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Abstract: Mesoporous silica particles (MSP) are major candidates for drug delivery systems due to 
their versatile, safe, and controllable nature. Understanding their intracellular route and 
biodegradation process is a challenge, especially when considering their use in neuronal repair. 
Here, we characterize the spatiotemporal intracellular destination and degradation pathways of 
MSP upon endocytosis by HeLa cells and NSC-34 motor neurons using confocal and electron 
microscopy imaging together with inductively-coupled plasma optical emission spectroscopy 
analysis. We demonstrate how MSP are captured by receptor-mediated endocytosis and are 
temporarily stored in endo-lysosomes before being finally exocytosed. We also illustrate how 
particles are often re-endocytosed after undergoing surface erosion extracellularly. On the other 
hand, silica particles engineered to target the cytosol with a carbon nanotube coating, are safely 
dissolved intracellularly in a time scale of hours. These studies provide fundamental clues for 
programming the sub-cellular fate of MSP and reveal critical aspects to improve delivery strategies 
and to favor MSP safe elimination. We also demonstrate how the cytosol is significantly more 
corrosive than lysosomes for MSP and show how their biodegradation is fully biocompatible, thus, 
validating their use as nanocarriers for nervous system cells, including motor neurons. 

Keywords: silica nanocarrier; cytoplasmic escape; biodegradation; engineering nanoparticles; 
HeLa; motor neurons 

 

1. Introduction 

The success of nanotechnology applied in health requires the use of materials with well-defined 
in vivo functionalities. Thus, understanding the biocompatibility, intracellular destination, 
biodegradation and elimination routes of nanomaterials are critical issues.  

Nanomaterial biodegradation is not the main issue in cancer treatment. The high proliferation 
rate of the tumoral and peritumoral cells results in a progressive reduction of the nanomaterial loaded 
per cell to tolerable amounts [1–3]. On the contrary, if the nanodevices are designed for cell repair, 
for instance, destined to lower proliferative cells such as neurons or their supporting glial cells, they 
are likely to accumulate intracellularly or extracellularly, triggering unpredictable negative side-
effects [4].  
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Besides, identifying the cellular compartment where nanomaterials are degraded and 
accumulate can also serve to control/predict spatiotemporally the release of the therapeutic 
compound and to customize nanoparticles ad hoc, preserving some therapeutic agents from early 
degradation in hostile cellular environments, i.e., the lysosomes [5,6]. Regrettably, there are no 
standards for a fully comprehensive and reliable characterization of the diversity and complexity of 
nanomaterials, or protocols to predict the interaction of these or their degradation products, with 
proteins, cells, and tissues [7]. 

Recent advances in nanotechnology have led to the development of sophisticated nanomaterials 
with a high encapsulation efficiency that maintain integrity until they reach their targets in vivo. 
Among these, mesoporous silica particles (MSP) are probably some of the most biocompatible, 
versatile and safe nanomaterials used in biomedical studies. MSP have been extensively explored as 
drug delivery carriers because of such factors as their controllable pore and nanoparticle sizes, easy 
surface functionalization, and high specific surface area [8–13]. As inorganic materials, silica is 
generally recognized to be more bio-stable than most organic compounds used in drug delivery, and 
this fact has given rise to the debate of the probable accumulation of SiO2 and possible mid–long-
term toxicity [14]. However, several studies demonstrate the degradation of both mesoporous and 
amorphous silica upon exposure to different biological conditions. These studies establish that silica 
erosion and stability depend on factors such as temperature, pH, surface modifications, or the 
chemical composition of the medium surrounding the particle [3,5,15–21]. MSP have been claimed to 
be rapidly degraded in water [22] or physiological media [16], particularly in those containing amino-
rich compounds such as cell culture medium, while serum seems to reduce degradation [3,21]. In 
addition, despite being a good characterization of silica dissolution in different media, there is no 
detailed information about silica degradation in cellulo. Given the lack of information regarding the 
precise sequential steps in the intracellular processing of MSP, here we investigate in detail the sub-
cellular route and the interplay between the design of silica particle carriers and their degradation 
inside cells.  

