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ABSTRACT

In this paper an application of clustering algorithms for statistical downscaling in short-range weather forecasts
is presented. The advantages of this technique compared with standard nearest-neighbors analog methods are
described both in terms of computational efficiency and forecast skill. Some validation results of daily precip-
itation and maximum wind speed operative downscaling (lead time 1–5 days) on a network of 100 stations in
the Iberian Peninsula are reported for the period 1998–99. These results indicate that the weighting clustering
method introduced in this paper clearly outperforms standard analog techniques for infrequent, or extreme, events
(precipitation . 20 mm; wind . 80 km h21). Outputs of an operative circulation model on different local-area
or large-scale grids are considered to characterize the atmospheric circulation patterns, and the skill of both
alternatives is compared.

1. Introduction

During the last two decades the skill of numerical
atmospheric circulation models (ACMs) used for short-
and medium-range weather prediction have increased
substantially because of the advances both in assimi-
lation procedures and physical parameterizations. Cur-
rent ACMs integrated by different weather services sim-
ulate accurately the atmospheric synoptic dynamics on
coarse-grained 40–100-km-resolution grids. However,
at finer spatial resolution these models have much small-
er skill, since the physical parameterization of subgrid-
scale processes—such as cloud formation, evaporation,
orography, turbulence, etc.—is a difficult task and,
moreover, the parameters may not be tuned for a par-
ticular region of interest.

Several methods have been proposed in the literature
with the aim of gaining subgrid detail in these predic-
tions; these techniques are referred to as downscaling
methods (see, e.g., Wilby and Wigley 1997; Zorita and
von Storch 1999). On the one hand, the so-called dy-
namic downscaling methods use the ACM-integrated
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gridded fields as boundary conditions for a new higher-
resolution limited-area model (LAM) that includes pa-
rameterizations adapted for the region of interest—typ-
ically a few hundred kilometers. However, systematic
errors from the ACM could also transmit to LAMs and,
therefore, some filtering postprocessing technique is
needed to eliminate such trends (Kalman fiters; Berg-
man and Delleur 1985a,b, among others).

On the other hand, the availability of historic climate
data led to the development of statistical techniques.
These statistical downscaling methods work with cli-
matological databases of observations (e.g., precipita-
tion, wind speed, and temperature) from a representative
number of stations (gauges or sites) within the area of
study. These observations are statistically related to the
gridded atmospheric patterns, leading to forecast models
for adapting a gridded forecast to local climates in a
straightforward way. For instance, given a database of
atmospheric circulation patterns xt, used as predictors,
and simultaneous historical records of a local variable
yt (predictand), standard statistical methods such as re-
gression analysis can be applied to obtain a linear model
ŷt 5 axt 1 b; some applications are described in Enke
and Spekat (1997) and Billet et al. (1997). Other tech-
niques such as model output statistics (Klein and Glahn
1974) or canonical correlation analysis (Barnett and
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Preisendorfer 1987) follow a similar scheme and also
suffer from the same limitation: they assume normality
and linear dependence among the variables. These as-
sumptions are accomplished when dealing with seasonal
anomalies but, in short-range weather forecasts, vari-
ables such as precipitation require a more general frame-
work. These limitations can be addressed considering
nonlinear models ŷt 5 f (xt), where the functional form
of f is fitted using modern nonparametric techniques
(feed-forward neural networks; Gardner and Dorling
1998; McGinnis 1994, among others). However, these
global models assume stationary atmosphere dynamics
during the period of available data (note that a single
global model is trained with the available data), and this
is by no means guaranteed. Local techniques such as
the method of analogs (nearest neighbors) provide a
simple solution to this problem, since instead of training
a global model to data, different models are trained for
different local regions of the reanalysis database; thus,
these models are naturally adapted to the trends and
variations of the system dynamics.

The local method of analogs introduced by Lorenz
(1969) in the framework of time series prediction is a
particular implementation of the more general nearest-
neighbors (NN) methodology. This method assumes that
similar circulation flows xi and x j lead to similar local
outcomes yi and yj. Therefore, a local prediction ŷt can
be derived from an ensemble of analogs of a forecast
of the atmospheric flow x̂t provided by an ACM. This
ensemble is formed by those historical days for which
the observed atmospheric flow (characterized by the
analysis of a reanalysis database) is closest to the fore-
cast. In other words, this method provides a local frame-
work to train downscaling models using the information
of the reanalysis database most similar to the low-res-
olution gridded forecast. Some implementations of this
method for detecting climatic anomalies (see Zorita and
von Storch 1999; Wilby and Wigley 1997; and refer-
ences therein) and for short-range forecast (see, e.g.,
Van den Dool 1989) have been presented in the liter-
ature. In general, it has been shown that the analog
method performs as well as other complicated down-
scaling techniques (see, e.g., Zorita and von Storch
1999) indicating that these poor-man methods are ef-
ficient alternatives for many downscaling problems.

The different applications of the analog or nearest-
neighbors methodology differ basically in the following
characteristics:

• The specific atmospheric variables and the large-scale
or local-area grid selected for characterizing the at-
mospheric flow. The resulting vectors xt are referred
to as atmospheric patterns. There has been some con-
troversy about the convenience of considering large-
or local-scale area grids for defining the atmospheric
patterns (Van den Dool 1989). Over a small area it is
easy to find good analogs but, in this case, boundary
and remote effects can travel to the target grid point

in the course of the prediction period, thus deterio-
rating the downscaled forecast. On the other hand,
large-scale atmospheric patterns are more robust for
characterizing the atmospheric state for a 12- or 24-
h prediction, but some patterns may have no close
analog in the database to make a skillful forecast. In
this paper we compare the performance of both choic-
es for downscaling precipitation and maximum wind
speed on the Iberian Peninsula.

