
a neural approximate slave model.
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on the precise location of the initial condition within the
attractor.

The forecast horizon T is defined as the time it takes for
the absolute value of the difference between the neural net-
work reconstructed orbit and the actual orbit to be larger than
2%. As shown in Figs. 8�a� and 8�b�, lower horizon values
correspond to initial conditions in the unstable regions of the
attractor where transitions are more likely to occur. More
detailed information is obtained from the histogram of hori-
zon times, as shown in Figs. 9�a� for the Lorenz and Fig. 9�b�
for the Rössler systems. The distributions are quite broad and
the mean values are �T	=1.12 and �T	=11.8, respectively.
These values are close to the inverse of the largest Lyapunov
exponent. In the same figures we have indicated the location
of the maximum prediction times using anticipated synchro-
nization combined with neural networks. It is worth mention-
ing that the anticipation times using perfect replicas of the
master system are beyond the shown scale for the x axis.
Note that the anticipating horizon obtained using standard
prediction with neural networks is larger �in average� than
the values obtained with anticipated synchronization �dashed
lines in Fig. 9�. In the latter, the horizon is constant over the
attractor whereas the standard prediction approach only pro-

vides an average forecast value. Thus, depending on the type
of application, one method would be better than the other.

IV. CONCLUSIONS

In this paper, we have considered two alternative practical
techniques to anticipate the dynamics of chaotic systems. On
the one hand, a neural network trained to the available data
which can be iterated forward in time reproducing the same
orbit of the chaotic system up to a given horizon. One short-
coming of this method is that the prediction horizon, close to
the inverse of the largest Lyapunov exponent, can be only
given in probabilistic terms. The second technique which we
have considered is a chain of neural networks replicas of the
master system combined with the anticipated synchroniza-
tion scheme. In this case the horizon anticipation time adopts
a fixed value and the numerical simulations show that the
maximum horizon is shorter than the one obtained by iterat-
ing the neural network. These results are closely related to
the differences between the perfect knowledge of the chaotic
system and its neural network reconstruction. The mismatch
is produced during the, necessarily imperfect, training of the
neural network.

The forecast horizon in the anticipated synchronization
scheme with a single slave is of the order of the linear cor-

FIG. 8. Residuals xn− x̂n for two neural models with �a� Histo-
gram produced by 10 000 points on the attractor; �b� histogram of
the averaged prediction horizon obtained with a neural network.

FIG. 9. �Color online� Histogram of the prediction horizon ob-
tained from a sample of size 3000 for �a� the Lorenz model �the
horizon values range from 0 to 4, with a mean T=1.12� and �b� the
Rössler system with the horizon values range from 0 to 50, with a
mean T=11.8. The vertical dashed lines corresponds to the fixed
forecast horizon obtained with neural networks connected with an-
ticipated synchronization scheme. The numerical results obtained
with identical copies of the systems coupled with the anticipated
synchronization scheme show that the fixed forecast horizon is very
large in this case and is located outside of the range of this
histogram.
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relation time of the system. A chain of slaves allows us to
overcome this limitation and, when the slaves are perfect
copies, we obtained anticipation times which are much
longer than the prediction horizon obtained by iterating the
neural network. Thus for effective implementation of the
combined scheme of neural networks with anticipated syn-
chronization it is essential to have a more accurate reproduc-
tion of the dynamics of the master system. It would be inter-
esting to continue the study with such a network and we are
convinced that it could exploit the predictive power of the

anticipated synchronization scheme applied to a chain of
coupled systems �33�.
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