2. Materials and Methods  

2.1. Synthesis and Characterization of Mesoporous Silica Particles  

A mixture of K2H2PO4 (0.857 g) and NaOH (0.145 g) in water (100 mL) was placed in a hot plate 
and heated up to 95 °C under magnetic stirring. Cetrimonium bromide (CTAB, 0.455 g), glycerol (15 
mL), and tetraethyl orthosilicate (TEOS, 4.875 mL) were added to the mixture. The mixture was left 
for 2 h in agitation. After the mixture cooled down, it was centrifuged at 3300 g for 15 min. The pellet 
was resuspended first, with a mixture of EtOH/H2O (v/v) and later, four times more with EtOH by 
centrifugation/redispersion cycles (3300 g, 10 min). Upon synthesis, the CTAB was removed by 
thermal calcination at 600 °C, leaving mesopores in the particles. 

A JEM 1011 equipped with a high-resolution Gatan digital camera (JEOL, Japan) was used for 
transmission electron microscopy (TEM) particle morphology and size characterization. From each 
measurement, more than 100 particles were counted to have a reliable size distribution. Zeta (ζ) 
potential of the particles was measured with a Zetasizer Nano-Zs, to confirm the different coatings 
and ethanol stability. A full characterization of the same MSP batch (including the pore size) is 
detailed in previous studies [23,24].  

2.2. MSP Labelling and Carbon Nantoube (CNT) Coating  

Fluorescent labelling of the MSP was performed by two techniques, covalently binding 
rhodamine B isothiocyanate (RBITC) [25,26] or electrostatically by coating the particles with poly-L-
lysine labelled with fluorescein isothiocyanate (FITC-Poly-L-l). RBITC binding to the MSP was done 
following the next protocol. MSP were functionalized with (3-aminopropyl) triethoxysilane (APS) 
adding 0.25 mL of APS in 5 mL of an ethanolic dispersion of MSP (8.7 mg/mL). After stirring 3 h, the 
excess of reagents was removed by centrifugation/redispersion cycles with ethanol (3300 g, 20 min). 
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Then, MSP were dispersed in 10 mL of EtOH and added to 10 mL of an ethanolic solution of RBITC 
(0.32 mg/mL). Excess of dye was removed by three centrifugation/redispersion cycles (3300 g, 20 min).  

FITC-Poly-L-l coating was carried out using the "layer-by-layer" technique [27]. For this purpose, 
12.5 mg of particles were added to a 25 mL solution of poly-L-lysine (0.25 mg/mL) in 0.5 M NaCl. The 
mixture was kept under stirring for 30 min at room temperature. The excess of the polyelectrolyte 
was eliminated by three cycles of centrifugation/resuspension in water (3300g, 20 min). 

Oxidized CNT coating was performed on poly-L-lysine coated MSP. A full characterization of 
the batch of nanotubes (from Nanocyl, ref: NC3100™) is available in the previous publications of the 
group [25,26,28]. In short, MSP were electrostatically attached to the particles. For this, oxidized CNTs 
resuspended in water were incubated with the particles for 12 h in mild rotation. Excess of CNT was 
removed by centrifugation/redispersion cycles in water (3300 g, 20 min).  

2.3. Cell Culture, Fluorescent Labelling, and Confocal Microscopy 

HeLa cells were obtained from the European Molecular Biology Laboratory (EMBL) Cell Bank.  
NSC-34 neural cell line was kindly provided by Dr. Angelo Poletti, of the Università degli Studi di 
Milano. Cells were cultured under standard conditions in Eagle’s minimal essential medium (MEM) 
containing 10% fetal bovine serum (FBS) and antibiotics (from Gibco, Thermo Fisher Scientific, 
Waltham, MA, USA). Cells were incubated with 15 μg/mL of particles (unless otherwise indicated in 
the text), resuspended, and functionalized by mild sonication in standard tissue culture medium 
containing serum. The concentration of particles that was administered to the cells was based on our 
previous experience and on published literature that describes the biocompatibility of this 
nanomaterial [29–34]. 