• The algorithm used to obtain the ensemble of analogs
{x , . . . , x } for xt from the database of atmospherict t1 k

patterns (the subindices t1, . . . , tk refer to the dates
of the analog days). The NN technique with a pre-
scribed ensemble size k (k-NN) is the most simple and
common method used for this task. However, this al-
gorithm is computationally intensive, since for each
forecast pattern the set of analogs is computed from
the whole reanalysis database. In this paper we com-
pare different clustering (or quantization) techniques
that reduce significantly the computational cost, since
the reanalysis database is partitioned into a reduced
number of groups (clusters); each of these groups is
represented by a reference, or prototype, pattern. Thus,
each cluster can be considered a natural ‘‘ensemble
of analogs’’ for the patterns within the group. This
downscaling algorithm is computationally efficient,
since the only task required for an operative run is
selecting the representative cluster for a given forecast
pattern. The main shortcoming of the clustering tech-
nique is the reduction of the variance and the reso-
lution of the forecast, due to the quantization process,
when compared with standard k-NN. To overcome this
limitation we present a weighting method and show
how the resulting technique outperforms k-NN in
terms of computational cost and skill for extreme
events.

• The method used to infer a forecast ŷt for a given local
variable yt (predictand), based on the ensemble of an-
alogs. Different methods have been proposed for this
task, including linear regression and neural networks
for numeric predictions. In the case of probabilistic
forecasts, the empirical distribution given by the en-
semble of analogs {y , . . . , y } is usually considered.t t1 k

However, it is well known that this estimation is
bumpy, especially when the empirical distribution is
drawn from a small set (i.e., small k, or a small
cluster). Several alternatives have been proposed in
the literature to avoid this problem. In this paper we
use a simple technique of kernel density estimation
to obtain the probability function of the local variable
based on the ensemble of analogs.

In this paper we introduce a new clustering-based
statistical downscaling method considering the above-
mentioned characteristics and compare its performance
with the standard analog algorithm. Different grids are
used to define the atmospheric patterns to be used for
downscaling, and several experiments are conducted
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FIG. 1. (a) Primary network of 98 climatic stations in the Iberian
Peninsula and Balearic Islands. (b) Main hydrographic basins for the
Iberian Peninsula.

considering daily precipitation and maximum wind
speed in a network of 98 climatic stations on the Iberian
Peninsula from 1997 to 1998. The best results are ob-
tained considering a local-scale grid (including a tem-
poral component) and using a weighted version of the
clustering downscaling method.

In section 2 we describe the area of study and the
data used in this work; we also analyze the problem of
dimensionality reduction using principal component
analysis. Both a limited-area and a large-scale grid are
considered as different alternatives for characterizing
atmospheric circulations patterns. Section 3 gives a brief
introduction to clustering algorithms. The proposed
downscaling method is presented in section 4, where
we also describe some validation experiments in detail.
Finally, some conclusions and further remarks are given
in section 5.

2. Data and dimensionality reduction

One of the main requisites for performing statistical
downscaling using analog techniques is maintaining the
consistency between the operative and the reanalysis
circulation models. The operative ACM is used to obtain
a predicted gridded atmospheric flow and the reanalysis
database is searched to obtain a similar historical days
(to get the ensemble of analogs). In this work we use
the analysis given by the European Centre for Medium-
Range Weather Forecasts (ECMWF) Re-Analysis Pro-
ject 15 (ERA-15; http://www.ecmwf.int/research/era/),
obtained by integrating a T106L31 model for the period
from 1979 to 1993. This provides us with a set of fields
with daily temperature (T), relative humidity (H), geo-
potential (Z) and U, V wind components at six pressure
levels (300, 500, 700, 850, 925, and 1000 mb) at 0000,
0600, 1200, 1800, and 2400 UTC (other variables and
levels were also stored, but we have tried to make the
dimension of the problem tractable). The vector com-
prising the resulting information for a given day and
grid area is called the atmospheric pattern. The reanal-
ysis model is a simpler version of the operative ECMWF
T511L60, from which we take the forecast patterns to
feed the downscaling methods. Therefore, the consis-
tency among the models is maintained in this work.

a. Local data of meteorological stations

Regarding the local climate records database, we
compiled daily precipitation (precip) and maximum
wind speed (wind) from the primary network of 98 cli-
matic stations provided by the Spanish National Weather
Service–Instituto Nacional de Meteorologı́a (INM; see
Fig. 1). These stations cover different hydrographic re-
gions, as shown in Fig. 1b, and thus spatial consider-
ations have to be taken into account when validating
the methods. These variables are measured daily at 0600
UTC. Thus the 24-h forecast period ranges from 0600
to 0600 UTC the following day. In all cases, daily data

are available from 1979 to present, containing missing
values in different proportions. An advantage of down-
scaling methods based on analogs is that missing values
can be handled very easily, since missing observations
can be discarded from the ensemble of analogs. The 98
stations considered in this work have been selected to
guarantee that they contain at most 10% of missing
observations during the period of analysis (used as train-
ing data) and validation (test).

