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1. INTRODUCTION 

1.1 Primary cutaneous lymphomas 

Primary cutaneous lymphomas constitute a heterogeneous group of non-Hodgkin 

lymphomas affecting the skin with no evidence of concurrent extracutaneous disease at 

the time of diagnosis. After the gastrointestinal tract, the skin is the second most common 

site of extranodal non-Hodgkin lymphoma, with an estimated annual incidence of 

1:100,000 (Willemze et al. 2005; Hristov et al. 2019).  

In the last decades, the classification of cutaneous lymphomas has evolved and has been 

updated with the incorporation of new entities. In 1994, the Revised European-American 

Lymphoma (REAL) classification categorized the lymphoid malignancies in three types: B-

cell, T-cell and Hodgkin`s disease defining them for the first time with histologic, 

immunologic and genetic features (Lee Harris et al. 1994). Then, in 1997, the European 

Organization for Research and Treatment of Cancer (EORTC) Cutaneous Lymphoma Study 

Group proposed for the first time to distinguish between primary and secondary cutaneous 

lymphomas as the clinical behaviour and prognosis of these entities were clearly different 

from those systemic lymphomas that migrate to the skin secondarily (Willemze et al. 1997). 

In 2005, the World Health Organization (WHO) and the EORTC reached an agreement on a 

consensus cutaneous lymphomas’ classification based on a combination of clinical, 

histologic, immunophenotypical and genetic features (Willemze et al. 2005). This 

classification, recently updated (Willemze et al. 2019), is worldwide used nowadays for the 

diagnosis of primary cutaneous lymphomas. 

Currently, Cutaneous T cell lymphomas (CTCLs hereon) are considered a group of non-

Hodgkin lymphomas characterised by the clonal proliferation of malignant CD4+ T cells in 
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the skin. While nodal non-Hodgkin lymphomas are mostly B-cell derived, approximately 75-

80% of primary cutaneous lymphomas are T-cell derived. 

CTCLs are divided into three main categories: i) classical CTCLs, that includes the most 

common subtypes: Mycosis Fungoides (MF), MF variants and Sézary Syndrome (SS), ii) 

primary cutaneous CD30+ lymphoproliferative disorders (LPDs) and iii) the remaining group 

of rare CTCLs. The classification of the latter group is complex as they are very rare diseases 

that only accounts for less than 10% of all CTCLs. In table 1.1 the classification of CTCLs is 

summarised alongside the frequency and the disease-specific 5-year survival of each 

subtype (Willemze et al. 2019).  

WHO-EORTC classification Frequency (%)*
Disease-specific 5-

year survival (%)
Classical CTCLs
MF 39 88
MF variants
     Folliculotropic MF 5 75
     Pagetoid reticulosis <1 100
     Granulomatous slack skin <1 100
SS 2 36

Primary cutaneous CD30 +  LPDs
     Cutaneous anaplasic large cell lymphoma 8 95
     Lymphomatoid papulosis 12 99
Rare CTCLs
Adult T-cell leukemia/lymphoma <1 N/A
Subcutaneous panniculitis-like T-cell lymphoma 1 87
Extranodal NK/T-cell lymphoma, nasal type <1 16
Chronic active EBV infection <1 N/A
Primary cutaneous peripheral T-cell lymphoma, rare subtypes 6 11-100
Primary cutaneous peripheral T-cell lymphoma, NOS 2 15

Table 1.1. WHO-EORTC CTCL classification, its relative frequency and disease-specific 5-year survival. 
*Data of all primary cutaneous lymphomas included in Dutch and Austrian registries between 2002 and 
2017. N/A, not available; NOS, not otherwise specified. Table Adapted from Willemze et al. 2005 and 
Willemze et al. 2019. 
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1.2 Mycosis Fungoides and Sézary Syndrome 

MF is the most common CTCL subtype accounting for approximately 45% of them. It has 

been classically described as a clonal expansion of tissue-resident helper T cells in the skin. 

It has an indolent clinical course with slow progression over years and can be presented in 

different forms ranging from unique patches (figure 1.1A) to more extended skin 

involvement with plaques (figure 1.1B) and tumours (figure 1.1C), but furthermore, it can 

also progress to extracutaneous localizations. MF has an annual incidence rate (IR) of 

4.1/1.000.000 people being more prevalent in males than females (male-female IR ratio of 

1.72) (Bradford et al. 2009). This IR increases among black patients (5.9/1.000.000). 

Generally, it can typically affect adults with a median age at diagnosis of 55-60 years 

(Willemze et al. 2005).  

SS is a rare leukemic type of CTCL, only accounting for 2% of them (Willemze et al. 2019), 

and characterized by erythroderma (figure 1.1D), generalized lymphadenopathy, 

hyperkeratosis (figure 1.1E) and the presence of neoplastic T cells with cerebriform nuclei 

(Sézary cells, figure 1.1F) in the skin, lymph nodes and peripheral blood (Willemze et al. 

2005; Willemze et al. 2019).  

 

1.2.1 Diagnosis 

Although MF and SS are classified as separate entities, the same clinical staging system has 

been used to assure a uniform diagnosis and management of the patients. To that end, the 

International Society for Cutaneous Lymphomas (ISCL) and EORTC proposed an updated 

staging system based on the TNMB classification that evaluates the involvement of skin 
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lesions (T, tumour), lymph nodes (N), visceral organs (M, metastasis), and peripheral blood 

(B) in a range of 0-4 (Olsen et al. 2007) and by establishing stages from IA to IVB. Stages IA, 

IB and IIA are considered early stage disease, whereas stages IIB to IVB constitute advanced 

disease. In table 1.2 the most relevant TNMB features of each stage are summarised (Agar 

et al. 2010; Trautinger et al. 2017).  

Early stages of MF can be difficult to diagnose because patients develop clinical features 

very similar to other benign skin diseases and the final diagnosis can be delayed up to 3 

years, although this delay does not necessarily imply progression to more advanced stages 

(Scarisbrick et al. 2018 Nov 25). The ISCL proposed a MF diagnosis based on an algorithm 

including clinical, histopathologic, molecular and immunopathologic features. Some of the 

clinical criteria used focuses on the variability in size, shape and colour of individual lesions 

A B 

C 

D E 

F 

Mycosis Fungoides Sézary Syndrome 

Figure 1.1. Clinical manifestations of Mycosis Fungoides and Sézary Syndrome. MF patients presenting 
patches (A), plaques (B) and tumours (C). SS patient presenting generalized erythroderma (D) and 
hyperkeratosis (E), and Sézary cells from peripheral blood (F). Patient images adapted from Jawed et al. 
2014 and Sézary cell image from https://imagebank.hematology.org/ 
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and /or the number and distribution of these lesions. Among the histopathological features, 

the presence of atypical lymphoid cells within the epidermis, surrounding a Langerhans cell 

in the so-called Pautrier’s microabscesses, or the increase in the number of lymphocytes 

(not necessarily atypical) are the most characteristic events. Nevertheless, these features 

are the most difficult and debated ones because, in many cases, biopsies from multiple sites 

overtime are required to clearly identify a MF diagnosis (Kim et al. 2005). As ancillary 

studies for diagnosis, PCR-based analysis of the T cell receptor gamma (TCRγ) gene 

rearrangements and the loss of expression of some T cell surface antigens such as CD2, CD3, 

CD5 and CD7 are used to help with the definite MF diagnosis although the sensitivity and 

specificity of these immunohistologic criteria are highly variable. In conjunction, MF 

diagnosis usually requires an integrated clinical, morphological, immunohistochemical and 

molecular analysis (Pimpinelli et al. 2005). 

The diagnosis of SS requires also the presence of clinical, analytical, immunohistochemical 

and molecular studies. Eventually, the identification of the same clonal T cell in the skin and 

peripheral blood is crucial to exclude patients with benign inflammatory conditions 

(Vonderheid et al. 2002). In addition, this evidence has to be confirmed with an absolute 

Sézary cell account of at least 1000 cells/mm3 and/or the presence of immunophenotypical 

abnormalities such as expanded CD4+ T cell population (with a CD4/CD8 ratio more than 

10) and the loss of mature T cell antigens such as CD7 and CD26. Also, the infiltration of 

Sézary cells in the lymph nodes involved, erythroderma and palmoplantar hyperkeratosis 

are commonly present in SS patients (Willemze et al. 2005).  

1.2.2 Prognosis 

Whereas the prognosis of MF patients depends on stage, particularly the type and extent 

of skin lesions, and the involvement of the disease at extracutaneous localizations, the 
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prognosis of SS patients is generally poor. The median survival of MF patients is 20 years, 

whereas a SS patient has a median survival of approximately only 3.13 years and a higher 

progression risk than MF patients (Agar et al. 2010). Based on the stage, patients with 

limited patch/plaque disease (covering less than 10% of the skin surface, stage IA) have a 

5-year disease-specific survival (DSS) of 98% which decreases to 89% if the skin surface 

affected is more than 10% (stage IB). 5-year DSS for patients with one or more tumours 

(stage IIB) is only 56% and decreases to 23% when there is a histologically documented 

lymph node involvement of high grade (stage IVA2). When metastasis affects any visceral 

organ, the 5-year DSS decreases to only 18% (table 1.2).  

Additionally, the infiltration of hair follicles (folliculotropism) and the presence of >25% of 

large cells in the dermal infiltrate (large cell transformation) have a prognostic value, both 

associated with a poorer outcome (Agar et al. 2010; Pérez et al. 2019). 

1.2.3 Treatment 

Currently, there is no curative treatment for CTCL. The treatment of MF and SS patients is 

merely palliative and focused on improving symptoms and quality of life, with the exception 

for allogenic stem cell transplantation that could achieve curative intentions. Following a 

stepwise, stage-adapted approach is recommended for the treatment of these patients, 

considering age, patient general status, extent of lesions, rate of disease progression and 

prior therapies (Wilcox 2017). For very early stages, mainly when only patches are present, 

the best option is to apply a ‘watch and wait’ expectant policy as patients with stage IA have 

a low risk of progression (only 10% within 10 years) (Agar et al. 2010). In general, skin-

directed therapies are the best option for early stages of MF as a first-line treatment, while 

systemic therapies, usually combined with skin-directed treatment, are more commonly 

used for more advanced stages of MF and SS. The choice of the different treatment options 
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Stage T N M B
Median 

OS (years)
5-year 

DSS (%)

IA

Limited patches 
or plaques 

covering < 10% 
skin surface

No clinically 
abnormal 

peripheral lymph 
nodes

No visceral organ 
involvement

Absence or low 
blood burden

35.5 98

IB

Patches or 
plaques covering 

≥ 10% skin 
surface

No clinically 
abnormal 

peripheral lymph 
nodes

No visceral organ 
involvement

Absence or low 
blood burden

21.5 89

IIA
Any patches or 

plaques

Clinically 
abnormal 

peripheral lymph 
nodes, grade 2 or 

less

No visceral organ 
involvement

Absence or low 
blood burden

15.8 89

IIB
One or more 

tumour ≥ 1 cm 
diameter

None to clinically 
abnormal 

peripheral lymph 
nodes, grade 2 or 

less

No visceral organ 
involvement

Absence or low 
blood burden

4.7 56

IIIA
Erythroderma 

covering ≥ 80% 
body area

None to clinically 
abnormal 

peripheral lymph 
nodes, grade 2 or 

less

No visceral organ 
involvement

No blood burden 4.7 54

IIIB
Erythroderma 

covering ≥ 80% 
body area

None to clinically 
abnormal 

peripheral lymph 
nodes, grade 2 or 

less

No visceral organ 
involvement

Low blood 
burden (>5% 

peripheral blood 
lymphocytes 

atypical)

3.4 48

IVA1
Any skin 

involvement

None to clinically 
abnormal 

peripheral lymph 
nodes, grade 2 or 

less

No visceral organ 
involvement

High blood 
burden (≥1000/µl 

Sézary cells)
3.8 41

IVA2
Any skin 

involvement

Clinically 
abnormal 

peripheral lymph 
nodes, grade 3-4

No visceral organ 
involvement

Low to high 
tumour burden

2.1 23

IVB
Any skin 

involvement

None to clinically 
abnormal 

peripheral lymph 
nodes, grade 3-5

Visceral 
involvement

Low to high 
tumour burden

1.4 18

TNMB classification

Ea
rl

y
A

dv
an

ce
d

Table 1.2. ISCL/EORTC staging for MF/SS. Table showing the most relevant characteristics of skin (T: 
tumour), nodal (N), visceral (M: metastasis) and blood (B) involvement for each stage, the median overall 
survival (OS) and the 5-year disease-specific survival (DSS). Table adapted from Trautinger et al. 2017 and 
Agar et al. 2010. 
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for CTCL is dependent on social and scientific grounds; for that reason, I will focus on those 

available and commonly used in Europe (a summarized first- and second-line treatment 

options are shown in table 1.3). 

1.2.3.1 Skin-directed therapies (SDT) 

Topical corticosteroids 

Corticosteroids have an immunosuppressive effect by inhibiting lymphocyte binding to the 

endothelium and intercellular adhesion. They are widely used as palliative treatment for 

individual lesions in early patch/plaque disease. In a single study of 79 patients with stage 

IA/IB, the twice-daily use of high-potency topical corticosteroids showed an overall 

response rate of 94% for IA stage and 82% for IB, with complete response (CR) rates of 63% 

and 25% respectively (Zackheim et al. 1998). The most common cutaneous side-effects of 

Stage First-line Second-line

Ea
rl

y

IA-IIA
Expectant policy or

SDT: Topical corticosteroids, 
nbUVB, PUVA, Localised RT, 

SDT: TSEB 
Systemic: retinoids, IFNα, low-

dose MTX

IIB
SDT: TSEB, Localised RT

Systemic: retinoids, IFNα, low-
dose MTX, monochemotherapy

Systemic: polychemotherapy, 
al loSCT

IIIA-IIIB
SDT: TSEB

Systemic: retinoids, IFNα, low-
dose MTX, ECP

Systemic: monochemotherapy, 
al loSCT

IVA-IVB
Radiotherapy (TSEB and 

localised)
Systemic: chemotherapy

Radiotherapy (TSEB and 
localised)

Systemic: chemotherapy, 

SS
Systemic: retinoids and IFNα 
(in combination with ECP or 

PUVA), low-dose MTX

Systemic: chemotherapy, 
alemtuzumab, alloSCT

A
dv

an
ce

d

Maintenance 
after 

remission

ECP, IFNα, low-dose MTX, NM, PUVA, retinoids, topical 
corticosteroids, UVB

Table 1.3. First- and second-line treatment options in MF/SS. Adapted from Trautinger et al. 2017 
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the treatment with corticosteroids are irritant dermatitis, purpura (purple-coloured spots) 

and in some cases reversible suppression of cortisol levels.  

Topical mechlorethamine 

Mechlorethamine, also known as nitrogen mustard (NM), is a cytotoxic chemotherapy 

agent approved by the United States (US) Food and Drug Administration (FDA) for the 

treatment of MF stage IA/IB who have received prior skin-directed therapy. The 0.02% gel 

preparation showed response rates of 58.5% with 13.8% of CR (Lessin et al. 2013). In 

Europe, it has recently been authorised as a first line treatment for early MF stages 

(https://www.ema.europa.eu/en/documents/assessment-report/ledaga-epar-public-

assessment-report_en.pdf). Topical NM is well tolerated but some side-effects are 

observed such as allergic contact dermatitis.  

Ultraviolet phototherapy 

A consensus guideline for the use of phototherapy in MF/SS, for both clinical practice and 

for clinical trials, has been recently published by the US Cutaneous Lymphoma Consortium 

(Olsen et al. 2016). 8-Methoxypsoralen, supplied orally, plus ultraviolet A (PUVA) and 

narrowband ultraviolet B (nbUVB) are the most widely available phototherapy options. 

nbUVB is recommended for early MF/SS stages characterized by patches only, as it cannot 

penetrate deeper than UVA in the skin. For plaque disease and for dark skin patients PUVA 

is the phototherapy recommended.  

The CR of nbUVB range from 54% to 90% of patients (average: 84%), depending on the 

study and the variable definition of disease clearance. CR rates for PUVA are 85% for stage 

IA, 65% for stage IB and 85% for stage IIA (Olsen et al. 2016). If the patient shows insufficient 
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response or immediate relapse, phototherapy can be combined with systemic options such 

as retinoids or interferon α, described below.  

Patients treated with phototherapy can develop erythema and pruritus, but the most 

important side effect is the development of secondary skin cancer. Although there are large 

studies analysing the potential risk of acquiring skin cancer after phototherapy treatment 

in patients with psoriasis and other skin disorders (Lee et al. 2005), these studies in MF/SS 

patients are limited. In a follow-up study on early stage MF patients treated with PUVA in 

a continuous maintenance of about every 6 weeks, 26% developed non-melanoma skin 

cancer, including squamous cell carcinoma and basal cell carcinoma (Querfeld et al. 2005). 

A long-term follow up of patients or alternative treatment should be considered to prevent 

and/or treat possible adverse effects by phototherapy in MF patients.  

Total skin electron beam therapy 

Total skin electron beam (TSEB) therapy is used when the distribution of disease is along 

the entire skin surface. In this technique electrons are generated in a linear accelerator and 

attenuated to penetrate the skin to a limited depth so toxicity to internal organs is largely 

reduced. TSEB is recommended for first-line treatment of MF from stage IIB to IVB and as 

a second-line treatment for IA, IB and IIA stages. The standard dose of 30-36 Gy is able to 

induce remission rates, particularly in T2 and T3 disease (Maingon et al. 2000). Recently, 

the reduction in radiation doses (12 Gy) have been compared to the standard ones for their 

clinical efficacy with similar successful results in treatment outcome (overall response rate 

(ORR) for both treatment regimens was over 87.5%) but with lower toxicity 

(Georgakopoulos et al. 2018). Common side effects of standard dosing include 

desquamation, erythroderma, alopecia, nail changes and limb edema. 
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Localised radiotherapy 

Localised and superficial radiotherapy (RT) provides effective palliative treatment for 

individual lesions inducing long-term remission in unilesional disease (Micaily et al. 1998). 

It can be used alone or as adjuvant treatment in combination with other skin-directed or 

systemic therapies for patients with early stages of MF. Side effects of local radiation are 

dose dependent but minimal. Most reported ones are erythema, desquamation, atrophy 

and skin dryness.  

1.2.3.2 Systemic therapies 

Retinoids  

Retinoids are derivatives of vitamin A that exert their activities by interacting with nuclear 

receptors (both retinoic acid and retinoic X receptors). Bexarotene, the only retinoid 

specifically developed and approved for the treatment of refractory, advanced-stage CTCL 

(Duvic et al. 2017), is an inductor of apoptosis and inhibits metastasis and angiogenesis that 

has shown an ORR of 45%, although it is commonly used in combination or in maintenance. 

The most common side effects observed are drying of the skin and mucous membranes and 

central hypothyroidism. All retinoids are teratogenic.  

Interferon α 

Interferons (IFN) are polypeptides with antiviral, cytostatic and immunomodulating 

functions. Among all, IFN-α is the one approved for the treatment of MF/SS with partial 

remission rates of more than 50% and complete responses of about 20% (Olsen 2003). It 

has dose dependent side-effects such as flu-like symptoms, elevated transaminases, 

leukopenia and thrombocytopenia.  
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Chemotherapy 

Single-agent and combination chemotherapy regiments have been used for the treatment 

of non-Hodgkin lymphomas since the 1970s, but their activity in CTCL is far from long-lasting 

and has been associated with high toxicity and risk of infection (Hughes et al. 2015). This 

therapeutic approach is being used in patients with advanced-stage MF (IVA and IVB) or SS 

who have had multiple relapses, but more than 90% of them will receive alternative 

treatment within 1 year, so usually alternative options are preferred. On the other hand, 

methotrexate (MTX), a cytotoxic antifolate, has been used in non-oncological diseases such 

as psoriasis and rheumatoid arthritis, and in low dosages, are well tolerated for the 

treatment of MF/SS (Benedek 2010).  

Extracorporeal photopheresis (ECP) 

This phototherapy consists in extracorporeal blood exposure to the photoactivated drug 8-

methoxypsoralen with an excellent safety profile and very rare adverse events. It has shown 

a good efficacy (with ORR around 60%) and prolonged survival in patients with advanced 

stages either as monotherapy or combined with other treatment options such as retinoids, 

interferons or PUVA, although it can be also used in early stages of the disease and as 

maintenance after remission achievement (Knobler et al. 2014).  

Allogenic stem cell transplantation (AlloSCT) 

AlloSCT is based on the transplant of hematopoietic stem cells from a matching donor, in 

order to suppress the disease and restore the patient immune system, being considered 

the only treatment option in MF/SS with curative intention. It is used as second-line 

treatment for advanced stages of MF and SS, preferably in young patients with low tumour 

burden and a high predictable risk of progression at the same time (Trautinger et al. 2017). 
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Although it is available just for a very small patient population, it has a 5-year overall 

survival of 46% (Duarte et al. 2014) and it has been observed that 80% of patients will not 

require further treatment options within a year (Hughes et al. 2015).  

1.2.3.3 Novel therapies 

Due to the lack of curative treatment options in CTCL, there are many novel targeted 

therapies under research. In the last few years, a number of agents have been approved for 

the treatment of CTCL in USA and Japan such as vorinostat and romidepsin, two Histone 

Deacetylase (HDAC) inhibitors. But the access to these treatments in Europe is limited. 

Recently, the European Medicines Agency (EMA) has approved two monoclonal antibodies 

that showed promising results, and a number of other compounds are currently being 

investigated. Here, some of the most important ones are summarized.  

Monoclonal antibodies 

In 2017 and 2018, two monoclonal antibodies have been approved in Europe showing 

clinical benefit for CTCL patients: brentuximab vedotin and mogamulizumab (Oka and 

Miyagaki 2019).  

Brentuximab vedotin (BV) is an antibody-drug conjugate composed of monomethyl 

auristatin E (MMAE), a cytotoxic anti-tubulin agent, and a chimeric monoclonal anti-CD30 

antibody. CD30 is a cell membrane protein belonging to the tumour necrosis factor receptor 

superfamily, which has been shown to be expressed on tumour cells of MF/SS patients. BV 

specifically binds to CD30 and, once internalized and cleaved, releases the MMAE disrupting 

the microtubule network and causing cell cycle arrest and apoptosis (Deng et al. 2013). In 

the ALCANZA study, an international randomized phase 3 trial, the median progression-free 

survival (PFS) was 15.9 months (versus 3.5 months for patients treated with the physician’s 
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choice agent), and 5% of the patients achieved CR after BV treatment (Prince et al. 2017), 

suggesting that this treatment can be an appropriate option in patients with malignant cells 

expressing CD30 in at least in 10% of the skin infiltrate.  

On the other hand, mogamulizumab is a humanized IgG1 monoclonal κ antibody with a 

defucosylated Fc region which selectively binds to C-C chemokine receptor 4 (CCR4). CCR4 

is the receptor for thymus and activation-regulated chemokine and macrophage-derived 

chemokine and is involved in the migration of type 2 helper T cells and regulatory T cells to 

the skin. Mogamulizumab exerts an enhanced antibody-dependent cellular cytotoxicity in 

CCR4-expressing tumoral cells (Ishii et al. 2010). In the MAVORIC study, this antibody has 

shown an ORR of 21% in MF and 37% in SS patients with relapsed o refractory disease, 

suggesting that this treatment is especially effective for those patients with blood 

involvement; reaching a median PFS of 7.7 months as compared with 3.1 for vorinostat, a 

HDAC inhibitor (Kim et al. 2018).  

Other antibodies are currently being investigated for CTCL patients such as inhibitors of the 

immune checkpoint and a KIR3DL2 inhibitor. Immune checkpoints molecules, such as 

cytotoxic T lymphocyte-associated protein 4 (CTLA-4) and programmed cell death protein 

1 (PD-1), are negative regulators of T cell responses. Thus, targeting these molecules, the 

anti-tumour immune T cell responses can be improved. A recent phase 2 study conducted 

in advanced and refractory CTCL patients has shown an 37.5% ORR for pembrolizumab, a 

PD-1-blocking antibody, suggesting that inhibiting immune checkpoints can be a novel 

strategy for advanced MF/SS treatment (Khodadoust et al. 2019). KIR3DL2 (also known as 

CD158k) is a member of the killer-cell immunoglobuline-like receptor family that binds to 

HLA-class I ligands and negatively modulates immune cell functions. This receptor is widely 

expressed in malignant T cells in SS and advanced MF, and results from phase I trials have 
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shown an ORR in 44% in patients treated with IPH4102, an anti-KIR3DL2 antibody (Oka and 

Miyagaki 2019; Bagot et al. 2019). Thus, these promising results make it a potential novel 

therapy for these patients. 

Other targeted inhibitors 

Currently, other clinical trials assessing the efficacy of targeted inhibitors such as duvelisib, 

everolimus or topical pimecrolimus are being conducted. Duvelisib and everolimus are oral 

inhibitors of PI3K and mTOR respectively. These are being studied in the treatment of 

patients with relapsed or refractory CTCL and are showing partial responses with ORR of 

31.6% for duvelisib and 44% for everolimus (Oka and Miyagaki 2019). Topical pimecrolimus, 

a calcineurin (CaN) inhibitor, is currently being studied as first-line treatment in patients 

with early stages of MF. Downstream of TCR-PLCG1 signalling (see below), activated CaN 

dephosphorylates and activates Nuclear Factor of Activated T cells (NFAT), a transcription 

factor that is a key regulator of T cell functions. Therefore, inhibition of CaN might be a 

therapeutic option for CTCL. Pimecrolimus has been approved for the treatment of a 

number of dermatologic disorders like for example atopic dermatitis (Guenther et al. 2019), 

so its efficacy is being studied in a multicentre, single-arm, phase 2 study (PimTo-MF study, 

EudraCT number: 2014-001377-14) in 39 patients with early stages (IA-IIA) of MF. The 

preliminary results are promising (manuscript in preparation): only 1 patient (2.5%) showed 

progression disease, 16 (41%) stable disease, 21 (54%) partial response and 1 (2.5%) 

showed a complete response.  

These clinical results suggest that CTCL patients with activated PI3K, mTOR or CaN signalling 

pathways might be beneficiary for targeted therapy. 
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1.3 Pathogenesis 

1.3.1 Immunophenotype 

Cutaneous lymphomas are characterized by the epidermal infiltration of atypical T cells 

forming the characteristic Pautrier’s microabscesses (intraepidermal clusters of clonal T 

cells), a highly distinctive feature of MF but only observed in a minority of cases (Willemze 

et al. 2005). In a physiological context, upon encountering antigen in the lymph nodes, 

activated naïve T cells express cutaneous lymphocyte antigen (CLA) and chemokine 

receptors such as CCR4 that binds to endothelial surface receptor E-selectin and CC ligand 

17 (CCL17) respectively, thus facilitating their homing to the skin (Girardi et al. 2004). 

Activated T cells can differentiate into multiple T cell subsets of effector and memory cells, 

depending on the cytokine production. Central memory T cells (TCM) access peripheral 

blood and lymph nodes and effector memory T cells (TEM) migrate into extranodal regions 

such as the skin where the majority will remain as tissue-resident memory T cells (TRM) 

(Clark et al. 2006; Watanabe et al. 2015). In a CTCL context, it has been demonstrated that 

SS and MF can arise from different T cell subsets probably giving evidence of the distinct 

clinical behaviour of both CTCL subtypes. While malignant T cells from SS patients have a 

TCM phenotype capable of circulating between skin, lymph nodes and blood, which is 

consistent with SS clinical manifestations (lymphadenopathy and presence of malignant T 

cell in the peripheral blood), T cells from MF have a TEM phenotype and remain in the skin 

where they can produce inflammatory cytokines that facilitate the recruitment of other 

non-malignant T cells and the formation of the characteristic patches and plaques of this 

subtype (Campbell et al. 2010). Nevertheless, it has been shown that many characteristics 

of the malignant T cells can change during disease progression and the phenotypical 

heterogeneity and plasticity within the malignant population seems to be relatively high 
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(Krejsgaard et al. 2012). Interestingly, in two very recent studies, it has been proposed that 

the initial transformation in MF does not seem to occur at the level of mature skin-resident 

memory T cells, as currently believed, but in some cases probably at a much earlier stage 

during lymphocyte development. More specifically, it has been suggested that it occurs 

after completion of TCR rearrangements but before the initiation of TCR and TCR 

recombination. These observations are supported by the identification of identical 

sequences of TCR but multiple TCR and TCR clonotypes, hence, suggesting a potential 

polyclonal origin of this type of lymphoma (Iyer et al. 2019; Hamrouni et al. 2019). 

1.3.2 Tumour microenvironment 

1.3.2.1 Th1-Th2 transition  

Naïve CD4+ T-cell can differentiate into T helper 1 (Th1), Th2, Th17, induced regulatory T 

cell (iTreg) and follicular helper T cells (Tfh) depending on the cytokines produced: 

interleukin 12 (IL-12) and IFN-γ are important for Th1 cell differentiation, IL-4 for Th2 cell 

differentiation, TGF-β together with IL-6 induces Th17 cell differentiation, TGF-β, retinoic 

acid (RA), and IL-2 regulates iTreg differentiation whereas Tfh differentiation is induced by 

IL-21. Alongside these and as part of intricate signalling events, activation of specific 

transcription factors can trigger differentiation programs for each T helper cell subset like 

T-bet for Th1 cells, GATA3 for Th2 cells, RORγt for Th17 cells and Foxp3 for iTreg (Zhou et 

al. 2009). 

It has been described that Th1 cell lineage predominates in early MF together with a high 

expression of IL-2, IL-12 and IFN-γ. However, as disease progresses to more advanced stages 

or in SS cases, the phenotype changes to Th2 with an increased IL-4, IL-5, IL-10 and IL-13 

expression that occurs concomitantly with a decrease in the expression of Th1 factors (Saed 

et al. 1994; Papadavid et al. 2003; Guenova et al. 2013). In parallel to this shift in the 
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phenotype balance, a switch in the expression of chemokines favouring the progression of 

the disease has been shown and is explained as follows: there is a decrease in chemokines 

that preferentially attract CXCR3- and CCR5-expresing Th1 inflammatory cells, such as CXC 

ligand 9 (CXCL9) and CXCL10, and an increase in chemokines that primarily attract CCR3-, 

CCR4- and CCR8-expressing Th2 cells such as CC ligand 17 (CCL17), CCL18, CCL22 and CCL26 

(Krejsgaard et al. 2017).  

One of the mechanisms that have been proposed for the Th1-Th2 transition is the distinct 

proportion of T cell population that can be detected in the skin lesions (figure 1.2). In early 

stages of CTCL, the skin lesions contain a small population of malignant CD4+ T cells within 

a dense infiltrate of activated CD8+ cytotoxic T cells and Th1 cells expressing cytotoxic 

molecules that mediates anti-tumour responses and consequently suppressing the 

expansion of malignant cells. But in the progression of the disease, a reduction in CD8+ cells 

as a result of a clonal CD4+ expansion presumably driving the acquisition of a Th2 phenotype 

has been shown (Kim et al. 2005). Supporting this information, CD8+ T cell number has been 

correlated with good prognosis in patients with MF. A plausible explanation for this, may 

consists of considering that early-stage disease with a high number of infiltrating reactive T 

cells and a Th1 phenotype is associated with a skin-restricted disease, whilst progressive 

disease is associated with a Th2 phenotype and systemic immunological deficiencies 

(Vermeer et al. 2001). 

1.3.2.2 Role of interleukins 

Besides the increase in Th2-associated cytokines and chemokines, the expression of a range 

of interleukins increase during the clinical course of the disease. These have been shown to 

play important pathogenic roles by paracrine and autocrine mechanisms. In this regard and 

to show a number of examples, IL-4 and IL-13 have been found to promote tumour cell 



INTRODUCTION 

21 

             

Figure 1.2. Tumour microenvironment in MF progression and SS. A) Normal skin showing resident 
Langerhans cells in the epidermis and skin-homing T cells in the dermis and circulation. B) Patch and 

plaque MF in which the CD4+ malignant T cells home to the epidermis around Langerhans cells. In these 

stages, CD8+ T cells are frequently found in the infiltrate as part of the host immune response. C) Tumour 

MF comprised of primarily malignant T cells and few CD8+ T cells. D) Erythrodermic MF and SS with 

detectable circulating malignant T cells that elaborate Th2 cytokines that affect CD8+ T cell, natural killer 
(NK) cells, and dendritic cells (DC) numbers and function, and consequently, the host immune response. 
Image adapted from Kim E et al. 2005. 
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proliferation in a signal transducer and activator of transcription 6 (STAT6)-dependent 

manner (Geskin et al. 2015). In addition, IL-15 can be produced by malignant T cells but also 

by activated epidermal keratinocytes in the tumour microenvironment, it can contribute to 

the aberrant activation of the transcription factors STAT3 and STAT5 in advanced CTCLs 

(Netchiporouk et al. 2014). Following this line of evidence regarding aberrant STAT 

activation, Th17 phenotype acquisition and IL-17 expression, which are both controlled by 

Janus kinase 3 (JAK3)/STAT3 signalling, have been associated with advanced stages or 

increased risk of disease progression (Krejsgaard et al. 2011; Krejsgaard et al. 2013). 

Furthermore, IL-16 induces the recruitment of CD4+ T cells to the skin (Tuzova et al. 2015) 

whereas IL-10 expression contributes to the suppression of cellular immunity and anti-

tumour responses (Fiorentino et al. 1991). In summary, all these interleukins not only 

impair cellular immunity and anti-tumour responses but can also contribute to the 

proliferation of malignant T cells by triggering key pro-oncogenic signalling mechanisms, 

like JAK/STAT, that may be essential for the progression of the disease.  

1.3.2.3 Staphylococcus aureus infections 

Due to a compromised cutaneous barrier and the dysfunction in the immune responses, 

the skin of CTCL patients is often colonized with enterotoxin-producing Staphylococcus 

aureus (Axelrod et al. 1992; Nguyen et al. 2008). It has been observed that staphylococcal 

enterotoxins induce an increased proliferation, activation of STAT3 and expression of 

STAT3-regulated cytokines in the malignant T cells thus probably promoting malignant 

transformation or progression (Willerslev-Olsen, Krejsgaard, Lise M Lindahl, et al. 2016). 

Although the infection with these bacteria is not specific of CTCL patients (as its colonization 

has been also observed in benign diseases such as atopic dermatitis), the infectious events 

are a major cause of morbidity and mortality (Blaizot et al. 2018) and the treatment of these 
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patients with antibiotics has been associated with significant clinical improvement (Talpur 

et al. 2008),  

1.3.3 Molecular pathogenesis 

1.3.3.1 Cytogenetic aberrations 

Before the next generation sequencing (NGS) era, both cytogenetic and molecular studies 

revealed a high degree of chromosomal instability in both MF and SS. Amongst these, 

recurrent hotspot chromosomal abnormalities have been identified and include: loss of 

9p21 (involving CDKN2A-CDKN2B), 10q (loss of PTEN and FAS), 17p (loss of TP53), 19p (loss 

of E2A); and 8q and 17q gains (affecting MYC and STAT3/STAT5 respectively) (Mao et al. 