To study the sub-cellular localization of particles, cells were fixed in 4% paraformaldehyde. 
Cultures were stained with different dyes for fluorescent confocal imaging. Nuclei and lysosomes 
were stained with Hoechst dye (Bisbenzimide) (from Sigma-Aldrich, St. Louis, MO, USA) and 
LysoTracker® Deep Red (Thermo Fisher), respectively. Acridine orange (Sigma-Aldrich) was used 
to stain the cell contouring and vesicles limits. CellTracker™ Green CMFDA (Thermo Fisher) was 
used to stain one type of cell in the endocytosis–exocytosis experiments. Microtubules were 
immunolabeled with the anti-α-tubulin (B512) (Sigma-Aldrich) antibody that was recognized by a 
secondary goat anti-mouse immunoglobulin G (IgG) conjugated Alexa Fluor 647 (Molecular Probes, 
Thermo Fisher). Phalloidin-tetramethylrhodamine B isothiocyanate (Sigma-Aldrich) was used to 
stain F-actin. Fluorescent confocal microscopy images were obtained with a Nikon A1R confocal 
microscope and processed with the NIS-Elements Advanced Research software. All confocal images 
are pseudo-colored.  

2.4. Viability Tests  

To test viability in HeLa cells, cell death and cell proliferation blockage were measured using 
flow cytometry in a total of ca. 10,000 cells fixed with 4% of paraformaldehyde and stained with 
Hoeschst in a Becton Dickinson FACS Canto II equipment. Data were analyzed using the FACS Diva 
software (Becton Dickinson, BD FACSDiva 7.0). Oxidative stress was measured using the H2DCF-DA 
(Thermo Fisher) molecule, which under ROS, changes to 2′,7′-dichlorofluorescein (DCF), a 
fluorescent molecule. Cells treated with 100 μM of H2O2 were used as a positive control. NSC-34 cell 
death was analyzed using a trypan blue assay and was analyzed with the BioRad-TC10 automated 
cell counter. This dye typically penetrates cells with a damaged cell membrane, undergoing necrosis 
or late apoptosis. 

2.5. Particle Degradation/Dissolution Studies  

For the in cellulo studies, the culture medium of cells exposed to particles during 0, 12, 48, and 
120 h was collected and centrifugated at 20,000 g for 30 min. The preparation of the samples for the 
inductively-coupled plasma optical emission spectroscopy (ICP-OES) analysis was performed upon 
digestion of 0.5 mL of sample solution with 1 mL HCl:HF (1:3) at 120 °C during 3 h in a 5 mL teflon 
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vessel. After neutralizing the samples, they were injected and analyzed by ICP-OES in an ICP-OES 
Optima 4300DV (Perkin Elmer, Waltham, MA, USA) to determine the concentration of Si species in 
the medium. Results represent a mean of three experimental replicas. TEM was also used to analyze 
MSP degradation both in cellulo and in different media. For the TEM images of cells, cell pellets of 
trypsinized HeLa and NSC-34 cells were fixed with 1% glutaraldehyde in 0.12 M phosphate buffer, 
washed in 0.12 M phosphate buffer, post-fixed in 1% buffered osmium tetroxide, dehydrated, and 
embedded in Araldite. Ultrathin sections of the cells were placed on copper grids and stained with 
lead citrate-uranyl acetate. Araldite sections (ca. 70 nm) were observed using a JEOL JEM 1011 
microscope.  

In vitro particle degradation was analyzed in two media-simulating physiological conditions 
(PBS) and lysosomal conditions. The composition of the synthetic lysosomal medium was 25 mM 
MES-NaOH pH 4.5 containing 0.5 mM CaCl2, 1 mM MgCl2, and 200 mM KCl, as previously described 
[35]. Estimation of particle diameter was obtained through TEM images after measurement >100 
particles. 