Probabilistic forecasts for a variable y (precipitation
or maximum wind speed) are obtained in terms of prob-
abilities P(y . u), where u is an appropriate threshold
for y. In the case of precipitation, we considered the
thresholds precip . 0.1, 10, and 20 mm; for maximum
wind speed we analyzed the thresholds wind . 50 and
80 km h21.

b. Atmospheric patterns

The geographical area of interest in this work is the
Iberian Peninsula. With the aim of comparing the effi-
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FIG. 2. Maps of the model grid domains used in this study: (a) large-scale macro-b grid considered for
model 1, (b) meso-a grid covering the peninsula for model 2, and (c) meso-b model 3 grid for the northern
basin. (Twelve different grids were considered, one for each basin of the Iberian Peninsula. For the sake of
clarity only the north basin is shown.)

ciency of different grid areas and temporal resolutions,
we restrict the reanalysis and operative fields to a 3D
macro-b grid centered in the Iberian Peninsula (model
1), a 4D meso-a grid covering the peninsula (model 2),
and a 4D meso-b grid constrained to a basin of interest
(model 3)—in this case, we consider a specific grid for
each of the 12 basins in the Iberian Peninsula. The re-
sulting atmospheric patterns become

• model 1: The 2.58 lat 3 2.58 lon grid shown in Fig.
2a. In this case, the patterns are obtained by combining
the T, H, Z, U, and V fields at 1200 UTC at the six
mentioned pressure levels:

1000 300 1000 300x 5 (T , . . . , T , H , . . . , H , . . . ,12 12 12 12 12

1000 300V , . . . ,V ), (1)12 12

where denotes the j pressure level field of variablejX i

X variable at i UTC.
• model 2: The 1.08 3 1.08 grid shown in Fig. 2b cov-

ering the area of study. In this case, we use the same
fields T, H, Z, U, and V, but we include a temporal
component by taking the fields both at 0600 on the
forecast day and 24-h later, referred to here as x30

(note that observations correspond to the same peri-

od). This temporal component of the pattern compen-
sates the scale reduction of the grid, since it accounts
for the boundary and remote effects that may come
into the local grid during the forecast period:

x 5 (x , x ).06 30 (2)

• model 3: The 1.08 3 1.08 grid shown in Fig. 2c. In
this case, we consider a specific pattern for each of
the 12 basins in the Iberian Peninsula, combining the
same fields on a higher-resolution temporal domain:
0600, 1200, 1800, 2400, and 0600 UTC. In this case,
we cover the forecast period with all the available
temporal information:

x 5 (x , x , x , x , x ).06 12 18 24 30 (3)

Note that the data considered in all models are very
highly dimensional. For instance, we get a total of 20
3 20 (grid) 3 6 (pressure levels) 3 5 (variables) 5 12
000 dimensions for characterizing each daily atmo-
spheric circulation pattern with model 1.

c. Dimensionality reduction

Although the atmospheric patterns are highly dimen-
sional, they are highly correlated, both among different
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FIG. 3. Reconstruction rmse for each of the five variables in model 1 (the error is computed for the 3D
standardized fields) considering an increasing number of PCs (ranging from 1% of the original vector
dimension to 25%).

horizontal and vertical levels of a given variable and
among different variables. This problem slows down
(and even spoils) the training process of clustering al-
gorithms. Therefore, we have previously considered the
problem of dimensionality reduction, to extract as much
correlation as possible from the patterns but keeping
their discriminant power. Principal component analysis
(PCA) is a classical statistical linear method that has
been widely used in data analysis and compression since
it gives an optimal (in the mean-square sense) linear
reduction of dimension [see Preisendorfer and Mobley
(1988) for an overview of PCA in meteorology]. For
instance, given the 15 3 365 5 5475 ERA-15 reanalysis
atmospheric 12 000-dimensional patterns xi, as de-
scribed in (1), the basic idea of PCA is to find d linearly
transformed components w j of the original vectors, so
that the transformed d-dimensional vectors u i 5 xiM
give the smaller reconstruction error Si [xi 2 (MT )T]2Tui

when projected back to the original space, where M is
the 12 000 3 d orthogonal base transform matrix with
jth column given by w j. To avoid problems due to dif-
ferent scales, all the variables are previously standard-
ized for each grid point and pressure level before ap-
plying PCA.

In order to select a convenient dimension reduction
for each of the alternative models described above, we
have computed the reconstruction root-mean-square er-
ror (rmse) of the patterns for an increasing number of

principal components (PCs) (ranging from 1% to 25%
of the original dimension) for each of the models. For
instance, Fig. 3 shows the results for model 1, where
the reconstruction error of each of the five variables is
computed separately. Note that, although the PCs are
obtained globally, combining all the variables in the
pattern vector, the reconstruction errors are similar for
all of them. Only in the case of considering a low num-
ber of components is the reconstruction significantly
more efficient with those variables with smoother fields
(e.g., Z or T).

From Fig. 3 we can see that 10% of the original
dimension leads to a reconstruction error lower than 2%
of the standard deviation of each of the 3D variable
fields. Therefore, we can reduce the dimension of the
atmospheric patterns from 12 000 to ø1000 with no
significant information loss (assimilation errors are usu-
ally higher than the above reconstruction error). Note
that an alternative criterion for selecting an appropriate
number of PCs could be based on the average distance
between the patterns corresponding to analog days in
the reanalysis database. The number of PCs could be
lowered, keeping only the most significant linear modes
with no alteration of the results, but in this paper we
have used the reconstruction error as an objective cri-
terion for dimensionality reduction (further research is
needed to analyze the role of each of the PCs in the
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FIG. 4. Clustering of the ERA-15 reanalysis database with the m-
means algorithm considering 100 clusters for (a) model 1 and (b)
model 3. The graph shows the daily patterns and centroids projected
onto the space spanned by the two leading principal components. The
separation lines between different clusters are also shown (these lines
correspond to the Voronoi diagram associated with the centroids).

downscaling process, but this problem is beyond the
scope of this paper).

The same analysis was also performed for models 2
and 3, obtaining the PCs needed for an operative ap-
plication of the algorithm.