2003; Vermeer et al. 2008; Laharanne et al. 2010). More recently, it has been described 

that a high proportion of the oncogenic abnormalities identified in MF and SS correspond 

to somatic copy number variations (SCNVs) as compared to somatic single-nucleotide 

variations (SSNVs) (an average of 11.8 versus 1.0 respectively) (Choi et al. 2015). This 

frequency is significantly higher than those observed in other adult cancer types (Elenitoba-

Johnson and Wilcox 2017). In this regard, the ratio of TP53 deletions to mutations is 

significantly higher in CTCL (5.1 vs. 1) than in other tumours where the prevalence of TP53 

deletion and mutation are almost equivalent. Also, the percentage of patients with STAT3 

and STAT5B amplifications (up to 60%) largely overcome that of mutations (0.9% and 3.6% 

for each gene respectively). Also, JAK2 and PRKCQ (gene encoding for the isoform θ of 

Protein Kinase C, PKCθ) are amplified in 12.5% and 30% of CTCL samples analysed 

respectively whereas mutations were detected in only 0.9% of the cases for PRKCQ and 

undetectable in JAK2 (Park et al. 2017). 

Following the above-mentioned line of evidence, deletions in ZEB1 (60% patients) were also 

detected more frequently than mutations (Choi et al. 2015). ZEB1 is a transcription factor 
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that exerts tumour suppressor activities in CTCL. Interestingly, ZEB1 DNA binding sites are 

located upstream of the transcription initiation site of GATA3, a transcription factor crucial 

for Th2 cell differentiation. Thus, ZEB1 loss might contribute to GATA3 overexpression and 

a subsequent acquisition of a Th2 phenotype, which, as aforementioned, has been 

correlated with advanced CTCL stages (Saed et al. 1994; Guenova et al. 2013). Finally and 

to provide further evidence regarding the complex and heterogeneous landscape of inter- 

and intrachromosomal rearrangements compared to SSNVs in CTCL lesions, and regarding 

the focus of this work, recurrent deletions have been detected in HNRNPK and SOCS1 (in 

37% and 33% of the MF patients analysed respectively) (Bastidas Torres et al. 2018). 

Interestingly both genes codify for proteins that are negative regulators of JAK/STAT 

signalling and therefore highlight the potential malignant role that this signalling pathway 

may play in the biology of this disease.  

1.3.3.2 Mutational landscape 

Recently, genome-wide studies based on NGS techniques have greatly improved our 

understanding of the genomic and mutational landscape of CTCL. Most of the studies have 

focused on SS cases while some others included also MF cases (see table 1.4 for more 

details). The most commonly used approaches have been whole exon sequencing (WES; 

218 cases) that characterized the exomes of coding genes, targeted sequencing (TS; 282 

cases), that specifically characterised a defined group of genes/locus, and whole genome 

sequencing (WGS; 32 cases).  

Overall, the majority of somatic single nucleotide substitutions observed in MF/SS are C > 

T transitions (between 40% and 74%) (Choi et al. 2015; Wang et al. 2015; Mcgirt et al. 2015; 

Prasad et al. 2016). This mutational signature, which is much less common in other 

haematological cancers, is considered to be caused by UV light exposure when occurring at 
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NpCpG sites but, remarkably, no correlation was observed between the presence of UVB 

signature and history of therapeutic UV exposure (localised radiotherapy or ECP) (Choi et 

al. 2015; Wang et al. 2015).  

Taking together all these recent genomic studies, including our own, they have revealed 

that the deregulated genes can cluster mainly into 5 cellular processes: cell cycle regulation, 

JAK/STAT signalling, mitogen-activated protein kinases (MAPK) signalling, TCR/Nuclear 

factor kappa b (NF-κB) signalling and chromatin modification, probably indicating the 

importance of such mechanisms in CTCL lymphomagenesis. In figure 1.3 the most recurrent 

oncogenes and tumour suppressor genes with SCNVs and/or SSNVs are represented as part 

of the above-mentioned clusters. Of note, and after TP53, the most frequently mutated 

gene is PLCG1, a major effector of TCR downstream signalling. The average percentage of 

CTCL cases harbouring mutations in PLCG1 is 10% and ranges from 5.5% to 21% (Vaqué et 

al. 2014; Choi et al. 2015; Ungewickell et al. 2015; Mcgirt et al. 2015; Woollard et al. 2016).  

Specifically, alterations in TCR-PLCG1 and JAK/STAT pathways in CTCL were firstly 

unravelled by our laboratory contributing to the field by identifying recurrent mutations in 

PLCG1 and JAK kinases (Vaqué et al. 2014; C. Pérez et al. 2015). They were the initial 

mutational studies performed in a cohort of SS and MF patients by using an NGS approach. 

A targeted-enriched sequencing analysis for coding and regulatory regions of a selection of 

genes was performed in 11 CTCL patients (4 SS and 7 MF). The mutated genes belonged to 

well-known intracellular signalling pathways with biological relevance in T cells such as TCR 

signalling, cytokine activity, NF-κB, JAK/STAT and MAPK signalling pathways among others. 

Missense mutations in PLCG1, TP53, IL6ST, CCR4, JAK1, JAK3, RELB, TRAF6 and CARD11 

among others were identified (figure 1.4). Two genes were recurrently mutated: TP53 (in 

different positions in 2 of 11 cases) and PLCG1 (in 3 cases, 2 mutated in S345 and 1 in S520). 



INTRODUCTION 

26 

PLCG1 S345F mutation was validated in a larger cohort of 42 CTCL patients, and together 
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Figure 1.3. Schematic mutations and copy number variations in recurrently altered signalling pathways 
in CTCL. CTCL harbous recurrent mutations that are predicted to affect A) chromatin, B) T-cell 
activation/NF-κB signalling, C) JAK/STAT signalling, and D) MAPK signalling. Putative oncogenes and 
tumour suppressor genes are indicated in red and blue boxes, respectively. Frequencies of single 
nucleotide variants and copy number variants are indicated as percentages in left and right boxes under 
the genes, respectively. SNV, single nucleotide variant; CNV, copy number variant. Adapted from Park et 
al 2017. 
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with the previous cohort, this gene was recurrently mutated in 21% of the cases (11 out of 

53). Interestingly, PLCG1 S345F mutation and nuclear staining of NFAT by immunochemistry 

(IHC) was identified in a consecutive sample taken from a relapsed patient that was 

originally negative for the mutation and with a cytoplasmatic staining of NFAT, probably 

suggesting that activated PLCG1 could play a role in the pathogenesis and/or progression 

of CTCL. The gain of function of PLCG1 S345F mutant (but also of S520F) was confirmed by 

an increased NFAT transcriptional activity (Vaqué et al. 2014).  

In the other study performed by our laboratory, a targeted gene-enrichment sequencing of 

the pseudokinase domain of JAK1, JAK2 and JAK3 genes were performed in a total of 46 

CTCL patients (including the 11 patients from Vaque et al.). Mutations in JAK1 and JAK3 

were found in up to 7 patients and in a CTCL cell line (HuT 78, JAK1 Y654F mutation). 

Interestingly, JAK1 were recurrently mutated in two patients in position R659 but the 

consequence of these mutations regarding the activation of the pathway is still not studied. 

In both studies, cells harbouring the mutations (293T cells overexpressing PLCG1 mutants 

and HuT 78 inherently harbouring JAK1/JAK3 mutants) were highly sensitive to PLCG1 and 

JAK signalling inhibition by Tacrolimus (CaN inhibitor) and Ruxolitinib (JAK inhibitor) 

respectively, supporting the idea that targeting specific PLCG1 and JAK downstream 

signalling could be a therapeutic option for the treatment of patients carrying alterations 

in these pathways.  

 

1.4 Malignant signalling network comprising potential mechanisms 

of CTCL biology 

The NGS studies described above have revealed a number of deregulated pathways 

potentially promoting essential T cell activities including cell proliferation, survival or 
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differentiation processes towards the acquisition of specific T cell linages such as Th2 and 

Th17. These pathways can be summarized as follows (figure 1.4): i) TCR/PLCG1-NFAT, ii) 

PRKCQ- and/ or TNFR-NF-κB, and iii) JAK-STAT (see further explanations below). From a 

functional perspective, we can envision these pathways to participate as part of a malignant 

signalling network driving essential CTCL mechanisms and biological activities. These 

mechanisms can be triggered by multiple alteration including: i) aberrant autocrine or 

paracrine stimulation of T cell receptors (such as CCR4, TCR, TNFR or interleukin receptors) 

by cytokines, interleukins or growth factors generated by the transformed T cells and/or by 

Figure 1.4. CTCL signalling network affected by somatic mutations in previous studies by our group. 
Schematic representation showing key T-cell signalling pathways harbouring some of the mutations 
identified in Vaqué et al 2014 and Pérez et al 2015. Genes in blue are mutated genes identified in the 
analyses. Image adapted from Vaqué et al 2014. 
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the tumoral microenvironment; ii) by the acquisition of multiple genetic alterations in key 

genes to trigger the activation of downstream signals towards the activation of 

transcription factors such as NFAT, NF-kB and STATs (figure 1.4).  

1.4.1 TCR-PLCγ1 signalling pathway 

1.4.1.1 TCR activation  

T cell receptors (TCRs) are protein complexes composed by six different polypeptides. The 

TCRs of most T cells are composed by TCRα, TCRβ, CD3γ, CD3δ, CD3ε and CD3ζ, but some T 

cells, mostly located in the mucosal compartments, carry γδ TCRs (Vantourout and Hayday 

2013; Alcover et al. 2018). TCRαβ subunits have immunoglobulin-like variable domains that 

recognize peptide antigens associated with major histocompatibility complex (MHC) 

molecules expressed on the surface of antigen-presenting cells (APCs). These subunits are 

associated with the CD3 complex subunits (γ, δ, ε and ζ, not to be confused with TCRγδ 

variable subunits), which are invariable and ensure signal transduction. When T cells 

interact with APCs, the TCR complex is assembled and triggers the formation of 

immunological synapse (IS) (figure 1.5), which controls T cell activation as well as helper 

and cytotoxic effector functions. TCR-CD3 complexes can recruit the SRC family protein 

tyrosine kinases such as the lymphocyte-specific protein tyrosine kinase LCK, which 

phosphorylate immunoreceptor tyrosine-based activation motifs located in the 

cytoplasmatic domains of CD3 (Dong et al. 2019). LCK is constitutively active and maintains 

the signalling required for the survival of naïve T cells, but the T-cell activation is 

orchestrated by the relative abundance and spatiotemporal organization of the tyrosine 

kinases and phosphatases (such as CD45 and dual-specific phosphatase 22, DUSP22) that 

regulate its activity. LCK phosphorylates Zeta-chain-associated protein kinase 70 (ZAP-70) 
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Figure 1.5. Key elements in TCR signalling. TCR signalling is initiated by engagement of TCR with MHC-
peptide complexes on the surface of antigen-presenting cells (APCs), together with coreceptors such as 
CD4. TCR-CD3 complex consists on TCRαβ subunits and the CD3 subunits in dimeric form: εγ, δε, and ζζ. 
LCK is recruited to the complex, which then phosphorylates the cytoplasmic tails of the CD3 subunits and 
ZAP-70. ZAP-70 phosphorylates LAT causing the assembly of the LAT signalosome. PLCγ1, assembled to 
LAT, cleaves PIP2 into DAG and IP3 resulting in the activation of PKC and MAPK, and the release of calcium, 

important for downstream signalling events and transcriptional activation. Together these events set off 
a complex and tightly regulated signalling cascade leading to transcription of genes involved in 
cytoskeleton reorganization, proliferation, cytokine production, and other effector T-cell functions. 
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which activates the linker for activation of T cells (LAT), an adaptor protein that assemble 

multiple proteins, such as Phospholipase Cγ1 (PLCγ1) (Weiss et al. 1991).  

In Cutaneous T-cell lymphomas, activation of TCR signalling can be triggered by multiple 

mechanisms: by TCR-MHC interaction by cell within the tumour microenvironment (such as 

dendritic cells and macrophages) promoting the survival of malignant T cells (Wilcox et al. 

2009) and by the acquisition of genetic alterations of TCR downstream pathways such as 

mutations in PLCG1, and/or in costimulatory receptors such as CD28. These mechanisms 

can lead to the aberrant activation of multiple growth and survival intracellular mechanisms 

including NF-κB, NFAT, PI3K and MAPK pathways. These in turn promote cytokine 

production (mostly IL-2) and regulate the actin cytoskeleton reorganization promoting the 

formation of the IS (Wilcox 2016).  

1.4.1.2 PLCγ1  

PLCγ1, is encoded by the gene PLCG1, (figure 1.6), a member of the phospholipase C family 

of enzymes that is ubiquitously expressed (Kadamur and Ross 2013). PLCγ1 is maintained 

in an inactive state, but upon T cell activation, an IL-2-inducible tyrosine kinase (ITK) can 

phosphorylate it on Tyr783 which changes the protein structure to an open conformation. 

In this setting, PLCγ1 catalyses the cleavage of phosphatidylinositol 4,5-bisphosphate (PIP2) 

to inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). Both DAG and IP3 are essential 

second messengers for the transduction of T cell signaling: DAG is a cofactor for several PKC 

Figure 1.6. Schematic representation of PLCγ1 protein domains. PH: pleckstrin homology domain 
essential for phospholipid binding, PLCXc and PLCYc: catalytic activity domains and SH2/SH3: Src 
homology 2/3 domains essential for protein-protein interaction. 

PH PLCXc SH2 PLCYcSH2 SH3
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family enzymes, such as PKC, while IP3 regulates the release of Ca2+ from the endoplasmic 

reticulum (which itself controls a major regulatory network) but also stimulate protein 

kinases, transcription and mRNA processing.  

As aforementioned, PLCG1 has been found recurrently mutated in between 5.5% - 21% of 

patients (mostly in SS cases). One of the more frequent mutation, PLCG1 S345F, has been 

confirmed as a gain-of-function mutation as shown by an increased NFAT, Activator 

protein-1 (AP-1) and NF-κB activities, although other alterations such as S520F mutation or 

the VYEEDM1161V indel has been also identified as activators of downstream signalling 

(Vaqué et al. 2014; Patel et al. 2019). 

1.4.2 Role of PRKCQ in T-cell signalling 

1.4.2.1 PRKCQ structure and expression  

PKCθ (PRKCQ from hereon), was originally cloned in 1993 as a novel member of the PKC 

family enzymes (Baier et al. 1993). This family of serine/threonine kinases consists of 12 

related isoforms that are divided in three groups based on isoform structure and their 

corresponding activators: conventional PKCs including isoforms α, β and γ which are 

activated by DAG, phorbol esters (such as 12-O-Tetradecanoylphorbol-13-acetate, TPA) and 

Ca2+ in the presence of phosphatidylserine; novel PKCs including ε, η, δ and θ, only activated 

by DAG and phorbol esters and the atypical PKCs group, which include ζ and ι/λ and are 

only activated by protein-protein interactions (Altman and Kong 2016).  

Novel PKCs share the protein structure (figure 1.7). These kinases contain a highly 

conserved catalytic domain and a regulatory domain that maintains the enzyme in an 

inactive conformation (Steinberg 2008). The regulatory domain is composed by C2-like 

domain, which interacts with phospholipids independently of Ca2+ binding, and C1 
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domains which are the molecular sensors of TPA/DAG. These domains are separated from 

the catalytic domain by the V3 or hinge region, important for the interaction with CD28 in 

the IS. The catalytic domain is composed by C3, an ATP-biding pocket and the kinase 

domain.  

PRKCQ is expressed in skeletal muscle and lymphoid organs, predominantly in the thymus 

and lymph nodes. Among hematopoietic cells, PRKCQ is most abundant in T cells and is 

expressed at much lower levels or even undetectable in B-cells, macrophages, neutrophils 

and erythrocytes (Meller et al. 1998; Altman and Kong 2016).  

1.4.2.2 PRKCQ function 

PRKCQ has several unique properties that distinguish it from other T cell-expressed PKCs: 

first, is the only member of the PKC family that has the ability to translocate to the IS 

between T-cells and APCs upon TCR and MHC recognition and second, this translocations 

can be selectively regulated by Vav/Rac pathway, which is associated with the actin 

cytoskeleton. Interestingly, this translocation is positively correlated with its kinase activity, 

thus highlighting its crucial role in T-cell signalling (Monks et al. 1997; Isakov and Altman 

2002; Kong et al. 2011). These features suggest an independent mechanism of PRKCQ 

activation in addition to the conventional DAG- and PLCγ1-dependent pathway.  

Activated PRKCQ positively regulates NF-κB, AP-1 and NFAT transcription factors leading to 

T-cell activation, proliferation, survival and differentiation processes (Wang et al. 2012; 

Phetsouphanh and Kelleher 2015). NF-κB is a major target of activated PRKCQ, which 

Figure 1.7. Schematic representation of PKCθ protein domains. C2-like: phosphotyrosine interaction with 
SH2 domain-containing proteins; C1a and C1b: TPA/DAG binding; V3: hinge region involved in the indirect 
association with CD28, C3: ATP-binding pocket and kinase: catalytic activity 

C2-l ike C1a C1b V3 Kinase

N- -C

C3
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activates the inhibitor κB kinases (IKK) leading to the nuclear translocation of NF-κB. AP-1, 

a dimer of the Jun and Fos family proteins, is also induced by PRKCQ activation in a Ras-

dependent manner, and NFAT that is dephosphorylated and translocated to the nucleus by 

calcineurin in a functional partnership with PRKCQ (G Werlen et al. 1998). All these 

pathways promote the production of IL-2 which induces pro-mitogenic effects through the 

regulation of cell cycle genes and facilitates cell survival by promoting the expression of 

anti-apoptotic factors (Monks et al. 1997). 

PRKCQ is also required for Th2 and Th17 (but not Th1) cell differentiation. Mice deficient 

for PRKCQ have a defective immune response against helminth infection or model allergens 

and are also protected from Th17-mediated autoimmune diseases (Marsland et al. 2004; 

Tan et al. 2006). Interestingly, Th17 differentiation has been suggested to be induced via 

AP-1 and NF-κB-dependent upregulation of STAT3 (Kwon et al. 2012).  

In addition to the role of PRKCQ in transducing signals elicited by the triggering of many cell 

receptors, it has also been described some other functions in the nucleus such as the 

induction of cytokine genes expression and microRNAs in association with the chromatin in 

T cells (Sutcliffe et al. 2011).  

As aforementioned, PRKCQ was found amplified in up to 30% of CTCL patients analysed 

(Choi et al. 2015; Woollard et al. 2016) and furthermore, its expression was 5-fold 

upregulated in SS patients (Wang et al. 2015). Interestingly these alterations are non-

overlapping with PLCG1 and JAK1/JAK3 mutations hence suggesting that these proteins 

might participate in a coordinated fashion as part of the same intracellular signalling 

pathways or network. To date, the disease implications of deregulated PRKCQ alongside its 

potential mechanistic interplay with PLCG1 and JAK/STAT signalling has not been studied 

yet in CTCL.  
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1.4.3 JAK/STAT signalling pathway 

1.4.3.1 JAK/STAT family members 

Members of the Janus associated kinase/signal transducer and activator of transcription 

(JAK-STAT) family play multiple roles in a number of cellular processes such as inflammation 

and cancer (including haematological malignancies) but also in haematopoiesis, fertility or 

growth. The JAK family consists of 4 cytoplasmic tyrosine kinases members (JAK1, JAK2, 

JAK3, Tyk2), which form hetero and homodimers in the cell membrane, transducing signals 

towards STAT proteins through several transmembrane receptor families. Type I receptors 

include the granulocyte colony stimulating factor (G-CSF) and the erythropoietin receptor, 

type II receptors are subdivided into type IIa and type IIb receptors which include 

granulocyte-macrophage colony-stimulating factor receptor (type IIa) and the IL2/6 and 

leukaemia inhibitory factor receptors (type IIb). JAK proteins are composed by 4 domains: 

FERM and SH2 domains necessarily for the interaction with the receptors and the 

pseudokinase domain, which interact with the kinase domain for the catalytic activity 

(figure 1.8) (Yamaoka et al. 2004).  

Figure 1.8. Schematic representation of JAK and STAT protein domains. JAK domains: FERM and SH2: 
JAK-receptor interaction; pseudokinase: interact with kinase domain; kinase: catalytic activity. STAT 
domains: Coiled coil: interaction with other proteins; DNA binding domain, SH2: dimerization and 
transactivation domain: transcriptional activation.  
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On the other hand, seven STAT proteins have been identified in human cells: STAT1, STAT2, 

STAT3, STAT4, STAT5A, STAT5B, STAT6. The functional domains of STATs include a coiled 

coil necessarily for the interaction with other proteins, a DNA binding domain, a SH2 

domain, which mediates binding to phosphorylated tyrosine residues of other STATs 

(dimerization) and a C-terminal transactivation domain required for full transcriptional 

activation (figure 1.8) (Goswami and Kaplan 2017).  

1.4.3.2 JAK/STAT pathway activation 

The intracellular tails of the transmembrane receptors described above are constitutively 

associated with inactive JAKs. Upon activation of the receptor, JAKs are tyrosine 

phosphorylated becoming catalytically active tyrosine kinases capable of recruiting 

members of the STAT family in the cytoplasmic region of the receptors and phosphorylating 

them. Upon phosphorylation by JAK kinases, the STATs form dimers, which translocate to 

the nucleus and act as transcription factors inducing gene expression of factors involved in 

apoptosis/survival, angiogenesis, proliferation and differentiation via the DNA-binding 

domain (Calò et al. 2003). In some cases, signalling through STATs can be activated by 

receptors with intrinsic tyrosine kinase activity such as epidermal growth factor receptor 

(EGFR) (Thomas et al. 2015) (figure 1.9). 

The ‘canonical’ signalling phosphorylation cascade at tyrosine residues (like Y701 in STAT1, 

Y705 in STAT3, Y694 in STAT5A and Y699 in STAT5B) (Lim and Cao 2006) and subsequent 

SH2 domain-mediated homo- or heterodimerization of STATs has been historically 

described as the essential requisite for biological activity of the proteins. However, it has 

also been studied that phosphorylation in serine residues, unphosphorylated STATs and 

chemical modifications have also important roles. For example, it has been reported that 

methylation of STAT3 was described in IL-6-driven gene transcription, and that 
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unphosphorylated STAT3 and STAT5A are critical for stem cell haematopoiesis (Dawson et 

al. 2009; Hu et al. 2013; Villarino et al. 2017). On the other hand, phosphorylation in serine 

727 of STAT1 and STAT3 is essential for maximal transcription activation (Wen et al. 1995) 

and for the activity of the electron transport chain in the mitochondria upon 

Ras/Raf/MEK/ERK cascade (Gough et al. 2009; Gough et al. 2013). Finally, It has been 

described that serine phosphorylation of STAT3 by growth factors and interleukins can be 

attributed to ERKs like ERK2, JNK1 and p38 and PKCδ (Lim and Cao 2006).  

Figure 1.9. ‘Canonical’ JAK/STAT signalling activation. JAK proteins are constitutively associated with the 
receptor, which is activated upon cytokine binding. Activated JAKs recruit and phosphorylate STAT 
proteins at tyrosine residues. STAT proteins dimerize and translocate to the nucleus where induce the 
expression of its target genes. Suppressor of cytokine signalling (SOCS), phospho-tyrosine phosphatases 
(PTP) and protein inhibitors of activated STATs (PIAS) are negative regulators of the signalling. The 
principal interleukins, JAK kinases and STAT dimers involved in CTCL are represented. 
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1.4.3.3 JAK/STAT pathway regulation 

Three major mechanisms have been identified to negatively regulate the signalling of 

JAK/STAT pathway at multiple levels: i) SH2-containing phospho-tyrosine phosphatases 

(PTP) and CD45 tyrosine phosphatase that remove phosphate groups from JAKs and STATs, 

ii) protein inhibitors of activated STATs (PIAS), that inhibit STAT-DNA binding, control STAT 

cellular localization and promote post-transcriptional modifications of STATs, and iii) the 

suppressor of cytokine signalling (SOCS) proteins that are cytokine-induced competitive 

inhibitors of STAT receptor binding, also inhibiting JAK kinase activity, and also can target 

different pathway components for proteosomal degradation (Furqan et al. 2013).  

1.4.3.4 JAK/STAT signalling in CTCL 

Due to the crucial role of this pathway in the T-cell biology and immunity, the deregulation 

of the JAK/STAT pathway has been described in multiple haematological malignancies 

presumably providing a selective advantage to drive transformation to a malignant 

precursor cell. It has been well described that the aberrant activation of JAK1/3-STAT3/5 

pathway in T cells is an important feature of T cell lymphomas including CTCL (Netchiporouk 

et al. 2014; Waldmann and Chen 2017).  

As aforementioned in section 1.3.3, frequent SSNVs and SCNVs targeting JAK and STAT 

genes have been reported in CTCL (Vaqué et al. 2014; Choi et al. 2015; Mcgirt et al. 2015; 

Park et al. 2017; Bastidas Torres et al. 2018). Of note, STAT3 and STAT5B were amplified in 

60% of patients (Park et al. 2017). Mutations in STAT proteins have been also identified but 

to a lesser extent. They are predominantly localized in the highly conserved SH2 domain, 

necessary for protein dimerization (Shahmarvand et al. 2018). Mutations in JAK proteins 

have been also identified in CTCL, more frequently in JAK1 and JAK3. In a deep sequencing 

study performed to detect low frequency somatic mutations, carried out by our group, JAK1 
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and JAK3 mutations were detected in 15% of CTCL tumours. Interestingly, these mutations 

were located in hotspots affecting the pseudokinase domain of the proteins, which have 

regulatory functions (C. Pérez et al. 2015), but its contribution to the activation of the 

pathway has not been yet studied.  

Also, constitutive JAK3 phosphorylation and constitutive STAT3 activation has been 

identified in both MF and SS (Sommer et al. 2004; R C T McKenzie et al. 2012). Indeed, 

STAT3 is considered an oncogene as shown by the formation of tumours in nude mice after 

transplantation of normal mouse fibroblast expressing a mutated STAT3 that constitutively 

form dimers (Bromberg et al. 1999). 
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2. HYPOTHESIS AND OBJECTIVES 

2.1 Hypothesis 

Cutaneous T cell lymphoma (CTCL) is a heterogeneous group of entities with a difficult 

diagnosis and a variety of treatment options that greatly depend on clinical experience and 

accessibility but that are merely palliative. Although some molecular mechanisms leading 

to lymphoma genesis or progression of the disease have been elucidated, the underlaying 

mechanisms are not well understood.  

We hypothesized that a malignant network of signalling mechanisms, acting downstream 

of PLCG1, drives tumorigenesis and progression of CTCL. PRKCQ may be playing an essential 

role leading to the activation of the transcriptional endpoints NFAT, NF-κB and STAT 

towards an effective neoplastic role. 

2.2 Objectives 

In order to dissect the interplay between members of the malignant network that may 

participate as progression mechanisms in CTCL and to better understand the role of PRKCQ 

in this disease, we have focused in the following objectives: 

1. To explore the biological role of NFAT, NF-κB and STAT genes and challenge their 

potential use as biomarkers for diagnosis in a CTCL patient cohort. 

2. To study the activity of NFAT, NF-κB and STAT3 in cell-based models. 

3. To identify proteins interacting with PRKCQ in CTCL cells. 

4. To investigate the biological implications of PRKCQ activity in vivo. 

5. To determine the potential genes regulated by PRKCQ in CTCL cells. 
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3. MATERIALS AND METHODS 

3.1 Human samples 

Cases submitted for a Mycosis Fungoides (MF) diagnosis or a second opinion in different 

institutions of the Spanish national health system between 2001 and 2018 were included 

in the study. Diagnostic criteria were based on World Health Organization–European 

Organisation for Research and Treatment of Cancer (WHO–EORTC) classification (Willemze 

et al. 2005). Cases of CTCL other than MF were excluded. Clinical stage was established 

based on the TNMB classification previously described (Olsen et al. 2007). Formalin-fixed 

paraffin-embedded (FFPE) skin biopsies of a total of 78 MF patients were used for the 

diagnosis by histological examination and for the immunohistochemical study.  

This study was conducted in accordance with the Declaration of Helsinki and supervised by 

the ethical committee of the Hospital Universitario Marqués de Valdecilla, Santander, 

Spain. 

 

3.2 Chick embryo model for in vivo studies 

In order to study effects of PRKCQ deficiency and sotrastaurin in tumoral formation and 

growth, tumour cells intravasation and metastasis, chicken embryo model was performed 

in collaboration with Berta Casar from Piero Crespo’s laboratory (IBBTEC – CSIC), as 

previously described (Crespo and Casar 2016). Below, chicken eggs and cells preparation 

for tumour grafting as well as sample harvesting are detailed. 
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3.2.1 Eggs preparation for xenografting tumour cells 

The chicken eggs were prepared as shown in figure 3.1. Freshly fertilized chicken eggs (from 

Gilbert Farm, Tarragona, Spain) were incubated on their side in a rotating incubator 

(rotating three times per hour) at 37 °C and 60% humidity for 10 days. On day 10 when the 

chick embryos are still naturally immunodeficient, were placed on their side on an egg rack 

and the allantoic vein is localized at the top of the eggshell. The embryo is located at the 

bottom of the egg and the air sack on its right (figure 3.1A). After cleaning the area with 

iodine, a small hole through the eggshell into the air sack was made with a 30-gauge (G) 

syringe needle (figure 3.1A), and another hole near the allantoic vein was made without 

penetrating the chorioallantoic membrane (CAM), with a Dremel rotary tool kit (figure 

3.1B). Then, a 20G syringe needle with a small hook was used to make a third very small 

hole in the eggshell membrane (figure 3.1C). In order to separate the CAM from the shell 

and let it drop, a mild vacuum with an automatic pipette was made in the air sack hole 

(figure 3.1D). Once the CAM was dropped, a square window (of approximately 1 cm²) was 

made with a Dremel cut off wheel (figure 3.1E) at the top of the egg to make the CAM 

accessible. This hole was sealed with laboratory tape and eggs were placed into a stationary 

incubator at 37 °C and 60% humidity until being grafted (figure 3.1F).  

3.2.2 Cells preparation for xenografting  

On one hand, in order to study PRKCQ knockdown effects, non-targeting control (NTC) and 

short hairpin RNA against PRKCQ (shPRKCQ) MyLa cells were used. The establishment of 

these cells are fully explained in section 3.3.4. Briefly, both NTC and shPRKCQ cells were 

treated with 1 ug/ml doxycycline in order to knockdown (or not) PRKCQ. After 96 h, cells 

were counted with a Neubauer chamber, washed with phosphate buffered saline (PBS) 

twice and resuspended at 40·106 cells/ml in serum-free media with MatrigelTM at 20%. 
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MatrigelTM is composed by structural proteins resembling the complex extracellular 

environment found in many tissues. 

On the other hand, to study the effects of the PRKCQ pharmacological inhibition with 

sotrastaurin (Selleckchem), MyLa cells were used for xenografting. Exponentially growing 

MyLa cells were counted with a Neubauer chamber, washed PBS twice and resuspended at 

40·106 cells/ml in serum-free media with MatrigelTM at 20%.  

In both cases, cells were placed on ice until grafted.  

Figure 3.1. Chick embryo model procedure. A) After 10 days of incubation, the allantoic vein is positioned 
against the top of the egg. A hole in the eggshell is made into the air sack using a 30 G syringe needle. B) 
Another hole using a Dremel rotary tool kit is made adjacent to the attachment point for the allantoic 
vein. C) A third small hole in the eggshell membrane is made using a 20 G syringe needle. D) A mild vacuum 
is applied into the hole over the air sack to evacuate the air and drop the chorioallantoic membrane 

(CAM). E) A square window (1 cm2) is made using a Dremel cut off wheel to expose the CAM. F) Tumour 
cells are grafted onto the CAM. Image adapted from Crespo & Casar, Bio-protocol, 2016.  
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3.2.3 Tumour cells grafting onto the CAM 

The hole at the top of the eggshell was unsealed and 25 µl of cell suspension (1·106 of total 

cells approximately) were placed onto a small area of the CAM. The shell window was re-

sealed with laboratory tape, and the embryo was returned to the stationary incubator after 

10 min of repose allowing the cells to settle.  

3.2.4 Primary tumours and chick embryo tissues collection 

After 7 days, chick embryo samples were harvested. The hole made previously at the top 

of the eggshell was enlarged, primary tumour was resected from the CAM and weighted. 

The chick embryo was removed from the eggshell by cutting the shell radially into equal 

halves and then a piece of the lower CAM and liver and the lungs were harvested to proceed 

to genomic DNA isolation (detailed in section 3.5.2).  

 3.2.5 Human tumour cells quantification 

In order to detect human tumour cell DNA in the chick tissues a quantitative polymerase 

chain reaction (qPCR) for human Alu sequences was performed using 30 ng of DNA, Alu-

specific primers (see table 3.1) and SYBR® Green Master Mix (Applied Biosystems). Chicken 

GAPDH primers were used as internal control. The PCR was run as follows: 

 

 

 

 

Quantitative PCRs were analysed using the SDS 2.2.2 software (Applied Biosystems). A 

standard curve, using a dilution series of human DNA (102, 103, 104) from the original 

Time Temperature Cycles 

2 min 95 °C 1 

30 s 95 °C  

30 s 63 °C 40 

30 s 72 °C  

∞ 4 °C hold 
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tumour cells, was generated to quantify human tumour cells comparing the Ct values 

obtained from the standard dilution against the ones from the chick embryo samples, in 

triplicate. Water was used as negative control.  

 

3.3 Cell culture for in vitro studies 

3.3.1 Cell lines and maintenance 

Adherent or non-adherent cell lines were grown in Dulbecco's Modified Eagle Medium 

(DMEM) or RPMI-1640 medium respectively supplemented with 10% heat-inactivated fetal 

bovine serum (FBS, Gibco, Thermo Fisher Scientific), glucose (4.5 g/L), L-glutamine (292 

mg/L), streptomycin sulphate (10 mg/L) and potassium penicillin (10000 U/L) (Lonza) (see 

table 3.2 for details). 

HEK-Blue™ IL-6 cells (HEK-IL6 from here on) were cultured in DMEM medium supplemented 

with 10% FBS and supplemented with glucose (4.5 g/L), L-glutamine (292 mg/L), 

streptomycin sulphate (10 mg/L), potassium penicillin (10000 U/L) (Lonza), 100 µg/ml 

Normocin™, 200 µg/ml Hygromycin B Gold and 100 µg/ml Zeocin™ (InvivoGen). This cell 

line, specifically designed to monitor the activation of JAK/STAT pathway induced by IL-6, 

Name Forward 5'-3' Reverse 5'-3' Use
Amplicon 

(bp)
Alu ACGCCTGTAATCCCAGGACTT TCGCCCAGGCTGGCTGGGTGCA RT-qPCR 220

chicken GAPDH GAGGAAAGGTCGCCTGGTGGATCG GGTGAGGACAAGCAGTGAGGAACG RT-qPCR 297

PRKCQ-A148E CTTTGCCTGCTTGATCTCACCCCGGCGCTGAT ATCAGCGCCGGGGTGAGATCAAGCAGGCAAAG Mutagenesis -

JAK1-R659C AGTCTTAGACCCCAGCCACA GCGATGTCCTTACCACACCA Sequencing 202
JAK1-Y654F AGTCTTAGACCCCAGCCACA GCGATGTCCTTACCACACCA Sequencing 202

PLCG1-S345F GTCCCTTCCTGAGTTCCAGC GTCCTGCACACCATCAAGGA Sequencing 450
PRKCQ-A148E ACTTTCTGGAAATGAGTGACACAA CTTCTTCCCACAGCCCACAT Sequencing 153

PRKCQ CCATGTCGCCATTTCTTCGG GCCCGTTCTCTGATTCGACA RT-qPCR 129
ACTB AGTGTGACGTGGACATCCGCAAAG ATCCACATCTGCTGGAAGGTGGAC RT-qPCR 163

Table 3.1. Primer sequences used in this thesis. 
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Table 3.2. Cell lines used in this thesis. 

