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Abstract 24 

Food losses and waste (FLW) tend to be referred to in terms of mass, occasionally in economic terms, 25 

disregarding the nutritional-cost nexus of such losses. This work aims to estimate the nutritional food 26 

losses and waste (NFLW) of the Spanish agri-food system in terms of energy, macronutrients, fibre, and 27 

vitamins and minerals along the entire supply chain. Nutritional food losses (NFL) occurring prior to 28 

the distribution level, and nutritional food waste (NFW) at the retail and consumption stages, are 29 

distinguished, and 48 representative food commodities and 32 nutrients are characterised. To provide 30 

insight into the extent of these values, the results are compared to the equivalent recommended daily 31 

intake. Moreover, the NFLW for an average Spanish citizen is compared to that for other representative 32 

diets: Mediterranean, lacto-ovo-vegetarian, and vegan, in addition to the Spanish recommended 33 

guidelines. Finally, a Nutritional Cost Footprint (NCF) indicator combining nutritional and economic 34 

variables is proposed to define recovery strategies. The results suggest that 1016 kcal, 70.7 g proteins, 35 

22 g dietary fibre, 975 mcg vitamin A, 117 mg vitamin C and 332 mg calcium daily per capita are 36 

embedded within Spanish FLW. Agricultural production accounts for 40% of NFLW, and fruits and 37 

vegetables are the categories with the largest potential for nutritional and economic food wastage 38 

mitigation. Results from this paper provide NFLW data and analysis to strengthen and simplify the 39 

decision-making process of FLW management strategies. 40 

41 

Keywords: food analysis; food composition; food losses and waste; nutritional losses and 42 

waste; economic losses and waste; supply chain; reference daily intake; nutrient rich food 43 

index; Spanish agri-food system; Mediterranean diet. 44 
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1. Introduction46 

The relationship between food security and sustainability appeared for the first time in the 47 

Bruntland report (WCED, 1987), which focused on the issue of ensuring the future global 48 

availability of food. Over the last thirty years, this concept has evolved to highlight the need 

to 2 

49 
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consider the accessibility of food in addition to its availability (FAO, 2006). Food and nutrition 50 

security is a complex issue, associated with health through malnutrition, but also sustainable 51 

economic development, the environment, and trade (Scherhaufer et al., 2015). Nowadays, more 52 

than 800 million people still suffer from hunger, while paradoxically almost one third of the 53 

food produced for human consumption is lost or wasted, amounting to 1.3 billion tonnes a year 54 

(Gustavsson et al., 2011). According to the Food and Agriculture Organisation of the United 55 

Nations (FAO, 2013), this amount could equivalently feed 12% of the world’s population 56 

currently estimated to be suffering from hunger. These figures highlight the imbalance existing 57 

between different regions and diets. 58 

Food losses and waste (FLW) are the loss of important nutrients and micronutrients that 59 

are not ingested. Hence, FLW threaten food security and nutrition in a three-dimensional 60 

manner. Firstly, they lead to reduced food availability. Secondly, FLW present a negative 61 

impact on food access for those involved in harvest and post-harvest operations and who face 62 

FLW-related economic and income losses, and for consumers owing to the contribution of FLW 63 

to the tightening of the food market and rising food prices (Timmermans et al., 2014). Finally, 64 

FLW pose a threat to food security owing to the current unsustainable pattern of natural 65 

resource exploitation. Food systems contribute to around 30% of total energy consumption and 66 

70-80% of human water withdrawals (Pimentel et al., 2008; Verma et al., 2015). Consequently,67 

FLW comprise the wastage of embedded valuable resources that build up down the supply 68 

chain. In addition, the growing population and related increase in food demand are forecast to 69 

cause a 50% rise in natural resource consumption (Vora et al., 2016). 70 

FLW have traditionally been referred to as a decrease in mass, at all stages of the food chain 71 

from harvest to consumption, of edible food that was originally intended for human 72 

consumption. Hence, numerous studies have focused on estimating the quantity of FLW in 73 

terms of mass. When studying the impact of FLW on nutrition, few studies have focused on 74 



calories. For example, Kummu et al., (2012) estimated FLW in mass using the FAO approach 75 

(Gustavsson et al., 2011), ultimately converting this into calorie values. They suggested that 76 

24% of food production is lost or wasted, amounting to 720 kcal per capita per day in Europe. 77 