3. Clustering techniques

An important limitation of the standard k-NN method
is the equal number of members (reanalysis daily pat-
terns) considered in all the ensembles of analogs. It is
well known that the circulation patterns do not follow
a multinormal distribution—they only follow such a dis-
tribution in a radial sense for a certain season (Toth
1991). Therefore, considering ensembles of analogs of
a fixed size k is not consistent with the distribution of
the reanalysis database patterns (some regions are much

more sparse than others, and ensembles of variable size
are required). The clustering approach is a simple so-
lution for this problem, since cluster sizes are auto-
matically adapted to the inhomogeneities of the distri-
bution.

The most convenient clustering methods for a large
number of patterns in high-dimensional space are the
iterative centroid adjustment algorithms [see Duda et al.
(2000) for a detailed introduction to classification and
clustering techniques]. The most common of these meth-
ods is the m-means algorithm. Given a database X 5
{x1, . . . , xn}, of d-dimensional real vectors [e.g., at-
mospheric patterns in (1)–(3)], and a prescribed number
of groups m, the m-means algorithm computes a set of
d-dimensional prototypes or centroids {v1, . . . , vm},
each of them characterizing a group of data Ci , X
formed by the vectors in the database for which vi is
the nearest prototype. This task is accomplished follow-
ing an iterative procedure, which starts from an initial
set of centroids , . . . , , chosen at random [see Peña0 0v v1 m

et al. (1999) for a description and comparison of dif-
ferent initialization procedures]. The goal of the algo-
rithm is to minimize an overall within-cluster distance
from the patterns to the centroids:

2\x 2 v \ . (4)O O j i
i51,...,m x ∈Cj i

Since an exhaustive minimum search is prohibitive, a
local minimum is computed by iteratively adjusting the
cluster centroids, and by reassigning each pattern to the
closest centroid. On the (r 1 1)th iteration, each of the
jth vectors x j is assigned to the ith group, where i 5
argminc\x j 2 \ [argminc f (c) gives the value c withrvc

minimum f (c)], and the prototypes are updated as the
mean of the corresponding patterns:

r11v 5 x /#C , (5)O ii j
x ∈Cj i

where #Ci denotes the number of elements in Ci. Under
certain conditions, the above iterative processes con-
verge after R iterations, and the final centers are theRvi

prototypes (centroids). Each of the centroids vi repre-
sents a cluster Ci that consists of the patterns closer to

than to any other centroid. Thus, the m-means clus-Rvi

tering algorithm consists of the following steps:

1) Select the number of desired clusters m.
2) Initialize the cluster centers (e.g., randomly).
3) Repeat.

(a) Assign each vector (atmospheric pattern) to its
closest cluster center;

(b) Recompute the centers for each cluster, to be the
mean of the patterns assigned to that cluster.

The above algorithm was applied to the 5500 reanalysis
patterns of ERA-15, characterizing the atmospheric con-
figuration for a period of 15 yr. We considered different
numbers of clusters m 5 100, 200, and 400, which
correspond to different mean numbers of elements in
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FIG. 5. Seasonal ERA-15 daily patterns corresponding to model 1 projected onto the space spanned by
the two leading principal components. The bimodality of the distribution is given by the first PC and
corresponds to the annual cycle. The legend shows the symbols used for each of the seasons.

each cluster: approximately 50, 25, and 15, respectively;
we shall use this relation later to compare this method
with standard k-NN. For instance, considering m 5 100
we obtained the prototypes shown in Figs. 4a and 4b
for the models 1 and 3, respectively. Note that the dis-
tribution of daily patterns corresponding to model 1 is
clearly bimodal in the space spanned by the first two
leading PCs. This fact is given by the first PC, which
is associated with an empirical orthogonal function
(EOF) corresponding to the different seasonal variations
of the atmospheric flow in different latitudes on the
large-scale grid (see Fig. 5). The local model 3 distri-
bution is not affected by this phenomena, since the sea-
sonal variations are similar in the range of latitudes
corresponding to this grid.

4. Clustering-based downscaling method

Different downscaling implementations of the method
of analogs have been presented in the literature, each
including a specific algorithm to obtain the ensemble of
analogs for a gridded forecast pattern (the low-resolu-
tion input of the downscaling process). The standard
application of this methodology uses the k-nearest
neighbors of the forecast pattern in the reanalysis da-
tabase as the ensemble of analogs (see, e.g., Zorita and
von Storch 1999). This process is time consuming since

it involves the calculation of distances from the forecast
pattern to all the patterns in the reanalysis database. In
this paper we present an alternative method based on
the clustering techniques described in section 3. This
algorithm allows us to reduce the computation time by
partitioning the database into meaningful subgroups
(weather classes). Each of the resulting groups Ci—
characterized by a prototype vi—is used as the ensemble
of analogs for those patterns assigned to the cluster, that
is, those patterns closer to vi than any other prototype.
The clustering process also deals with the inhomoge-
neities of the reanalysis distribution, since the number
of elements in each of the clusters is automatically
adapted according to the distribution of atmospheric pat-
terns.

Figure 6 shows the schemes of the standard k-NN and
clustering-based analog downscaling techniques. As
shown in Fig. 6b, the main advantage of the clustering
downscaling technique is that the reanalysis data are
replaced by a predetermined number of clusters C1, . . . ,
Cm with associated prototypes v1, . . . , vm, respectively
(afterward, the reanalysis database is no longer needed).
This is done applying the m-means method as a pre-
processing step (as done with principal components,
which are not shown in the figure for the sake of clarity).
In the operative phase, the application of both the k-NN
analog and clustering techniques to obtain the ensemble
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FIG. 6. (a) Scheme of the standard k-NN analog downscaling tech-
nique, and (b) scheme of the clustering downscaling algorithm. In
both cases, a database of atmospheric patterns and a database of local
climate records is required. The methods start from an initial gridded
forecast (the forecast pattern) and end up with predictions for the
available local stations. The shaded areas indicate the operative com-
ponents of the algorithms required to obtain a local forecast.