Cell line Description Culture medium Origin/Source

HEK-Blue™ IL-6
Human embryonic kidney cells 

expressing constituvely IL-6 
receptor and SEAP reporter gene

DMEM 10% FBS 
+ 100 µg/ml Normocin™

+ 200 µg/ml Hygromycin B Gold 
+ 100 µg/ml Zeocin™ 

InvivoGen

Jurkat Acute T cell leukemia RPMI 10% FBS
Laboratory 
collection

MyLa
Cutaneous T cell lymhpoma - 

Mycosis fungoides
RPMI 10% FBS ECACC

HuT 78
Cutaneous T cell lymhpoma - 

Sézary syndrome
RPMI 10% FBS ATCC

HEK293T
Human embryonic kidney 293 

expressing T antigen
DMEM 10% FBS

Laboratory 
collection

HEK-Blue™ IL-6 
NTC

HEK-Blue™ IL-6 cells expressing 
stable vector of doxycycline-

inducible non-targeting control 
shRNA 

DMEM 10% FBS 
+ 100 µg/ml Normocin™ 

+ 200 µg/ml Hygromycin B Gold
+ 100 µg/ml Zeocin™
+ 1 ug/ml puromycin

This thesis

HEK-Blue™ IL-6 
shPRKCQ 1

HEK-Blue™ IL-6 cells expressing 
stable vector of doxycycline-

inducible shRNA 1 against PRKCQ

DMEM 10% FBS 
+ 100 µg/ml Normocin™ 

+ 200 µg/ml Hygromycin B Gold
+ 100 µg/ml Zeocin™
+ 1 ug/ml puromycin

This thesis

HEK-Blue™ IL-6 
shPRKCQ 2

HEK-Blue™ IL-6 cells expressing 
stable vector of doxycycline-

inducible shRNA against PRKCQ

DMEM 10% FBS 
+ 100 µg/ml Normocin™ 

+ 200 µg/ml Hygromycin B Gold
+ 100 µg/ml Zeocin™
+ 1 ug/ml puromycin

This thesis

HEK-Blue™ IL-6 
shPRKCQ 3

HEK-Blue™ IL-6 cells expressing 
stable vector of doxycycline-

inducible shRNA against PRKCQ

DMEM 10% FBS 
+ 100 µg/ml Normocin™ 

+ 200 µg/ml Hygromycin B Gold
+ 100 µg/ml Zeocin™
+ 1 ug/ml puromycin

This thesis

Jurkat NTC
Jurkat cells expressing stable 

vector of doxycycline-inducible 
non-targeting control shRNA 

RPMI 10% FBS 
+ 1 µg/ml puromycin

This thesis

Jurkat shPRKCQ 1
Jurkat cells expressing stable 

vector of doxycycline-inducible 
shRNA against PRKCQ

RPMI 10% FBS 
+ 1 µg/ml puromycin

This thesis

Jurkat shPRKCQ 2
Jurkat cells expressing stable 

vector of doxycycline-inducible 
shRNA against PRKCQ

RPMI 10% FBS 
+ 1 µg/ml puromycin

This thesis

Jurkat shPRKCQ 3
Jurkat cells expressing stable 

vector of doxycycline-inducible 
shRNA against PRKCQ

RPMI 10% FBS 
+ 1 µg/ml puromycin

This thesis
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constitutively expresses IL-6 receptor and a reporter gene expressing a secreted embryonic 

alkaline phosphatase (SEAP) under the control of the IFN- minimal promoter fused to four 

signal transducer and transcription activator 3 (STAT3) binding sites (figure 3.2). The 

detection of activated STAT3 in these cells by Quanti-Blue™ assay is fully explained in 

section 3.5.5. 

All cells were maintained exponentially growing in a humidified atmosphere at 37 °C and 

5% CO2. 

3.3.2 Reagents 

Tacrolimus, sotrastaurin, ruxolitinib, ibrutinib, dasatinib, fostamatinib and MK-2206 were 

used at 1 µM as inhibitors of calcineurin, PRKCQ, JAK, BTK, Src, Syk and Akt signalling 

pathways respectively.  

MyLa NTC
MyLa cells expressing stable 

vector of doxycycline-inducible 
non-targeting control shRNA 

RPMI 10% FBS 
+ 1 µg/ml puromycin

This thesis

MyLa shPRKCQ 1
MyLa cells expressing stable 

vector of doxycycline-inducible 
shRNA against PRKCQ

RPMI 10% FBS 
+ 1 µg/ml puromycin

This thesis

MyLa shPRKCQ 2
MyLa cells expressing stable 

vector of doxycycline-inducible 
shRNA against PRKCQ

RPMI 10% FBS 
+ 1 µg/ml puromycin

This thesis

MyLa shPRKCQ 3
MyLa cells expressing stable 

vector of doxycycline-inducible 
shRNA against PRKCQ

RPMI 10% FBS 
+ 1 µg/ml puromycin

This thesis

HuT 78 NTC
HuT 78 cells expressing stable 
vector of doxycycline-inducible 

non-targeting control shRNA 

RPMI 10% FBS 
+ 1 µg/ml puromycin

This thesis

HuT 78 shPRKCQ 1
HuT 78 cells expressing stable 
vector of doxycycline-inducible 

shRNA against PRKCQ

RPMI 10% FBS 
+ 1 µg/ml puromycin

This thesis

HuT 78 shPRKCQ 2
HuT 78 cells expressing stable 
vector of doxycycline-inducible 

shRNA against PRKCQ

RPMI 10% FBS 
+ 1 µg/ml puromycin

This thesis

HuT 78 shPRKCQ 3
HuT 78 cells expressing stable 
vector of doxycycline-inducible 

shRNA against PRKCQ

RPMI 10% FBS 
+ 1 µg/ml puromycin

This thesis
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TPA and IL-6 were used at 10 ng/ml to induce PKC and JAK/STAT pathways activation 

respectively.  

Stock preparation: all reagents were dissolved in DMSO (VWR) to a final concentration of 

10 mM (for inhibitors) or 10 µg/ml (for TPA), except for IL-6 that was dissolved in distilled 

water (Qiagen) to a final concentration of 10 µg/ml.  

All stock solutions were aliquoted and stored at -20 °C until used.  

Table 3.3 provides a list of the reagents used in this thesis and its related information.  

3.3.3 Transfection 

Lipofectamine LTX with PLUS reagents (Invitrogen) was used for transfecting HEK-IL6 cells. 

The day before transfection, cells were seed at 20-30% of confluence in 6-well culture plates 

or 60 mm culture dishes. The day of transfection 0.5 or 1 µg of DNA was diluted in 300 or 

1000 µl of DMEM medium with 0.5 or 1 µl of PLUS reagent, mixed by vortexing and 

Figure 3.2. HEK-Blue™ IL-6 cell model used in this thesis. Schematic representation of IL-
6R/JAK/STAT3/SEAP pathway of HEK293 cells transfected with human IL-6R gene and SEAP reporter gene. 
Image adapted from https://www.invivogen.com/  

SEAP 
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incubated for 5 min at RT. Then, 1.5 or 2.5 µl of Lipofectamine LTX reagent was added to 

the dilution, mixed by vortexing again and incubated for at least 30 min at RT. Finally, 

dilution was added dropwise to the cells after medium remove and incubated for 3 h. After 

that, fresh growing medium was added to the cells. Cells were collected for analysis 

between 24 to 48 h after transfection according to the experiment. 

In case of selecting stably cell lines, 48 h post transfection medium was removed, and fresh 

growing medium supplemented with 1 µg/ml puromycin was added. 

The expression vectors used for transfection and its related information are shown in table 

3.4, and the expressed mutants in HEK-IL6 are analysed by western blot in figure 3.3. 

3.3.4 Lentivirus production and transduction 

3.3.4.1 Lentivirus production 

Lentivirus particles were produced to transduce HEK-IL6, Jurkat, MyLa and HuT 78 cells with 

inducible short hairpin (sh) sequences constructs against human PRKCQ mRNA. 

SMARTvector™ carrying tGFP and doxycycline-inducible non-targeting control (NTC) shRNA 

or shRNA against human PRKCQ mRNA, both under mEF1 promoter regulation, constructs 

were used in this study (Dharmacon). See table 3.4 for more information about DNA 

constructs.  

Table 3.3. Reagents (inhibitors and activators) used in this thesis 

Reagent Synonym Target Source Reference
Tacrolimus FK506 FKBP12 Selleckchem S5003

Sotrastaurin AEB071 pan-PKC (mostly for PKCθ) Selleckchem S2791
Ruxolitinib INCB018424 JAK1/2 Selleckchem S1378
Ibrutinib PCI-32765 BTK Selleckchem S2680
Dasatinib BMS-354825 Abl, Src, c-Kit Selleckchem S1021 

Fostamatinib R788 Syk Selleckchem S2625
MK-2206 2HCI Akt1/2/3 Selleckchem S1078

TPA PMA PKC Sigma P1585
IL-6 IL-6R Sigma SRP3096
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Table 3.4. Constructs for transfections used in this thesis 

Name Construct Origin/Source

pCMV6-Entry vector Empty vector
Laboratory collection

(described in Vaqué JP. et al 
2014)

pCMV6-PLCG1 WT PLCG1 wild type gene
Laboratory collection

(described in Vaqué JP. et al 
2014)

pCMV6-PLCG1 S345F PLCG1 S345F mutant gene
Laboratory collection

(described in Vaqué JP. et al 
2014)

pCMV6-JAK1 WT JAK1 wild type gene Origene
pCMV6-JAK1 R659C JAK1 R659C mutant gene Origene/BioNova (mutagenesis)
pCMV6-JAK1 Y654F JAK1 Y654F mutant gene Origene/BioNova (mutagenesis)
pCMV6-PRKCQ WT PRKCQ wild type gene Origene

pCMV6-PRKCQ A148E PRKCQ A148E mutant gene This thesis

pRL-Null
Renilla  luciferase reporter gene 

regulated by the T7 promoter
Promega

pGL4.30 NFAT-RE
Firefly luciferase reporter gene 

regulated by NFAT response 
element

Promega

pGL4.32 NF-κB-RE
Firefly luciferase reporter gene 
regulated by NF-κB response 

element
Promega

pGL4.47 SIE
Firefly luciferase reporter gene 

regulated by sis-inducible 
element (STAT3:STAT3)

Promega

shRNA NTC 
ID: VSC11654

shRNA non-targeting control 
regulated by mEF1α promoter

Dharmacon

shRNA PRKCQ 1 
ID: V3SH11252-226034596

shRNA against human PRKCQ 
gene regulated by mEF1α 

promoter
Dharmacon

shRNA PRKCQ 2 
ID: V3SH11252-228441253

shRNA against human PRKCQ 
gene regulated by mEF1α 

promoter
Dharmacon

shRNA PRKCQ 3 
ID: V3SH11252-229785178

shRNA against human PRKCQ 
gene regulated by mEF1α 

promoter
Dharmacon
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Lentiviral particles were produced by transfecting HEK293T cells with the Trans-Lentiviral 

shRNA Packaging System kit (Dharmacon), following the manufacturer’s instructions. The 

day before transfection, HEK293T cells were seeded at 70% of confluence in 100 mm 

culture dishes. The day of transfection, 42 µg of each DNA construct and 30 µl of Trans-

lentiviral packaging mix were diluted in 1 ml of water. Then, 105 µl CaCl2, and 1050 µl HBSS 

2X solution were added sequentially in a drop wise manner. After 3 min of incubation at 

RT, the dilution was added to the cells, which were incubated for a maximum of 16 h with 

the mixture. Finally, medium was removed and replaced with fresh DMEM medium 

supplemented with 5% FBS and 1% P/S.  

Two days after transfection, lentivirus-containing supernatant was collected, centrifuged at 

4 °C 1600 g for 10 min and filtered through 0.45 µm pore size sterile syringe filter (Merck 

Millipore). Finally, lentivirus solution was stored at -80 °C until used. 

Figure 3.3. Vectors protein expressions in HEK-Blue™ IL-6 cells. Western blot analyses of whole HEK-IL6 
cell lysates transfected for 24 h with wild type (WT) and mutant vectors containing A) PLCG1 and JAK1 
genes and B) PRKCQ gene and incubated with the indicated antibodies. Images are representative of each 
western blot.  
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3.3.4.2 Cell transduction 

For cell transduction, cells were seeded at 20% of confluence in 6-wells culture plates. Next 

day, culture medium was removed, and new mix was added: 1 ml of complete DMEM 

medium, 1 ml of lentivirus-containing supernatant and 8 µg/ml polybrene. 48 h post 

transduction, medium was removed, and fresh medium was added supplemented with 1 

µg/ml puromycin to select stably cell lines. After 7 days post-selection, cells were harvested 

and checked for short hairpin sequence construct acquisition and functionality by RT-qPCR 

and western blot. 

 

3.4 Cell viability assays 

3.4.1 Cell proliferation assay 

To study the inhibitors effects over cell proliferation, CellTiter-Glo® Luminescent Cell 

Viability Assay kit (Promega) was used following the manufacturer’s instructions. This 

method enables the identification of viable cells in culture based on quantification of the 

free-ATP present as indicator of metabolically active cells. Cells were seeded in 96-well 

plates (1000 cells/well) in growing conditions and incubated overnight in a humidified 

atmosphere at 37 °C and 5% CO2. The following day, cells were treated with increasing 

concentrations of the inhibitors for 48 h. Luminometric changes were quantified using the 

Synergy™ HTX Multi-Mode Microplate Reader (Biotek).  

The half maximal inhibitory concentration (IC50) was estimated at 48 h of drug treatment 

by using GraphPad Prism 6 software.  
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3.4.2 Synergism assay 

To assess the drug synergism of sotrastaurin and ruxolitinib in MyLa and HuT 78 cells, the 

effects in proliferation of each inhibitor alone and the combination of both were analysed 

as described in the previous section. Then, the combination indexes (CI) were calculated 

with CalcuSyn software, as previously described (Chou and Talalay 1984). This software 

determines the CI by considering the fraction of affected cells of both inhibitors alone and 

compares it with the fraction of affected cells of the combination treatment, and assesses 

whether a combination of two drugs results in a synergistic (CI < 1), additive (CI = 1) or 

antagonistic effect (CI > 1).  

3.4.3 Apoptosis assay 

Induction of apoptosis by ruxolitinib and sotrastaurin was evaluated using FlowCellect™ 

Annexin Red Kit (Merck Millipore), according to the manufacturer’s instructions. This kit 

assesses both early and late apoptosis and includes recombinant Annexin V, a calcium-

dependent phospholipid binding protein with high affinity for phosphatidyl serine 

expressed on the apoptotic cell membrane, conjugated to a red sensitive dye CF647 (for 

detecting early apoptosis) and 7-Aminoactinomycin (7-AAD), a membrane impermeant 

dead cell dye, which is an indicator of cell membrane structural integrity (for detecting late 

apoptosis).  

Cells were seeded in 24-well plates (100000 cells/well) in growing conditions and incubated 

overnight in a humidified atmosphere at 37 °C and 5% CO2. The following day, cells were 

treated with the indicated inhibitor and 24 h after were collected for flow cytometer 

analysis. Cell samples were resuspended 1X Assay Buffer HSC (made from the provided 10X 

Assay Buffer HSC) at a final concentration of 1·106 cells/ml. Then, 100 µl of cell suspension 
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were incubated with 100 µl of Annexin Red Working Solution1 at 37 °C for 15 min. Cells 

were washed once with 1X Assay Buffer HSC, resuspended in 195 µl of 1X Assay Buffer HSC 

together with 5 µl of 7-AAD and incubated at RT for 5 min in the dark. Finally, cells were 

analysed by a flow cytometer. In the case of evaluating ruxolitinib effects, data were 

collected using a FACS-Calibur flow cytometer (BD Biosciences) and analysed using 

CellQuest Pro software (BD Biosciences). For the evaluation of sotrastaurin effects, data 

were collected using a CytoFLEX flow cytometer (Beckman Coulter) and analysed by 

CytExpert™ software (Beckman Coulter).  

 

3.5 DNA and RNA analysis 

3.5.1 Bacterial transformation and plasmid DNA purification 

3.5.1.1 Bacterial transformation 

Plasmid DNA was transformed using heat-shock method into Escherichia coli (E. Coli) DH5α 

competent cells (Invitrogen) for DNA amplification.  

To that end, 50 µl E. coli DH5α cells were mixed with 1 µg of plasmid DNA. The mixture was 

incubated on ice for 5 min. After that, a heat shock of 40 sec at 42 °C was performed 

followed by other 2 min incubation on ice. Transformed E. coli DH5α cells were then 

supplemented with 1 ml SOC medium (Invitrogen) containing no antibiotics and incubated 

in a shaking incubator at 37 °C 200 rpm for 1 h, allowing the antibiotic resistant gene to be 

expressed. Then, E. coli cells were spread on LB-agar growth media plates containing the 

corresponding antibiotic selection (100 µg/ml ampicillin or 50 µg/ml kanamycin depending 

on the case) and incubated overnight at 37 °C. 

 
1 Annexin red working solution: Annexin V, CF647 stock solution 1:20 in 1X Assay Buffer HSC.  



MATERIALS AND METHODS 

61 

The following day, three selected single colonies were both seeded again on LB-agar growth 

media “master” plates containing the corresponding antibiotic and incubated overnight at 

37 °C. Then, some cells from these separated single colonies were inoculated in 5 ml LB 

growth media bottles containing the corresponding antibiotic selection in an orbital shaking 

incubator at 37 °C 150 rpm to let them grow separately overnight. Next day, the bacterial 

culture was harvested by centrifugation at 4 °C 3000 rpm for 15 min and plasmid DNA was 

purified with the QIAamp DNA Mini kit (Qiagen) following manufacturer’s instructions. 

For preparation of glycerol stocks of the verified DNA plasmid-transformed bacteria, 

positive single colonies that were seeded on LB-agar “master” plates were inoculated and 

let them grow overnight in 5 ml LB growth media containing the corresponding antibiotic 

selection in an orbital shaking incubator at 37 °C 150 rpm. Next day, LB media grown cells 

were centrifuged at 3000 rpm for 10 min and the supernatant was discarded. Bacteria pellet 

was resuspended 1ml of LB-glycerol 1:1 (v/v), added to a cryotube and stored at -80 °C until 

used. 

3.5.1.2 Plasmid DNA purification 

To prepare higher amounts of plasmids DNA for transfections, a little amount of the glycerol 

stock of the desire plasmid was inoculated into 5 ml LB growth medium containing the 

appropriate antibiotic and incubated for 8 h in an orbital shaking incubator at 37 °C and 150 

rpm. Then, the starter culture was used to inoculate 200 ml LB growth media containing 

the same selection antibiotic and grown overnight in the same culture conditions (37 °C 

and 150 rpm). The following day, bacterial culture was centrifuged at 6000 g for 15 min and 

plasmid DNA was purified using the EndoFree Plasmid Maxi kit (Qiagen) following 

manufacturer’s instructions. Plasmid DNA concentration was determined by measuring 

A260nm using a microvolume spectrophotometer (NanoDrop 2000). 
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3.5.2 DNA isolation and purification from in vivo samples 

To extract genomic DNA from chick embryo tissues, a Polytron™ homogenizer (Kinematica) 

was used in order to process the tissues. Once the samples were mechanically digest, 

QIAamp genomic DNA purification kit (Qiagen) was used, following manufacturer’s 

instructions. Genomic DNA was stored at -20 C until used.  

3.5.3 Site-directed mutagenesis 

To generate the PRKCQ A148E mutant, alanine (GCC) was change by glutamine (GAG) at 

position 148 of human PRKCQ gene, mimicking the union of the cofactor and therefore 

constitutively activating the protein, as previously described (Baier-Bitterlich et al. 1996). 

To that end, the QuikChange Lightning Site-Directed Mutagenesis Kit (Agilent Technologies) 

was used, following the manufacturer’s instructions. First, the mutant strand synthesis 

reaction was performed by mixing: 5 µl of 10x reaction buffer, 50 ng of DNA template 

(pCMV6-PRKCQ), 125 ng of forward primer, 125 ng of reverse primer, 1 µl of dNTP mix, 1.5 

µl of QuickSolution reagent distilled water to a final volume of 50 µl and finally 1 µl of 

QuickChange Lightning Enzyme (PfuUltra HF DNA polymerase). Then, the cycle used for the 

synthesis reaction was the following: 

 

 

 

 

The primers used for the mutagenesis are shown in table 3.1. Then, the digestion of the 

amplification products was performed by adding 2 µl of the provided Dpn I restriction 

Time Temperature Cycles 
2 min 95 °C 1 
20 s 95 °C 

18 
10 s 60 °C 

3 min 30 s  
(30 s*7kb, plasmid length) 

68 °C 

5 min 68 °C 1 
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enzyme directly to each amplification reaction, mixing it by pipetting up and down and 

incubating it at 37 C for 5 min in order to digest the parental (and non-mutated) DNA. The 

Dpn I endonuclease is specific for methylated and hemimethylated DNA and is used to 

digest the parental DNA template and to select for mutation-containing synthesized DNA. 

Finally, the vector DNA containing the desired mutation is then transformed into XL10-Gold 

ultracompetent cells. To that end, 45 µl of the cells were gently mixed with 2 µl of the 

provided -mercaptoethanol and incubated on ice for 2 min. Then, 2 µl of the Dpn I-treated 

DNA was transferred to the mixture, gently mixed it and incubated on ice for 30 min. DNA 

was transformed using heat-shock method as previously described in section 3.5.1.  

3.5.4 DNA sequencing 

In order to confirm the mutations of each vector used in this study, including the mutated 

by site-directed mutagenesis, Sanger sequencing of the plasmids was performed. To that 

end, DNA plasmids were sequenced using BigDye™ Terminator v3.1 Cycle Sequencing Kit 

(ThermoFisher Scientific) and 5 µM of primer (for the primers used see table 3.1). Then, the 

cycle used for the amplification reaction was the following: 

 

 

 

 

Then, the samples were purified with CENTRI-SEP Spin Columns (Princeton Separations) 

following the manufacturer’s instructions prior to denature the DNA with formamide and 

sequence it at Pathology Anatomy Service from Hospital Universitario Marqués de 

Time Temperature Cycles 
2 min 94 °C   1 
10 s 96 °C   
5 s 50 °C 25 

4 min 60 °C   
∞ 4 °C hold 
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Valdecilla. The chromatograms of the plasmids (wild types and mutants) and the position 

of the mutant along the protein structure are shown in figure 3.4.  

 

Figure 3.4. Mutant sequences used in this thesis. Chromatograms of sequenced wild type (WT, left) and 
mutant (middle) vectors containing A) JAK1, B) PLCG1 and C) PRKCQ genes. Schematic protein domains 
and mutant localization (right) are represented for each gene and mutant. JAK1 domains: FERM and SH2: 
JAK-receptor interaction; pseudokinase: interact with kinase domain; kinase: catalytic activity. PLCG1 
domains: PH: phospholipid binding; PLCXc and PLCYc: catalytic activity; SH2 and SH3: protein-protein 
interaction. PKCθ domains: C2-like: phosphotyrosine interaction; C1a and C1b: TPA/DAG binding; V3: 
hinge region and kinase: catalytic activity. 
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3.5.5 Quanti-Blue™ assay 

Activation of STAT3 in HEK-IL6 cells is assessed by the quantification of SEAP release in the 

supernatant (SN) of the cells by determining its alkaline phosphatase activity by this 

colorimetric enzyme assay (standard procedure is summarised in figure 3.5). Quanti-Blue™ 

(QB) solution is prepared by dissolving one pouch of the provided powder to 50 ml of sterile 

endotoxin-free water (Sigma), gently swirling it and incubating it at 37 °C for 30-60 min. The 

solution is kept at 37 °C before used or stored at 4 °C for up to 2 weeks. In a flat-bottom 96-

well plate, 180 µl of the QB solution is mixed with 20 µl of the cell supernatant and 

incubated at 37 °C for 90 min.  Then, the SEAP levels are determined by measuring optical 

density (OD) at 620-655 nm in a spectrophotometer.  

 

3.5.6 Luciferase reporter assay 

Luciferase report assay was performed to analyse and quantify transcription factor NFAT, 

NF-κB and STAT3 activities in HEK-IL6 cells, using Dual-Glo® Luciferase Assay System 

(Promega).  

Figure 3.5. Quanti-Blue™ assay. Standard procedure using QUANTI-Blue™ Solution (QB) for the detection 
of secreted SEAP from supernatant (SN).  Image adapted from https://www.invivogen.com/  
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Cells were seeded in 12-well plates and, the day after, were transfected in transient 

conditions with Lipofectamine LTX with PLUS reagents (Invitrogen), as described above, 

with a mix of DNA plasmids specific for each experiment, generally: 

 0.3 µg of firefly (Photinus pyralis) luciferase gene reporter vector carrying the 5’ 

transcription regulatory sequence of the desired transcription factor 

 0.1 µg of pRL-Null containing Renilla (Renilla reniformis) luciferase gene construct 

that is constitutively expressed used as control of transfection efficiency.  

 1 µg of the specific gene or control constructs used for each experiment.  

Also, cells without DNA plasmids transfected were used as blank to reduce background 

luminescence signals from cells. See table 3.4 for more information about DNA constructs. 

48 h post-transfection, passive lysis and quantification of Renilla and firefly levels were 

performed following the manufacturer’s instructions. Cells were lysed on ice with 100 µl of 

1X Passive Lysis Buffer (PLB) diluted in distilled water for each well, harvested in a 96-well 

plate and stored at -80 °C until assayed. To measure the luminescence levels, plate was 

thawed, centrifuged at 14000 rpm for 1 min and then, 20 µl of supernatant cell lysate was 

loaded into a 96-well white plate. Then, 100 µl of Luciferase Assay Reagent (LARII) 

containing luciferin (firefly luciferase substrate) was added and luminescence was 

measured within 1 min after addition. After that, firefly luciferase reaction was quenched 

with 100 µl of Stop&Glo® reagent that also contains coelenterazine (Renilla luciferase 

substrate), initiating the second luciferase reaction. Luminescence from both reactions was 

measured with GloMax®-Multi reader (Promega). 

Firefly luminescence values were normalized against Renilla luminescence values used as 

control of transfection for each sample. Samples were blanked using the blank wells. 

Measurements were done in parallel triplicates and values were averaged. Relative light 
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units (RLU) were obtained of experimental values related to empty vector or untreated 

(controls) values. 

3.5.7 Fluorescence in situ hybridization 

PRKCQ amplification or polysomy of the arm of the chromosome were PRKCQ is located 

was assessed on 35 patient samples of the MF cohort by fluorescence in situ hybridization 

(FISH) by our collaborator Alejandro A. Gru from University of Virginia, USA. Briefly, FISH 

was conducted (as previously described in (Luo et al. 2017)) on tissue sections (5 or 6 μm 

thick) after deparaffinization and target retrieval using steam cooking in citrate buffer for 

20 minutes, followed by a 20-minute cool-down period and a 5-minute wash with distilled 

water, then pepsin digestion (37 °C, 30 min) and a subsequent wash in 2x standard saline 

citrate. PRKCQ (10p15.1) and CEP10 (10p11) FISH probes (Abbott Molecular) were 

codenatured with the tissues at 90 °C for 13 min and hybridized at 37 °C overnight. After 

hybridization, slides were washed in 50% formamide/1× standard saline citrate (5 min) and 

2x standard saline citrate (5 min) at room temperature, air dried, counterstained with DAPI 

(0.5 l/ml), and examined on an Olympus BX60 fluorescent microscope with appropriate 

filters (Olympus). 

3.5.8 RNA extraction and purification 

Total RNA extraction from human cell lines was performed using TRIzol reagent 

(Invitrogen). Adherent cells were lysed in the plate: growing medium was removed by 

aspiration and 0.5 ml TRIzol was directly added to the plate. In the case of non-adherent 

cells, approximately 5·106 of cells were collected, centrifuged at 200 g for 5 min, medium 

was removed, and cells were lysed with 0.5 ml of TRIzol reagent. After 5 min of incubation 

at room temperature, cells were scratched from the plate or mixed with the pipette up and 

down for the non-adherent cells and the homogenized samples were collected in a 1.5 ml 
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tube. Next, 0.2 ml chloroform per 1 mL TRIzol was added and vigorously mixed for 15 s. 

TRIzol-chloroform mixture was incubated 2-3 min at room temperature and then 

centrifuged 12000 g for 15 min at 4 °C. The upper aqueous phase was collected and 

transferred to a new 1.5 mL tube. Then, 0.3 mL of 100% 2-propanol was added, mixed by 

inversion and incubated for 10 min at room temperature in order to precipitate the RNA. 

After this, it was centrifuged 12000 g for 10 min at 4 °C. Supernatant was discarded and the 

RNA pellet was washed once with 0.5 mL of 75% ice-cold ethanol by vortexing and then 

centrifuged at 7500 g 5 min at 4 °C. Ethanol was discarded, and the RNA pellet was 

resuspended in a final volume of 20-50 µl with RNAse-free water (depending on the RNA 

pellet observed). Finally, RNA resuspended was incubated in a heat block set at 55 °C for 10 

min to homogenise and then stored at -80 °C. RNA concentration was determined by 

measuring A260nm using a microvolume spectrophotometer (Nanodrop 2000, Thermo 

Scientific). RNA integrity was checked by subjecting samples to electrophoresis separation 

in a conventional agarose gel. Low-Agarose (Conda) was melting in 1X TAE buffer2 at 1% 

(w/v) and, prior to gel casting, “Real Safe Dye” (Real laboratory) was added (dilution 

1:20000). RNA samples were prepared as following: 0.2-1 µg of RNA was diluted in 5 µl 

RNAse-free water and 5 µl of RNA loading buffer (Thermo Scientific), heated for 10 min at 

65 ºC, loaded into a gel and run for 20 min at 100 V in 1X TAE buffer1. Finally, resulting 

separation was visualized in an UV-transilluminator and recorded using a Gel-Doc EZImager 

(Bio-Rad). Two bands corresponding to the 28S and 18S rRNA subunits should be observed. 

RNA integrity of RNA-sequencing samples was determined by High Sensitivity RNA 

ScreenTape analysis (Agilent). Only samples with a RNA integrity number (RIN) more than 

8 were chosen for sequencing.  

 
2 TAE buffer: 400 mM Tris, 200 mM acetic acid, 10 mM EDTA ph 8; stock concentration 10X 
and pH 8.3; stored at room temperature. 
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3.5.9 Reverse transcription and quantitative polymerase chain reaction 

(RT-qPCR) 

In order to analyse the expression of specific genes at the mRNA level, quantitative reverse 

transcription polymerase chain reaction (RT-qPCR) was performed. 

First, reverse transcription (RT) was performed using total extracted RNA from cells. 

Complementary DNA (cDNA) was obtained from 1 µg of total RNA as template using the 

SuperScript IV reverse transcriptase and random primers approach (Invitrogen), following 

the manufacturer’s instruction in a total volume of 20 µl. Reaction was divided in a 

preincubation step at 65 °C for 5 min and an incubation with RTase as follows:  

 

 

 

The obtained cDNA was stored at -20 °C until used. 

To quantify the levels of a specific mRNA in an experimental condition, cDNA was amplified 

by SYBR Green dye-based quantitative PCR using specific primers for the gene of interest. 

Primers were designed using the online PrimerBlast (NCBI; 

https://www.ncbi.nlm.nih.gov/tools/primer-blast/) software tool, according to PCR 

standard guidelines: length 18 to 25 bp, GC content 40 to 65%, no G at the 5’ end, no 

secondary structures and Tm= 50-65 °C. To check correct design and theorical conditions of 

PCR, an in silico assay was performed using the online UCSC In-Silico PCR tool (UCSC, 

https://genome.ucsc.edu/cgi-bin/hgPcr). PCR conditions and primers efficiency were 

experimentally determined depending on the nature and complexity of each sequence. 

Primer sequences and amplicon sizes used in RT-qPCR assays are shown in table 3.1.  

Time Temperature 
10 min 23 °C 
10 min 55 °C 
10 min 80 °C 
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 The Power SYBR™ Green PCR Master Mix (Applied Biosystems) supplied in a 2X 

concentration premix (containing SYBR™ GreenER dye, AmpliTaq DNA polymerase, UP 

(Ultra-Pure) with a proprietary hot start mechanism, heat-labile Uracil-DNA glycosylase, 

ROX dye passive reference, dNTP blend containing dUTP/dTTP and optimized buffer 

components) was used to amplify the cDNA in a 7300 Fast Real-Time PCR System (Applied 

Biosystems). The qPCR reaction was prepared as follows: 5 µl of Power SYBR™ Green PCR 

Master Mix were mixed with 0.3 µM of each primer (forward and reverse; stock 

concentration 10 µM), 1 µl of cDNA and DEPC-water until 10 µl of final volume. Then, 

reaction mix was added to a 384-well PCR plate in triplicates. Reaction mix without cDNA 

was used as no template control (NTC) to detect possible amplification signals from 

contaminant DNA or primer dimers. The protocol used for amplification and real time 

melting curve was the following: 

 

 

 

 

 

Quantitative PCRs were analysed using the SDS 2.2.2 software (Applied Biosystems). 

Threshold cycles (Ct) were determined by default at the beginning of DNA amplification in 

the exponential phase. The mRNA expression of genes of interest was normalized to mRNA 

expression of housekeeping genes (GAPDH and/or β-actin) using the comparative 2-ΔΔCt 

method (described in (Livak and Schmittgen 2001)): 

 

Time Temperature Cycles 
10 min 95 °C   1 

15 s 95 °C 
40 

10 min 60 °C 
15 s 95 °C Melt curve 

(+0.5 °C x 
80 cycles) 

15 s 60 °C 
15 s 95 °C 
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∆∆𝐶𝑡 = ൫𝐶𝑡௧௔௥௚௘௧ ௚௘௡௘ − 𝐶𝑡௛௢௨  ௞௘௘௣௜௡௚൯
௖௢௡ௗ௜௧௜௢௡

− ൫𝐶𝑡௧௔௥௚௘௧ ௚௘௡௘ − 𝐶𝑡௛௢௨௦௘ ௞௘௘௣௜௡௚൯
௖௢௡௧௥௢௟

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑙𝑒𝑣𝑒𝑙 (𝐹𝑜𝑙𝑑 𝐶ℎ𝑎𝑛𝑔𝑒) = 2ି∆∆஼௧ 

3.5.10 RNA sequencing 

Total RNA was extracted as described above. The RNA-Seq libraries were prepared at 

Centro Nacional de Análisis Genómico (CNAG) following the TruSeq®Stranded mRNA LT 

Sample Prep Kit protocol (Illumina). Briefly, total RNA (500ng) was enriched for the polyA 

mRNA fraction and fragmented by divalent metal cations at high temperature. In order to 

achieve the directionality, the second strand cDNA synthesis was performed in the 

presence of dUTP. The blunt-ended double stranded cDNA was 3´adenylated and Illumina 

platform compatible adaptors with Unique Dual Indexes and Unique Molecular Identifiers 

(Integrated DNA Technologies) were ligated. The ligation product was enriched with 15 PCR 

cycles and the final library was validated on an Agilent 2100 Bioanalyzer with the DNA 7500 

assay (Agilent). 