2.6. Statistical Analysis  

A Student´s t-test statistical analysis was carried out with Sigma Plot 8.0 (Systat Software) to 
evaluate the significance of a minimum of three different replicas of each experiment. The confidence 
level and the total number of events included in the study are indicated for each statistical analysis. 
Quantitative results were expressed as mean values with their corresponding standard error bars. As 
indicated in the text, (*) = p < 0.01; (**) = p < 0.025; (***) = p < 0.005. 

3. Results and Discussion 

3.1. Characterization of the Particles 

Figure S1 shows TEM images, sizes, and the calculated ζ potential of the MSP and CNT:MSP. 
The MSP core displays a diameter of ca. 500 nm with mesopores of 2.5 to 3.5 nm. Particles were coated 
with poly-L-l as indicated in Section 2.1. Upon polymer coating, the calculated estimated ζ potential 
of the MSP changed from −13.2 to +40.2 mV. The coating with oxidized CNTs is indicated in Section 
2.2. Particle dosages and exposure times have been fully characterized in previous studies [25,28].  

3.2. Silica Particles undergo Endocytosis-Exocytosis Cycles 

It is well established in the literature that most cell types capture serum-functionalized SiO2 
particles by receptor-mediated endocytosis [26,36–39]. Upon engulfment, particles are incorporated 
in the endo-lysosomal vesicular route where, among others, local enzyme activation leads to the 
proteolysis of their protein biocorona [40–42].  

To verify the canonical endocytic route in our system, we exposed HeLa cells to functionalized 
red-silica particles (RBITC-labelled MSP). Cells were stained with endo-lysosome-specific probes 
(lysotracker®) to identify the localization of the particles. Figure 1 shows fluorescent confocal 
microscopy images of live cells exposed to MSP (red channel). Most endo-lysosomes display a purple 
color resulting from the colocalization of the red fluorescence of the particles (inside these 
membranes) combined with the blue fluorescence of the lysosomes (purple arrows). The 
quantification of more than 250 particles (localized in the endo-lysosomes or purple vesicle vs. red 
particles) showed that 99.7% of MSP were inside these vesicles. This result suggests that all the 
intracellular MSP were trapped inside endo-lysosomes, thus, confirming that serum-coated MSP 
follow the canonical endocytic route.  
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Figure 1. Fluorescent confocal microscopy images of live HeLa cells exposed to rhodamine B 
isothiocyanate (RBITC)-labelled mesoporous silica particles (MSP). Cell were stained with acridine 
orange (AO, green channel) and a specific marker for lysosomes (Lysotracker®, blue channel). All 
intracellular MSP were contained inside lysosomes (purple arrow). Empty lysosomes are labelled in 
blue (blue arrow). Free cytosolic particles (only red fluorescence) were not detected. 

For further characterization of the intracellular destination of MSP, we used TEM images. HeLa 
cell cultures exposed to MSP during periods of up to 96 h, were fixed and processed for ultrathin 
sectioning (see Material and Methods section). Figure 2 shows sections of HeLa cells displaying 
particles at different steps of their intracellular route. MSP initially interacted with the projecting 
filopodia and lamellipodia of the cells that contact and capture the particles (Figure 2a, arrow). Upon 
endocytosis, particles are incorporated in membranous structures corresponding to endosomal 
vesicles (Figure 2b, #1, #2). As is typical in the receptor-mediated endo-lysosomal route, lysosomes 
fused to endosomes containing the engulfed MSP (Figure 2b, #3, arrow). The progressive fusion of 
lysosomes causes important chemical changes in the vesicular milieu resulting in acidification and 
the increase of reducing conditions. This activates lysosomal proteases, confining proteolysis in this 
intracellular membranous compartment. At this point, the proteins of the biocorona are degraded 
[41] and some changes in the particle’s morphology, such as core compaction, are observed, 
suggesting biomolecular/biofluid infiltration in the mesopores (Figure 2b, #4, #5) as described in other 
studies [43]. Some of these darker particles appeared surrounded by several extra layers of 
membranes, resembling endoplasmic reticular cisternae, pointing out an auto-phagocytic process 
previous to particle exocytosis (Figure 2b, #4, arrow) as suggested in previous literature [26]. Cultures 
exposed to particles for longer periods, i.e., 96 h, presented abundant particles free in the extracellular 
space (Figure 2c, red arrows). Interestingly, although we did not detect changes in the diameters of 
the particles along the described endo-lysosomal route (Figure 2a,b), we observed that particles in 
the extracellular space displayed a significantly-eroded surface and a smaller diameter compared to 
the original spheres, indicative of degradation in the culture medium (Figure 2c, #6, inset).  