TABLE 1. Annual spatial averaged RSA for precipitation using Models 1, 2, and 3 for lead-time forecasts ranging from 1 to 3 days (D 1
1, D 1 2, and D 1 3). Results for the three different methods are reported: Analog (k-NN with k 5 50), Cluster (m-means with m 5 100),
and WCluster weighted (m-means with m 5 400 and w 5 4).

Fore-
cast Method

.0.1 mm

1 2 3

.10.0 mm

1 2 3

.20.0 mm

1 2 3

D 1 1 Analog
Cluster
WCluster

0.647
0.538
0.597

0.750
0.682
0.733

0.791
0.744
0.783

0.602
0.501
0.574

0.728
0.627
0.715

0.776
0.710
0.769

0.480
0.427
0.526

0.643
0.583
0.685

0.773
0.681
0.781

D 1 2 Analog
Cluster
WCluster

0.633
0.523
0.588

0.737
0.669
0.711

0.771
0.716
0.763

0.586
0.478
0.571

0.689
0.602
0.685

0.727
0.667
0.736

0.474
0.408
0.504

0.606
0.535
0.647

0.647
0.614
0.729

D 1 3 Analog
Cluster
WCluster

0.572
0.449
0.542

0.693
0.640
0.680

0.734
0.678
0.726

0.572
0.449
0.542

0.674
0.576
0.668

0.694
0.631
0.706

0.467
0.372
0.489

0.602
0.513
0.632

0.624
0.591
0.675

of analogs for a given forecast pattern xt is based on a
brute force calculation of distances. However, in the case
of the analog method, distances from xt to each pattern
in the database are required, whereas in the clustering
method the only distances needed are between xt and
vi, i 5 1, . . . , m. Note that this reduces dramatically
the computational load of the algorithm.

In the case of the k-NN analog technique, given a
given forecast pattern xt the set of analogs {x , . . . ,t1

x } is obtained (note that t denotes the current date oftk

the forecast, whereas t1, . . . , tk refer to dates corre-
sponding to the reanalysis period), and a local forecast

for a station s and a variable y (precipitation or max-sŷt

imum wind speed) is obtained from the set of past ob-
servations { , . . . , }.s sy yt t1 k

On the other hand, in the case of the clustering down-
scaling method we can compute a local forecast for each
cluster Ci from the observations { , . . . , } corre-s sy yi i1 q(i)

sponding to the dates of the reanalysis patterns con-
tained in the cluster x , . . . , x , where q( i) denotesi i1 q(i)

the number of elements of cluster Ci. Thus, the posterior
probability of the local variable ys for cluster i can be
estimated from the empirical distribution:

s sP 5 P(y . u|C )ii

sy#[ . u; j 5 1, . . . , q(i )]ij5 . (6)
q(i)

Then, in the operative application of the method, if a
forecast pattern xt is assigned to the cluster Ci, the local
forecast will be directly obtained as in (6). How-s sŷ Pt i

ever, it is well known that this estimation is bumpy,
especially for small q( i) (which may be the case for
some clusters resulting from the clustering process).
Several alternatives have been proposed to overcome
this limitation, including the simple technique of kernel
density estimation (Hastie et al. 2001). In this case, each
observation is considered not as a single real number,
but as a kernel function (usually a Gaussian kernel)
centered at the given point:

21 (x 2 x )0f (x, x ) 5 exp2 . (7)l 0 22pl 2l

The kernel process smooths the estimation by adding
independent Gaussian noise (the kernels) to the obser-
vations. This acts like a filter convolved with the em-
pirical distribution. In this case, an estimation of the
probability is given by the integral of the density func-
tion:

q(i)1
s s sf (y ) 5 f (y , y ). (8)O l i jq(i) j51
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TABLE 2. Annual spatial averaged RSA for maximum wind speed using Models 1, 2, and 3 for lead-time forecasts
ranging from 1 to 3 days.

Fore-
cast Method

.50 km h21

1 2 3

.80 km h21

1 2 3

D 1 1 Analog
Cluster
WCluster

0.576
0.453
0.526

0.702
0.609
0.671

0.721
0.648
0.716

0.500
0.428
0.524

0.556
0.511
0.670

0.511
0.512
0.697

D 1 2 Analog
Cluster
WCluster

0.574
0.421
0.514

0.682
0.583
0.653

0.707
0.630
0.708

0.491
0.384
0.472

0.598
0.521
0.703

0.590
0.549
0.706

D 1 3 Analog
Cluster
WCluster

0.562
0.428
0.508

0.657
0.567
0.630

0.668
0.605
0.656

0.476
0.359
0.468

0.552
0.497
0.652

0.572
0.548
0.620

FIG. 7. RSA for precipitation (events precip . 0.1 mm and precip
. 20 mm) and maximum wind speed (events wind . 50 km h21 and
wind . 80 km h21) using the weighting m-means method in Eq. (9)
with w ranging from 1 to 8 and m 5 100 3 w (to keep the averaged
number of elements close to 50).

From this equation we can obtain different statistics of
the distribution needed for the forecast process. In our
case, we shall obtain an estimation of (6) for the dif-
ferent threshold values of the variable.

Thus, the clustering downscaling algorithm is com-
putationally efficient, since the only task required for
an operative run is selecting the representative cluster
for a given forecast pattern and returning the forecast
associated with the cluster (see the shaded area in Fig.
6b).