The libraries were sequenced on HiSeq4000 (Illumina, Inc) in a fraction of a HiSeq 4000 PE 

Cluster kit sequencing flow cell lane, following the manufacturer’s protocol for dual 

indexing. Image analysis, base calling and quality scoring of the run were processed using 

the manufacturer’s software Real Time Analysis (RTA 2.7.7) and followed by generation of 

FASTQ sequence files. 

RNA-seq paired-end reads were mapped against the human reference genome (GRCh38) 

using STAR version 2.5.3a (Dobin et al. 2013) with ENCODE parameters for long RNA. 

Annotated genes (gencode version 29) were quantified using RSEM version 1.3.0 with 

default parameters (Li and Dewey 2014). Differential expression analysis was performed 

with DESeq2 version 1.18.1 (Love et al. 2014).  
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3.6 Protein analysis 

3.6.1 Western blotting 

Phosphorylation and protein level quantification were analysed by immunoblotting 

(Western blot).  

Cell lysis was performed using RIPA buffer (Sigma) supplemented with phosphatase and 

protease inhibitors cocktails (Roche). Adherent cells were lysed directly in the plate: culture 

media was removed by aspiration, cells were washed once with 1X PBS and removed by 

aspiration, lysis buffer was added to the plate directly placed on ice and cells were 

scratched and collected to a 1.5 ml tube. Homogenized samples were kept on ice for 20 min 

and clarified by centrifuging at 14000 rpm for 15 min at 4 °C. Proteins-containing 

supernatant was collected and transferred to a new tube and stored at -20 °C until used. 

Quantification of protein concentration was carried out using DC protein assay reagent kit 

(Bio-Rad). Standard curve was established using 0-10 µg/µl of BSA (concentration stock 

1mg/ml, diluted in distilled water). Measurement of standards and samples was performed 

in a 96-wells plate mixing 1 µl of sample, 25 µl of reagent A and 200 µl of reagent B. Samples 

were incubated 5 min protected from light at room temperature and protein quantification 

was determined measuring absorbance at 595 nm in a Spark Multimode Microplate Reader 

(Tecan Trading AG). Protein concentration of experimental samples was estimated 

interpolating A595 nm values in the standard curve with concentration samples. 

Protein samples were prepared at a final concentration of 1 µg/µl by mixing the 

corresponding volume of protein extracts filled with lysis buffer until the total volume 

desired and 4X Laemmli buffer (Bio-Rad) supplemented with 2-mercaptoethanol (VWR) as 

loading buffer, added to a final 1X of working concentration. Then, samples were boiled at 
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95 °C for 5 min to denaturize proteins and kept on ice until used in order to avoid protein 

renaturation. 

Samples were loaded and separated according to their molecular weight in a 

polyacrylamide-SDS gel electrophoresis (SDS-PAGE). Percentage of acrylamide/bis-

acrylamide solution (29:1) (stock solution= 40%, w/v) (Bio-Basic) used for the gel 

preparation was dependent on the molecular weight of the protein to be analysed (ranging 

from 8-12 %). Electrophoresis was carried out in a Mini-PROTEAN Tetra cell cuvette (Bio-

Rad) powered by a basic PowerPAC supply (Bio-Rad) at constant voltage of 100-150 V for 

2-3 hours, using electrophoresis running buffer3. PageRuler plus pre-stained protein ladder 

(Thermo Scientific) was used to evaluate protein migration and separation during gel 

electrophoresis. Proteins were transferred from acrylamide gel to a 0.45 µm nitrocellulose 

blotting membrane (Amersham Protran, GE Healthcare) in a Mini-Trans blot cell (Bio-Rad) 

using cold transfer buffer4 at 4 °C and constant amperage of 350 mA for 60-120 min 

depending on the molecular weight of the proteins of interest. After protein transference, 

proteins-containing nitrocellulose membrane was stained with Red Ponceau5 solution for 5 

min at room temperature and distained with distilled water until proteins bands were seen 

to check protein load and integrity. Then, membrane was blocked for 30 min in 5 % non-fat 

dry milk-TBS-T6 buffer (w/v) in agitation at room temperature in order to avoid unspecific 

antibody binding during the following steps. Membrane was washed three times with TBS-

T for 10 min and incubated with the specific primary antibody diluted in 5% BSA-TBS-T (w/v) 

 
3 Running buffer: 25 mM Tris pH 8.3, 192 mM glycine, 0.1 % SDS (w/v); stock concentration 
10X, stored at room temperature. 
4 Transfer buffer: 25 mM Tris pH 8.3, 192 mM glycine, 10 % methanol (v/v); stock solution 1X, 
stored at 4 °C. 
5 Red Ponceau solution: 0.1% Ponceau S (w/v) (Bio-Rad) in 5 % acetic acid (v/v); stock solution 
1X, stored at room temperature. 
6 TBS-T: 0.05 % Tween 20 (v/v) diluted in TBS (20 mM Tris-HCl pH 7.5, 150 mM NaCl); stock 
solution 1X, stored at room temperature. 
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overnight at 4 °C in agitation (see table 3.5 for more details). After that, membrane was 

washed three times with TBS-T for 10 min and then, incubated at room temperature for 1 

hour with the corresponding secondary fluorochrome-conjugated antibody diluted in 5% 

BSA-TBS-T (w/v) as indicated in table 3.5. Finally, membrane was washed three times for 

10 min with TBS-T and proteins of interest were detected and recorded with an Odyssey 

Infrared Imaging scanner (Li-Cor biosciences). Immunoblot densitometry analysis on every 

band was calculated using Image Studio Software (LI-COR). Phosphorylation and total 

protein densitometry values were normalized to -Tubulin signal. 

3.6.2 Immunohistochemical staining 

Immunohistochemical (IHC) staining of Nuclear Factor of Activated T cells Cytoplasmic 1 

(NFATc1), Phospho Signal Transducer and Activator of Transcription 1 (P-STAT1), P-STAT3, 

P-STAT5, p50, p65, p52 and RelB (see table 3.5 for more details) was performed on tissue 

microarray sections and was assessed using routine IHC techniques for 78 tumoral patient 

samples in Pathology Service from Hospital Universitario Marqués de Valdecilla. A positive 

staining was defined as a score higher than 1 (score 0: < 5% cells positively stained, score 1: 

5-25%, score 2: 25-50% and score 3: > 50%). Each slide was reviewed by two independent 

pathologists, who examined the nuclear staining in each case.  

3.6.3 Nuclear-cytoplasmic fractionation 

Fractionation of nuclear-cytoplasmic proteins was performed with the Nuclear Extract Kit 

(Active Motif) following the manufacturer’s instructions. Approximately 3·106 of non-

adherent cells were collected and centrifuged at 4 °C 200 g for 5 min. Supernatant was 

discarded and cells were washed twice with ice-cold PBS/Phosphatase Inhibitors7, 

 
7 PBS/Phosphatase inhibitor: 0.4 ml 10X PBS + 0.2 ml phosphatase inhibitor (both provided by 
kit), add water to a final volume of 4 ml per sample.  
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centrifuged again and supernatant discarded keeping cell pellet on ice. Then, cells were 

gently resuspended in 250 µl of 1X Hypotonic Buffer8 and incubated on ice for 15 min. 25 

µl of Detergent was added to the cells, which were greatly vortexed for 10 s and centrifuged 

at 4 °C 14000 g for 30 s. Then, the supernatant (cytoplasmic fraction) was transferred to a 

new tube and stored at -80 °C. The nuclear proteins are in the pellet, which were 

resuspended in 50 µl of Complete Lysis Buffer9 by pipetting up and down and incubated for 

30 min on ice on a rocking platform set at 100 rpm. After that, suspension was greatly vortex 

 
8 Hypotonic buffer: 25 µl of 10X hypotonic buffer (provided by kit) and 225 µl of water, per 
sample.  
9 Complete Lysis Buffer: 2.5 µl 10mM DTT + 22.25 µl Lysis Buffer AM1 + 0.25 µl Protease 
Inhibitor Cocktail (provided by kit). Must be prepared fresh.  

Table 3.5. Antibodies used in this thesis 
Antibody Immunogen Type Species Source Reference Use Dilution

C-Rel Primary Rabbit (monoclonal) Abcam ab227519 IHC 1:25
NFATc1 197-304 aa (human) Primary Mouse (monoclonal) BD Biosciences 556602 IHC 1:100

p50 1-12 aa (human) Primary Rabbit (polyclonal) Millipore 06-886-I-25UG IHC 1:1000
p52 1-444 aa (human) Primary Mouse (monoclonal) Millipore 05-361 IHC 1:600
p65 1-286 (human) Primary Rabbit (monoclonal) Santa Cruz Biotech sc-8008 IHC 1:250

Phospho STAT1 Y701
residues surrounding Tyr701 

(human)
Primary Rabbit (monoclonal) Cell Signaling 9167 IHC 1:100

Phospho STAT3 Y705
residues surrounding Tyr705 

(human)
Primary Rabbit (monoclonal) Cell Signaling 9145 IHC 1:400

Phospho STAT5 Y694 residues surrounding Tyr694 Primary Rabbit (monoclonal) Cell Signaling  9314 IHC 1:100
RelB 380-579 (human) Primary Rabbit (monoclonal) Santa Cruz Biotech sc-48366 IHC 1:200
PKCθ Primary Mouse (monoclonal) BD Biosciences IP 1:200

ASK1
 residues surrounding Ile280 

(human)
Primary Rabbit (monoclonal) Cell Signaling 8662 IP/WB

1:200 (IP) 
1:1000 (WB)

STAT3 Primary Rabbit Active Motif 45196 TransAM 1:1000
Anti-rabbit HRP-
conjugated IgG

Secondary Active Motif 45196 TransAM 1:1000

FLAG (DDK)
produced by immunizing mice 

with a synthetic peptide 
(DYKDDDDK) coupled to KLH

Primary Mouse (monoclonal) Origene TA50011-100 WB 1:1000

JAK1
residues surrounding 

Tyr1022/1023 (human)
Primary Rabbit (polyclonal) Cell Signaling 3332 WB 1:1000

Phospho STAT1 Y701
residues surrounding Tyr701 

(human)
Primary Rabbit (monoclonal) Cell Signaling 9167 WB 1:1000

Phospho STAT3 Y705
residues surrounding Tyr705 

(human)
Primary Rabbit (monoclonal) Cell Signaling 9145 WB 1:1000

Phospho STAT3 S727
residues surrounding Ser727 

(human)
Primary Rabbit (monoclonal) Cell Signaling 94994 WB 1:1000

PKCθ
residues surrounding Pro632 

(human)
Primary Rabbit (monoclonal) Cell Signaling 13643 WB 1:1000

STAT1 Primary Rabbit (polyclonal) Cell Signaling 9172 WB 1:1000
STAT3 Primary Rabbit (monoclonal) Cell Signaling 4904 WB 1:1000

α Tubulin
Raised against Sarkosyl-

resistant ribbons from Sea 
Urchin sperm axonemes

Primary Mouse (monoclonal) Santa Cruz Biotech sc-23948 WB 1:5000

Goat anti-mouse IgG 
DyLight™ 800

Secondary Goat (polyclonal) Invitrogen SA535521 WB 1:10000

Goat anti-rabbit IgG 
DyLight™ 680

Secondary Goat (polyclonal) Invitrogen 35569 WB 1:10000
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for 30 s and centrifuged at 4 °C 14000 g for 10 min. The nuclear fraction-containing 

supernatant was transferred to a new tube and stored at -80 °C until used.  

3.6.4 STAT3 transcription factor ELISA-based binding assay 

To detect and quantify transcription factor STAT3 binding capacity to its consensus binding 

sites in HuT 78 cells, an ELISA-based assay was performed using a TransAM STAT3 

transcription factor assay kit (Active Motif), following the manufacturer’s instructions 

(STAT3-TransAM from here on). This ELISA-based method consists in a 96-well plate on 

which oligonucleotides containing the STAT consensus binding site (5’-TTCCCGGAA-3’) has 

been immobilized. The active form of STAT3 from nuclear extracts specifically binds to 

these oligonucleotides. To that end, nuclear proteins were lysate using Nuclear Extract Kit 

(Active Motif) and protein concentration was determined using DC protein assay reagent 

kit (Bio-Rad), as described above.  

30 µl of complete binding buffer10 was added to each well. Next, 5 µg of sample or positive 

control (provided by kit) diluted in 20 µl of complete lysis buffer2 were added and incubated 

for 3 hours at room temperature with mild agitation (rocking platform). For blank, 20 µl 

complete lysis buffer2 was added in a well. Next, each well was washed three times with 1X 

wash buffer (prepared from the provided 10X wash buffer diluted in distilled water), flicking 

the plate over a sink to empty the wells. Then, each well was incubated with the specific 

primary antibody (STAT3 1:1000) (see table 3.5) diluted in 100 µl of 1X antibody binding 

buffer (prepared from the provided 10X antibody binding buffer diluted in distilled water) 

for 1 hour at room temperature without agitation. After that, wells were washed three 

times with 1X wash buffer as described above and then, incubated at room temperature 

 
10 Complete binding buffer: 0.07 µl DTT + 0.34 µl Herring Sperm DNA in 33.4 µl Binding buffer 
AM3, per well. Must be prepared fresh. 
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for 1 hour with the corresponding secondary HRP-conjugated antibody (anti-rabbit IgG for 

STAT3, see table 3.5) diluted in 1X antibody binding buffer. Then, wells were washed four 

times, developing solution was added at each well and incubated for 10 min at room 

temperature protected from light to develop blue colour of each reaction. Finally, stop 

solution was added to each well (in presence of acid the blue colour turns yellow) and 

absorbance was read on a Spark Multimode Microplate Reader (Tecan Trading AG) within 

5 min at 450 nm with an optimal reference wavelength of 655 nm. Plate was blanked using 

the blank wells. 

3.6.5 Immunoprecipitation 

5·106 cells were used for each protein immunoprecipitation assay. Cells were collected, 

washed with PBS, centrifuged at 4 °C 200 g for 5 min and lysed. 500 µl of lysis buffer11 was 

added to the cell pellet and incubated on ice for 20 min. After incubation, cell lysate was 

centrifuged at 4 °C, 18000 g for 5 min. Proteins-containing supernatant was transferred to 

a new tube for protein immunoprecipitation and 50 μl of total cell lysate (10% of input) was 

kept at -20 °C until used as positive control. 

450 μl of cell lysate was used for a single immunoprecipitation and 2 μg of specific antibody 

or unspecific immunoglobulins (IgGs) used as control were added. Also, 10 μl of Protein G 

Sepharose™ 4 Fast Flow (GE Healthcare) beads, previously washed with lysis buffer, were 

added in order to capture protein-antibody immunocomplexes. The protein-antibody-

beads mix was incubated for 3 h at 4 °C under end-to-end rotation. After incubation, mix 

was centrifuged at 4 °C, 5000 g for 1 min, supernatant was discarded and pellet containing 

 
11 Lysis buffer: 20mM HEPES, 150 mM NaCl, 1% NP-40, 1:100 β-glycerophosphate and 1:1000 
of sodium orthovanadate, leupeptin and aprotinin. The proteases inhibitors must be added 
fresh.  
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immunocomplexes-beads mix was washed twice with wash buffer12. Finally, proteins were 

eluted from beads with 50 μl of 2X Laemmli Buffer13. At this point, non-immunoprecipitated 

total lysate (10% of input) was also mixed with 4X Laemmli buffer to a 1X final 

concentration. Samples were heated 5 min at 95 °C in order to denaturalise proteins and 

separate beads, were centrifuged in a spinner and were then subjected to immunoblot 

analysis.  

Detection of immunoprecipitated or co-immunoprecipitated proteins was determined by 

western blot with specific antibodies, as described above. Total lysate (10% of input) was 

used as positive control and IgG from the same species than the specific antibody was used 

as negative control in order to discard unspecific protein bindings. 

3.6.6 Mass spectrometry  

3.6.6.1 Immunoprecipitation for mass spectrometry analysis 

Protein immunoprecipitation for mass spectrometry analysis was carried out as described 

before but with an additional two washing steps without NP-40 (only 20mM HEPES, 150 

mM NaCl), in order to remove the detergent from samples and unspecific binders, and with 

a different elution step.  

3.6.6.2 Enzymatic digestion and elution 

Elution of proteins subjected to mass spectrometry analysis was carried out according to 

the “On-beads digestion” protocol used by Turriziani B. et al. (Turriziani et al. 2014). Beads-

immunocomplexes were trypsinized, in order to digest the baits and the interacting 

proteins in 60 μl of Elution Buffer I14. Digestion was performed at 27 °C for 30 min in a 

 
12 Wash buffer: 20mM HEPES, 150 mM NaCl, 1% NP-40 
13 2X Laemmli buffer: 4X Laemmli buffer diluted to 2X with wash buffer 
14 Elution Buffer I: 2 M urea, 50 mM Tris-HCl pH 7.5 and 5 μg/ml Trypsin 
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shaker at 800 rpm. After the initial digestion, samples were centrifuged at 7000 rpm for 1 

min and supernatant was transferred to a new tube. Beads were washed twice in Elution 

Buffer II15 and the supernatants were pooled. Samples were left on bench to continue the 

digestion overnight at room temperature.  

3.6.6.3 Stage Tips purification 

The following day, 20 μl of Iodoacetamide (5 mg/ml, freshly prepared) was added to the 

samples and then incubated for 30 min in the dark. Samples were treated with 1 μl 

trifluoroacetic (TFA) to stop the digestion and desalted in C18 stagetips. Briefly, the tips 

were prepared as following: a small disc of Empore material 3 M were placed in an ordinary 

pipette tip, preparing a single tip for each sample. Tips were activated with 50 μl of 50% 

acetonitrile, 0.1% TFA and washed with 50 μl of 0.1% TFA.  130 μl of sample was added to 

the column and washed twice with 50 μl 0.1% TFA. Liquid was passed through the pipette 

tip manually with the aid of a syringe or with a light centrifugation step. Peptides were then 

eluted using 25 μl of 50% acetonitrile, 0.1% TFA solution passed twice through the tip. This 

last step was performed manually with the help of a syringe. Samples were evaporated in 

a Speedvac concentrator (Thermo Scientific) and resuspended in 15 μl 0.1% TFA solution 

and then analysed by mass spectrometry.  

3.6.6.4 Mass spectrometry analysis 

The peptides were analysed on a Q-Exactive mass spectrometer connected to an Ultimate 

Ultra3000 chromatography system (both Thermo Scientific) incorporating an autosampler. 

5 μl of the peptides, for each sample, was loaded on a homemade column packed with 1.9 

μm ReprosilAQ C18 (Dr. Maisch) and separated by an increasing acetonitrile gradient, using 

a 40 min reverse-phase gradient (from 3%–32% acetonitrile) at a flow rate of 250 nl/min. 

 
15 Elution Buffer II: 2 M urea, 50 mM Tris-HCl pH 7.5 and 1 mM DTT  
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The mass spectrometer was operated in positive ion mode with a capillary temperature of 

220 °C, with a potential of 2000 V applied to the column. Data were acquired with the mass 

spectrometer operating in automatic data-dependent switching mode, selecting the 12 

most intense ions prior to tandem MS (MS/MS) analysis. The intensity of each ion is a 

relative measurement of the peptide concentration in the sample. Protein concentration is 

then calculated as the sum of all peptide intensities normalized by the size or number of 

observable peptides. 

3.6.6.5 Data analysis 

Mass spectra were analysed using the MaxQuant Software package of two technical and 

biological replicates of the experimental and control samples. Raw data files were searched 

against a human database (Uniprot HUMAN), using a mass accuracy of 6 parts per million 

(ppm) and 0.01 false discovery rate (FDR) at both peptide and protein level. Every single file 

was considered as separate in the experimental design; the replicates of each condition 

were grouped for the subsequent statistical analysis. Results were cleaned for reverse and 

contaminants and missing values (0) were replaced by a constant (1) in order to allow the 

following statistical analysis.  

 

3.7 Statistical analyses 

For patients’ studies, chi-square (2) or Fisher’s Exact test were used, as appropriate, to 

determine correlations between the presence and absence of markers used in patient 

samples using a two-sided test with a statistical significance of p < 0.05 (95% confidence 

interval). P values: * < 0.05 and ** < 0.005. 
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For in vitro studies, unless otherwise specified, all experiments were independent and 

numerical data were summarized as the mean ± SEM (standard error of the mean) using 

GraphPad Prism6 software. Each global mean was compared using two-tailed unpaired 

Student’s t-test with a statistical significance of p < 0.05 (95% confidence interval). P values: 

* < 0.05, ** < 0.005 and *** < 0.001. 

For the proteomic analysis, all experiments were independent, and the list of significant 

interactions was determined based on a fold change in peptide abundance in relation to 

negative control  2 and a p value < 0.05 (by Student’s t-test). 

For the transcriptome analysis, principal component analysis was done using the top 500 

most variable genes with the ‘prcomp’ R function and ‘ggplot2’ R library. Heatmaps with 

the top 50 differentially expressed genes were performed with the ‘pheatmap’ R package. 
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4. RESULTS 

4.1 Correlation of clinical stage with biomarker expression in MF 

patients’ samples.  

The malignant mechanisms that control the development and progression of CTCLs are not 

fully understood, although some of them have been identified in the last few years. Our 

group have contributed in the field by identifying recurrent mutations with activating 

effects over phospholipase C gamma 1 (PLCG1) (Vaqué et al. 2014) and Janus kinases/signal 

transducer and activator of transcription (JAK/STAT) signalling pathways (Vaqué et al. 2014) 

(C. Pérez et al. 2015). In addition, other studies have identified recurrent activating 

mutations in T-cell receptor (TCR) and tumour necrosis factor receptor (TNFR) signaling 

pathways as well as recurrent amplifications of protein kinase C theta (PRKCQ) and 

deletions of nuclear factor kappa B2 (NFκB2) leading to the activation of NF-κB pathway 

(Elenitoba-Johnson and Wilcox 2017)(Izban et al. 2000).  

To challenge the ability of a number of transcription factors to participate as disease 

mechanisms acting downstream of the afore mentioned signalling network (described in 

figure 1.4), we decided to study samples from a cohort of 78 clinically characterized MF 

patients paying special attention to the tumour stages. The status of PRKCQ gene was also 

analysed in 35 patients of the cohort.  

4.1.1 Clinical characteristics at diagnosis of the MF patients’ cohort 

The clinical characteristics of the patients are summarized in table 4.1. The median age is 

64 years (ranging from 12 to 87), 60% are male and 38% female (the sex of 1 patient is not 

available). 78% of the patients (61/78) were diagnosed with early stages (stage IA, IB or IIA) 

and 22% (17/78) with advanced stages (stage IIB, IIIA, IIIB, IVA1, IVA2 or IVB). Most of the 
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early stage patients (93%) presented patches/plaques with 7% displaying follicular lesions. 

Among advanced stage patients, 24% showed patches/plaques, and also follicular lesions, 

erythroderma and tumours (6%, 29% and 41% respectively).  

4.1.2 IHC analyses show differential STAT activation in patients with 

advanced-stage MF 

To study the activation status of these pathways in CTCL, immunohistochemical analyses of 

a specific transcription factors were used as endpoints for the activity of each pathway, as 

follows: Nuclear Factor of Activated T cells Cytoplasmic 1 (NFATc1, NFAT hereon), 

Phosphorylated Signal Transducer and Activator of Transcription 1 (P-STAT1), P-STAT3, and 

P-STAT5, together with p50, p65, p52 and RelB. These serve to analyse TCR-PLCG1, 

JAK/STAT and the canonical and non-canonical NF-κB pathways respectively. To this end 

skin biopsies were collected, fixed in formalin and embedded in paraffin for further studies. 

Each nuclear staining was reviewed by two independent pathologists. The antibodies and 

dilutions used are described in materials and methods section 3.6.2 (table 3.5). The 

amplification of PRKCQ and the polysomy of the chromosome region were the gene is 

Table 4.1. Clinical characteristics of patients included in the study. 

p value (χ2)
Age at MF diagnosis Median Range Median Range Median Range
Years 64 (12-87) 63 (12-87) 66 (38-87) -
Sex n % n % n %
Male 47 60 36 59 11 65
Female 30 38 25 41 5 29
Not available 1 1
Clinical stage at diagnosis
Early (IA-IIA) 61 78 61 100
Advanced (IIB-IVB) 17 22 17 100
MF skin lesions
Patches/plaques 61 78 57 93 4 24 <0.001
Follicular lesions 5 6.5 4 7 1 6 > 0.99
Erythroderma 5 6.5 0 5 29 <0.001
Tumour 7 9 0 7 41 <0.001

All Early stages Advanced stages

0.57

-
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located were also analysed by fluorescence in situ hybridization (FISH) in 35 patients of the 

cohort (26 early-stage and 9 advanced-stage patients). 

The staining and FISH results and their correlation with the clinical stage are shown in figure 

4.1 and table 4.2. Interestingly, P-STAT3  expression correlated with advanced stages of the 

disease at diagnosis (p = 0.004, table 4.2) as it was positively stained in 7 out of 58 early-

stage patients (12%) and in 8 out of 17 advanced-stage patients (47%). P-STAT1 was 

positively stained in 23% of advanced-stage patients versus 5.4% in early-stage patients, 

although this difference is not significant (p = 0.08). But if P-STAT1 and P-STAT3 proteins 

expression were analysed together, the correlation between stages would be significant: 8 

out of 55 early-stage patients (14.5%) with positive staining versus 7 out of 13 in advanced-

stage cases (53.8%) (p = 0.005). Finally, if all P-STAT proteins were analysed together, this 

signalling pathway would still be significantly activated in advanced stages (53.8% versus 

20.4%, p = 0.03). Among the rest of the transcription factors, no significant differences were 

found between clinical stages, even if the proteins from the canonical and non-canonical 

NF-κB pathways were analysed together.   

On the other hand, PRKCQ amplification or polysomy was not significantly correlated 

between CTCL stages: the positive hybridization was identified in 9 out of 26 (34.6%) early-

stage patients and in 2 out of 9 (22.2%) advanced-stage patients.  

All together, these results support the role of TCR/PLCG1-NFAT, PRKCQ, NFKB and JAK-STAT 

to participate alongside early and advanced stages of the disease and highlight the role of 

STAT activity, more specifically that of STAT3, in the progression of the disease towards 

advanced stages. 
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4.2 HEK-Blue™ IL-6 cells as a model to study STAT3 activation 

4.2.1 HEK-Blue™ IL-6 cell line set-up.  

As described before, phosphorylated STAT3 is a marker of advanced stages in MF patients. 

To study the implication of the activation of this transcription factor in the pathogenesis of 

the disease, we took advantage of HEK-Blue™ IL-6 (HEK-IL6 from here on) cells (see figure 

3.2 in materials and methods section 3.3.1). These HEK293 cells constitutively express a 

human IL-6 receptor gene and a reporter gene construct expressing a secreted embryonic 

alkaline phosphatase (SEAP) fused to four STAT3 binding sites. Once STAT3 is activated, 

SEAP reporter gene is expressed and secreted into cell culture supernatant. The 

See figure in previous page. 
Figure 4.1. Summary of immunohistochemical data from patients with clinical information. Patients 
showing status of the studied markers (colour: positive, white: negative, grey: data not available) and 
clinical stage (light green: early stage, dark green: advanced).  

Table 4.2. Correlation between immunohistochemical markers and clinical stages in MF patients. 
Positively and total stained cases and its percentage are shown for early and advanced stages. The 
significant statistics are bolded (* p ≤ 0.05, ** p ≤ 0.005).  

Pathway Marker n % n % p value (χ2)
PLCG1 NFAT 13/59 22 6/17 35.3 0.341

P-STAT1 3/56 5.4 3/13 23 0.08
P-STAT3 7/58 12 8/17 47 0.004 **
P-STAT5 9/58 15.5 3/17 17.6 0.48

P-STAT1/3 8/55 14.5 7/13 53.8 0.005 **
P-STAT1/3/5 11/54 20.4 7/13 53.8 0.03 *

p50 32/59 54.2 7/17 41.1 0.41
p65 11/57 19.3 5/17 29.4 0.5

p50/p65 32/57 56 7/17 41 0.41
p52 28/57 49.1 8/17 47 >0.99
RelB 12/58 20.7 6/17 35.3 0.33

p52/RelB 31/56 55.4 9/17 53 >0.99
PKC PRKCQ amp/poly 9/26 34.6 2/9 22.2 0.69

Canonical 
NF-κB

Non-canonical 
NF-κB

Early stage Advanced stage

JAK/STAT
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quantification of activated STAT3 is easily measured by a colorimetric enzyme assay (using 

the QUANTI-Blue™ solution, quanti-blue from here on, see figure 3.5 for more details) that 

determines the alkaline phosphatase activity in the supernatant of the cell culture.  

To study the dynamics of STAT3 activation in this system, HEK-IL6 cells were incubated with 

increasing concentrations of IL-6 for 24 h (figure 4.2A) and with 10 ng/ml at different time 

points (figure 4.2B) and the SEAP levels were measured. STAT3 is most activated in HEK-IL6 

treated for 48 h with 10 ng/ml of IL-6. It is known that to activate its targets genes, 

phosphorylated STAT3 can homodimerized or heterodimerized with STAT1 upon IL-6 

stimulation. In this regard, phosphorylation of STAT1 and STAT3 in Y701 and Y705 

respectively, upon IL-6 treatment at different time points was also determined by western 

blot (figure 4.2C). Both STAT1 and STAT3 are most phosphorylated, in these residues, after 

60 min of IL-6 stimulation.  

Figure 4.2. HEK-IL6 cells set-up for the detection of STAT3 activation. Quantification of SEAP release in 
HEK-IL6 cells A) treated with increasing concentrations and B) at different time points of IL-6 (10 ng/ml). 
Error bars show SEM. * compared with the control vehicle (** p < 0.01, *** p < 0.001). C) Western blot of 
whole cell lysates starved, treated for 1 h with IL-6 (10 ng/ml) at indicated time points and incubated with 
the indicated antibodies. Images are representative of each western blot. 
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4.2.2 JAK1 Y654F increase STAT3 activation upon IL-6 stimulation in HEK-

IL6 cells.  

Previous results from our laboratory have highlighted a potential role for JAK/STAT 

signalling pathway in CTCL. In this regard we detected mutations in the pseudokinase 

domains of JAK1 and JAK3 kinases using two different cohorts of CTCL cases (C. Pérez et al. 

2015)(Vaqué et al. 2014). In these studies, JAK1 was found recurrently mutated in CTCL 

patients (R659C), and in HuT 78 (Y654F), a human SS cell line. To study their contribution 

towards STAT activation, we first generated both JAK1 cDNA mutants. We confirmed 

mutations by Sanger sequencing (figure 3.4A) and their protein expression by western blot 

(figure 3.3A). Then, HEK-IL6 cells were transfected with FLAG-JAK1 wild type (WT), FLAG-

JAK1 R659C and FLAG-JAK1 Y654F mutants and empty vector (EV) as control, incubated 

with control vehicle or IL-6 (10 ng/ml) and the STAT3 activity and phosphorylation was 

determined by quanti-blue and western blot respectively (figure 4.3A and 4.3B). In these 

settings, only JAK1 Y654F mutant significantly activated STAT3, and this activation as well 

as the increase in phosphorylation (Y705) was enhanced upon IL-6 stimulation. This can 

suggest that this mutation confers a greater transduction potential of extracellular signals, 

like IL-6 in this case, towards STAT3 activation. The activation of STAT3 by this mutant was 

confirmed by luciferase reporter assay (STAT3-luc, figure 4.3C).  Furthermore, HEK-IL6 cells 

expressing JAK1 Y654F mutant and treated for 24 h with the JAK inhibitor, ruxolitinib, 

significantly decrease the activation of STAT3, suggesting that this activation is dependent 

on its kinase activity (figure 4.3D). 
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Figure 4.3. JAK1-Y654F activates STAT3-mediated transcription. A) Quantification of SEAP release in cells 
transfected with empty vector (EV) as control, JAK1 WT and JAK1 R659C and Y654F mutants, treated for 
48 h with control vehicle or IL-6 (10 ng/ml). Error bars show SEM. N.s. = compared with JAK1 WT treated 
with control vehicle (n.s. p > 0.05). # compared with JAK1 WT treated with IL-6 (### p < 0.001). B) Western 
blot of whole cell lysates transfected with same constructions as A), treated for 1 h with control vehicle 
or IL-6 (10 ng/ml) and incubated with indicated antibodies. Images are representative of each western 
blot. STAT3 luciferase activity in HEK-IL6 cells transfected with C) EV, JAK1 WT or JAK1 Y654F mutant; or 
D) EV and JAK1 Y654F mutant and treated for 24 h with control vehicle or ruxolitinib. Error bars show 
SEM. * compared with EV (*** p < 0.001). # compared with JAK1 WT or JAK1 Y654F treated with control 
vehicle (## p < 0.01, ### p < 0.001).  
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4.3 PLCG1 downstream signalling towards NFAT, NF-κB and STAT3 

transcriptional activity 

4.3.1 PLCG1 S345F activates NFAT and NF-κB-mediated transcription by 

a PRKCQ dependent manner in HEK-IL6 cells.  

Recurrent PLCG1 S345F mutations can be frequently detected among MF and SS cases 

(Vaqué et al. 2014). This mutation localises in one of the catalytic domains of PLCG1 (figure 

3.4B) and has been widely confirmed by other studies (Choi et al. 2015; Ungewickell et al. 

2015; Mcgirt et al. 2015; Woollard et al. 2016). From a mechanistic perspective, the 

contribution of activated PLCG1 to the disease pathogenesis and/or progression is still not 

fully understood. To that end, we studied the effects of PLCG1 S345F over potential 

downstream effectors. First, mutant sequence was confirmed by Sanger sequencing (figure 

3.4B), and the WT and mutant protein expression was analysed by western blot (figure 

3.3A). Then, HEK-IL6 cells were co-transfected with this PLCG1 mutant alongside NFAT or 

NF-κB luciferase reporter gene constructs (NFAT-luc, NF-κB-luc hereon) and their activity 

was measured 48 h after. As could be anticipated, PLCG1 S345F significantly activated 

NFAT- and NF-κB-mediated transcription compared to PLCG1 WT (figure 4.4A).  