To investigate the exocytosis–endocytosis process, we co-cultured green “empty” HeLa cells 
together with unstained HeLa cells that had been previously loaded with red MSP in a different 
culture dish (Figure 3a). For the experiment, cells were cultured with the particles for 12 h to ensure 
that all MSP were endocytosed and were not attached to the extracellular membrane surface (Figure 
S2). 

These cells were next detached from the dish, thoroughly washed to ensure no particles were 
transferred extracellularly, and then co-cultured with green “empty” cells. Figure 3b shows how, 
after 6 h of co-culture condition, although most of the particles are still inside the unstained cells, 
some of them have already been exocytosed. After 12 h of co-culture conditions, the originally-
“empty” cells contained intracellular red particles (red solid arrows). These results, together with 
those shown in Figure 2, prove that MSP undergo endocytosis- exocytosis cycles as also reported by 
other authors [26,44–46]. 
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Figure 2. Intracellular route of MSP in HeLa cells by transmission electron microscopy images. (a) 
MSP are engulfed via endocytosis by filopodia (arrow). (b) Particles are immediately incorporated 
inside the endocytic membranes (#1 corresponds to 6 h of incubation). A thin membrane surrounding 
the MSP is visible in some sections (#2, arrow, corresponds to 12 h of incubation). Encapsulated 
particles fuse to lysosomes (#3, arrow, corresponds to 24 h of incubation). Some particles are coated 
with membranes (#4, arrow, corresponds to 48 h of incubation) apparently undergoing an 
autophagia-like process (#4, #5). After 96 h, many intracellular particles show a dense core and a 
compacted appearance suggesting biomolecular/biofluid infiltration (#5, corresponds to 72 h of 
incubation). (c) Many extracellular MSP are observed in cultures 96 h after the exposition (#6, inset). 
Extracellular particles display an eroded surface and a dense core. Cracks in the particles (#1, #2, #3) 
are due to artefacts resulting from ultrathin sectioning. 

 
Figure 3. MSP undergo exocytosis–endocytosis cycles. (a) Experimental design. Green-labelled 
‘empty’ Hela cells were co-cultured with RBITC particle-loaded HeLa cells detached and washed 
from a different dish (in grey) for 12 h before confocal microscopy imaging. (b) Projection images of 
co-cultured HeLa cells containing intracellular RBITC-labelled MSP (red channel, empty arrows) with 
green ‘empty’ cells. After 12 h, MSP were detected in the cytoplasm of the green cells (red-filled 
arrows) demonstrating particle exocytosis and re-endocytosis. Nuclei were stained with Hoescht 
(blue channel). 
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3.3. Silica Particles undergo Dissolution in the Cytosol 

To understand MSP degradation in the cellular realm, we used a coating system that allowed 
particle escape from endo-lysosomes to the cytosol. Between the few currently-available systems, we 
decided to coat the particles with oxidized CNT. This type of nanotubes is innocuous when attached 
to silica particles [25,26], while significantly increasing the interaction of the nanomaterial with the 
membrane of the endo-lysosomes [26]. The intimate interaction between the CNT coating and the 
endosome tears the vesicular membranes apart, releasing the silica particles into the cytoplasm.  