However, the main shortcoming of the clustering
technique is the reduction of the variance and the res-
olution of the forecast, due to the quantization process
and the associated border effects. Note that the same
forecast is given for all daily patterns within a cluster,
independently of their relative position in the cluster
(close to the center or to the boundary). Thus, only m
different forecast values are given by the algorithm for
a given station. To overcome this limitation we consider
a weighted version of the algorithm given by

w

sd(c)PO t(c)
c51sŷ 5 , (9)t w

d(c)O
c51

where t(c) is the index of the cth closest cluster to xt,
d(c) is the distance from vt(c) to xt, and is thesPt(c)

estimation of the probability obtained for cluster t(c)
using (8). Instead of assigning the same estimation for
all patterns within a cluster, a weighted sum of the es-
timations associated with the clusters closer to each par-
ticular pattern is considered. This modification also
overcomes the problem of resolution reduction, since
now the possible forecasts are not limited to m cases.
We refer to this method as the weighted clustering down-
scaling method.

In this paper we are only interested in the predictive
skill of the proposed methodology when compared with
the standard analog algorithm and in the analysis of
different grid pattern specifications (models 1, 2, and
3). Therefore, we do not focus on the problem of cor-
recting the predicted probability function according to
the observed climatology, or some other ‘‘inflation’’
methodology, so that the predicted variance matches the
observed variance [the reader is referred to von Storch
(1999), and references therein, for more details about
this problem].

Verification and comparison

In order to verify the skill of the weighted clustering
downscaling method (WCluster) to forecast daily pre-
cipitation (precip) and maximum wind speed (wind), we
use the standard k-NN analog method (Analog) as a
benchmark. We compare different values of the param-
eters for these algorithms. On the one hand, the Analog
method only depends on the number of analogs k con-
sidered to make a forecast. On the other hand, the
WCluster method depends on the number of clusters
considered (m), and the number of neighboring clusters
to be weighted in the prediction (w). Note that the re-
analysis database contains approximately 5000 data pat-
terns and then, similar results are expected for values k
and m such that 5000/m 5 k. Moreover, to avoid a
reduction of the variance due to the smoothing asso-
ciated with the weighting process, the ratio m/w is kept
constant, so an increment of the parameter w will lead
to a similar increment in the number of clusters.
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FIG. 8. ROC curves and RSA (in parentheses) for precipitation [events precip . 0.1 mm and precip . 20 mm]
using the k-NN analog method with k 5 50 (label Analog), and weighted m-means with m 5 400 and w 5 4 (label
WCluster) for models (a)–(b) 1, (c)–(d) 2, and (e)–(f ) 3.

We have considered operative data (lead time 1 to 5
days) from the period 1998–99 with no overlap using
ERA-15. Predictions for each station in Fig. 2 are treated
as individual forecasts, and the skills of the different
stations are averaged into the final outcome. Some of
the results are detailed for each of the four seasonal
forecast periods: fall [September–October–November
(SON)], winter [December–January–February (DJF)],
spring [March–April–May (MAM)], summer [June–
July–August (JJA)], and others are reported as annual
averages (1998–99). We consider different binary events
given by the thresholds precip . 0.1, 10, and 20 mm,
and wind . 50 and 80 km h21, as shown in section 2a.
A forecast is given in terms of the probability estimated
for the occurrence of the event [e.g., p(event) 5 p(precip
. 0.1 mm)] using the nearest-neighbors (or cluster)
ensemble of analogs. Relative operating characteristic
(ROC) curves are a standard verification methodology
for this type of probabilistic forecast [see Katz and Mur-
phy (1997) for a detailed description]. The calculation
of an ROC curve is based on a contingency table given
by the number of observed occurrences and nonoccur-
rences of an event versus the simultaneous forecasted
occurrences and nonoccurrences of the event; to this
aim, the event is forecasted to occur when the estimated
probability reaches a threshold [p(event) $ q]; then for
each different probability threshold q, a different con-

tingency table is obtained. Two parameters are used to
characterize each of these contingency tables: HIRq (hit
rate) measures the rate of successful predictions
[p(predicted | occurred)], and FARq (false alarm rate)
measures the rate of wrong predictions [p(predicted | not
occurred)]. The ROC curve is obtained plotting HIRq

versus FARq for the different values of q in [0, 1]. The
area A under the ROC curve gives the skill of the fore-
cast method—the ROC skill area index (RSA) is ob-
tained as 2A 2 1 and varies between zero (no skill) and
one (perfect forecast). The RSA score has several in-
teresting advantages when compared with other standard
scores such as Brier skill score (BSS). For instance, BSS
is insensitive to infrequent (rare, or extreme) events,
whereas the RSA takes account of this fact (HIR is
conditioned to the occurred events, whereas FAR is con-
ditioned to the not-occurred events).

In order to check the performance of the downscaling
method considering the three pattern areas used in this
paper (see Fig. 1), we considered four different values
for k (100, 50, 25, and 15) for the k-NN method, and
four related m values of the number of clusters (50, 100,
200, and 400) for the m-means algorithm. The best re-
sults—shown in Tables 1 and 2—were obtained with
model 3 with an intermediate number of elements k 5
50 (label Analog) and m 5 100 for the m-means al-
gorithm (label Cluster). We also considered different
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FIG. 9. As in Fig. 8, but ROC curves and RSA for maximum wind speed (events wind . 50 km h21 and
wind . 80 km h21).

values of parameters w and m of the weighted clustering
method (label WCluster). The performance of the meth-
od as a function of the weighting factor w is shown in
Fig. 7, which displays the evolution of the RSA for
different events when considering different combination
of the parameters; in all cases, the ratio m/w is kept
close to 100, the optimum number of clusters obtained.
In this case, a convenient choice of the values is shown
to be given by the configuration m 5 400, w 5 4 for
the WCluster algorithm.