In addition to the above mentioned experimental settings, cells were treated with specific 

inhibitors of each pathway as follows: 1) tacrolimus, that in a complex with FK506 binding 

protein (FKBP12) inhibits the phosphatase activity of calcineurin (CaN) towards the 

activation of NFAT proteins, blocking its nuclear translocation and further activation of its 

target genes; 2) sotrastaurin, pan-protein kinase C (PKC) inhibitor (inactive to PKCζ) with an 

increased 3-fold selectivity for the isoform PKCθ (PRKCQ hereon) versus PKCβ1 and other 

isoforms; and 3) ruxolitinib, a pan-JAK inhibitor with much more sensitivity to JAK1/2 versus 

JAK3. To that end, HEK-IL6 cells co-transfected with PLCG1 S345F and NFAT-luc were 
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Figure 4.4. PLCG1 S345F promotes NFAT- and NF-κB-mediated transcription. A) NFAT and NF-κB 
luciferase activity in HEK-IL6 cells transfected with empty vector (EV), PLCG1 wild type (WT) or S345F 
mutant. B) NFAT luciferase activity of HEK-IL6 cells transfected with EV or PLCG1 S345F mutant and 
treated for 24 h with control vehicle and different concentrations of Tacrolimus or sotrastaurin. C) NF-κB 
luciferase activity of HEK-IL6 cells transfected with EV or PLCG1 S345F mutant and treated for 24 h with 
control vehicle and different concentrations of tacrolimus, sotrastaurin or ruxolitinib. Error bars show 
SEM. * compared with PLCG1 WT or EV (* p < 0.05, ** p < 0.01, *** p < 0.001). # compared with PLCG1 
S345F treated with control vehicle (# p < 0.05, ## p < 0.01). 
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treated for 24 h with tacrolimus or sotrastaurin before assessing NFAT activity. As shown in 

figure 4.4B, both inhibitors abrogated the activation of NFAT-mediated transcription by 

PLCG1 S345F, suggesting that, as previously described, downstream of PLCG1, both CaN 

and PRKCQ can participate in its activation. Alongside this, HEK-IL6 cells were also co-

transfected with the mutant and NF-κB-luc and treated for 24 h with tacrolimus, 

sotrastaurin or ruxolitinib (figure 4.4C). Our results, as could be anticipated, inhibition of 

CaN and JAK did not affect NF-KB activation by PLCG1, whereas abrogating PRKCQ activity 

did. To our surprise this effect, despite being significant, was very modest and therefor 

might suggest that PRKCQ may not participate as a central mediator of NF-κB activation 

downstream PLCG1 signalling.  

4.3.2 PLCG1 S345F promotes activation of STAT3 in HEK-IL6 cells.  

As describe in section 4.1, activated STAT3 is a significant marker of advanced disease in 

MF patients. Furthermore, activating PLCG1 S345F mutation may be acquired along the 

progression of the disease as it was detected in advanced MF or in SS lesions. Interestingly, 

a patient sample that was found negative for the mutation, showed this mutation 14 

months later (Vaqué et al. 2014). Thus, the connection between PLCG1 signalling pathway 

and the activation of STAT3 was investigated in the setting of the deregulated CTCL network 

described in the introduction (figure 1.4).  

First, HEK-IL6 were transfected with PLCG1 WT, PLCG1 S345F mutant and EV (negative 

control) and phosphorylation of STAT3 proteins was analysed. Since it has been described 

that both tyrosine 705 (Y705) and serine 727 (S727) phosphorylations of STAT3 are required 

for maximal transcriptional activation (Wen et al. 1995), we decided to study both. As 

shown in figure 4.5, overexpressing both PLCG1 WT and S345F mutant significantly increase 

STAT3 phosphorylation in both residues.  
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Taking advantage of the quanti-blue and luciferase reporter assay systems, we studied 

STAT3 transcriptional activity downstream of PLCG1. HEK-IL6 cells were transfected with 

EV, PLCG1 WT and PLCG1 S345F mutant and STAT3-mediated transcription was determined 

48 h after by using quanti-blue (figure 4.6A) or by luciferase using STAT3 luciferase reporter 

(STAT3-luc from here on, figure 4.6B). In both settings, PLCG1 S345F significantly activated 

STAT3.  

To gain further insight into the mechanisms that participate downstream PLCG1 in STAT3 

activation, we incubated transfected cells with the inhibitors described above: tacrolimus 

(CaN), sotrastaurin (PRKCQ) and ruxolitinib (JAK). Thus, HEK-IL6 cells were transfected with 

PLCG1 S345F and EV and incubated for 24 h with increasing concentrations of each inhibitor 

after which STAT3-luc was measured (figure 4.7A). In these conditions, only inhibitors of 

PRKCQ and JAKs blocked STAT3 activation downstream of activated PLCG1. The levels of 

phosphorylated STAT3 were also analysed by western blot in HEK-IL6 cells starved 

Figure 4.5. PLCG1 S345F promotes STAT3 phosphorylation in Y705 and S727 residues. A) Western blot 
analyses of whole HEK-IL6 cells lysates transfected with empty vector (EV), PLCG1 wild type (WT) or S345F 
mutant, starved overnight and incubated with indicated antibodies. Images are representative of each 
western blot. Quantification of protein expression of STAT3 phosphorylated at B) Y705F or C) S727 
residues relative to total STAT3 of HEK-IL6 cells transfected as A) (n=3). Error bars show SEM. * compared 
with EV (* p < 0.05, ** p < 0.01).  



RESULTS 

97 

overnight and incubated with sotrastaurin for 3 h (figure 4.7B). The changes of 

phosphorylated signals in Y705 and S727 residues were quantified and related to total 

levels of STAT3, all normalised to -tubulin signals (figure 4.7C and 4.7D, respectively). Our 

data show that PLCG1 S345F increases the phosphorylation of STAT3 in both Y705 and S727 

residues and inhibition of PRKCQ significantly reduces these.  

 

4.4 TPA-mediated signalling towards NFAT, NF-κB and STAT3 

4.4.1 TPA increases NFAT- and NF-κB-mediated transcription in HEK-IL6 

cells.  

Since PRKCQ seems to be implicated in the activation of NFAT and NF-κB downstream of 

PLCG1 (see figure 4.4), we decided to use 12-O-tetradecanoylphorbol-13-acetate (TPA from 

here on) in our system. TPA is a diester phorbol that activates PKCs, we used it in HEK-IL6 
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Figure 4.6. PLCG1 S345F promotes STAT3-mediated transcription. Quantification of A) SEAP release or 
B) STAT3 luciferase activity in HEK-IL6 cells transfected with empty vector (EV), PLCG1 wild type (WT) or 
S345F mutant. Error bars show SEM. * compared with EV (* p < 0.05), # compared with PLCG1 WT (# p < 
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Figure 4.7. PLCG1 S345F promotes STAT3-mediated transcription through a mechanism involving 
PRKCQ and JAK kinases in HEK-Blue™ IL-6 cells. A) STAT3 luciferase activity in HEK-IL6 cells transfected 
with empty vector (EV) or PLCG1 S345F mutant and treated for 24h with control vehicle and tacrolimus, 
sotrastaurin or ruxolitinib at the indicated concentrations. B) Western blotting analyses of whole cells 
lysates transfected as A), starved overnight, treated for 3h with control vehicle or Sotrastaurin and 
incubated with the indicated antibodies. Images are representative of each western blot. Quantification 
of protein expression of STAT3 phosphorylated at C) Y705F (n=4) or D) S727 (n=3) residues relative to total 
STAT3 of HEK-IL6 cells transfected as B). Error bars show SEM. * compared with EV (* p < 0,05, ** p < 0.01, 

*** p < 0.001). # compared with PLCG1 S345F treated with control vehicle. (# p < 0,05, ## p < 0.01). 
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Figure 4.8. TPA activates NFAT- and NF-κB-mediated transcription through mechanism involving PRKCQ 
activity. NFAT (left) and NF-κB (right) luciferase activities in HEK-IL6 cells A) treated with control vehicle 
or TPA at indicated concentrations and B) treated with control vehicle or sotrastaurin and with control 
vehicle or TPA. C) NFAT luciferase activity of HEK-IL6 cells treated with control vehicle or TPA and with 
control vehicle or Tacrolimus. All treatments were performed for 2 h with control vehicle or inhibitor (1 
µM) and then for 24 h with control vehicle or TPA (10 ng/ml). Error bars show SEM. * compared with 

control vehicle (* p < 0,05, *** p < 0.001). # compared TPA alone (### p < 0.001). 
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transfected with the luciferase reporter genes, at increasing concentrations during 24 h 

(figure 4.8A). TPA (10 ng/ml) significantly activated NFAT-luc and NFKB-luc. Then, the 

participation of PRKCQ was analysed in the same conditions but including a pre-incubation 

of 2 h with sotrastaurin (PRKCQ inhibitor), before using TPA. As shown in figure 4.8B, 

sotrastaurin abrogated NFAT- and NF-κB activities elicited by TPA. As control for NFAT 

activity, cells were transfected with NFAT-luc and incubated with tacrolimus and TPA. As 

previously described, the TPA-induced NFAT activation is also dependent on CaN (figure 

4.8C).  

4.4.2 TPA increases STAT3-mediated transcription through PRKCQ and 

not through JAKs in HEK-IL6 cells. 

We have previously shown that PLCG1 can activate STAT3 in a PKC- and JAK-dependent 

fashion figure 4.7 so we decided to study the implication of PRKCQ towards STAT3 activity 

more in detail. To that end, HEK-IL6 cells were transfected with STAT3-luc and treated with 

increasing concentrations of TPA for 24 h. As shown in figure 4.9A, TPA mediates STAT3 

activation. Using specific inhibitors, we observed that this is abrogated by sotrastaurin 

(figure 4.9B left) but, remarkably, the specific JAK inhibitor did not (figure 4.9B right). These 

results suggest that, in our experimental settings, the increase of STAT3-mediated 

transcription, downstream PRKCQ activation can occur independently of JAK kinases. 

To further confirm these results, protein levels of phosphorylated STAT1 and STAT3 were 

analysed alongside transcriptional STAT3 activity using quanti-blue assay in HEK-IL6 cells 

treated with TPA. This time we decided to pre-incubate cells with several inhibitors in order 

to investigate the potential implication of other signaling pathways that have been 

implicated in the regulation of STAT3 activation. The inhibitors used, apart from the ones 
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already described and used before, were: ibrutinib (targeting BTK), dasatinib (targeting Abl, 

Src and c-Kit), fostamatinib (targeting Syk) and MK-2206 (targeting Akt1/2/3).  

To analyse the phospho-protein levels, HEK-IL6 were pre-treated for 3 h with each inhibitor 

(1 µM) and then incubated for 1 h with TPA (10 ng/ml) (figure 4.10A). TPA increases tyrosine 

phosphorylation of STAT1 (Y701) and STAT3 (Y705), which was abrogated by specific 

PRKCQ, JAK and Syk inhibitors. TPA also promotes STAT3 phosphorylation at S727, but 

interestingly, only the PRKCQ inhibitor abrogated it. Thus, regarding PRKCQ, our data show 

that it can promote STAT3 phosphorylation by JAK or SYK-dependent (Y705) and JAK-

independent (S727) mechanisms. Regarding STAT3 transcriptional activity, only 

sotrastaurin (PRKCQ inhibitor) completely abrogated STAT3 activation downstream of PKC 

activation by TPA (figure 4.10B). This is a surprising result that strongly suggests that, STAT3 

phosphorylation at S727 can be a mayor mechanism to control STAT3 activity downstream 

of PRKCQ.  

Figure 4.9. TPA activates STAT3-mediated transcription through mechanism involving PRKCQ activity. 
STAT3 luciferase activities in HEK-IL6 cells A) treated with control vehicle or TPA at indicated 
concentrations and B) treated for 2 h with control vehicle, sotrastaurin (left) or ruxolitinib (right) (1 µM) 
and for 24 h with control vehicle or TPA (10 ng/ml). Error bars show SEM. * compared with control vehicle 
(* p < 0,05, *** p < 0.001). # compared TPA alone (## p < 0.01, ### p < 0.001). 
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Figure 4.10. Phosphorylation of STAT3 Y705 is not sufficient for STAT3-mediated transcriptional activity 
downstream PRKCQ activation by TPA in HEK-IL6 cells. A) Western blot analyses of whole HEK-IL6 cell 
lysates starved, treated for 3 h with control vehicle or the indicated inhibitors (1 µM) and for 1 h with 
control vehicle or TPA (10 ng/ml) and incubated with the indicated antibodies. Images are representative 
of each western blot (n=3). B) Quantification of SEAP release of HEK-IL6 cells treated for 2 h with control 
vehicle or the indicated inhibitors (1 µM) and overnight with control vehicle or TPA (10 ng/ml). Error bars 
show SEM. * compared with control vehicle (*** p < 0.001). # compared with TPA alone (### p < 0.001). 

Figure 4.11. Activation of STAT3-mediated transcription by JAK-dependent mechanism. Quantification 
of SEAP release in HEK-IL6 cells treated for 1 h with control vehicle or IL-6 (10 ng/ml) and overnight with 
control vehicle or the indicated inhibitors (1 µM). Error bars show SEM. * compared with control vehicle 
(*** p < 0.001). # compared with IL-6 alone (### p < 0.001). 
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Furthermore, JAK-dependent STAT3 activation was measured by quanti-blue as positive 

control of ruxolitinib. To that end, HEK-IL6 were treated for 2 h with tacrolimus, sotrastaurin 

or ruxolitinib and then incubated overnight with IL-6. As shown in figure 4.11, only 

ruxolitinib was able to abrogate IL-6-dependent STAT3 activation as expected.  

Thus, in the context of PLCG1/PRKCQ signalling network, activation of STAT3 can be 

triggered by JAK-dependent and JAK-independent mechanisms.  

4.4.3 JAK-dependent and -independent regulation of STAT3 activity in T 

cells 

As shown before, regulation of STAT3 activity, downstream of PRKCQ, can occur through 

the acquisition of phosphorylations in residues Y705 and S727. In order to study STAT3 

activation and transcriptional activity, downstream PRKCQ in a human CTCL setting, we 

took advantage of Jurkat (Acute T Cell Leukemia), MyLa (advanced MF) and HuT 78 (SS) cell 

lines. To study phosphorylation affecting STAT3, cells were starved and pre-incubated for 3 

h with tacrolimus, sotrastaurin or ruxolitinib and then treated for 1 h with TPA, and whole 

cell lysates were incubated with the indicated antibodies. As shown in figure 4.12A, TPA 

increases the phosphorylation of STAT1 (Y701) and STAT3 (only at S727) in Jurkat cells, and 

only sotrastaurin, abrogates both phosphorylations. In contrast, ruxolitinib only decreases 

STAT1 phosphorylation at Y701. Phosphorylation of STAT3 at Y705 is not detectable upon 

TPA stimulation in these cells. 

In the case of CTCL cells, TPA promoted the phosphorylation of STAT1-Y701, STAT3-Y705 

and STAT3-S727, perhaps with the exception of STAT3-Y705 in MyLa cells since these cells 

display an increased and steady level of phosphorylated STAT3 Y705 even under starvation 

conditions (figure 4.12B and C). Also, in both cell lines, ruxolitinib suppressed TPA-mediated 
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STAT1 and STAT3 phosphorylation at tyrosine residues. By contrast, sotrastaurin 

suppressed STAT3-S727 and STAT1-Y701 phosphorylation in both cell lines and in STAT3-

Y705 only in Hut 78. These results, we believe are aligned to our previous observations in 

HEK IL6 cells and robust the idea that downstream PLCG1/PRKCQ, STAT3 activation can be 

triggered by JAK-dependent and JAK-independent mechanisms in a CTCL context.   

In order to explore how these mechanisms can regulate STAT3 transcriptional activity, we 

performed a TransAM assay (STAT3-TransAM from here on) in HuT 78 cells. This is an ELISA-

Figure 4.12. JAK-dependent and -independent regulation of STAT3 activity in Jurkat, MyLa and HuT 78 
cells. Western blot analyses of starved A) Jurkat, B) MyLa and C) HuT 78 cells treated for 3 h with control 
vehicle or the indicated inhibitors (1 µM) and for 1 h with control vehicle or TPA (10 ng/ml) and incubated 
with the indicated antibodies. Images are representative of each western blot (n=3). D) Quantification of 
STAT3 activity in HuT 78 cells treated for 3 h with control vehicle or the indicated inhibitors (1 µM) and 
overnight with control vehicle or TPA (10 ng/ml) (n=3). Error bars show SEM. * compared with the control 
vehicle (*** p < 0.001). # compared with TPA alone (### p < 0.001). 
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based method consisting in a 96-well plate on which oligonucleotides containing the STAT3 

consensus binding site (5’-TTCCCGGAA-3’) has been immobilized. The active form of STAT3 

from nuclear extracts specifically binds to these oligonucleotides. The nuclear extracts are 

incubated with a primary antibody that recognizes an epitope on STAT3 that is accessible 

only when STAT3 is activated and bound to the DNA. Then, a secondary antibody 

conjugated with a horseradish peroxidase (HRP) is added providing a sensitive and easily 

colorimetric quantification. So, HuT 78 cells were pre-incubated for 3 h with tacrolimus, 

sotrastaurin or ruxolitinib, and then treated overnight with TPA. Then nuclear extracts were 

obtained and incubated in the STAT3-TransAM well plate. Our data show that TPA can 

increase STAT3 activity in these cells, which is abrogated by PRKCQ and JAK inhibitors 

(sotrastaurin and ruxolitinib respectively, figure 4.12D). Our data suggest that both 

signalling axis are implicated in the control of STAT3 transcriptional activity upon TPA 

stimulation in these cells. As expected, and in these settings, CaN is not implicated in STAT3 

activation upon TPA treatment.  

 

4.5 PRKCQ downstream signalling towards NFAT and STAT3 

activation 

4.5.1 PRKCQ expression in HEK-IL6, Jurkat and CTCL cell lines 

PRKCQ has been found amplified in 20-30% of CTCL patients in two independent genomic 

studies and, interestingly, occurred in a mutually exclusive manner with PLCG1 mutations 

(Choi et al. 2015; Woollard et al. 2016). We decided to study PRKCQ gene amplification and 

mRNA and protein expression in HEK-IL6, Jurkat, MyLa and HuT 78 cells (PRKCQ 

amplification was not studied in HEK-IL6). Both polysomy of chromosome 10 where PRKCQ 
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is located and PRKCQ amplification were studied by fluorescence is situ hybridization (FISH) 

in collaboration with Dr. Alejandro A. Gru from Department of Pathology, University of 

Virginia, USA. As shown in figure 4.13A, Jurkat cells show both chromosome 10 polysomy 

and PRKCQ amplification whereas HuT 78 cells only have chromosome 10 polysomy and 

MyLa none of them. These results correlate well with mRNA (figure 4.13B) and protein 

(figure 4.13C) expression, where the highest PRKCQ expression is found in Jurkat cells, 

followed by HuT 78, HEK-IL6 and MyLa cell lines.  

Thus, expression levels of PRKCQ is detectable in all cell models used with marked 

differences between MyLa (lower) and HuT 78 (higher) CTCL cells. 

Figure 4.13. Expression of PRKCQ in HEK-IL6, Jurkat, MyLa and HuT 78 cells. A) Study of chromosome 
10p11 polysomy and PRKCQ amplification in Jurkat, MyLa and HuT 78 cells by fluorescence in situ 
hybridization. Representative image of PRKCQ (green) and 10q23/CEP10 (red) probes in Jurkat cells. B) 
mRNA expression of PRKCQ in HEK-IL6, Jurkat, MyLa and HuT 78 cells. C) Basal protein expression and 
quantification (n=2) of PKCθ (PRKCQ) in same cells as B). Images are representative of each western blot. 
Error bars show SEM.  
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4.5.2 A constitutively active PRKCQ mutant activates NFAT but not NF-

κB   

In order to study whether PRKCQ by itself is sufficient to activate NFAT and NF-κB, a 

constitutively active mutant was generated by direct mutagenesis. The construct pCMV6-

FLAG-PRKCQ was mutated in residue 148, changing from wild type GCC (A, alanine) to 

mutant GAG (E, glutamic acid), (see methods). To confirm this mutation, pCMV6-FLAG-

PRKCQ A148E (PRKCQ A148E hereon) and its WT counterpart (PRKCQ WT  hereon) were 

sequenced (chromatograms and localization of mutant within protein domains are 

represented in figure 3.4C) and their protein expression was analysed by western blot 

(figure 3.3B). Then, HEK-IL6 cells were co-transfected with empty vector (EV), PRKCQ WT 

and PRKCQ A148E mutant alongside NFAT- or NF-kB-luc reporter genes and their activity 

was measured. As previously described, activated PRKCQ significantly increased NFAT-

mediated transcription (figure 4.14A), probably synergizing with that of CaN (Guy Werlen 

et al. 1998). This activation was dependent in its kinase activity as sotrastaurin abrogated 

PRKCQ-mediated NFAT activation (figure 4.14B). On the other hand and surprisingly, 

mutant PRKCQ did not activate NF-kB-mediated transcription (figure 4.14C) despite it has 

been described that PRKCQ can activate NF-kB by TCR/CD28 co-stimulation in mature T 

cells (Lin et al. 2000; Sun et al. 2000).  

Given this unexpected result and considering the biological data regarding CTCL 

progression and its association with STAT3, previously shown in this thesis, we decided to 

focus on the mechanisms used by PRKCQ to promote STAT3 activation.   
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4.5.3 PRKCQ activates STAT3 through a mechanism that depends on its 

kinase activity 

As described in section 4.1, only activated STAT3 correlates with CTCL progression to 

advanced stages. Furthermore, as described in section 4.4.3 and downstream of PLCG1, 

STAT3 activation is triggered, at least in part, by PRKCQ-dependent mechanisms in CTCL 

cells. So, PRKCQ WT was transfected in HEK-IL6 cells, alongside STAT3-luc, and then cells 

were stimulated with TPA. As shown in figure 4.15A, overexpression of PRKCQ upon TPA 

stimulation increased 7-fold STAT3-mediated transcription whereas, when PRKCQ was not 

overexpressed, TPA only increased it 3-fold. Furthermore, expression of the PRKCQ active 

mutant induced STAT3-luc (figure 4.15B) and STAT3 phosphorylation (figure 4.15C) in S727, 

in the absence of TPA. Also, and as expected, sotrastaurin inhibited STAT3-luc activation 

elicited by PRKCQ A148E in HEK-IL6 cells (figure 4.15D).  

Figure 4.14. Constitutively active PKCθ mutant activates NFAT-mediated transcription but not that of 
NF-κB. NFAT luciferase activity in HEK-IL6 cells A) transfected with empty vector (EV), PRKCQ wild type 
(WT) or PRKCQ A148E mutant and B) transfected with EV and PRKCQ A148E and treated 24 h with control 
vehicle or sotrastaurin (1 μM). C) NF-κB luciferase activity in HEK-IL6 transfected with same conditions as 
A). Error bars show SEM. * compared with EV (n.s. p > 0,05, * p < 0,05, *** p < 0.001). 
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Thus, as part of the signaling network activated downstream of PLCG1, PRKCQ can trigger 

STAT3 phosphorylation and transcriptional activity through a mechanism that depends on 

its kinase activity.   

 

Figure 4.15. PRKCQ activates STAT3 through a mechanism that depends on its kinase activity. STAT3 
luciferase activity in HEK-IL6 cells transfected with A) empty vector (EV) or PRKCQ WT (2 ug) and treated 
overnight with control vehicle or TPA (10 ng/ml); B) EV, PRKCQ WT or PRKCQ A148E and D) EV or PRKCQ 
A148E and treated overnight with control vehicle or sotrastaurin (1 μM). C) Western blot analyses of 
whole HEK-IL6 cells lysates transfected with EV, PRKCQ WT or PRKCQ A148E and incubated with indicated 
antibodies. Images are representative of each western blot. Error bars show SEM. * compared with EV 
treated with control vehicle (A,D) or with EV (B) (* p < 0.05, ** p < 0.01). # compared with EV treated with 
TPA (A) or with PRKCQ A148E treated with control vehicle (D) (## p < 0.01, ### p < 0.001). 
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4.6 Effects of sotrastaurin and ruxolitinib in CTCL proliferation and 

apoptosis 

4.6.1 Sotrastaurin inhibits cell proliferation and promotes apoptosis in 

HEK-IL6, Jurkat and CTCL cells. 

Since PRKCQ can promote STAT3-mediated transcription in CTCL cells and its inhibition 

counteracts STAT3 activation, the effects of sotrastaurin in cell proliferation and apoptosis 

were analysed. To that end, HEK-IL6, Jurkat, MyLa and HuT 78 cells were incubated with 

increasing concentrations of this inhibitor and the proliferation effects were measured at 

24 and 48 h by quantifying the ATP presence in cell culture with a luminescent assay 

(CellTiter-Glo). The data enabled to calculate the IC50 concentration at 48 h using GraphPad 

Prism 6 software. As shown in figure 4.16, sotrastaurin impaired cell proliferation in a 

concentration-dependent manner. The IC50 concentration of sotrastaurin is indicated for 

Figure 4.16. Antiproliferative effects of Sotrastaurin in HEK-IL6, Jurkat, MyLa and HuT 78 cells. 
Proliferation analyses in HEK-IL6, Jurkat, MyLa and HuT 78 cells at 0, 24 and 48 h treated with increasing 
concentrations of sotrastaurin. IC50 concentrations at 48 h are indicated for each cell line. Error bars show 

SEM.  
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each cell line and ranges between 12 and 19 µM. In order to study the effects of sotrastaurin 

in apoptosis, MyLa (figure 4.17A) and HuT 78 (figure 4.17B) cells were incubated with 

control vehicle, IC50 or double IC50 (2 x IC50) of sotrastaurin in each case and early (annexin 

V, Y axis) and late (7-AAD, X axis) apoptosis was analysed by flow cytometry. As shown in 

figure 17, top panels show a significant decrease of CTCL cell viability due to incubation 

with the PRKCQ inhibitor, which in turn, can be explained by a mixture of early and late 

apoptotic markers as shown in the data plots (bottom panels).  

Thus, inhibiting PRKCQ activity using a specific inhibitor exerts anti-CTCL effects in terms of 

inhibiting cell proliferation alongside activating apoptosis. 

Figure 4.17. Pro-apoptotic effects of sotrastaurin in CTCL cells. Percentage of early (Annexin V) or late 
(7-AAD) apoptotic A) MyLa and B) HuT 78 cells incubated for 24 h with control vehicle (Veh), IC50 or double 

IC50 (2x IC50) of sotrastaurin (n=3). Representative plots of Annexin V (Y axis) and 7AAD (X axis) staining 

data of each condition are shown. Error bars show SEM. *comparison between viable cells (negative 
staining) treated with sotrastaurin and viable cells treated with control vehicle (** p < 0.01; *** p < 0.001).  
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4.6.2 Ruxolitinib inhibits cell proliferation and promotes apoptosis in 

CTCL cells. 

As described before, STAT3 activation in CTCL is also triggered by JAK-dependent 

mechanisms, so the effects in proliferation and apoptosis of JAK inhibition by ruxolitinib 

were investigated in CTCL cell lines by using the same methods as above. Thus, increasing 

concentrations of ruxolitinib impairs CTCL cell proliferation in a concentration-dependent 

manner (figure 4.18A, the IC50 concentration is indicated for each cell line). Also, the 

percentage of viable MyLa and HuT 78 cells (figure 4.18B) is decreased when treated with 

IC50 or 2x IC50 concentrations. Representative early (annexin V, X axis) and late (7-AAD, Y 

axis) apoptosis staining plots are shown.  

Thus, inhibiting JAK activity using a specific inhibitor also elicits anti-CTCL effects by 

inhibiting cell proliferation and activating apoptosis. 

4.6.3 Synergistic activity of combined PRKCQ and JAK inhibition in cell 

proliferation 

Based on our data where inhibition of PRKCQ and JAK with sotrastaurin and ruxolitinib 

respectively, exert anti-proliferative and pro-apoptotic effects separately, the combination 

effects of inhibiting both signalling pathways were investigated and the combination index 

(CI) was calculated by CalcuSyn software. To that end, the proliferation effects of inhibitors 

alone and in combination were analysed with CellTiter-Glo after 48 h of treatment and the 

fraction of affected cells were calculated. This method assesses whether a combination of 

two drugs results in a synergistic (CI < 1), additive (CI = 1) or antagonistic effect (CI > 1) 

considering the fraction of affected cells of both inhibitors alone and comparing it with the 

fraction of affected cells of the combination treatment. The combination indexes were 
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Figure 4.18. Antiproliferative and pro-apoptotic effects of ruxolitinib in CTCL cells. A) Proliferation 
analyses in MyLa and HuT 78 cells treated with increasing concentrations of ruxolitinib at 0, 24 or 48 h. 
IC50 concentrations at 48 h are indicated for each cell line. B) Percentage of viable MyLa and HuT 78 cells 

incubated for 24 h with control vehicle (Veh), IC50 or double IC50 (2x IC50) of ruxolitinib (n=3). 

Representative plots of annexin V (X axis) and 7AAD (Y axis) staining data of each condition are shown. 
Error bars show SEM. * viable cells compared with control vehicle (** p < 0.01; *** p < 0.001).  
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calculated at median effect dose (ED50), or at 75% (ED75) and 90% (ED90) effect dose and 

represented in figure 4.19. In all cases combination therapy induces synergistic effects in 

both cell lines, except for HuT 78 cells at ED50 where the effect is additive.  

Thus, the combination of inhibitors targeting two independent signalling pathways that can 

trigger STAT3 activation, a marker of advanced stages of the disease as previously shown, 

might have important clinical implications.  

 

4.7 PRKCQ deficiency negatively affects CTCL cell proliferation and 

STAT3 activation 

4.7.1 PRKCQ knockdown impairs STAT3 activation in HEK-IL6 and 

proliferation of T cells 

To further understand the role of PRKCQ in CTCL cells, an inducible knockdown of PRKCQ 

expression was performed by using lentiviral particles containing short hairpin RNA against 

human PRKCQ gene (shPRKCQ hereon). To that end, lentiviral particles of three different 

Figure 4.19. Synergistic anti-proliferative effects of combining sotrastaurin and ruxolitinib in CTCL cells. 
ED50, ED75 and ED90 combination indexes (CI) of MyLa and HuT 78 cells treated for 24 h with sotrastaurin 

and ruxolitinib. CI<1 synergism; CI=1 additive effect and CI>1 antagonism. 
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shPRKCQ and the non-targeting control (NTC) were generated and used to transduce cell 

lines in culture. The two best shPRKCQ constructs were selected for each cell line to perform 

the following experiments. After lentiviral transduction, shPRKCQ cell lines were stably 

selected with puromycin (1 µg/ml) and, unless otherwise stated, PRKCQ knockdown was 

performed upon incubating transduced cells with doxycycline (1 µg/ml) 96 h before 

performing the experiments.  

Thus, in these conditions, knockdown of PRKCQ protein expression was assessed in stably 

transduced HEK-IL6 and Jurkat cells after incubation with doxycycline (figure 4.20A). We 

decided to use these cell lines to study the role of PRKCQ in STAT3 activation (HEK-IL6; 

mechanistically) and T-Cell proliferation (Jurkat; biologically) respectively, each in a suitable 

model. Then, and under these same settings, STAT3 transcriptional activity was analysed in 

HEK-IL6 cells with impaired PRKCQ expression in response to TPA. As shown in figure 4.20B 

STAT3 activation by TPA was significantly impaired by PRKCQ deficiency in HEK-IL6 cells. We 

also attempted to study the biologic impact that PRKCQ deficiency could cause in Jurkat 

cells. As shown in figure 4.20B, the reduction of PRKCQ impaired cell proliferation. 

These results highlight the potential role of PRKCQ at controlling STAT3 activation and T-

cell proliferation thereby increasing the scope of our previous observations.  

4.7.2 PRKCQ knockdown impairs cell proliferation and STAT3 activation 

in CTCL cells 

We next explored the effects of PRKCQ deficiency in CTCL cell lines by generating lentiviral 

inducible shPRKCQ MyLa and HuT 78 cell lines and its negative controls, following the 

previously described method. As shown in figure 4.21A, doxycycline-inducible shPRKCQ 

greatly impairs PRKCQ protein expression in both cell lines. Consistent with our previous 
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results, phosphorylation of STAT3 at S727 was negatively affected by PRKCQ knockdown in 

both cell lines whereas phosphorylation of STAT3 Y705 was also affected but to a lesser 

extent. Moreover, in HuT 78 cells STAT3 transcriptional activity was reduced after shPRKCQ 

induction as assessed by STAT3-TransAM method (figure 4.21B). Biologically, impaired 

PRKCQ expression negatively affected cell proliferation in MyLa and HuT 78 cells after 72 h 

and 96 h of knockdown induction respectively (figure 4.21C). 

Taking together these results, our data shows that in CTCL cells STAT3 activation can be 

triggered, at least in part, by PRKCQ-dependent mechanisms which occurs alongside an 

impaired ability to proliferate.  

Figure 4.20. PRKCQ knockdown expression inhibits STAT3 activity and T-cell proliferation in HEK-IL6 and 
Jurkat cells, respectively. A) PRKCQ protein expression in inducible non-targeted control (NTC) or short 
hairpin PRKCQ (shPRKCQ) HEK-IL6 and Jurkat cells (n=3). Images are representative of each western blot. 
B) Quantification of SEAP release at 96 h after induction of PRKCQ knockdown in NTC or shPRKCQ HEK-
IL6 cells treated overnight with control vehicle or TPA (10 ng/ml). C) Proliferation analysis at 96 h after 
induction of PRKCQ knockdown in NTC and shPRKCQ Jurkat cells. Error bars show SEM. * compared with 
vehicle (B) or NTC (C) (* p < 0,05, ** p < 0.01). # compared with NTC treated with TPA (## p < 0.01). 
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4.8 PRKCQ interacting proteins in CTCL cells 

4.8.1 PRKCQ does not interact with STAT3 

It has been previously demonstrated that some PKC isoforms interact with and 

phosphorylates STAT3, such as PKC, PKC and PKC, (Aziz et al. 2007; Kim et al. 2008; Li et 

al. 2016; Cathcart Ashish Bhattacharjee et al. 2019) so we wondered if PRKCQ (PKC) does 

too in HuT 78 cells. We decided to work with this cell line since these are CTCL cells with 

Figure 4.21. PRKCQ knockdown expression inhibits cell proliferation and STAT3 activation in CTCL cells. 
A) Western blot analyses of whole cells lysates of inducible non-targeting control (NTC) or short hairpin 
PRKCQ (shPRKCQ) MyLa and HuT 78 cells incubated with the indicated antibodies (n=2). Images are 
representative of each western blot. B) Quantification of STAT3 activity in NTC and shPRKCQ HuT 78 cells 
96 h after PRKCQ knockdown induction (n=4). C) Proliferation analyses of NTC or shPRKCQ MyLa and HuT 
78 at 72 h and 96 h respectively after PRKCQ knockdown induction (n=4). Error bars show SEM. T-test * 
compared with NTC (* p < 0.05, ** p < 0.01, *** p < 0.001).  



RESULTS 

118 

higher levels of PRKCQ (see figure 4.13). To that end, total lysates were endogenously co-

immunoprecipitated with PRKCQ or STAT3 and the presence of STAT3 and PRKCQ were 

respectively assessed by western blot. As shown in figure 4.22 and in these settings, there 

is no interaction between both proteins suggesting that there might be other proteins 

activating STAT3 downstream PRKCQ.  