MSP coated with oxidized CNT (herein CNT:MSP) were added to the cells following an identical 
protocol to that in Figure 1. In this case, confocal microscopy imaging revealed that red CNT:MSP 
appeared both inside lysosomes (Figure 4a, inset, purple arrows), and also free in the cytosol (red 
arrows). After 48 h exposure to the particles, 56.5% of the particles have escaped from the endo-
lysosomal membranes into the cytosol (n > 250, Figure S3). Interestingly, 72 h after the administration 
of CNT:MSP, most intracellular particles had lost their RBITC fluorescent coating, suggesting 
cytosolic particle surface erosion (Figure S4). 

TEM images of ultrathin sections of HeLa cells exposed to CNT:MSP were used to confirm that 
a large number of these particles were localized in the cytosol devoid of membranes. These images 
showed that CNT:MSP were also captured by endocytosis (Figure 4b, white arrows). But, contrary to 
‘naked’ MSP, the CNT coating pierced and tore the endo-lysosomal membranes apart (Figure 4b 
black arrow) releasing the particles into the cytosol. TEM images also revealed a patent cytosolic silica 
dissolution process that was very obvious 96 h after the administration. At this time point, CNT:MSP 
presented a significantly-damaged and highly-porous structure, with an almost completely 
disappeared core (Figure 4b, asterisks). These findings suggest that the intracellular extra-vesicular 
cytoplasmic conditions triggered silica particle dissolution, being more corrosive than the intra-
vesicular acidic and reducing media. Thus, suggesting these nanocarriers could be good candidates 
to preserve cargo to be delivered into the intracellular milieu. 

Finally, to verify and quantify silica particle dissolution from the chemical point of view, we 
measured the rise of free silicon species in the cell culture media at different exposure using ICP-OES 
(see The Materials and Methods section) [47,48]. To eliminate putative silica fragments from the 
media and to uniquely quantify the dissolved silica, we centrifuged the culture samples at 20,000g 
for 30 min. This centrifugation step guarantees that whole particles or their fragments are not 
included in the measurements. This way, any Si species in the culture medium can only be indicative 
of particle dissolution thus, the actual degradation of particles (i.e., including fragmented silica) is 
higher than that detected by ICP. Figure 4c shows the quantitative analysis of the measurements of 
the extracellular Si content after the administration of both MSP and CNT:MSP. The progressive 
increment of this element in the media is indicative of particle dissolution and release of the resulting 
silicon-free species into the surrounding media, as previously discussed [15,16,19,21,22,49]. Results 
obtained for MSP’s and CNT:MSP degradation do not show statistically significant differences. This 
can be explained because MSP are dissolved extracellularly thus raising the Si content in the media. 
Both, the extracellular and the intracellular media are very similar in pH and salts, which makes the 
degradation time in both types of particles similar.  
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Figure 4. Subcellular localization and degradation of MSP with CNT coating (CNT:MSP) in HeLa 
cells. (a) Confocal microscopy images of live cells exposed to RBTIC-labelled CNT:MSP (red channel), 
Cells were stained with AO (green channel) and the lysosomal probe Lysotracker® (blue channel). 
(inset) Purple arrows point to lysosomes containing particles, red arrows point to particles released 
into the cytosol. (b) TEM images of ultrathin sections of HeLa cells exposed to CNT:MSP. White 
arrows point to endocytosed particles. The inset shows CNTs piercing the lysosomal membranes 
(black arrow). Cytoplasmic CNT:MSP were significantly degraded 96 h after endocytosis, displaying 
empty cores (asterisks). For identification purposes, particles are surrounded by a red circle. (c) 
Quantitative ICP-OES analysis of Si in the extracellular culture media of the cells exposed to MSP or 
CNT:MSP during 0, 12, 48, and 120 h. The histogram represents the results average measurements of 
three experiments. The increment of the Si species in the culture media suggests the extracellular 
presence of the SiO2 degradation products. Results confirm extracellular MSP and intracellular 
CNT:MSP dissolution (** = p < 0.025). 