The same approach was followed by Lipinski et al. (2013), who gave a figure of 748 kcal lost 78 

per European citizen each day. 79 

However, the use of the caloric content of foods for estimating FLW gives greater weight to 80 

energy-dense foods and loses sight of other wasted nutrients (Timmermans et al., 2014). Other 81 

nutritional dimensions, such as micronutrients (minerals and vitamins), are often disregarded. 82 

For example, fruits and vegetables are quantitatively the greatest FLW in terms of mass, in 83 

addition to being an important source of micronutrients, including organic acids and vitamin C, 84 

which promote iron absorption (Teucher et al., 2004). Fish and meat products are also nutrient-85 

dense products, and these are being lost at an increasing rate. They are nutritionally important 86 

because of their iron content, especially considering that 23% of the population in Europe and 87 

up to 49% globally present iron deficiency anaemia (Lotfi et al., 2001; Benoist et al., 2008). 88 

Only two studies have been found in the literature that address a wider scope of nutritional 89 

FLW. One, conducted by the European Commission as part of the FUSIONS project, estimated 90 

the losses of vitamin A, beta-carotene, vitamin C, fibre, iron, zinc, n-3 fatty acids, lysine, and 91 

methionine for 9 indicator products, representing 65% of EU production (Scherhaufer et al., 92 

2015). The other calculated the nutritional waste in the United States, at only retail and 93 

consumer level, of 213 commodities for 27 nutrients (Spiker et al., 2017). As far as the authors 94 

know, there are no studies that estimate nutrient and micronutrient losses for the entire supply 95 

chain. 96 

Economic losses relating to FLW are also little studied. Buzby et al. (2014) determined that the 97 

total value of food lost at the retail and consumer level in the United States was $162 billion in 98 

2010, with 70% of the economic losses being generated at consumer level (1US$=0.85€). 

At 4 
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European level, economic losses were estimated to be €143 billion in 2012, with two thirds of 100 

the costs being related to household consumption (Stenmarck et al., 2016). Despite FLW-101 

related costs having been properly defined at the consumer end of the supply chain, there is 102 

scant information on economic FLW at the front end of the food chain (i.e., agricultural 103 

production, post-harvest, and processing).104 

On the other hand, FLW policies currently focus on reducing the mass of FLW. This is the case 105 

of the Sustainability Development Goals (SDG), adopted in 2015 by the United Nations 106 

Member States. These include the aim of halving food waste at the retail and consumer level 107 

by 2030 and reducing food losses along production and supply chains, including post-harvest 108 

losses. As already suggested by the High Level Panel of Experts on Food Security and Nutrition 109 

(Timmermans et al., 2014), it is necessary for future FLW reduction strategies to consider, not 110 

only quantification in terms of mass, but also the decrease in the nutritional qualities attributed 111 

to food, at all stages of the supply chain. This work therefore assesses the nutritional losses and 112 

waste along the supply chain of the Spanish food system in terms of energy, macronutrients, 113 

fibre, vitamins and minerals. In order to make the results significant and help in the decision-114 

making process, the study distinguishes between nutritional food losses (NFL), occurring prior 115 

to the distribution level, and nutritional food waste (NFW), occurring at the distribution and 116 

consumption stages. Moreover, nutritional losses and waste are compared to the recommended 117 

daily intake (RDI). To create awareness among producers and consumers, NFLW from an 118 

average Spanish citizen are compared to those from other representative diets: Mediterranean, 119 

lacto-ovo-vegetarian, and vegan, in addition to the Spanish recommended guidelines. Finally, 120 

the economic costs associated with FLW at the various stages of the supply chain are 121 

determined and an indicator for defining FLW management strategies is proposed, combining 122 

both nutritional and economic variables. 123 

124 
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2. Materials and methods 125 

A life cycle approach has been applied to estimate the nutrients and micronutrients embedded 126 

in FLW. This is a holistic approach that goes beyond the traditional focus on the processing 127 

stage to include the entire product pathway, from the extraction of raw materials to the return 128 

of waste to the ground (Azapagic, 2010). The life cycle approach was originally applied to 129 

environmental sustainability assessment, under the premise that to reduce the environmental 130 

impacts of an economic system, the whole life cycle of the activity must be considered. 131 