4.8.2 PRKCQ interactome 

In order to study the candidate proteins interacting with PRKCQ that could be participating 

in STAT3 activation, mass spectrometry analysis was performed in David Gomez-

Matallanas’ laboratory in Dublin, as part of my international stay. This technique identifies 

and quantifies proteins within a sample by measuring the mass-to-charge ratio of ions. To 

this end, PRKCQ was endogenously immunoprecipitated in both NTC and shPRKCQ (as 

negative control) HuT 78 cells in the presence of doxycycline and starved and treated or not 

with TPA, in two independent replicates. Immunocomplexes were digested and mass 

spectra were quantified twice, as described in Materials and Methods section 3.6.6. The 

data obtained from shPRKCQ HuT 78 cells constitute the non-specific protein-protein 

interactions, which are eliminated to get the specific ones (significant interactions was 

determined based on a fold change in peptide abundance in relation to negative control ≥ 

Figure 4.22. PRKCQ does not interact with STAT3 in HuT 78 cells. Co-immunoprecipitation of PKCθ 
(PRKCQ) and STAT3 in HuT 78 cells. Protein lysates were immunoprecipitated with anti-PKCθ and anti-
STAT3 antibodies and the presence of STAT3 and PKCθ, respectively, in the immunocomplexes were 
assessed by western blot. Total lysates (TL) were used as loading control and IgG was immunoprecipitated 
as negative control.  
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2 and a p value < 0.05 by Student’s t-test). A total of 58 proteins are significantly interacting 

with PRKCQ in non-stimulated cells whereas only 14 proteins are interacting after TPA 

stimulation (figure 4.23A). In figure 4.23B the gene names of proteins interacting with 

PRKCQ are listed, both treated with control vehicle and TPA (see annexes 1 and 2 for further 

details). Interestingly, three proteins (Mitogen-activated protein kinase kinase kinase 5, 

MAP3K5 [also known as Apoptosis signal-regulating kinase 1, ASK1], Septin-9 [SEPT9] and 

Figure 4.23. Proteins interacting with PRKCQ in starved or TPA-stimulated HuT 78 cells. A) Venn diagram 
of significantly proteins interacting with PRKCQ in inducible non targeting control (NTC) HuT 78 cells 
starved and treated with control vehicle (black circumference) and starved and treated for 1 h with TPA 
(10 ng/ml, grey circumference) from mass spectrometry assay. B) List of genes represented in A. Bold 
genes are present in both conditions. Inducible short hairpin PRKCQ (shPRKCQ) HuT 78 cells starved and 
treated both with vehicle or TPA were used as negative controls.  
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Ribosomal Protein L10 [RPL10]) are interacting both before and after TPA stimulation. In 

this regard, PRKCQ-MAP3K5 interaction was confirmed by co-immunoprecipitating 

MAP3K5 in 293T cells overexpressed with PRKCQ WT or active A148E mutant and incubated 

with MAP3K5 and PRKCQ antibodies, to confirm the immunoprecipitation and the 

interaction, respectively (figure 4.24).  

Once the proteins interacting with PRKCQ were obtained by mass spectrometry, in silico 

functional enrichment analyses were performed using STRING software (https://string-

db.org/), a database of known and predicted protein-protein interactions. The functional 

networks of proteins are represented in figure 4.25 (black arrow shows PRKCQ). Among the 

proteins, there are only two that are known interactors of PRKCQ (represented with pink 

edge):  Moesin (MSN, figure 4.25A), a cross-linker between plasma membranes and actin-

based cytoskeletons (Pietromonaco SF et al J Biol Chem, 1998) and Receptor For Activated 

C Kinase 1 (RACK1, gene name: GNB2L1, figure 4.25B) a scaffolding protein that binds to 

and stabilizes activated PKCs, increasing PKC-mediated phosphorylation (Lopez-Bergami et 

al. 2005).  

 

Figure 4.24. MAP3K5-PRKCQ interaction validation. Co-immunoprecipitation of PKCθ (PRKCQ) and ASK1 
(MAP3K5) in HEK293T cells transfected with PRKCQ WT and A148E mutant. Total lysates were 
immunoprecipitated with anti-ASK1 antibody and the presence of ASK1 and PKCθ in the 
immunocomplexes were assessed by western blot. Total lysates were used as loading control and IgG was 
immunoprecipitated as negative control.  



RESULTS 

121 
  

Figure 4.25. STRING functional network of proteins interacting with PKCθ in starved and TPA-stimulated 
HuT 78 cells. Protein interactions of significantly genes associated with PKCθ (PRKCQ) in inducible non 
targeting control (NTC) HuT 78 cells A) starved for 2 h and treated for 1 h with control vehicle and B) 
starved for 2 h and treated for 1 h with TPA (10 ng/ml) from STRING software (https://string-db.org/). 
Edges represents protein-protein interactions: from curated databases and experimentally determined 
(both known interactions), from gene neighbourhood, gene fusions and gene co-ocurrence (predicted 
interactions) and textmining, co-expression and protein homology (other type of sources). 
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4.9 Biological CTCL effects of PRKCQ in vivo 

4.9.1 PRKCQ knockdown effects in CTCL tumour growth, intravasation 

and metastasis in vivo 

In order to study the CTCL biological processes where PRKCQ could be playing a role we 

decided to take advantage of a chicken embryo model that enables a quick and 

reproducible experimental approach where to study tumour growth, tumour cells 

intravasation and the establishment of liver and lung metastases. This is a unique and 

beneficial experimental model to study the metastatic processes due to the accessibility of 

the chorioallantoic membrane (CAM), a highly vascularized extra-embryonic tissue located 

under the eggshell, and its receptiveness for xenografting human tumour cells. Within 5-7 

days, sizable tumours can be formed, escape the primary site, invade surrounding stroma, 

intravasate into blood vessels, and reach the distal CAM and internal organs, where 

disseminated cells extravasate and form micro metastasis foci (see methods).  

To that end, chicken embryos were prepared to establish xenograft tumour cells. Briefly, at 

least 5 embryos for each condition, and in three independent replicates, were incubated at 

37 °C and 60% humidity for 10 days. At that time, embryos are naturally immunodeficient, 

as the lymphoid system is not fully developed yet, so the human tissues and cells are able 

to graft without species-species restrictions. Here, non-targeting control (NTC) and 

shPRKCQ MyLa cells were treated, 96 h before grafting them, with doxycycline (1 ug/ml) to 

induce PRKCQ knockdown. Then, 1.106 cells were xenografted onto the CAM and primary 

tumours were allowed to grow for 7 days (experimental time course is summarized in figure 

4.26A). Representative images from NTC and shPRKCQ chick embryos groups are shown in 

figure 4.26B. In NTC, a visible tumour is formed (circled) after 7 days of incubation, whereas 

in the shPRKCQ embryo, no tumour formation is observed. Interestingly, it is quite 
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remarkable the novo formation of blood vessels surrounding and radially converging 

towards the tumour in the NTC embryo suggesting the important angiogenic potential of 

these CTCL-derived tumours. Primary tumour formation and growth, tumour cell 

intravasation to distal CAM and lung and liver metastases were assessed. Primary tumours 

were weighted and quantitative PCR for human Alu sequences from distal CAM, liver and 

lung genomic DNA samples were performed in order to detect human (MyLa) cells. PRKCQ 

deficiency significantly decreases MyLa-derived tumour growth (figure 4.26C). Primary 

tumours of control group (NTC) weighed an average of 82 mg (range 52-126 mg, n=16) 

whereas the primary tumours of shPRKCQ group weighted an average of 27 mg (range 12-

61 mg, n=14). PRKCQ deficiency also significantly decreases intravasation to distal CAM as 

the median number of human cells in this tissue decreased from 383 cells/106 chicken cells 

to 25 cells/106 chicken cells (figure 4.26D). When analysing the metastatic process, PRKCQ 

knockdown completely abrogated the dissemination of tumour cells to liver and lung 

organs (figure 4.26E). Cancer human cells decrease from 310 to 18 cells/106 chicken cells in 

the liver and from 121 to 10 cells/106 chicken cells in the lungs.  

Thus, applying this novel in vivo experimental approach to the field of CTCL enabled the 

identification of PRKCQ playing an essential role in CTCL tumour development and 

metastatic progression. 

4.9.2 PRKCQ pharmacological inhibition exerts potent anti-CTCL effects 

regarding tumour growth and metastasis in vivo 

As shown before in section 4.6.1 sotrastaurin, a highly specific PRKCQ inhibitor, exerts anti-

proliferative and pro-apoptotic effects in CTCL cells. To address this question in vivo, we 

also took advantage of the chick embryo model described above. To that end, 1.106 of MyLa  
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Figure 4.26. Antitumoral and antimetastatic effects of PRKCQ knockdown in vivo. A) Schematic tumour 
cells implantation procedure of inducible non-targeting control (NTC) or short hairpin PRKCQ (shPRKCQ) 
MyLa cells xenografted on chicken embryo chorioallantoic membrane (CAM) after 4 days of PRKCQ 
knockdown induction. Tumours were allowed to progress for 7 days before harvesting. B) Representative 
images of NTC and shPRKCQ chick embryos. PRKCQ knockdown effects on C) tumour size, D) tumour cell 
intravasation to distal CAM, and E) liver and lung metastases. Error bars show SEM. * compared with NTC 
(*** p < 0.001).  
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cells were xenografted onto CAM at day 10 of embryo development, and then two 

treatment experimental conditions were performed: one group treated with sotrastaurin 

every two days (a total of two days, shown as twice) and another group treated only once, 

two days before harvesting the samples (the experimental procedure is summarized in 

figure 4.27A). The latest treatment group was performed in order to study if once the 

primary tumour is established; sotrastaurin is able to abrogate the metastatic process. 

Primary tumours were topically treated with 10 µM of sotrastaurin or the control vehicle 

(DMSO). All groups were treated with vehicle at the same time points as its counterparts 

meaning that control group (vehicle) was treated with DMSO at days 12, 14 and 15, the 

‘twice’ group was also treated with DMSO at day 15 and the ‘once’ group was treated with 

vehicle at days 12 and 14. Tumours were allowed to grow for 7 days and then primary 

tumour formation and growth, tumour cell intravasation to distal CAM and lung and liver 

metastases were analysed. Sotrastaurin significantly impairs tumour growth used both 

once and twice (figure 4.27B). Primary tumours of control group weighted an average of 62 

mg (range 40-93 mg, n=18) whereas the primary tumours of treatment groups weighted 48 

mg (range 21-81 mg, n=18) when treated once and 35 mg (range 6-67 mg, n=17) when 

treated twice. Sotrastaurin also impaired tumour cell intravasation to distal CAM (figure 

4.27C). This intravasation was completely abrogated when primary tumours were treated 

from the beginning (‘twice’ group) as number of cells decreases from a mean of 520 to 18 

cells/106 chicken cells. Moreover, sotrastaurin also impaired liver and lung metastases in 

both treatment groups (figure 4.27D). Treating embryos with sotrastaurin only once (two 

days before harvesting the samples) significantly decreased the number of tumoral cells in 

the lung from a mean of 140 to 65 cells/106 chicken cells. Interestingly, this effect was even 

higher when analysing liver metastasis (only 22 tumoral cells/106 chicken cells were found 
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compared to 338 cells/106 chicken cells from control group), hence suggesting that the lung 

is occupied earlier than the liver during the metastatic process.  

Thus, using this embryo chicken model for CTCL tumorigenesis and metastasis, we show 

that pharmacological inhibition of PRKCQ can constitute a plausible approach to treat CTCL 

patients even at more advanced stages of the disease.  

Figure 4.27. Antitumoral and antimetastatic effects of sotrastaurin in vivo. A) Schematic tumour cells 
implantation and treatment procedure of MyLa cells xenografted on chicken embryo chorioallantoic 
membrane (CAM), treated with 10 μM of sotrastaurin two days before harvest (once) or every 2 days 
(twice) and allowed to progress for 7 days before harvesting. Sotrastaurin effects on B) tumour size, C) 
tumour cell intravasation to distal CAM, and D) liver and lung metastases. Error bars show SEM. * 
compared with control vehicle (* p < 0.05, ** p < 0.01, *** p < 0.001).  
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4.10 Gene regulation by PRKCQ in CTCL cells 

4.10.1 PRKCQ expression in CTCL cell samples used for RNA sequencing 

In order to study the genes that are transcriptionally controlled by PRKCQ in CTCL and that 

can be participating in the progression of the disease by activating STAT3, mRNA 

sequencing was performed in NTC and shPRKCQ MyLa and HuT 78 cells both with and 

without TPA stimulation. To that end, NTC and shPRKCQ cells were treated with control 

vehicle or TPA (10 ng/ml) for 24 h in three independent replicates and PRKCQ expression 

was analysed by quantitative reverse transcription PCR (RT-qPCR) after mRNA extraction 

(figure 4.28). PRKCQ expression in both cell lines and experimental conditions was 

significantly depleted.  

4.10.2 Gene regulation by PRKCQ in basal conditions in CTCL cells 

The mRNA of NTC and shPRKCQ MyLa and HuT 78 cells was sequenced and the mRNA levels 

of whole transcriptome were analysed by our collaborators in Centre de Regulació 

Genòmica del Centre Nacional d’Anàlisi Genòmica (CNAG-CRG). A total of 241 genes were  

Figure 4.28. PRKCQ knockdown expression in RNA-seq samples. mRNA expression of PRKCQ in inducible 
NTC and short hairpin PRKCQ (shPRKCQ) MyLA and HuT 78 cells treated A) with control vehicle and B) TPA 
(10 ng/ml) for 24 h from samples used for RNA sequencing (n=3). Error bars show SEM. * compared with 
NTC (** p < 0.01, *** p < 0.001).  
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significantly deregulated by PRKCQ in MyLa cells, 92 down-regulated and 149 up-regulated, 

and a total of 182 genes in Hut 78 cells, 149 down-regulated and 33 up-regulated (see annex 

3 for details). In figures 4.29 and 4.30, top 50 most significantly deregulated genes in MyLa 

and HuT 78 cells respectively are represented.  

To name but a few, genes that are found downregulated include receptors with cytoplasmic 

kinase activity such as fibroblast growth factor receptors 1 and 3 (FGFR1 and FGFR3), which 

Figure 4.29. Gene expression controlled by PRKCQ in MyLa cells. Gene expression of the top 50 more 
significatively deregulated genes in inducible non targeting control (NTC) and short hairpin PRKCQ 
(shPRKCQ) MyLa cells (n=3). Black arrow shows PRKCQ gene.  
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in turns activate PLCG1 and STAT signalling, and Tumour Necrosis Factor Receptor 

Superfamily Member 25 (TNFRS25), which is primarily involved in apoptosis and 

inflammation. Another interesting gene related to inflammation and T cell functions are 

NFATC2, found downregulated in both MyLa and HuT 78 cells. Furthermore, Dual Specific 

Phosphatases 6 and 15 (DUSP6 and DUSP15) are downregulated in MyLa and HuT 78 cells 

respectively, which regulate ERK activation, and Lymphocyte Cytosolic Protein 1 (LCP-1, also 

known as L-Plastin) in MyLa, which is a regulator of the immune cell function regulating the 

Figure 4.30. Gene expression controlled by PRKCQ in HuT 78 cells. Gene expression of the top 50 more 
significatively deregulated genes in inducible non targeting control (NTC) and short hairpin PRKCQ 
(shPRKCQ) HuT 78 cells (n=3). Black arrow shows PRKCQ gene.  
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stability of actin-based structures. On the other hand, some of the genes that are found 

upregulated are the receptor of IL-6 (IL6R), the Mitogen-Activated Proteins Kinase Kinase 

Kinase 4 (MAP3K4, also known as MEKK4) and Kinase Kinase Kinase Kinase 4 (MAP4K4, also 

known as MEKKK4), which both have been described to activate JNK kinases; and receptors 

that regulate immune responses transducing inhibitory signals such as the Killer cell 

immunoglobulin-like receptors KIR2DL3 and KIR3DL1. 

 

4.10.3 Gene regulation by PRKCQ in TPA-stimulated CTCL cells. 

Whole mRNA levels were also analysed in NTC and shPRKCQ MyLa and HuT 78 cells after 

24 h stimulation with TPA (10 ng/ml). A total of 355 genes were deregulated by PRKCQ after 

pathway activation with TPA in MyLa cells, 152 down-regulated and 203 up-regulated, and 

147 were deregulated in HuT 78 cells, 115 down-regulated and 32 up-regulated (see annex 

4 for details). In figures 4.31 and 4.32, top 50 most significantly deregulated genes in MyLa 

and HuT 78 cells respectively, after TPA stimulation, are represented.  

In general terms, some of the genes that are found deregulated include genes involved in 

cytoskeleton, TNF signalling and NF-κB signalling pathways. Interestingly, a number of 

genes involved in the actin/cytoskeleton signalling are found downregulated including 

MYH10, LIMA1, NRCAM, CORO1B, SYNPO, PALLD and LSP1. Furthermore, genes involved in 

the JAK/STAT pathways are also deregulated. For example, in HuT 78 cells, SOCS2, a 

phosphatase that inhibits JAK kinase activities is found upregulated thus probably 

enhancing JAK/STAT signalling; and IL-10 is found downregulated, which has been 

associated with induction of Th2 phenotype. In contrast, genes involved in chemokine 

signalling have been also found upregulated such as IL-15 and CCR8 in MyLa cells. 
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Interestingly, Vascular Endothelial Growth Factor B (VEGFB), a gene that regulates the 

formation of blood vessels, has been found downregulated in MyLa cells, which is 

consistent with our previous results from the chick embryo model where the formation of 

vessels surrounding the tumour was observed.  

 

Figure 4.31. TPA-induced gene expression controlled by PRKCQ in MyLa cells. Gene expression of the 
top 50 more significatively deregulated genes in MyLa cells in inducible non targeting control (NTC) and 
short hairpin PRKCQ (shPRKCQ) and treated for 24 h with TPA (10 ng/ml) (n=3). Black arrow shows PRKCQ 
gene.  



RESULTS 

132 

 

 

Figure 4.32. TPA-induced gene expression controlled by PRKCQ in HuT 78 cells. Gene expression of the 
top 50 more significatively deregulated genes in HuT 78 cells in inducible non targeting control (NTC) and 
short hairpin PRKCQ (shPRKCQ) and treated for 24 h with TPA (10 ng/ml) (n=3). Black arrow shows PRKCQ 
gene.  
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5. DISCUSSION 

Currently the field of CTCLs lacks diagnostic markers and effective targeted therapies. This 

work challenges the biological roles and studies the mechanistic interplay between specific 

candidate proteins with potential to participate at different stages of the disease. We 

propose that these proteins and their signalling pathways are part of a malignant network 

of signalling mechanisms that drive CTCL. In this regard, and because of the genetic 

evidences accumulated in the recent years, we have considered that this network is highly 

influenced by deregulated PLCG1 activity towards the activation of specific transcription 

factors. Now, based on the generation of novel data, this work shows that downstream 

PLCG1, activation of STAT3 occurs via PRKCQ through JAK-dependent and JAK-independent 

mechanisms. Indeed, the pharmacological inhibition and knockdown of PRKCQ negatively 

affected STAT3 activation, cell proliferation and promoted apoptosis in CTCL cells. 

Interestingly, the effects on cell proliferation were synergistic when dual PRKCQ and JAK 

inhibition was performed. Finally, pharmacological inhibition and deficiency of PRKCQ 

abrogated MF tumour proliferation, angiogenesis, intravasation and prevented metastasis 

to distant organs in vivo. 

 

5.1 STAT3 as a marker of MF progression 

In the context of the aforementioned network, the activation of downstream effectors was 

studied in a cohort of 78 MF patients. The markers included IHC staining of transcription 

factors like NFAT, NF-κB (canonical and non-canonical), P-STATs as well as PRKCQ 

amplification and/or polysomy by FISH. Importantly, JAK/STAT pathway was significantly 

activated in MF cases at advanced stages (table 4.2). Interestingly, no significant correlation 

was observed between different stages and positive expression of NFAT, NF-κB, P-STAT1, 
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P-STAT5 and PRKCQ amplification or polysomy, hence suggesting that these may be 

activated alongside multiple stages of the disease. Of note, P-STAT1 was closer to 

significance. It is possible that, despite of the low incidence of this disease, assembling a 

larger cohort with equal number of cases, at early and advanced stages, could improve the 

outcome of such study. Importantly, cases with positive P-STAT3 staining were significantly 

correlated with advanced stages (47% of advanced patients showed activation of P-STAT3). 

This can constitute an important mechanistic feature with relevant clinical implications. 

Interestingly, STAT3 can form transcriptionally active dimers with STAT1 (Bromberg and 

Darnell 2000) which highlights the interest to further extend this study. To our knowledge, 

this is the first time that a comparative study in a large cohort of CTCL cases has been 

performed by studying NFAT, NF-κB and STAT activities. Nevertheless, the positive 

expression of P-STAT3 in CTCL cases at tumour stages has been previously observed, 

although in cohorts with limited number of cases, probably impairing a statistical 

correlation (Eriksen et al. 2001; Sommer et al. 2004; R. C.T. McKenzie et al. 2012).  

It is important to note that the percentage of cases with activated STATs observed in CTCL 

lesions can not only be explained by the acquisition of mutations in JAK genes (which can 

occur in approximately 4% of the total number of the cases analysed, see introduction, and 

unpublished data from our group). Alternative mechanisms are now under discussion 

including a pro-inflammatory microenvironment generated by malignant T-cells and other 

non-transformed reactive cells attracted to the lesions (Kim et al. 2005); as well as immune 

responses to bacterial colonization in the compromised skin barriers of CTCL lesions 

(Willerslev-Olsen, Krejsgaard, Lise M. Lindahl, et al. 2016; Fanok et al. 2018). Moreover, it 

is also possible that mutations and deregulated activity of different members of the 

malignant CTCL signalling network can also trigger STAT activation. Supporting this 

hypothesis, additional molecular studies using our cohort of MF cases (not included in this 
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thesis) were performed by using targeted enrichment sequencing to detect mutations in 

PLCG1, JAKs, and STATs genes among others (Pérez et al. 2019). Interestingly, and to serve 

as an example, two patients harbouring PLCG1 S345F mutation displayed P-STAT3 staining 

in the absence of mutated JAK kinases. In addition, consecutive samples (initial and 

advanced stages) collected from MF patients showed an acquired JAK3 mutation in its 

pseudokinase domain (A573V), which on the other hand, was detected alongside positive 

P-STAT1 and P-STAT5 staining at an advanced stage (IIB) (Pérez et al. 2019). Finally, 

mutations and amplifications in STAT genes can also account for a deregulated STAT activity 

in CTCL samples (Park et al. 2017).  

Thus, malignant STAT3 activation that participates in CTCL progression can be triggered by 

deregulated extracellular stimuli (usually JAK-dependent), mutations in JAKs and/or other 

mechanisms like deregulated TCR/PLCG1 downstream signalling (probably JAK-

independent).  

 

5.2 Role of JAK/STAT signalling in CTCL 

Numerous studies, including our own, have revealed multiple alterations in JAK kinases in 

CTCL samples. These mutations primarily affect the pseudokinase domain of JAK1 and JAK3 

which is believed to regulate their kinase activity. To our best knowledge there is few data 

regarding the mechanistic nature derived from such mutations (Degryse et al. 2014; 

Degryse et al. 2018). Here, we analysed two JAK1 mutants (R659C and Y654F) for their 

unknown ability to activate downstream signalling. To this end, we used two different 

reporter approaches alongside western-blots using P-STAT3 antibodies in HEK-IL6 cells. In 

basal conditions, JAK1 Y654F showed gain-of-function activity over STAT3 phosphorylation 

and transcriptional activity (using a STAT3 luciferase construct) (figure 4.3). On the other 
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hand, this same mutant required IL-6 stimulation to further induce STAT3 phosphorylation 

and transcriptional activation (using quanti-blue). These differences may be due to the 

differential sensitivities between the reporter assays used and explained as follows: a) 

Using a quanti-blue assay, upon STAT3 activation, the SEAP phosphatase is released 

extracellularly and its alkaline activity measured colorimetrically only using a small quantity 

of the supernatant, b) In the luciferase assays, the activity of both renilla and firefly are 

measured by luminescence using whole cell lysates. It is also possible that differences in 

the STAT3 consensus reporter sequences may account for these differences. Our data also 

show that STAT3 activation depends on JAK kinase activity (since it is inhibited by 

ruxolitinib), but nevertheless it is not clear whether this mutation provides a constitutively 

active kinase activity per se or just improves the ability of JAKs to promote STAT3 

phosphorylation upon extracellular stimulation, like IL-6 in this case.  

The deregulation of JAK/STAT pathway in CTCL has provided a rationale to treat this disease 

using targeted inhibition of JAK kinases. Currently, specific JAK inhibitors such as ruxolitinib 

and tofacitinib are being used for the treatment of myeloproliferative disorders (harbouring 

an activated JAK2 V617F mutant) and autoimmune diseases, such as rheumatoid arthritis 

(with a deregulated JAK/STAT activity) (Lee et al. 2014; de Freitas and da Costa Maranduba 

2015; Malemud 2018). Therefore, it is conceivable that they may be effective to treat CTCL 

patients. Active clinical trials using ruxolitinib or tofacitinib in relapsed T or NK cell 

lymphomas, but not in CTCLs, are being conducted with an estimated study complexion 

time finishing November 2020 and December 2021 (NCT02974647 and NCT03598959 

respectively). To explore this possibility in a preclinical context, we treated CTCL cells with 

increasing concentrations of ruxolitinib and tested its effects on cell proliferation and 

apoptosis. We particularly used MyLa and HuT 78 cells (MF and SS cells respectively). 

Although only HuT 78 cells harbour JAK1 and JAK3 mutations, both cell lines showed 
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activated STAT1 and STAT3 proteins under serum-deprived conditions (figure 4.12), which 

could be due to multiple activating mechanisms not restricted to JAK kinases. In these cells, 

ruxolitinib caused a dose-dependent inhibition of cell proliferation but a moderate effect 

on cell death (figure 4.18). Thus, it seems that blocking JAK/STAT signalling, instead of 

provoking cytotoxic effects and subsequent cell death, may induce growth inhibition by 

cytostatic mechanisms like for example a decrease in DNA synthesis (Cristina Pérez et al. 

2015).  

 

5.3 PLCG1/PRKCQ signalling towards NFAT and NF-κB activation 

As part of a malignant CTCL signalling network, deregulated PLCG1 can control the 

activation of downstream nuclear effectors like NFAT and NF-κB. Here, the activation of 

NFAT was confirmed in HEK-IL6 cells by cotransfecting a constitutively active PLCG1 mutant 

alongside specific reporter constructs. As could be anticipated, PLCG1 activated NFAT by a 

mechanism involving CaN and PRKCQ as shown by using specific inhibitors (figure 4.4) (G 

Werlen et al. 1998). In this regard, based on our original observations regarding PLCG1 

activity towards CaN and NFAT activation (Vaqué et al. 2014), our working team is currently 

finishing a clinical trial using topical pimecrolimus (a CaN inhibitor) in early stage MFs with 

promising results (>60% ORR) (PimTo-MF study, EudraCT number: 2014-001377-14; Dr. 

Pablo L. Ortiz-Romero). Thus, in this work, the pre-clinical data can suggest that 

combinations of CaN and PRKCQ inhibitors may increase the efficacy of the treatment in 

early stages and/or provide rational to treat non-responders, or even advanced CTCL 

patients.  

On the other hand, we also confirmed NF-κB activation by transforming PLCG1 (figure 4.4), 

a result that has been recently described in HEK293 cells (Patel et al. 2019). It is widely 
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accepted that NF-κB is a major target downstream of PKCs (Lin et al. 2000; Coudronniere 

et al. 2012). Interestingly, in our hands specific blockage of PRKCQ significantly but 

modestly impaired NF-κB activity downstream of PLCG1 (figure 4.4C), hence suggesting 

that, at least in this system, PRKCQ may not participate as major PLCG1 effector to promote 

NF-κB activation. This striking result was further confirmed by using a constitutively 

activated PRKCQ mutant that triggered activation of NFAT but failed at inducing NF-κB 

activity (figure 4.14). On the other hand, TPA prompted the activation of NFAT and NF-κB, 

which were abrogated by specific PRKCQ inhibition (figure 4.8). A possible but controversial 

explanation for these results implies that PRKCQ may not be the principal PKC isoform to 

connect with NF-κB activation. Although these results should be confirmed in CTCL models, 

our research has focused in the mechanisms that activate STAT3 since it correlated with 

advanced MF stages, in contrast to NF-κB (table 4.2).  

  

5.4 PLCG1/PRKCQ signalling towards STAT3 activation 

We provide robust and original evidence that PLCG1 S345F, a recurrent mutant found in 

advanced CTCL cases, can promote the activation of STAT3 (and STAT1, which was studied 

to a minor extent). This was assessed by multiple experimental approaches that included 

quanti-blue or luciferase reporter assays and western-blots using specific STAT3 antibodies 

to detect phosphorylated Y705 and S727 residues. Using specific inhibitors, we show that 

downstream PLCG1, STAT3 can be activated by JAK-dependent (P-STAT3 Y705) and JAK-

independent (S727) mechanisms. Interestingly our data highlights the acting role of PRKCQ 

participating in both pathways (figures 4.5, 4.6 and 4.7). Furthermore, TPA induced 

phosphorylation of STAT1 and STAT3 in HEK-IL6, Jurkat, MyLa and HuT 78 cells (figures 4.10 

and 4.12). In this regard, we noticed that TPA failed at promoting STAT3-Y705 
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phosphorylation in Jurkat (no signal) and MyLa (saturated signal in serum-deprived 

conditions) cells (figure 4.12). Alongside these results, TPA also activated STAT3-mediated 

transcription in HEK-IL6 and Hut 78 cells (figures 4.9, 4.10 and 4.12). In order to detect 

important effectors acting downstream of TPA towards STAT3 activation, a number of 

specific inhibitors were utilized in HEK-IL6 cells: the previously mentioned tacrolimus 

(CaNi), sotrastaurin (PRKCQi) and ruxolitinib (JAKi) alongside ibrutinib (BTKi), dasatinib 

(inhibitor of ABL, SRC and C-KIT), fostamatinib (SYKi) and MK-2206 (AKTi). Remarkably, in 

these conditions only sotrastaurin impaired TPA-mediated STAT3 phosphorylation at both 

Y705 and S727 residues as well as STAT3 transcriptional activity (figure 4.10). Other 

inhibitors just prevented STAT3 Y705 phosphorylation but failed to inhibit its transcriptional 

activity. Of note, when comparing the effects of PRKCQ and JAK inhibitors in HUT78 cells, 

both inhibited STAT3 activity (figure 4.12), which suggests that in a CTCL context, STAT3 

activity can be controlled by mechanisms that are dependent on PRKCQ and JAK kinases.  

Moreover, using inducible PRKCQ knockdown cells, PRKCQ deficiency impaired basal STAT3 

phosphorylation at both residues, transcriptional activity and cell proliferation (figures 4.20 

and 4.21). These data suggest that PRKCQ can play an important role in the control of 

essential CTCL mechanisms involving STAT3 activation by JAK-dependent and JAK-

independent mechanisms.  

To gain further knowledge about the mechanisms that can connect PRKCQ with STAT3 

activation we performed mass spectrometry of PRKCQ-enriched immunoprecipitates in 

CTCL cells. A number of interacting proteins were significantly detected. Interestingly STAT3 

was not included amongst these. This was independently confirmed by co-

immunoprecipitation analysis (figure 4.22). Of note, whereas PRKCQ does not directly 

interact with STAT3 in CTCL cells, other works have shown that alternative PKC isoforms 
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like PRKCD (isoform δ) can bind to and phosphorylate STAT3 in S727, in alternative cellular 

contexts (Jain et al. 1999). Our data do not discard that a different PKC isoform can 

participate alongside PRKCQ in STAT3 activation in CTCL. Interestingly, amongst our results, 

ASK1 (MAP3K5) was significantly the most abundant PRKCQ interacting protein, and this 

was further confirmed using an independent approach (figure 4.24). ASK1 is a member of 

the MAPK family of serine/threonine kinases acting upstream of ERK1/2 and JNK1, which 

have been shown to interact with and phosphorylate STAT3 in S727 (Jain et al. 1998; Lim 

and Cao 1999). In support of the potential role of PRKCQ-ASK1 at regulating STAT3 via 

MAPKs, another PRKCQ-interacting protein identified was PGAM5. It is a phosphatase that 

activates ASK1, JNKs and p38MAPKs (Takeda et al. 2009). On the other hand, RACK1 was 

also detected, it binds to and stabilizes activated PKCs, thereby increasing PKC-mediated 

phosphorylation (Mochly-Rosen et al. 1995) and, remarkably, has also been shown to 

directly interact with JAK1, STAT1/3, IL-2R and IL-4R (Mochly-Rosen et al. 1995; Zhang et al. 

2006).  

Thus, these data provide plausible mechanisms downstream of PRKCQ to trigger STAT3 

phosphorylation at S727 via ASK1 (JAK-independent) and at Y705 via RACK1/JAK kinases. 

Further work will be required to confirm these results and/or identify alternative 

mechanisms to explain STAT3 activation downstream of PRKCQ in CTCL. Upon validation, 

these effectors may provide potential targets for therapy and thus provide strong rational 

to develop novel strategies to manage specific cases of CTCL.  
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5.5 PRKCQ participates in essential CTCL activities ex vivo and in 

vivo 

Based on the data presented in this work, STAT3 can exert a relevant biological activity in 

the tumoral progression of CTCL patients. Moreover, PRKCQ may control STAT3 activation 

through a combination of different molecular mechanisms. Also, in CTCL cells, 

pharmacological inhibition of PRKCQ or JAK abrogated STAT3 activity and impaired cell 

proliferation (figures 4.16 and 4.18). To further explore their potential anti-CTCL activities, 

the combined inhibition of both kinases was analysed. This combination exerted a 

synergistic anti-proliferative effect (figure 4.19). Thus, it is possible that developing specific 

therapy combinations of inhibitors to abrogate STAT3 activity alongside other targets 

relevant to the biology of CTCL (like for example CaN or other PKCQ downstream effectors), 

may improve the clinical management of CTCL patients with special focus on those at 

advanced stages. 

To directly challenge the biological role of PRKCQ in CTCL, we generated inducible PRKCQ 

knockdown MyLa and HuT 78 cells. This approach provoked a dramatic decrease of PRKCQ 

expression (>90% of the protein; figure 4.21). In the absence of PRKCQ, STAT3 

phosphorylation in Y705 and S727 and its transcriptional activity were impaired alongside 

cell proliferation, although not completely. These results suggest that PRKCQ can control 

important CTCL activities through mechanisms that include but that are probably not 

restricted to those exerted over STAT3. Nevertheless, these results were obtained using 

cell-based models in vitro. 

The CTCL translational field can currently take advantage of only few in vivo models where 

to test essential biological processes. In this regard, and to serve as an example, a NSG 

mouse model has recently been developed to explore malignant activities of human SS cells 
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after injection in the dorsal ear surface of such mice (Gallardo et al. 2018). Alternatively, 

this work has applied a novel in vivo approach to this field by using chicken embryos. This 

model offers the possibility to generate primary tumours and study its metastatic potential 

in a timely and cost-effective manner. In this regard, MF cells deficient for PRKCQ 

expression had greatly impaired the ability to grow tumours, promote angiogenesis (see 

representative images in figure 4.26), intravasate blood vessels and metastasize to distant 

organs. Moreover, pharmacological treatment using sotrastaurin provoked similar effects 

in this system (figure 4.27). These in vivo data strongly robust the idea that PRKCQ plays a 

central role at controlling tumorigenesis and progression of CTCLs.  