3.4. MSP Degradation In Vitro Recapitulates the In Cellulo Results 

Archive literature suggests silica needs to be enzymatically degraded in eukaryote cells by 
specific enzymes such as silicateins or silases as it is the case in organisms such as marine sponges 
[50]. Thus, the steps in the intracellular degradation of the particles and the effect of the salt and pH 
in the process were next studied using buffers mimicking the chemical conditions of the cytosol (or 
extracellular media) and the lysosomes. Silica particles were incubated 1 to 7 days at 37 °C in mild 
agitation, and degradation was evaluated using TEM images of the particles (see Material and 
Methods section).  

Figure 5 demonstrates how buffers mimicking the composition of the cytoplasmic milieu or 
extracellular media triggered a fast MSP degradation compared to the synthetic lysosomal media. 
Hence these results reinforce the idea that MSP degradation is accelerated in isotonic buffers (pH 7.4, 
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137 mM NaCl) mimicking the chemical conditions of the cytosol, while in lysosomal buffers, MSP 
displayed no apparent changes for at least 7 days (Figure 5b) as reported in previous studies [3,49,51]. 
These results strongly suggest that MSP must be primarily considered as hydrolytically degraded 
and not biodegraded [48]. 

 
Figure 5. Degradation of MSP in synthetic biomimetic solutions. Representative TEM images of MSP 
after incubation for 24 h and 1 week in (a) isotonic buffered solution mimicking the intra/extracellular 
milieu (PBS) or (b) synthetic lysosomal media. Statistical evaluation of the size change in particle 
diameter upon incubation in media (*** p < 0.005). Control particles are shown in Figure S1. 

3.5. Silica Dissolution is Innocuous to Epithelial Cells 

Live-cell studies with MSP did not reveal any detectable cytological finding indicative of toxicity 
(Figures 1–4). This issue was confirmed by flow cytometry examining cell death (apoptosis) and 
possible changes in the cell cycle. This technique allows measuring approximately 10,000 events 
(cells) per condition simultaneously providing a good statistical evaluation of the cytotoxicity. The 
results shown in Figure 6 demonstrate how cells exposed to 15 μg/mL of MSP or CNT:MSP during 
72 h, displayed no significant signs of cell death (in red) or alterations in the mitotic cycle compared 
to untreated control cells.  

The viability study was complemented with the quantification of the cellular oxidative stress 
(reactive oxygen species, ROS) at the same exposure times. No statistically-significant changes were 
observed in MSP- or CNT:MSP-treated cells compared to untreated controls (Figure 6b). These results 
lead us to conclude that, at the concentration used, intracellular silica particle degradation is 
innocuous to HeLa cells. 
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Figure 6. Silica dissolution is innocuous to HeLa cells. (a) HeLa cell cycle and viability 72 h after 
exposure to MSP or CNT:MSP. Cell cycle stages (in blue shades, G1 = non-dividing; S = duplicating 
phase; G2 premitotic/mitotic phase); and apoptotic cell (red) percentages in cultures of untreated 
(control) cells or cultures exposed to MSP or CNT:MSP. (b) Analysis of the oxidative stress in the 
cultures. In HeLa cells, no statistically-significant rise in the % of ROS was observed upon 
administration of MSP or CNT:MSP compared to untreated controls. The positive control 
(corresponding to 100% of ROS) was done adding 100 μM of H2O2. 

3.6. Intracellular Silica Dissolution is Innocuous to Motor Neurons  

Motor neuron diseases are disorders that affect selectively to the neurons that control voluntary 
muscles of the body. These cells have a very active metabolism and have to last a lifetime without 
replacement. Hence, these cells are very vulnerable to chemical or metabolic insults in the medium–
long term.  