Table 1 shows the annual spatial averaged RSA precip
values for the 98 stations shown in Fig. 2, and Table 2
reports the results for the case of wind for 1–3-days lead
time. Similarly, Figs. 8 and 9 compare the ROC curves
and RSA scores corresponding to the optimal configura-
tions of parameters obtained for the Analog kNN and
WCluster algorithms for 1-day lead time (D 1 1). From
these tables and figures we can conclude the following:

1) As expected, the analog method clearly outperforms
the basic clustering downscaling algorithm.

2) The weighted clustering downscaling method out-
performs the analog technique for high precipitation
and wind thresholds (extreme events: precip . 20
mm; wind . 80 km h21). For nonextreme events
both methods present similar skills. Figure 10 shows
the scatterplots of RSA values versus the climato-
logical frequency of four different events for the 98

climatic stations. This figure shows the relationship
between the skill of the forecasts and the frequency
of observation of the event in a particular station. In
the case of extreme events, we can see from Figs.
10b and 10d that the skill tends to be lower in those
stations where the frequency of the event is smaller
(the most rare the event, the less skilful the prediction
is likely to be). However, we can see that, in this
situation, the skill of the weighted clustering down-
scaling method (labeled WCl in Fig. 10) is larger
than the skill of the standard Analog algorithm.

3) The best results are obtained with model 3, indicating
that the optimal definition for the atmospheric flow
is a 4D pattern restricted to the local geographical
domain of interest.

4) The skill decays as the lead time of the forecast used
to feed the downscaling methods increases from 1
to 3 days. Figure 11 shows this fact in more detail,
considering lead times from 1 to 6 days. This figure
shows that the decline is more pronounced from lead
time of 4 days, indicating a horizon for the skill of
short-range weather forecast ACMs.

Note that the above results were based on spatial and
temporal averaged skills, which may hide some impor-
tant aspects of the forecasts for different regions of the
Iberian Peninsula and for different seasons. For this rea-
son, some extra validations were performed to analyze
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FIG. 10. Scatterplots of RSA values vs the climatological frequency of the event for the 98 climatic stations: (a)
precip . 0.1 mm, (b) precip . 20 mm, (c) wind , 50 km h21, and (d) wind , 80 km h21, for the weighted clustering
downscaling (WCluster) and the k-NN (Analog) algorithm.

FIG. 11. RSA vs the lead time of the forecast for precipitation
(events precip . 0.1 mm and precip . 20 mm) using the analog k-
NN method (with k 5 50) and the weighting m-means method (with
m 5 400 and w 5 4). A pronounced decay is shown in all cases for
a lead time of 4 days (model 2 has been used in this figure).

the temporal and spatial distribution of skill. In partic-
ular, Table 3 shows the RSA values for the 12 hydro-
logical basins in the Iberian Peninsula (see Fig. 2b).
Annual and seasonal averages are given for each of the
optimal models found in the previous analysis: Analog
method with k 5 50, and WCluster with m 5 400 and

w 5 4. From this table we can see how the weighted
clustering algorithm outperforms the standard analog
method for precip . 20 mm, whereas both methods are
comparable for nonextreme events. Among the different
seasons, summer exhibits the lowest skills in most of
the basins. The reason for this could be the dominance
of convective precipitation during the summer season
in the Iberian Peninsula. Downscaling low-scale con-
vective precipitation from atmospheric circulation pat-
terns is more difficult than downscaling large-scale pre-
cipitation associated with fronts. This fact will be in-
vestigated further in a future work.

Finally, Fig. 12 shows some details about the daily
errors of the method to forecast precipitation. To this
aim, a period of 90 days was considered (September,
October, and November 1998), and the daily errors [Bri-
er scores (BS)] for the 98 stations were computed using
the weighted clustering (WCluster with m 5 400 and
w 5 4) and standard analog method (k-NN with k 5
50). The differences between these errors were char-
acterized using a box-and-whisker plot (the boxes rep-
resent the terciles for the 98 stations, and the whiskers
show the extreme differences that occurred each day).
Negative values indicate stations where the clustering
method outperforms the analog technique. From this
figure we can see that there is a large variability of the
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TABLE 3. Regional averaged seasonal RSA for precipitation using the k-NN analog method with k 5 50 (label kNN), and weighted m-
means with m 5 400 and w 5 4 (label WCl). The climatic frequency of each of the events is also shown (label Clm). The symbol ‘‘—’’
indicates that no validation data are available for the period. The column on the left shows the 12 hydrological regions in the Iberian
Peninsula.