In addition, it will be highly interesting to study PRKCQ downstream effectors including 

actionable proteins and target genes to offer novel possibilities to diagnose and treat this 

disease at different stages. In an attempt to identify PRKCQ-controlled genes, a 

comparative mRNA-seq study using MyLa and HuT 78 cells deficient for PRKCQ expression 

was performed. After a preliminary analysis that needs further confirmation, a number of 

transcriptional PRKCQ targets were highly significant and, but to name a few examples, are 

described as follows (those targets negatively regulated include the symbol (-)): i) Rho/actin 

cytoskeleton genes such as LCP1 (L-Plastin, which also was detected as a PRKCQ-interacting 

protein), LSP1, CIT and LIMK1, ii) genes associated with TNF/NF-κB signalling, such as BCL3, 

TANK, TNFRSF25 (-) and TRAF3, and iii) genes related to JAK/STAT signalling: IL10, IL15 (-) 

and SOCS2 (-). Interestingly, pro-apoptotic genes like TNFRSF25, also known as DR3 (Death 

receptor 3), (Chinnaiyan et al. 1996) or negative regulators of STAT activation like SOCS2 

(Yoshimura et al. 2007) were repressed in control cells and their expression increased after 

PRKCQ depletion. These data show that, downstream PRKCQ, there is a connection with 

the activation of NF-κB–related genes like TRAF3 (He et al. 2004) or TANK (Chariot et al. 

2002), hence suggesting that despite no direct connexion between PRKCQ and NF-κB 
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activity was found in this work, NF-κB may still participate downstream PRKCQ. Finally, a 

large number of significant genes are involved in Rho GTPase signalling and the dynamic 

control of the actin cytoskeleton. This is a well-known mechanism used by multiple types 

of cancers, like for example cutaneous melanoma, to initiate and establish metastasis 

(Orgazy et al. 2014; Pandya et al. 2017). 

In summary, this thesis has characterized, from molecular and biological perspectives, the 

role and mechanistic interplay of important members of the malignant network proposed 

to control the biology of CTCLs (figure 5.1). Moreover, from a translational perspective the 

Figure 5.1. A malignant signalling network controlling tumorigenesis and progression of CTCL. Schematic 
representation showing the mechanistic interplay between different T-cell signalling pathways that may 
promote tumorigenesis and progression in CTCL. As part of this network, PRKCQ plays a pivotal role by 
controlling NFAT and STAT activation through specific protein interactions and target genes. Black arrows: 
direct mechanism, black dashed arrows: indirect mechanism, white arrows: nuclear translocation. 
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data: i) describe novel markers, like for example the expression of activated STAT proteins, 

to potentially serve for CTCL diagnosis; ii) proposes novel rational approaches to develop 

targeted therapy, including CaN, PRKCQ and JAK inhibitors used alone or in combination, 

and iii) identifies a number of PRKCQ interacting proteins and target genes that might play 

essential roles in CTCLs. 
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6. CONCLUSIONS 

1. STAT3 activation is a common finding in advanced stages of MF patients. 

2. STAT3 activation can be triggered by multiple mechanisms such as JAK, PLCG1 and 

PRKCQ signalling: 

a. Through activating JAK1 Y654F mutation. 

b. Downstream activated PLCG1 and mediated by PRKCQ and/or JAK. 

c. Via activated PRKCQ both dependent and independent of JAK activity. 

3. Specific pharmacological inhibition of PRKCQ and JAK synergistically impairs cell 

proliferation and promotes apoptosis. 

4. PRKCQ interacts with effector proteins, such as ASK1, RACK1 and PGAM5, that can 

potentially mediate STAT3 activation. 

5. PRKCQ is essential for CTCL tumour development, intravasation and metastasis. 

6. Transcriptomic analysis reveals novel PRKCQ target genes, such as LCP1, IL10 and 

SOCS2, with potential to participate in malignant CTCL mechanisms. 
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8. RESUMEN EN CASTELLANO 

8.1 Introducción 

El linfoma cutáneo de células T (LCCT de aquí en adelante) es un grupo de linfomas no 

Hodgkin caracterizado por la proliferación clonal de linfocitos T malignos CD4+ en la piel. 

Dentro de los LCCT clásicos, la Micosis Fungoides (MF) y el Síndrome de Sézary (SS) son los 

subtipos más comunes.  

MF supone aproximadamente el 45% de los LCCT. Tiene un curso indolente con una 

progresión lenta a lo largo de los años. Puede presentarse en diferentes estadios, desde 

parches aislados hasta una mayor implicación de la piel con la aparición de placas y 

tumores, aunque también puede localizarse extracutáneamente cuando progresa a 

estadios más avanzados como por ejemplo en hígado o bazo. Tiene una prevalencia de 4.1 

por millón de personas, mayor en hombres que en mujeres (con una ratio de hombre-mujer 

de 1.72) y en pacientes de piel negra (casi 6 por millón). MF afecta típicamente a adultos 

con una media de edad al diagnóstico de 55-60 años.  

SS es un subtipo leucémico raro de LCCT. Está caracterizado por una eritrodermia, 

linfadenopatía generalizada, hiperqueratosis y la presencia de linfocitos T neoplásicos con 

el núcleo cerebriforme (llamados células de Sézary) en la piel, los nódulos linfáticos y la 

sangre periférica.  

Aunque MF y SS son clasificadas como entidades separadas, actualmente se utiliza el mismo 

sistema de estadiaje para ambos subtipos, propuesto por la Sociedad Internacional de 

Linfomas Cutáneos (ISCL en inglés), y la Organización Europea para la Investigación y 

Tratamiento del Cáncer (EORTC). Este sistema está basado en la clasificación TNMB (en 

inglés T: tumor, N: nódulo linfático, M: metástasis y B: sangre) con la que se determina el 
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estadio del paciente desde IA hasta IVB. Los estadios IA, IB y IIA son estadios iniciales de la 

enfermedad, mientras que los estadios IIB, IIIA, IIIB, IVA1, IVA2 y IVB corresponden a 

enfermedad más avanzada.  

MF puede resultar difícil de diagnosticar ya que los pacientes desarrollan características 

clínicas muy parecidas a enfermedades cutáneas benignas como por ejemplo la dermatitis, 

por lo que el diagnóstico final se basa en un conjunto de pruebas clínicas, histopatológicas, 

moleculares e inmunofenotípicas. Para el diagnóstico de SS también es necesario la 

demostración eventual de clonalidad linfocitaria en la piel y la sangre periférica. Mientras 

que el pronóstico de MF depende del estadio, concretamente el tipo de lesiones de la piel 

y su extensión o la presencia de linfocitos extracutáneamente, el pronóstico de SS es 

generalmente malo. La supervivencia media de MF es de 20 años mientras que la de SS solo 

3.13 años.  

Actualmente no hay tratamiento curativo para los pacientes con LCCT. El tratamiento de 

MF y SS es meramente paliativo y está enfocado a la mejora de los síntomas y la calidad de 

vida. La única excepción es el trasplante alogénico de células madre, el único tratamiento 

con intenciones curativas, aunque está restringido a un número muy limitado de pacientes 

generalmente jóvenes con baja carga tumoral y alto riesgo de progresar. La elección de 

tratamiento está adaptada al estadio, extensión de las lesiones, estado general del paciente 

y si han recibido tratamiento con anterioridad. En general, los estadios iniciales se tratan 

con terapias directas en la piel como corticosteroides tópicos, fototerapia o radioterapia 

localizada; mientras que las terapias sistémicas, como retinoides, quimioterapia o 

fotoféresis extracorpórea, se utilizan para estadios más avanzados. Debido a la falta de 

tratamientos curativos, se están estudiando numerosos tratamientos dirigidos contra 

moléculas esenciales para la supervivencia de los linfocitos malignos con resultados 
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prometedores. Algunos ejemplos son anticuerpos anti-CD30 y anti-CCR4, moléculas 

inhibidoras del control inmune, inhibidores de quinasas como PI3K y mTOR e inhibidores 

tópicos de la fosfatasa calcineurina (cuyo ensayo clínico se está realizando por el 

dermatólogo y colaborador Pablo Ortiz-Romero).  

El origen del LCCT no está del todo claro. Actualmente los mecanismos inmunológicos y 

moleculares responsables de la formación del tumor están siendo estudiados en 

profundidad. Por un lado, se ha demostrado que MF y SS se originan de diferentes 

poblaciones de linfocitos T: mientras que SS tienen un fenotipo de linfocitos T de memoria 

capaces de circular entre la piel, los nódulos linfáticos y la sangre, características 

consistentes con las manifestaciones clínicas de este subtipo; los linfocitos que originan la 

MF tienen un fenotipo efector, quedando retenidos en la piel produciendo citoquinas 

inflamatorias capaces de atraer linfocitos T no malignos al microambiente tumoral, 

formando así las características placas y parches de este subtipo. Además, se ha descrito 

que en estadios tempranos de MF, estos linfocitos no malignos son de tipo colaborador 1 

(Th1), mientras que en estadios avanzados y en SS tienen un fenotipo Th2, lo que facilitaría 

la progresión de la enfermedad. Esta progresión también se ha postulado que podría ser 

debida a un cambio en la expresión de quimiocinas e interleucinas tanto de las células 

tumorales como las que forman el microambiente tumoral.  

Por otro lado, en los últimos años se ha descrito un gran número de alteraciones 

moleculares en los linfocitos que afectan generalmente a cinco procesos celulares o vías de 

señalización como i) regulación del ciclo celular, ii) señalización por JAK/STAT, iii) la vía de 

señalización de las quinasas MAPK, iv) señalización por TCR/NF-κB y v) modificación de la 

cromatina; probablemente indicando la gran importancia de estos mecanismos para la 

formación del LCCT. Anteriormente en nuestro laboratorio se identificaron mutaciones 
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recurrentes (en el 21% de los pacientes) en el gen PLCG1 (mutaciones con ganancia de 

función), una fosfolipasa efectora de la señalización del receptor de linfocitos T (TCR), y 

también en las quinasas JAK, más concretamente en JAK1 y JAK3, en un 15% de los 

pacientes, entre otros genes. Estas mutaciones fueron también validadas por otros estudios 

los cuales, además, identificaron amplificaciones recurrentes del gen PRKCQ (isoforma θ de 

las PKCs) en un 20-30% de los pacientes, aunque las consecuencias de estas alteraciones no 

han sido estudiadas en detalle. En conjunto, estos y otros estudios moleculares han 

revelado una serie de vías de señalización desreguladas con potencial de promover la 

proliferación, supervivencia y la diferenciación de los linfocitos T, y que nosotros creemos 

son importantes para el desarrollo y progresión de la enfermedad. En concreto, estas vías 

formarían parte de una red maligna de señalización que conducirían a la activación 

aberrante de mecanismos moleculares esenciales para el LCCT y serían: TCR-PLCG1, 

TNF/PRKCQ y JAK hacia la activación de los factores de transcripción NFAT, NF-κB, y STATs 

respectivamente.  

8.2 Hipótesis y objetivos 

La hipótesis de esta tesis doctoral se basa en que la red maligna de mecanismos de 

señalización que se encuentran actuando por debajo de PLCG1 conduce a la tumorogénesis 

y progresión del LCCT. Además, PRKCQ puede estar jugando un papel esencial en la 

activación de los factores de transcripción NFAT, NF-κB y STAT promoviendo su potencial 

papel neoplásico.  

Con el fin de analizar la interacción de los diferentes miembros de la red maligna de 

señalización y, más detalladamente, estudiar el papel de PRKCQ en esta enfermedad, se 

han planteado los siguientes objetivos: 
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1. Explorar el papel biológico de NFAT, NF-κB y STAT y su potencial uso como 

biomarcadores para el diagnóstico de LCCT en una cohorte de pacientes.  

2. Estudiar la actividad de NFAT, NF-κB y STAT3 en modelos celulares.  

3. Identificar proteínas que interaccionen con PRKCQ en célula de LCCT. 

4. Investigar las implicaciones biológicas de la actividad de PRKCQ in vivo. 

5. Determinar potenciales genes regulados por PRKCQ en células de LCCT. 

 

8.3 Resultados y discusión 

En el contexto de la red maligna de señalización mencionada anteriormente, se ha 

estudiado en una cohorte de 78 pacientes de MF la activación de los factores de 

transcripción que se encuentran por debajo de estas vías. Concretamente se ha estudiado, 

por inmunohistoquímica, la activación de NFAT, NF-κB (tanto de la vía canónica como no 

canónica) y STATs (STAT1, 3 y 5) además de la amplificación del gen PRKCQ o la polisomía 

de la región del cromosoma donde se encuentra. Este análisis nos ha permitido identificar 

la fosforilación de STAT3 (P-STAT3) como potencial biomarcador de progresión ya que se 

ha encontrado más activado en aquellos pacientes con estadios avanzados (47% en 

estadios avanzados vs. 12% en estadios iniciales), lo que podría constituir una característica 

mecanística importante con implicaciones clínicas relevantes. A pesar de que esta 

observación ya ha sido descrita anteriormente, ha sido realizada en cohortes muy pequeñas 

lo que probablemente ha impedido una correlación estadística con los estadios de la 

enfermedad.  

Es importante destacar que la presencia de una mayor activación de P-STAT3 en estadios 

avanzados no puede correlacionarse solo por la adquisición de mutaciones de JAKs, 

quinasas que se encuentras por encima de estos factores de transcripción, ya que estas 
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alteraciones solo han sido descritas en un 4% del total de casos analizados. Por lo tanto, 

actualmente se están estudiando posibles mecanismos alternativos que lleven a una 

activación de las STATs como por ejemplo una desregulación en la estimulación extracelular 

a través de citoquinas e interleucinas provenientes del microambiente tumoral 

(generalmente a través de JAK) o la señalización alterada de otras vías como TCR/PLCG1 

(probablemente independientes de JAK).  

Numerosos estudios, incluidos los de nuestro laboratorio, han revelado mutaciones en JAK1 

y JAK3, pero la implicación biológica de estas mutaciones no ha sido estudiada. Para ello, 

en este trabajo se ha demostrado que la mutación Y654F en JAK1 induce una activación de 

la transcripción mediada por STAT3 y su fosforilación en el residuo Y705.  

Debido a la desregulación observada en la vía JAK/STAT en estos pacientes, se ha estudiado 

el uso de inhibidores de las quinasas JAK como potencial tratamiento de LCCT. Actualmente 

pacientes con enfermedades autoinmunes y mieloproliferativas están siendo tratados con 

inhibidores de JAK, por lo que su uso en LCCT podría ser beneficioso. Para explorar esta 

posibilidad hemos estudiado el efecto del ruxolitinib, un inhibidor de JAK, en células de 

LCCT y hemos visto que este inhibidor tiene un efecto dosis-dependiente en la proliferación 

celular pero en cambio provoca un efecto moderado en la muerte celular. Por lo que 

bloquear esta vía de señalización podría inducir efectos citostáticos como un descenso de 

la síntesis de ADN en lugar de provocar efectos citotóxicos.  

Como se ha descrito anteriormente, nuestro laboratorio identificó previamente 

mutaciones en PLCG1 en el 21% de los pacientes de LCCT. En este trabajo hemos 

confirmado que esta mutación tiene una ganancia de función debido al aumento de la 

transcripción mediada por los factores de transcripción NFAT y NF-κB, factores 

ampliamente descritos por encontrarse por debajo de TCR/PLCG1. Además, a través del uso 
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de inhibidores específicos hemos descrito que la activación de NFAT es dependiente de la 

calcineurina, una enzima que activa NFAT, y de PRKCQ. Sin embargo, la activación de NF-κB 

no parece estar mediada en gran parte por PRKCQ, a pesar de que está descrito que NF-κB 

es un efector de las PKCs. A pesar de que este sorprendente resultado tendría que ser 

confirmado en células de LCCT, esta tesis doctoral se ha centrado en estudiar los 

mecanismos que conllevan a la activación de STAT3, ya que ha sido el único marcador que 

correlaciona con estadios avanzados de MF, al contrario que NF-κB.  

Para estudiar estos mecanismos, hemos analizado la vía de señalización de PLCG1 y el 

posible papel mediador de PRKCQ hacia la activación de STAT3. Tanto en células HEK-IL6 

como en células de LCCT, hemos demostrado que STAT3 es activado por debajo de PLCG1, 

tanto de manera dependiente de las JAK como de manera independiente a través de 

PRKCQ. Además, el silenciamiento de PRKCQ a través de shRNAs inducibles, ha demostrado 

un efecto negativo tanto en la proliferación celular como en la fosforilación de STAT3 y su 

actividad transcripcional, lo que nos sugiere que PRKCQ podría estar jugando un papel 

importante en el control de procesos esenciales del LCCT a través de la activación de STAT3.  

Para determinar qué proteínas podrían estar participando en esta activación de STAT3, 

realizamos un análisis del interactoma de PRKCQ a través de espectrofotometría de masas. 

Este abordaje nos ha permitido identificar un número de proteínas que interaccionan con 

PRKCQ y que podrían estar activando STAT3 como por ejemplo ASK1, cuya interacción 

hemos validado por un método alternativo. ASK1 es una quinasa que se activa por encima 

de ERK1/2 y JNK1, las cuales ha sido descrita su interacción con STAT3. PGAM5, una 

fosfatasa que activa las quinasas ASK1, JNKs y p38MAPKs, también se ha visto que 

interacciona con PRKCQ; o RACK1 que activa ASK1 y además se ha descrito su interacción 

con JAK1 o STAT1/3 entre otras. Todas estas interacciones podrían estar contribuyendo a 
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la fosforilación y activación de STAT3 y, a falta de validarlas a través de métodos 

alternativos, podrían ser diana de terapia, así como proporcionar la base para desarrollar 

estrategias para el manejo de casos específicos de LCCT.  

Por otro lado, el papel de PRKCQ en el LCCT ha sido también estudiado en un modelo in 

vivo de embriones de pollo a través de la implantación de células de MF con PRKCQ 

silenciado. Esta reducción de la expresión de PRKCQ ha afectado negativamente tanto al 

crecimiento del tumor primario como a la angiogénesis, la intravasación a los vasos 

sanguíneos y la metástasis a órganos distales como el pulmón o el hígado. Estos efectos 

también han sido observados cuando al tumor formado con células MF ha sido tratado con 

un inhibidor farmacológico específico para PRKCQ. Estos resultados refuerzan la idea de 

que PRKCQ podría ser un importante mediador del control de la tumorogénesis y la 

progresión de los LCCT.  

Finalmente, para determinar qué genes podrían estar mediando estos procesos biológicos 

a través de PRKCQ, se ha realizado una secuenciación comparativa del ARN en células de 

LCCT deficientes para la expresión de PRKCQ. Después de un primer análisis, y a falta de 

validaciones, se han identificado una serie de genes significativamente desregulados como 

por ejemplo genes involucrados en el citoesqueleto de actina, genes asociados a la vía de 

señalización mediada por TNF/ NF-κB y genes relacionados con la vía JAK/STAT.  

En resumen, el trabajo realizado en esta tesis doctoral ha sido caracterizar, desde un punto 

de vista molecular y biológico, el papel y la interacción mecanística de algunos de los 

miembros de la red de señalización maligna propuesta como controladora de los procesos 

biológicos del LCCT. Además, desde un punto de vista traslacional, estos resultados: i) 

describen nuevos marcadores de diagnóstico del LCCT como STAT3, ii) propone abordajes 

novedosos para el desarrollo de terapias dirigidas, incluyendo inhibidores de la 
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calcineurina, PRKCQ o JAK utilizados tanto individualmente como en combinación y iii) 

identifica una seria de proteínas de interacción con PRKCQ y genes diana que podrían estar 

jugando un papel importante en esta enfermedad.  

 

8.4 Conclusiones 

1. STAT3 está significativamente más activado en pacientes con MF en estadio 

avanzado. 

2. La activación de STAT3 puede producirse a través de múltiples mecanismos como 

la señalización de JAK, PLCG1 y PRKCQ: 

a. A través de la mutación activante JAK1 Y654F. 

b. Por debajo de la activación de PLCG1 y mediado por PRKCQ y/o JAK. 

c. A través de la activación de PRKCQ, tanto de manera dependiente como 

independiente de la actividad de JAK. 

3. La inhibición farmacológica específica de PRKCQ y JAK afecta a la proliferación 

celular de manera sinérgica y promueve la apoptosis. 

4. PRKCQ interacciona con proteínas efectoras como ASK1, RACK1 y PGAM5, que 

podrían mediar la activación de STAT3. 

5. PRKCQ es esencial para el desarrollo tumoral del LCCT, la intravasación y la 

metástasis. 

6. El transcriptoma de PRKCQ revela nuevos genes diana como LCP1, IL10 y SOCS2, 

que podrían potencialmente participar en los mecanismos malignos de LCCT.  
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Annex 1. Proteins interacting with PRKCQ in starved HuT 78 cells. List of significantly proteins (p < 0,05) 
found interacting with PRKCQ in starved HuT 78 cells by mass spectrometry. The table includes proteins 
showing a fold change ≥ 2 in peptide abundance of non-targeting control (NTC) HuT 78 versus HuT 78 cells 
knocked down for PRKCQ (inducible short hairpin PRKCQ), as negative control, both starved for 2 h and 
treated with control vehicle. PRKCQ is highlighted in bold.  

Protein IDs Protein name Gene names
Fold change (NTC 

vs. shPRKCQ)
p value 
(t-test)

Q99683
Mitogen-activated protein kinase 

kinase kinase 5
MAP3K5 2461725 0.001077381

Q08554 Desmocollin-1 DSC1 2336325 0.005851605
E5RIW3 Tubulin-specific chaperone A TBCA 1769295 0.004142811
Q9Y6N5 Sulfide:quinone oxidoreductase SQRDL 1231175 9.75822E-08
F1T0B3 ATP-dependent RNA helicase DDX1 DDX1 715035.25 0.039567974
F5H8D7 DNA repair protein XRCC1 XRCC1 682090.25 0.031776565
Q04759 Protein kinase C theta PRKCQ 22.24856006 3.04375E-05
Q9ULD5 Zinc finger protein 777 ZNF777 10.37721926 0.020092261

Q15056
Eukaryotic translation initiation factor 

4H
EIF4H 8.049541801 0.006357335

Q15046 Lysine--tRNA ligase KARS 6.943062873 0.001240356
P13796 Plastin-2 LCP1 6.910884582 0.048287157
P10606 Cytochrome c oxidase subunit 5B COX5B 6.410414667 0.024993365

H0YM70
Proteasome activator complex subunit 

2
PSME2 6.357235864 0.002503926

I3L1P8
Mitochondrial 2-oxoglutarate/malate 

carrier protein
SLC25A11 6.326229688 0.003845903

K7EMZ9 Protein LSM14 homolog A LSM14A 6.074080498 0.012416837

Q12904
Aminoacyl tRNA synthase complex-
interacting multifunctional protein 1

AIMP1 5.540481409 0.008661107

F5H1M8
Protein-L-isoaspartate O-

methyltransferase domain-containing 
protein 1

PCMTD1 4.724995259 0.002092984

A0A140T9Z4 HLA class I histocompatibility antigen HLA-B 4.100228553 0.020514832

C9JRZ6 MICOS complex subunit MIC19 CHCHD3 4.075644027 0.005030918

M0QYZ0
Heterogeneous nuclear 

ribonucleoprotein U-like protein 1
HNRNPUL1 4.036925719 0.012430385

P14868 Aspartate-tRNA ligase DARS 3.886434618 0.0065828
Q9UHD8 Septin-9 SEPT9 3.857295839 0.009021613
S4R456 40S ribosomal protein S15 RPS15 3.676418164 0.0164265

Q96HS1
Serine/threonine-protein 

phosphatase PGAM5
PGAM5 3.302332839 0.008605287

P78527
DNA-dependent protein kinase 

catalytic subunit
PRKDC 3.259533875 0.035373215

P31146 Coronin-1A CORO1A 3.259485463 0.001231769
E7EU96 Casein kinase II subunit alpha 3 CSNK2A1 3.162883574 0.000277277

P07814
Bifunctional glutamate/proline-tRNA 

ligase
EPRS 3.059275635 0.006225407

H7C2W1
D-beta-hydroxybutyrate 

dehydrogenase
BDH1 3.056083086 0.026065921



ANNEXES 

180 

 

  

B1AMS2 Septin-6 SEPT6 2.959891099 0.027355989
Q14257 Reticulocalbin-2 RCN2 2.904697959 0.004131998
P54136 Arginine--tRNA ligase RARS 2.83854658 0.005386576
F8WDS9 LanC-like protein 1 LANCL1 2.800149018 0.003383402
P62273 40S ribosomal protein S29 RPS29 2.771622333 0.032204729
P26038 Moesin MSN 2.728533998 0.000558371

A2NJV5 Immunoglobulin kappa variable 2-29 IGKV2-29 2.713965347 0.00447154

Q9H6R7
WD repeat and coiled-coil-containing 

protein C2orf44
C2orf44 2.504336328 0.000202718

P14923 Junction plakoglobin JUP 2.465707921 0.004043865
F1T0I1 Protein transport protein Sec16A SEC16A 2.4179183 0.010408321
P26583 High mobility group protein B2 HMGB2 2.340773329 0.043471029
Q5H8X8 Urotensin-2 UTS2 2.307916458 9.55283E-05
P47914 60S ribosomal protein L29 RPL29 2.256817949 0.012385994
B9A067 MICOS complex subunit MIC60 IMMT 2.256264867 0.005327345
J3KR24 Isoleucine--tRNA ligase IARS 2.252026666 0.00641985

A0A087WXM6 60S ribosomal protein L17 RPL17 2.239674605 0.027412913
P31948 Stress-induced-phosphoprotein 1 STIP1 2.215720623 0.042911806

F6S8N6
Protein-L-isoaspartate O-

methyltransferase
PCMT1 2.2097106 0.007389246

P20340 Ras-related protein Rab-6A RAB6A 2.197290039 0.045468174
B1AN99 Trypsin-3 PRSS3 2.181494078 0.008041391
P11021 78 kDa glucose-regulated protein HSPA5 2.100940031 1.22396E-06
P05455 Lupus La protein SSB 2.099525472 0.043822648

R4GMY8
Transcription elongation factor B 

polypeptide 1
TCEB1 2.063062407 0.000162119

P17066 Heat shock 70 kDa protein 6 HSPA6 2.059406514 0.000121144
P35908 Keratin KRT2 2.058704203 0.000853763
E9PK01 Elongation factor 1-delta EEF1D 2.038162011 0.019854821
P38646 Stress-70 protein HSPA9 2.032543554 0.000429743
F8W7C6 60S ribosomal protein L10 RPL10 2.023733857 0.019093706
F8WAG1 Ras-related protein Rab-17 RAB17 2.005239091 0.000497343
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Protein IDs Protein name Gene names
Fold change (NTC 

vs. shPRKCQ)
p value 
(t-test)

Q04759 Protein kinase C theta PRKCQ 7786500 0.049939003
H7BZJ3 Protein disulfide-isomerase A3 PDIA3 2075350.25 0.037523783

P36542
ATP synthase subunit gamma, 

mitochondrial
ATP5C1 2041675 4.20679E-05

Q9UHD8 Septin-9 SEPT9 1627300.25 0.046678388

K7EMN2
6-phosphogluconate dehydrogenase, 

decarboxylating
PGD 1245575.25 0.033672934

Q99683
Mitogen-activated protein kinase 

kinase kinase 5
MAP3K5 1126850.25 0.027793451

G3V3U4 Proteasome subunit alpha type PSMA6 787645.25 0.044456677

O15144
Actin-related protein 2/3 complex 

subunit 2
ARPC2 598897.75 0.033849071

P31939
Bifunctional purine biosynthesis 

protein PURH
ATIC 13.80229174 0.043042697

P32119 Peroxiredoxin-2 PRDX2 5.469118276 0.038264499
A0A0A0MRZ8 Ig kappa chain V-III region VG IGKV3D-11 4.383148567 0.049987987

P34897
Serine hydroxymethyltransferase, 

mitochondrial
SHMT2 2.581351703 0.040112381

F8W7C6 60S ribosomal protein L10 RPL10;RPL10L 2.330020289 0.043043936

P63244
Guanine nucleotide-binding protein 

subunit beta-2-like 1
GNB2L1 2.27296519 0.011302741

Annex 2. Proteins interacting with PRKCQ in TPA-stimulated HuT 78 cells. List of significantly proteins 
(p < 0,05) found interacting with PRKCQ in TPA-stimulated HuT 78 cells by mass spectrometry. The table 
includes proteins showing a fold change ≥ 2 in peptide abundance of non-targeting control (NTC) HuT 
78 versus HuT 78 cells knocked down for PRKCQ (inducible short hairpin PRKCQ), as negative control, 
both starved for 2 h and treated with TPA (10 ng/ml) for 1 h. PRKCQ is highlighted in bold.  
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Annex 3. Gene expression changes upon PRKCQ knockdown in MyLa and HuT 78 cells. mRNA levels 
of whole transcriptome were determined by RNA sequencing. The table includes genes showing 
significant differential expression (blue, down-regulated, red: up-regulated) upon inducible PRKCQ 
knockdown in MyLa and HuT 78 cells treated with control vehicle for 24 h. PRKCQ gene is highlighted 
in bold.  

Gene Fold change p value Gene Fold change p value
FGFR1 -5.12 1.9645E-74 MPO -6.53 2.3136E-04

PRKACB -2.62 1.6988E-32 GOLGA8G -5.84 4.9626E-03
PRKCQ -2.47 1.0619E-07 CD27 -5.60 8.8265E-03
NRCAM -1.50 5.7992E-03 CHRNA2 -5.27 4.8963E-03
COL5A2 -1.29 3.8563E-02 NLRP2 -4.72 1.3488E-31

CU634019.1 -1.26 5.4645E-03 FAM163A -4.62 1.8152E-02
HIGD2A -1.23 7.3073E-40 NLRP7 -4.37 2.9259E-14
DUSP6 -1.17 3.5559E-04 AZGP1 -4.31 8.2983E-07
LCP1 -1.08 1.2680E-15 SRL -4.19 1.5573E-11

AC008012.1 -1.05 1.3589E-04 DNAJC5B -4.05 3.1545E-19
ARL6IP6 -1.03 4.9260E-03 ATAD3C -3.98 4.2950E-05

ADA2 -1.00 1.1571E-04 ABHD8 -3.55 3.5739E-07
MSMO1 -0.96 1.8047E-04 ROBO1 -3.46 1.0725E-02
LDLRAD3 -0.96 2.0952E-07 ALOX12P2 -3.44 4.6747E-08

ULK4 -0.93 3.8174E-02 SEZ6L -3.36 3.1742E-04
ST3GAL1 -0.92 9.3963E-03 SPATC1L -3.30 1.1602E-02
SUCLG2 -0.88 1.9093E-14 SLC6A9 -3.13 1.3119E-04
LIMK1 -0.86 3.2510E-03 CA6 -2.93 4.3807E-08
MCFD2 -0.84 3.7649E-14 KIAA1324L -2.91 4.5111E-16
DHCR7 -0.82 5.7992E-03 CXCR5 -2.90 3.3258E-02

PPP2R1B -0.80 8.6198E-11 RORA -2.89 3.2539E-06
METTL9 -0.79 8.3790E-15 NRCAM -2.89 6.1990E-03
PCYT1A -0.76 2.4281E-18 DOK3 -2.81 3.6966E-18

PKIA -0.73 5.3473E-04 UBBP4 -2.80 9.9352E-25
SCD -0.72 4.7069E-02 GAS6 -2.76 1.4860E-03

VKORC1 -0.72 2.9384E-05 MTUS1 -2.72 1.7934E-02
EPB41L4B -0.72 5.5782E-03 SUCNR1 -2.68 2.4160E-08

RBM47 -0.67 1.1971E-02 RYR2 -2.62 3.2591E-10
FAM107B -0.67 1.3659E-08 UNC13C -2.59 7.0698E-03

UBXN8 -0.62 2.1708E-02 GALNT9 -2.57 2.1967E-02
TAB3 -0.62 8.4631E-04 TREX1 -2.46 4.6553E-02
OSBP -0.62 2.0484E-06 PKHD1 -2.44 2.1220E-02

TMEM230 -0.58 1.9115E-06 SATB1 -2.34 2.5286E-05
RFLNB -0.58 2.8262E-04 BIRC7 -2.26 5.9406E-03
CELF2 -0.57 1.3188E-02 ABCA12 -2.25 1.5421E-03

GTF2E2 -0.57 5.8044E-03 TNFRSF25 -2.23 1.4606E-06
B4GALT1 -0.56 1.0652E-03 NME4 -2.13 3.8058E-02

AGRN -0.56 4.9643E-02 POU2AF1 -2.03 1.2075E-04
AC010422.8 -0.55 3.7366E-02 NUAK1 -2.02 2.1062E-06

ETS1 -0.54 2.2709E-10 NT5E -2.00 1.8010E-03
NFATC2 -0.54 4.8014E-02 CDK6 -1.87 4.2633E-02
SEMA4B -0.53 6.6056E-03 PRKCQ -1.83 3.6966E-18

BCL9 -0.53 1.5663E-04 PDE6G -1.83 7.9641E-05

HuT 78 (NTC vs shPRKCQ) - VehicleMyLa (NTC vs shPRKCQ) - Vehicle



ANNEXES 
 

183 

  

EAF1 -0.51 9.2318E-05 ENPEP -1.79 5.9406E-03
GMFB -0.51 4.9260E-03 PTK7 -1.78 1.1530E-05

FBXW7 -0.50 2.3174E-02 APOC2 -1.78 2.0642E-02
IDH1 -0.50 3.9287E-07 LDLRAD3 -1.76 9.8904E-13
ELL2 -0.50 4.3609E-02 CHD5 -1.76 1.8824E-02

KIRREL2 -0.48 4.1954E-02 SERPINF1 -1.73 8.2523E-03
TMC8 -0.47 2.3927E-02 IRF6 -1.71 4.3199E-02

ADAM19 -0.47 5.4645E-03 ACPP -1.69 1.3491E-02
RPP21 -0.46 4.8398E-02 SPIB -1.66 3.0202E-03
LIMA1 -0.46 9.3963E-03 OLFML2A -1.61 3.5498E-02

ARID3B -0.45 4.0987E-02 RHOXF1-AS1 -1.60 1.1276E-03
FAF2 -0.45 4.8372E-02 ACOXL -1.60 1.2957E-04

SLFN13 -0.45 7.0760E-03 ALDH1A3 -1.54 8.6014E-06
CCDC32 -0.45 4.5626E-03 GSDMA -1.53 4.3695E-02
SRXN1 -0.44 3.0841E-02 GRB7 -1.52 2.5599E-02

CCDC28A -0.43 2.7436E-02 ACE -1.48 1.3291E-03
TMEM33 -0.40 7.3922E-03 STAR -1.44 7.2641E-03
PTPN18 -0.40 1.1971E-02 CBFA2T3 -1.41 6.7867E-03
FADS1 -0.38 2.0798E-02 PPP1R1B -1.40 2.3840E-09
SCOC -0.38 2.3927E-02 SLC35F3 -1.38 5.9406E-03
SFXN1 -0.38 9.9118E-03 CACNA1E -1.38 2.3296E-03
SCYL3 -0.37 9.9118E-03 RYR1 -1.37 3.8092E-02

UBALD2 -0.37 3.5684E-02 YBX2 -1.36 1.1606E-03
BLOC1S2 -0.37 1.1267E-02 LGALS9C -1.34 2.4117E-04
SMC1A -0.37 3.3445E-06 ARHGEF40 -1.29 4.8711E-03
ERLIN2 -0.36 9.5233E-03 APOD -1.28 2.1255E-02
PANX1 -0.36 3.0841E-02 GJC1 -1.28 4.9245E-02