Until now, there have been no safe vectors that can be used to deliver therapeutic agents (drugs, 
repair genes or proteins, or RNAs, etc.) to motor neurons. Given the excellent biocompatibility 
observed for the MSP in epithelial cells, we considered that MSP could be ideal nanocarriers in neural 
repair and thus, we investigated the intracellular degradation of these particles in the cytoplasm of 
neurons. For this purpose, we exposed NSC-34 cells (see Material and Methods section) to both types 
of MSP following the protocols described for HeLa cells. The results, summarized in Figure 7, show 
how motor neurons can efficiently dissolve silica particles (Figure 7a), and, despite previous reports 
[52,53], our tests show the innocuity of MSP in these cells. Neurons displayed no morphological 
changes indicative of degeneration, even after 6 days of exposure to MSP (Figures 7b,e). The healthy-
looking appearance of the cells in culture (Figure 7b,c,e) and the statistical analysis of neuronal 
survival after 6 days of exposure to both types of particles (Figure 7d) showed undetectable toxicity 
in treated neurons. Finally, TEM images of ultrathin sections of the motor neurons (Figure 7e) 
confirmed that both MSP and CNT:MSP followed virtually identical intracellular destinies in these 
cells to HeLa. This fact supports the hypothesis that most eukaryotic cells are likely to dissolve silica 
particles efficiently and safely. 
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Figure 7. Intracellular route and degradation of MSP in neurons. (a) Quantitative ICP-OES analysis 
of extracellular Si in cultures of NSC-34 neurons exposed to MSP and CNT:MSP. The rise of the Si 
species corroborates particle dissolution in these cells at the indicated times (** p < 0.025, *** p < 0.005). 
(b) Phase-contrast images of control neuronal cultures and cells exposed to 15 μg/mL of MSP and 
CNT:MSP for 6 days. No deleterious morphological changes were observed. (c) Fluorescent confocal 
images of neurons displaying MSP and CNT:MSP (green channel). No abnormalities in the 
cytoskeleton of microtubules (red channel) or actin (blue channels) were detected. (d) Neuronal 
survival upon exposure to the two types of particles was not affected. (e) TEM images of ultrathin 
sections of motor neurons containing intracellular MSP (top) and CNT:MSP (bottom). Particles 
reproduce the same destinies and degradation patterns described for epithelial cells. Red arrow points 
at the endosomal membranes surrounding a particle. White arrow shows the eroded surface of a 
cytosolic CNT:MSP. 

4. Conclusions 

This work demonstrates how silica particles, contrary to what is usually expected for most 
nanomaterials, degrade primarily in the cytoplasmic realm or extracellularly, but not in lysosomes. 
The results obtained also imply that this phenomenon requires chemical dissolution rather than 
biochemical (enzyme-assisted) events, meaning that any cell or even the extracellular milieu can 
trigger silica nanoparticle degradation. We also showed how through triggering endo-lysosomal 
escape, MSP intracellular degradation is enhanced. These studies provide clues to how controlling 
the spatiotemporal dissolution of MSP nanocarriers can serve to protect lysosome-sensitive 
therapeutic compounds during the endo-lysosomal transit to the cytoplasm, thus preventing the 
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release of therapeutic compounds until cytosolic arrival. Furthermore, innocuous silica dissolution 
events occur, not only in epithelial cells, but also in motor neurons, and probably in most cell types. 
This fact could help in the development of neuronal-directed safe nanocarriers for the treatment of 
neurodegenerative disorders such as motor neuron diseases, uncommon conditions that affect the 
brain and nerves, nearly always fatal, that have no treatment to prevent, alter, or cure the disease.  

Supplementary Materials: The following are available online at www.mdpi.com/1999-4923/12/6/487/s1, Figure 
S1: Characterization of the silica particles, Figure S2: Fluorescent confocal microscopy image of HeLa cells after 
12 h of the administration of MSP, Figure S3: CNT:MSP escape from endo-lysosomes, Figure S4: Cytosolic 
particle surface degradation. 
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