Region Method

.0.1 mm

DJF MAM JJA SON

.20 mm

DJF MAM JJA SON

Segura

Baleares

Catalana

kNN
WCl
Clm
kNN
WCl
Clm
kNN
WCl
Clm

0.831
0.836
0.223
0.717
0.722
0.270
0.808
0.817
0.189

0.779
0.800
0.169
0.804
0.794
0.195
0.734
0.739
0.273

0.415
0.476
0.035
0.600
0.624
0.067
0.685
0.662
0.178

0.808
0.831
0.190
0.726
0.719
0.330
0.727
0.714
0.239

0.832
0.930
0.013
0.625
0.750
0.021
0.772
0.774
0.030

0.818
0.977
0.006
0.826
0.831
0.006
0.582
0.611
0.010

—
—

0.000
—
—

0.000
0.305
0.512
0.014

0.783
0.829
0.006
0.662
0.774
0.023
0.758
0.728
0.042

Duero

Ebro

Quadalquiver

kNN
WCl
Clm
kNN
WCl
Clm
kNN
WCl
Clm

0.800
0.789
0.319
0.730
0.744
0.311
0.913
0.916
0.297

0.824
0.819
0.449
0.742
0.745
0.422
0.856
0.863
0.259

0.743
0.751
0.151
0.648
0.674
0.215
0.556
0.701
0.039

0.818
0.808
0.372
0.742
0.744
0.344
0.836
0.841
0.202

0.514
0.633
0.020
0.816
0.798
0.013
0.894
0.940
0.029

0.623
0.654
0.010
0.676
0.808
0.011
0.584
0.661
0.005

0.594
0.676
0.007
0.376
0.517
0.013
0.838
0.951
0.001

0.507
0.585
0.011
0.724
0.775
0.019
0.827
0.909
0.029

Guadiana

Levante

Norte

kNN
WCl
Clm
kNN
WCl
Clm
kNN
WCl
Clm

0.842
0.842
0.306
0.855
0.873
0.240
0.869
0.870
0.501

0.837
0.852
0.324
0.801
0.798
0.272
0.852
0.844
0.585

0.713
0.889
0.049
0.688
0.690
0.086
0.740
0.751
0.317

0.833
0.857
0.239
0.794
0.805
0.212
0.819
0.806
0.572

0.799
0.821
0.016
0.810
0.916
0.010
0.807
0.842
0.040

0.868
0.825
0.007
0.746
0.788
0.006
0.734
0.754
0.056

0.258
0.378
0.003
0.851
0.948
0.002
0.741
0.835
0.011

0.781
0.812
0.017
0.474
0.604
0.007
0.718
0.751
0.059

Sur

Tajo

kNN
WCl
Clm
kNN
WCl
Clm

0.815
0.840
0.230
0.884
0.879
0.298

0.804
0.823
0.146
0.849
0.845
0.367

0.698
0.716
0.034
0.725
0.741
0.104

0.783
0.790
0.170
0.874
0.880
0.280

0.731
0.813
0.026
0.982
0.980
0.008

0.428
0.640
0.003
0.525
0.885
0.006

0.892
0.964
0.000
0.922
0.946
0.004

0.666
0.720
0.012
0.394
0.668
0.011

scores among the different stations. However, the clus-
tering method clearly outperforms the analog results in
the case of extreme precipitation (Fig. 12b).

5. Conclusions and further remarks

We presented a new downscaling method for short-
term forecast using a clustering technique: weighting
clustering downscaling method. The method is com-
putationally simpler and more efficient than the standard
method of analogs. Validation results on 98 stations on
the Iberian Peninsula show that best skill results (com-
pared with the standard method of analogs) are obtained
for extreme (or nonfrequent) events. This result indi-
cates that the clustering process captures the periphery
of the distribution of atmospheric patterns better than
the fixed-size ensemble of nearest neighbors used in the
standard analog method. We would like to mention that
the results presented in this paper could be improved in
the near future using the simulations of a new reanalysis
project, ECMWF Re-Analysis-40 (ERA-40) covering
the period from mid-1957 to 2001.

The algorithm proposed in this paper is not the first
attempt to develop a clustering-based downscaling tech-
nique. For instance, the Classification and Regression
Trees (CART) technique introduced by Hughes et al.
(1993) and used later in Zorita et al. (1995) is also based
on a clustering process of the atmospheric patterns (this
is the first step of the method). However, the clustering
algorithm used to define weather classes (clusters) is a
binary decision tree, which works by splitting the values
of the input variables (each of the grid values of the
variables used to define the atmospheric patterns) so
that a maximum separation of the precipitation occur-
rence distribution is attained in the resulting leaves of
the tree. Each terminal node of the decision tree cor-
responds to a cluster (or weather class). This technique
has been applied to problems of climatic change dealing
with patterns with low complexity [sea level pressure
(SLP), geopotential height at 500 mb]; these problems
only require a few weather classes (clusters), and thus,
the splitting process can be efficiently carried out con-
sidering individual input variables. However, an appli-
cation of this technique in the short range would require
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FIG. 12. Daily box-and-whisker plots of the precipitation BS differences between the weighted clustering (WCluster
with m 5 400 and w 5 4) and standard analog (k-NN with k 5 50) methods for a particular period of 90 days (SON
1998). For each day, the boxes represent the terciles for the 98 stations, and the whiskers show the extreme differences
that occurred each day.

dealing with huge atmospheric patterns (for a general
application) and a large number of clusters for which a
clustering process based on a binary tree becomes in-
efficient.

Another clustering-based downscaling method was
introduced by Cavazos (1997), who applied self-orga-
nizing maps (SOMS) to define weather classes and study
the associated distributions of local precipitation. An
SOM is a clustering technique developed in the field of
neural networks with many interesting visualization ca-
pabilities. This technique has been recently shown to
be a modification of the m-means algorithm with a to-
pology preservation constraint (see, e.g., Hastie et al.
2001); this constraint alters the clustering process, de-
creasing the variance of the resulting clusters and re-
ducing the skill of the clustering downscaling method
proposed in this paper. Several comparison experiments
corroborate this fact.

Finally, the term ‘‘short range’’ in the title of this
paper refers to the fact that no use of ensemble forecast
models is made. The skill of the downscaling method
quickly decays by the fourth day, similar to the skill of
the numerical model used as input. However, the method
proposed in this paper is suitable to work with ensemble
outputs, since each of the members of the ensemble will
correspond to a particular cluster, and, hence, the whole
ensemble will define a distribution on the clusters, ob-

taining a natural framework for working with proba-
bilities. In this case, the visualization capabilities and
the neighborhood preservation of the SOM can be fruit-
fully used. The application of the clustering method
using SOMS to medium-range ensemble forecasts is in
progress, and the results will be published in a separate
paper.
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