AHR -0.35 5.7306E-03 CD79B -1.28 2.0724E-02
FNDC3B -0.34 2.6736E-03 CRACR2B -1.26 1.8538E-03

FNIP2 -0.34 1.4674E-03 LRRC18 -1.25 4.2047E-02
GID4 -0.34 1.3638E-02 FERMT2 -1.23 2.3423E-02

DGCR2 -0.33 3.0076E-03 INAVA -1.22 3.1513E-02
SLC50A1 -0.33 1.0652E-03 JAG1 -1.20 8.8164E-08

CASK -0.33 1.2380E-04 GRASP -1.19 3.8898E-02
ANKRD13C -0.33 1.1661E-02 AC019117.2 -1.19 1.8824E-02

TNRC6A -0.32 1.1611E-02 PTPN14 -1.18 8.5723E-05
SENP1 -0.31 7.0760E-03 ENPP1 -1.15 9.7717E-04

COPS7B -0.31 2.3927E-02 NHSL2 -1.15 3.7035E-02
ZBTB7A -0.31 8.1321E-03 NKX2-5 -1.14 3.7064E-02

JPT2 -0.28 3.4377E-02 LOXL1 -1.13 2.3263E-02
AIM2 -0.27 3.7366E-02 BEGAIN -1.13 9.0581E-05

HACD2 -0.27 3.1794E-02 LTBP1 -1.12 1.6223E-02
OS9 -0.26 8.8647E-03 RAPGEF3 -1.10 1.8824E-02

CPNE8 -0.26 4.3257E-02 FGFR3 -1.09 4.1667E-03
CDC23 -0.25 4.9926E-02 PTGER2 -1.08 4.6908E-02

TM7SF3 -0.24 1.1051E-02 DUSP15 -1.08 5.4879E-03
SPTLC2 -0.24 2.3927E-02 RHOBTB1 -1.07 9.0903E-05
TEX264 -0.24 3.9521E-02 FZD7 -1.06 3.5888E-02

GAK -0.22 3.0904E-02 EPAS1 -1.05 1.0725E-02
GLO1 0.20 7.3922E-03 MROH6 -1.04 1.7094E-02

WDR48 0.25 7.1709E-03 NTN1 -1.04 9.1828E-04
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CRLF3 0.28 2.9071E-02 HMOX1 -1.03 2.1246E-02
ELMO1 0.28 4.8987E-02 TRIO -1.00 3.1779E-02
SUB1 0.28 9.3963E-03 LAMA4 -1.00 3.1299E-05

MINDY3 0.28 1.0227E-02 CD244 -0.99 4.2633E-02
ANXA1 0.28 2.3927E-02 IQSEC3 -0.99 2.7026E-02
WDR44 0.28 3.4377E-02 CD81 -0.99 7.0887E-03
ATG13 0.29 2.0798E-02 PTPRG -0.98 1.6223E-02
SPAST 0.29 1.8400E-02 F2RL3 -0.96 5.4879E-03

RAB11FIP1 0.29 7.3748E-06 RASA4B -0.95 6.3325E-03
WDR26 0.29 2.3927E-02 SIM1 -0.95 3.3258E-02

KIAA0232 0.30 4.7226E-02 FAR2P1 -0.95 1.8824E-02
LAPTM5 0.30 7.8922E-03 DAB2IP -0.94 7.7901E-05
GPSM3 0.31 1.2455E-02 DERL3 -0.94 1.4132E-02
CHMP7 0.31 4.8036E-02 LAT2 -0.91 4.5767E-02

NKIRAS2 0.31 2.1881E-03 FHDC1 -0.91 1.2731E-02
PPP3R1 0.31 5.6168E-04 STS -0.88 1.1276E-03
ARL2BP 0.32 3.9247E-02 TIMP2 -0.87 2.0204E-06
MAP4K4 0.32 1.8526E-02 KIAA1211 -0.83 3.3258E-02
SLC35D1 0.32 1.8526E-02 PFKFB2 -0.83 1.8824E-02

PHYH 0.32 6.5624E-03 AC136475.9 -0.80 3.5863E-02
COMMD8 0.33 2.1769E-02 RASA4 -0.79 7.2746E-03

PRKY 0.33 5.4690E-03 ZNF618 -0.79 5.7229E-04
SLC20A1 0.34 2.1873E-04 PLXNB2 -0.75 1.8538E-03

HSDL1 0.34 2.9615E-02 NFATC2 -0.75 4.7587E-02
ZNF581 0.34 3.6427E-02 SPRYD3 -0.73 1.0725E-02
TRUB1 0.34 3.2478E-02 PLXND1 -0.72 3.5498E-02
UBA3 0.35 2.5617E-03 ISYNA1 -0.72 4.3199E-02

MMGT1 0.35 1.1111E-03 LYN -0.68 9.2249E-03
CAMSAP2 0.35 1.8349E-03 SLC12A7 -0.68 2.1967E-02

SOD2 0.35 1.1611E-02 GREB1 -0.68 3.5545E-04
AMFR 0.36 2.1955E-02 PALLD -0.66 4.2187E-02
VOPP1 0.36 2.8262E-04 HSH2D -0.66 2.7352E-02
DVL3 0.37 5.6494E-06 CCDC90B -0.66 1.1396E-02

FAM69A 0.37 4.3609E-02 PHF7 -0.65 3.7064E-02
KDM5D 0.37 1.1661E-02 TMEM245 -0.64 2.0642E-02
TRAFD1 0.37 1.1179E-02 CABIN1 -0.63 2.7004E-05
OSBPL8 0.37 3.5371E-06 CDC42EP3 -0.63 3.5863E-02
ORMDL3 0.38 2.0287E-05 MLC1 -0.61 4.3199E-02

BTG3 0.38 9.5807E-06 HIPK2 -0.60 3.3258E-02
ERC1 0.38 3.1794E-02 PPT2 -0.59 4.7667E-02
GOPC 0.40 2.1349E-04 NUP50 -0.59 1.1684E-03
MPI 0.40 2.0484E-06 SH3BP1 -0.56 2.5972E-02

CDCA4 0.40 2.3927E-02 NOTCH1 -0.56 1.1396E-02
SNX7 0.41 7.8955E-07 RHOBTB2 -0.56 5.4462E-03

ZNF182 0.41 3.8563E-02 TMEM120B -0.54 4.8383E-02
PAQR3 0.41 2.1708E-02 GINM1 -0.50 5.5456E-04

EVI5 0.41 3.0308E-02 ZCCHC3 -0.47 1.3491E-02
MACO1 0.43 5.6494E-06 MTHFD2 -0.45 3.2433E-02
ATXN10 0.43 2.3692E-03 ATXN7L3 -0.45 4.6553E-02
NUP58 0.44 3.6590E-02 VPS4A -0.43 2.7641E-02
RNF19B 0.44 1.9610E-02 APOBEC3F -0.41 4.3847E-02
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RCOR1 0.44 4.0987E-02 BCR -0.39 3.1513E-02
ZSWIM1 0.45 4.8858E-02 ATP9A -0.38 4.1120E-02
C5orf24 0.45 9.9118E-03 EMILIN2 -0.35 4.6908E-02
BAZ2A 0.45 3.3117E-04 LASP1 -0.31 3.5498E-02
CLOCK 0.45 1.7073E-05 STXBP1 0.64 4.3199E-02

PPP1R3F 0.46 1.3076E-03 TMEM136 0.82 4.9561E-02
CREBL2 0.46 7.1054E-07 MYO18B 0.84 8.8671E-03

LSP1 0.46 2.4292E-04 KIR2DL3 0.87 1.7723E-02
MEF2D 0.47 6.6056E-03 ECHDC2 0.88 5.0180E-03
PDE7A 0.47 7.0760E-03 RHOU 0.91 1.7958E-04
IFIH1 0.47 1.8349E-03 C15orf38-AP3S2 0.94 4.3199E-02

DUSP10 0.48 1.9888E-09 NCALD 0.95 1.6616E-03
TRIM23 0.49 7.2006E-03 C16orf45 0.97 1.3941E-02
TRBV6-5 0.49 1.9041E-02 SYT11 1.04 2.5972E-02

YPEL5 0.50 1.7600E-07 TCEAL4 1.06 8.8265E-03
HIPK1 0.51 2.6113E-06 PKIB 1.15 4.3695E-02
CHIC1 0.51 1.9028E-02 KIR3DL1 1.19 1.1555E-03

TRIM37 0.52 1.2155E-05 ARFGEF3 2.14 1.4364E-07
SPIRE1 0.53 5.6783E-03 PEG10 2.36 4.9306E-08
SDC4 0.53 1.2463E-02 STMND1 2.70 2.5186E-05

RPS4Y1 0.53 2.3927E-02 MT-RNR1 2.97 1.2548E-03
GDF11 0.55 1.8623E-03 SNORD17 3.01 5.9406E-03

SH3KBP1 0.57 1.1971E-02 SGCE 3.24 1.8538E-03
RDX 0.58 2.0932E-02 HIST1H4J 3.30 6.1529E-03

CD79A 0.60 3.7232E-03 FAT4 4.79 3.6124E-03
RNF11 0.61 7.9841E-22 SNORD3A 5.22 5.0180E-03
KSR1 0.62 3.7649E-14 RN7SK 5.65 2.2159E-04

ERO1B 0.63 7.3922E-03 CCNA1 5.66 5.6050E-03
AGPAT4 0.63 9.9079E-03 RNA5-8SN2 6.77 1.0649E-05

ZFY 0.63 2.1352E-12 RNA5-8SN2 6.77 1.0649E-05
ORAI2 0.63 4.3257E-02 RNA5-8SN2 6.77 1.0649E-05

MAP3K4 0.64 1.3222E-02 RNA5-8SN2 6.77 1.0649E-05
CLIP2 0.64 1.7693E-04 RNA5-8SN2 6.77 1.0649E-05
PIM3 0.67 1.9196E-03 RNA5-8SN4 6.77 1.0649E-05
IRX3 0.68 4.8372E-02 RNA5-8SN2 6.77 1.0649E-05

CHST7 0.68 1.1661E-02 RNA5-8SN2 6.77 1.0649E-05
APBB1 0.69 3.0700E-03 RPPH1 6.88 4.0451E-06
TTTY15 0.71 3.0700E-03

LY6E 0.71 1.2535E-03
STX6 0.72 2.4292E-04
KLHL5 0.76 3.0700E-03
NRAV 0.76 6.2529E-03

KLHDC7B 0.77 2.7101E-02
MRFAP1 0.78 6.5274E-09
TMOD1 0.79 3.0245E-05
SAMSN1 0.80 5.3997E-06

RIMS3 0.80 2.1180E-02
FREM2 0.85 1.2463E-02
MYRF 0.86 2.5156E-02

COL4A6 0.88 1.8069E-02
CAPSL 0.93 1.8349E-03



ANNEXES 

186 

  

RGS12 0.97 4.4670E-06
CACNA1E 0.98 2.0750E-09

AL139393.2 1.06 1.1661E-02
SPINK5 1.16 1.8349E-03
CACNB4 1.17 1.5814E-04

OASL 1.17 2.7482E-03
TCF7 1.25 6.3881E-07

PIK3R5 1.27 4.0455E-09
IFIT3 1.29 7.8955E-07
ISG15 1.31 3.1716E-08
GBP4 1.33 5.0809E-07

RNF38 1.35 4.6866E-11
AP3B2 1.39 2.3927E-02
JPH4 1.39 1.8926E-03

ANKRD55 1.40 1.3638E-02
CFI 1.42 3.9486E-02

SERPINE1 1.45 5.7992E-03
LPA 1.50 3.4377E-02

NAV2 1.51 6.5736E-05
RASSF4 1.52 4.6597E-02
IGFBP2 1.57 1.3574E-03

BMF 1.58 7.6465E-08
IFIT1 1.61 4.1411E-03

LINC002481 1.64 1.2463E-02
LHX2 1.64 6.4474E-03

AUTS2 1.66 3.1051E-02
IFIT2 1.70 2.6797E-16

CSAG3 1.71 1.1232E-03
RARRES3 1.85 7.2006E-03

GBP2 1.87 7.8922E-03
DGKI 1.90 1.3638E-02

BCAS1 2.08 5.5169E-04
AC026904.1 2.11 1.0227E-02

IL6R 2.13 3.4045E-07
MPP4 2.21 4.8916E-02

CEACAM1 2.21 9.6657E-04
KCNJ18 2.25 4.1452E-05
KCNJ12 2.26 1.0969E-06
TEAD2 2.64 5.0516E-04
PLD1 2.73 4.8036E-02

CYP4F12 2.80 1.2463E-02
AP000547.3 2.90 4.2782E-02

S100P 3.01 2.6288E-02
PLA2G2F 3.71 7.4464E-07

IGHM 6.28 1.6833E-02
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Annex 4. Gene expression changes upon PRKCQ knockdown in MyLa and HuT 78 cells. mRNA levels 
of whole transcriptome were determined by RNA sequencing. The table includes genes showing 
significant differential expression (blue, down-regulated, red: up-regulated) upon inducible PRKCQ 
knockdown in MyLa and HuT 78 cells treated with TPA (10 ng/ml) for 24 h. PRKCQ gene is highlighted 
in bold.  

Gene Fold change p value Gene Fold change p value
FGFR1 -5.81 1.5641E-64 SEPT5-GP1BB -5.90 1.9198E-02
PRKCQ -2.84 1.7762E-10 SEZ6L -4.76 6.6235E-03

PRKACB -2.65 7.7668E-33 DNAJC5B -4.70 1.1647E-13
CU634019.1 -1.54 1.0518E-03 ATAD3C -4.11 3.5368E-03

LNCOC1 -1.36 3.8602E-02 AZGP1 -3.79 2.8100E-02
DHCR7 -1.26 1.9345E-06 NLRP2 -3.69 1.0208E-17
FBXO43 -1.16 3.7880E-02 MTUS1 -3.66 3.0275E-02

TMEM132D -1.11 2.8270E-03 CDH17 -3.57 1.0936E-02
HIGD2A -1.02 8.3508E-27 FAM163A -3.51 1.8494E-04

KIF15 -1.01 4.9757E-04 PCA3 -3.34 1.7208E-04
ADA2 -1.00 1.3677E-04 RIMBP3B -3.34 1.8602E-02

LINC00184 -0.99 2.5962E-02 NRCAM -3.19 2.1946E-02
AURKB -0.97 2.6687E-02 SRL -3.14 8.9861E-03
SUCLG2 -0.97 2.1105E-17 SLC6A9 -2.94 2.0367E-03
ARL6IP6 -0.96 9.7373E-03 NLRP7 -2.81 5.4155E-03
GAS2L3 -0.95 3.3966E-03 UNC13C -2.72 7.2576E-03
ST3GAL1 -0.94 5.3789E-03 NME4 -2.71 3.6912E-02

CIT -0.94 5.7915E-04 PDE6G -2.61 7.7909E-09
FAM72D -0.93 3.8944E-02 ARHGAP29 -2.52 1.7263E-02

TMEM143 -0.91 1.1901E-02 ABHD8 -2.49 1.4422E-02
DEPTOR -0.91 4.1327E-03 UBBP4 -2.38 1.0037E-16
MCIDAS -0.90 1.3193E-05 RORA -2.34 1.3129E-03
GPRIN3 -0.88 4.9833E-02 KIAA1324L -2.23 7.7909E-09

SKA1 -0.88 1.0518E-03 FARP1 -2.16 2.5948E-02
KIF14 -0.87 1.3369E-04 SUCNR1 -2.06 1.7208E-04

LDLRAD3 -0.86 3.2044E-05 NUAK1 -2.01 3.2624E-06
LCP1 -0.86 8.3362E-10 KRT80 -2.00 4.7392E-05
MATK -0.86 4.6291E-02 PTK7 -1.94 3.0619E-03

CYB5RL -0.84 8.3826E-03 COL4A4 -1.89 3.6912E-02
MXD3 -0.81 1.6452E-02 SIM1 -1.81 1.9622E-06
GNGT2 -0.81 4.1758E-04 TNFRSF25 -1.75 1.3129E-03
RNF26 -0.80 1.4818E-02 NKX2-5 -1.75 9.4721E-05
CKAP2L -0.80 1.5485E-03 IGFBP4 -1.71 1.8571E-03
TOP2A -0.78 3.4429E-02 SPIB -1.68 4.2707E-03

FAM86JP -0.78 2.6249E-03 PRKCQ -1.68 2.3601E-14
AC068831.7 -0.77 1.6420E-02 SLCO4C1 -1.67 4.7434E-03
AC112777.1 -0.77 2.1671E-02 POU2AF1 -1.64 1.1635E-02
FAM107B -0.75 8.7888E-11 RHOXF1-AS1 -1.58 5.5074E-03

MCFD2 -0.75 3.4235E-11 IL10 -1.56 1.9622E-06
HASPIN -0.75 6.3172E-04 FERMT2 -1.50 2.2955E-03
FAM72B -0.73 2.5510E-02 ARHGEF40 -1.48 2.0825E-03

TCF19 -0.73 1.5920E-02 OLFML2A -1.45 3.8475E-02
SGO1 -0.72 4.1363E-02 ACE -1.43 3.9169E-02

MyLa (NTC vs shPRKCQ) - TPA HuT 78 (NTC vs shPRKCQ) - TPA
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GPSM2 -0.70 4.3731E-04 GRASP -1.43 1.0556E-03
TRAF3 -0.69 8.1740E-07 INAVA -1.39 1.2364E-02

CAMK2N2 -0.68 3.4701E-02 CNKSR2 -1.39 3.9000E-02
RBM47 -0.68 8.6077E-03 DOK7 -1.38 8.6152E-03
LRG1 -0.68 1.0388E-02 CBFA2T3 -1.38 1.5692E-02

NFAM1 -0.67 1.8604E-02 CD79B -1.37 3.9000E-02
TYMS -0.67 2.0221E-02 DUSP15 -1.37 1.5407E-03

MSMO1 -0.66 3.0362E-02 LDLRAD3 -1.36 1.5495E-07
VKORC1 -0.65 2.7099E-04 BAHCC1 -1.35 7.2710E-05
MYH10 -0.65 3.4701E-02 ACOXL -1.30 7.8268E-03
NUP210 -0.65 2.6562E-14 TIMP2 -1.30 7.6194E-12
DHRS2 -0.64 1.5553E-03 RYR2 -1.28 4.9242E-02

SLC37A4 -0.63 2.6687E-02 GJC1 -1.24 3.6245E-02
WDHD1 -0.63 3.1400E-02 ZNF91 -1.24 2.2411E-02
SEMA4B -0.62 4.2948E-04 ADTRP -1.23 4.3151E-03
H2AFX -0.62 3.7261E-02 ZBTB46 -1.18 5.4155E-03

CPPED1 -0.62 1.6178E-03 RASSF4 -1.17 1.9243E-02
VEGFB -0.62 1.7305E-02 SEMA3G -1.16 1.1892E-03
PCYT1A -0.62 6.5410E-12 SALL4 -1.12 1.7515E-02

AC091057.6 -0.62 2.4124E-02 CIITA -1.12 3.7191E-02
METTL9 -0.61 2.0640E-08 ENPP1 -1.09 3.8199E-03

PRPF40B -0.60 8.5219E-05 CORO1B -1.08 4.2177E-03
ELL2 -0.60 4.0312E-03 DUSP4 -1.06 4.9494E-02

PPP2R1B -0.60 1.1821E-05 CLIC5 -1.05 4.9699E-02
SCN11A -0.59 8.3558E-03 C14orf132 -1.04 3.8389E-02
SIPA1 -0.57 6.7812E-04 NTN1 -1.02 3.3025E-03
BCL3 -0.57 4.3731E-04 DERL3 -1.01 2.2411E-02

LIMA1 -0.56 2.5473E-04 PPP1R1B -1.00 3.8926E-03
CHST14 -0.56 1.1155E-03 SYNPO -1.00 2.0914E-02
ULBP2 -0.54 6.5490E-03 EOMES -1.00 5.1997E-06
POLD1 -0.54 2.2508E-03 PLEKHA3 -0.98 1.9621E-02

FNDC3B -0.53 9.6004E-10 PLXNB2 -0.96 1.5214E-05
TBC1D31 -0.53 1.1547E-02 CD109 -0.94 2.9192E-02

FANCI -0.53 4.2304E-04 TRABD2A -0.94 4.4054E-02
LIMK2 -0.52 3.0718E-04 TSC2 -0.93 7.8268E-03
MPZ -0.52 1.6284E-02 PALM -0.90 3.4540E-02
IFT88 -0.52 3.2264E-02 FAR2P1 -0.89 4.4035E-02
TLE2 -0.52 3.1813E-02 KREMEN1 -0.87 1.8575E-02

KIRREL2 -0.52 1.4588E-02 HIPK2 -0.85 1.9465E-04
PRKAA1 -0.51 2.3056E-02 KREMEN2 -0.85 3.6245E-02
JADE3 -0.51 1.5824E-02 JAG1 -0.79 2.7973E-03
RGS18 -0.51 8.3084E-04 RASGEF1B -0.79 1.9198E-02
SMC1A -0.50 6.6887E-12 GLCCI1 -0.78 1.9198E-02

MAPK13 -0.50 1.5553E-03 ZNF618 -0.78 4.2355E-03
ETS1 -0.50 7.7313E-09 AGTRAP -0.76 3.0710E-02

TMEM230 -0.50 1.6802E-04 NUP50 -0.75 7.2972E-06
RFLNB -0.49 4.3252E-03 CCDC90B -0.74 4.2177E-03
NSD2 -0.49 4.8962E-05 SPRYD3 -0.72 1.7263E-02
OSBP -0.49 6.3172E-04 LSP1 -0.71 5.4155E-03

LMAN1 -0.47 6.8083E-03 PALLD -0.69 3.4540E-02
TAB3 -0.47 2.4124E-02 LYN -0.67 2.2411E-02
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FBXO5 -0.47 1.6707E-02 ASB7 -0.64 1.3393E-02
NAAA -0.47 1.1901E-02 TMEM245 -0.64 2.4780E-02
GAA -0.47 1.5824E-02 CSF2RB -0.63 6.2502E-04
RMI1 -0.46 4.0195E-02 CKAP4 -0.61 7.2576E-03

PRKRA -0.46 8.7673E-03 EEF1E1 -0.61 4.3151E-03
C4orf46 -0.46 8.6077E-03 RHOBTB2 -0.59 3.8199E-03

RFX5 -0.46 4.2675E-03 CBX6 -0.56 2.8768E-02
PRIMPOL -0.45 4.0900E-02 LGALS3 -0.56 4.5986E-02

RBL1 -0.45 3.1400E-02 ALKBH8 -0.55 4.5372E-02
MAD2L2 -0.45 2.4124E-02 HLA-DMB -0.54 3.5642E-02
CENPL -0.44 2.9554E-03 CABIN1 -0.51 4.3151E-03
FAF2 -0.44 4.6291E-02 EAF1 -0.50 1.3393E-02
BCL9 -0.43 4.8838E-03 CCDC32 -0.49 3.4540E-02

C19orf54 -0.42 6.9001E-04 RTL10 -0.47 4.0113E-02
SENP1 -0.42 3.8186E-05 ATP9A -0.46 1.3393E-02
SFXN1 -0.42 1.6858E-03 ZCCHC3 -0.44 3.4613E-02

SDHAF3 -0.42 3.6506E-02 PPM1D -0.42 4.8458E-02
SLC8B1 -0.41 3.7880E-02 APOL3 -0.41 4.0326E-02

ARHGEF19 -0.39 1.4298E-02 VPS4A -0.41 4.4054E-02
ERLIN2 -0.38 4.2546E-03 GINM1 -0.38 3.4540E-02
TOPBP1 -0.38 1.9387E-02 POM121C -0.33 1.7320E-02
HINT2 -0.37 4.7170E-03 HOXA9 0.44 2.2411E-02
SCOC -0.37 2.2235E-02 APBA2 0.45 3.4540E-02

CCDC32 -0.37 1.6420E-02 NEDD4L 0.52 3.6853E-02
ZNF76 -0.37 1.2370E-02 PAIP2B 0.55 1.7263E-02
TAF4B -0.37 2.8693E-02 TFCP2L1 0.56 1.6307E-03
FADS1 -0.37 3.1277E-02 PPP1R21 0.59 4.2707E-03

ZDHHC4 -0.35 3.1400E-02 KIR2DS4 0.60 6.9280E-03
MYO18A -0.35 2.5962E-02 NFIA 0.63 1.7597E-02

PIGS -0.35 2.8315E-02 TLDC1 0.67 7.1356E-03
S100A10 -0.35 2.0293E-02 GALNT12 0.69 3.4540E-02
SBNO2 -0.35 3.7395E-02 ZG16B 0.77 1.7263E-02
TKFC -0.35 1.5920E-02 RNLS 0.77 3.7191E-02

SUMO3 -0.34 2.4124E-02 NCALD 0.78 1.4422E-02
SMC4 -0.33 4.2840E-02 ECHDC2 0.80 2.5948E-02
KCTD3 -0.33 2.3272E-02 C16orf45 0.92 2.9192E-02
PRKX -0.32 4.9880E-02 AP000295.1 0.95 8.3603E-03
NAGA -0.32 1.9739E-03 RETREG1 0.96 3.6912E-02
CDC23 -0.30 5.7748E-03 RNASE6 0.98 4.9242E-02
LEMD2 -0.30 4.1000E-02 KIR2DL3 1.03 2.6212E-03
PICALM -0.29 1.8502E-04 KLRC4-KLRK1 1.14 5.0279E-03
DGCR2 -0.29 1.2806E-02 SLAMF7 1.33 3.3025E-03
PKP4 -0.29 1.5775E-02 COL27A1 1.36 1.7263E-02

ADAM10 -0.29 2.6643E-02 AC005842.1 1.44 4.0326E-02
CASK -0.29 1.5553E-03 SOCS2 1.54 1.9243E-02
AHR -0.28 3.6592E-02 ZNF311 1.54 1.5933E-02
JPT2 -0.27 4.4431E-02 KIR3DL1 1.63 6.1040E-07

DROSHA -0.27 8.4953E-03 ARFGEF3 1.72 4.7392E-05
CELSR3 -0.27 4.6754E-03 ITGA6 1.82 5.8297E-04
SH2D1A -0.27 1.2903E-02 MAT1A 1.95 9.7543E-04
PANK2 -0.26 1.6012E-02 MAEL 1.98 4.1055E-02
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SLC50A1 -0.26 2.1020E-02 STMND1 2.05 1.1682E-02
STAG2 -0.25 1.0518E-03 KCNJ13 2.97 1.7263E-02

TM7SF3 -0.24 1.1202E-02
KCMF1 -0.23 1.1514E-02
ACAP1 -0.23 3.4429E-02

GAK -0.22 1.8784E-02
PTDSS1 -0.16 4.1613E-02

ST13 0.21 1.8643E-02
BTG3 0.22 4.2766E-02

MBTPS2 0.24 2.4291E-02
SNX7 0.25 1.9749E-02

KPNA4 0.25 3.4429E-02
MMGT1 0.26 3.1400E-02

CAMSAP2 0.26 4.1379E-02
NKIRAS2 0.26 1.2418E-02
ELMO2 0.26 4.4785E-02
CAND1 0.26 1.2320E-02
ACOX1 0.27 2.6881E-02

TMEM9B 0.28 4.2802E-02
LAPTM5 0.28 1.5775E-02

FMR1 0.28 2.6529E-02
EIF1B 0.28 1.2320E-02
GOPC 0.29 2.3173E-02

CREBL2 0.29 5.3824E-03
HIPK1 0.30 3.5703E-02

SLC35D1 0.30 3.3130E-02
SYTL2 0.30 3.9928E-02

OSBPL8 0.30 4.8903E-04
SUB1 0.30 2.3389E-03

CDK18 0.31 1.5803E-02
C15orf39 0.31 6.5435E-03
PFDN4 0.31 2.0293E-02
PDCD7 0.31 2.3508E-03

LSP1 0.31 4.1363E-02
MFN1 0.31 4.6225E-02

PPP3R1 0.32 2.7818E-04
WDR26 0.32 6.5490E-03
DVL3 0.32 1.6802E-04

RFTN1 0.33 3.2044E-05
ANXA1 0.33 2.4266E-03
GFOD1 0.34 4.9880E-02
ATXN10 0.34 3.1718E-02
FOXO1 0.34 3.0645E-02
EIF4A2 0.35 7.4913E-03

FGFR1OP2 0.35 1.8946E-04
KSR1 0.35 3.7928E-04
PRKY 0.35 1.6561E-03

CLOCK 0.36 2.9251E-03
LTA4H 0.36 9.3256E-04

ZNF827 0.36 4.8903E-04
ACTG1 0.36 3.7840E-02
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TRIM37 0.37 1.1547E-02

AKAP17A 0.37 3.7880E-02
EGLN3 0.37 8.6503E-04
ARL2BP 0.37 7.2563E-03
KDM5D 0.37 8.5321E-03
UBE2B 0.38 1.4057E-05

TRAFD1 0.38 6.2768E-03
ZFY 0.38 4.3731E-04

SH2D3C 0.38 1.0205E-03
TRIM23 0.39 4.7813E-02
WBP1 0.39 2.5962E-02
TAF10 0.39 4.1636E-02
ITM2A 0.39 3.2301E-02
POLD4 0.40 3.2708E-02
CD44 0.40 2.7858E-07
TANK 0.40 1.4272E-02
SIK3 0.40 8.5321E-03

TMEM200A 0.40 3.1718E-02
GPSM3 0.40 8.0440E-05
PAQR3 0.40 2.5796E-02
C5orf24 0.40 2.5796E-02

IFIH1 0.40 1.2806E-02
NUP58 0.42 3.9227E-02
ARRB1 0.42 1.4768E-02

KIAA0232 0.42 4.0303E-04
ACVR1B 0.43 2.6881E-02

ADO 0.43 1.1910E-04
UBE2H 0.44 1.1487E-02

PRKAB2 0.44 3.9495E-03
GNAI1 0.45 3.1400E-02
VPS37B 0.45 3.4766E-03
ZSWIM6 0.46 8.9380E-03

TNFRSF25 0.47 3.5761E-06
IL15 0.47 9.4069E-03

BAZ2A 0.47 1.0713E-04
SEPT9 0.48 3.1400E-02
SPIRE1 0.48 1.1547E-02
FUT8 0.50 1.3147E-03

SLC25A4 0.51 1.5803E-02
SH3TC1 0.51 4.6754E-03

OSM 0.51 3.9698E-05
EFHD2 0.51 4.5297E-03

HEXIM1 0.52 1.8101E-02
LY6E 0.52 4.6284E-02
STX3 0.52 1.5920E-02
NCF2 0.52 3.6506E-02

STIMATE 0.52 6.5435E-03
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LCP2 0.53 4.2699E-10
PCED1B-AS1 0.54 1.7179E-02

TTTY15 0.55 4.1363E-02
MAP4K3 0.55 4.7170E-03
ST3GAL2 0.56 1.9973E-05
CASP9 0.56 1.3278E-04
PIK3R5 0.57 1.6452E-02
MEF2D 0.60 3.3620E-05
TWF1 0.60 9.0282E-03

PHACTR2 0.61 5.8310E-03
DUSP10 0.61 9.8213E-17
VCAN 0.62 3.9580E-02
TRIB1 0.62 4.5186E-02

FAM131A 0.63 3.2087E-03
TEX19 0.64 1.5920E-02
RNF11 0.64 1.0471E-27
RPS4Y1 0.65 1.5553E-03

CYP4F35P 0.65 3.7567E-02
TAX1BP3 0.69 7.8714E-03

AC111188.1 0.69 3.9227E-02
ASAP1 0.69 1.7073E-02

MRFAP1 0.71 2.9249E-07
CRK 0.73 9.4271E-03

RGS16 0.74 7.7598E-03
GRID1 0.74 4.7147E-03
IKZF4 0.75 1.1230E-02
ASB2 0.77 3.5716E-03
GEM 0.77 1.7711E-03
STX6 0.77 3.7351E-05
TMC6 0.77 1.3394E-02
GPR35 0.81 5.2270E-03

AP002008.1 0.82 4.3588E-02
FHL3 0.84 1.1155E-03

PCED1B 0.84 6.2460E-08
SAMSN1 0.84 7.2797E-07

AC055854.1 0.84 3.9227E-02
DGKA 0.86 8.7362E-10

LINC01619 0.87 5.4043E-03
AC131254.1 0.89 3.0391E-03

PRF1 0.92 6.8964E-11
ZCCHC24 0.93 8.6077E-03

ERICD 0.93 5.5656E-03
TMEM91 0.96 2.6167E-02

DCUN1D3 0.99 1.2475E-10
PCLO 0.99 4.6786E-02
RGS12 1.00 5.0148E-07
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GBP5 1.01 1.5485E-03
JUN 1.02 4.0222E-02

GABARAPL1 1.04 3.3207E-02
CACNB4 1.04 7.0877E-04

OASL 1.04 8.2139E-03
MAGEB2 1.05 1.5803E-02

AL139393.2 1.05 1.1372E-02
FGFR3 1.06 1.6256E-02
USP46 1.06 2.3173E-02

MICAL2 1.07 9.4235E-05
TNRC6C-AS1 1.10 2.8476E-07
LINC01588 1.11 1.2912E-02

CSF2 1.11 2.2508E-03
AKR1C4 1.12 3.3130E-02

GBP4 1.13 1.4962E-05
ACVRL1 1.13 3.7840E-02
BCL9L 1.13 7.2056E-03
CHST2 1.14 7.0877E-04

FCGR2A 1.15 2.0642E-02
ISG15 1.18 3.3718E-07
STAC 1.19 3.3966E-03
MAF 1.19 4.4875E-02

PDLIM2 1.19 8.5936E-03
CCR8 1.20 3.7378E-02

SERPINE1 1.23 6.5490E-03
CLCF1 1.23 1.7785E-02

AC025164.1 1.24 3.7880E-02
PSD 1.25 1.9558E-03
IFIT3 1.28 4.8838E-07
RGS3 1.28 1.6015E-02

VCAM1 1.29 1.6610E-03
RNF38 1.29 3.3960E-10
EGR2 1.30 1.0518E-03

AC002454.1 1.31 1.3831E-02
GBP2 1.35 1.4117E-21
JPH4 1.35 2.6249E-03

POU2F2 1.39 1.5745E-03
SNX9 1.42 4.7452E-03
IFIT1 1.45 4.9647E-03

APOBEC3G 1.48 1.6012E-02
KCNJ12 1.48 3.8253E-02
PPIAP45 1.50 1.3677E-04

IFIT2 1.51 7.8517E-14
VGF 1.52 3.5947E-05

MXRA7 1.57 3.9590E-02
BMF 1.61 4.6827E-11

STARD4-AS1 1.65 2.3973E-02
NEK6 1.65 2.8726E-03

SPINK5 1.74 1.8560E-06
IER5L 1.75 3.7378E-02
CPM 1.81 8.0000E-03
SPP1 1.94 6.3172E-04

TNFRSF9 2.02 4.6424E-18
BCAS1 2.03 3.4132E-04
GBP1 2.10 1.8337E-05
LCN10 2.26 4.8342E-02
RHOB 2.38 4.5186E-02
CGA 2.52 6.5417E-09

UCN2 2.66 3.5762E-02
APOD 2.66 4.8903E-04
S100P 2.66 4.6574E-02

ATP1B1 2.67 1.5824E-02
PLA2G2F 2.91 1.7230E-03

A2M 3.32 1.4677E-03
PARM1 4.32 4.9907E-02
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