However, life cycle thinking is broadening its boundaries and is currently applied to other 132 

sustainability aspects, such as the economic (life cycle costing) or social (life cycle social 133 

assessment) dimensions. 134 

Most studies in the literature focus on the nutritional characterisation of agri-food systems at 135 

the consumption stage, disregarding other steps in the supply chain. This work applies a life 136 

cycle approach to the Spanish agri-food system, taking into account every stage from 137 

agricultural production to consumer. The ultimate aim of the study is to go beyond the classical 138 

applications of life cycle assessment by exploring the nutritional and economic dimensions of 139 

food losses. The method followed in this work comprises 4 different steps, as shown in Fig. 1: 140 

i) definition of daily average consumption for the diet or diets under study; ii) estimation of141 

food losses and waste in the different steps of the supply chain, as well as for the food categories 142 

under study; iii) calculation of nutritional food losses and waste (NFLW); and iv) assessment 143 

of the nutritional and economic impact of nutrient wastage. The various steps are described in 144 

the subsections below. 145 

146 

2.1 Diet design 147 

The method used for designing diets is a key issue in consumption-oriented studies (Heller et 148 

al., 2013). Diets representative of national averages are often based on the apparent 149 



consumption (sold production + imports - exports) estimated from available statistics. However, 150 

this concept is flawed since it assumes that all food commodities sold and imported are 151 

consumed, and that the methods used for the two surveys produce comparable results. To 152 

overcome this problem, the data on Spanish average consumption was sourced from the food 153 

consumption database of the Spanish Department of Agriculture and Fisheries, Food and 154 

Environment (MAPAMA, 2017). The information for 2013 to 2016 was extracted for 48 155 

representative food commodities grouped into 13 categories (fruits, vegetables, cereals, dairy, 156 

vegetable fats, nuts and seeds, fish, white meat, eggs, red meat, legumes and derivatives, 157 

potatoes, and sweets). These categories were defined based on the classification used in the 158 

MAPAMA database and the nutritional differences of the food groups (Table S1 of the 159 

supplementary material (SM)). 160 

Table 1 shows the daily and weekly servings used to design the alternate diets considered. 161 

Spanish nutritional guidelines (SENC, 2016) recommend the consumption of more plant-based 162 

products and less meat. The Mediterranean diet was sourced from the study of Bach-Faig et al. 163 

(2011), and the lacto-ovo-vegetarian and vegan diets come from the recommendations of the 164 

Spanish Vegetarian Union (UVE, 2017). For comparative purposes, all the diets designed, 165 

including the average Spanish consumption, were adjusted to fit the 2,000 kcal daily intake 166 

recommended by the European Commission (EC, 2011). The daily consumption estimates for 167 

each diet studied are shown in Table S2 of the SM. 168 

169 

2.2. Calculation of food losses and waste 170 

Material flow analysis was used to quantify the food losses and waste throughout the supply 171 

value chain. In this work, food losses and waste are defined as “a decrease, at all stages of the 172 

food chain from harvest to consumption, in mass, of food that was originally intended for 173 

human consumption, regardless of the cause” (Timmermans et al., 2014). The study makes the 

7 
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distinction between food losses occurring prior to the consumption level, regardless of the 175 

cause, and food waste occurring at consumption level, also regardless of the cause. 176 

With regard to agricultural production, climatic conditions, diseases, and pests are the main 177 

reasons for FLW generation (MAPAMA, 2013a). On the other hand, inefficient manual and 178 

technical harvesting, unsatisfied quality standards, and mismatch between supply and demand 179 

cause losses at both harvest and post-harvest levels. Insufficiencies in infrastructure and 180 

logistics, lack of technology, lack of skills or knowledge, and unsatisfied quality standards are 181 

stated as reasons for FLW at the industrial level. According to HISPACOOP (2013), half of 182 

food wastage at consumer level could be avoided through adequate purchase and storage 183 

planning. Improper preparation, lack of awareness about the difference between expiration and 184 

preferential consumption dates, and portion size acquired in the supermarkets, are other reasons 185 

for food waste generation in households (Garcia-Herrero et al., 2018). 186 

The FLW for each food category are determined as a function of the food quantity leaving the 187 

corresponding stage, as shown in Eqs. 1-2: 188 

𝐹𝐿𝑊$,&,' = )
𝛼$,&,'

1 − 𝛼$,&,'
- · 	𝐹$,&01,' (1) 

𝐹$,&,' = 𝐹$,&01,' − 𝐹𝐿𝑊$,&,'	 (2) 

189 

Where FLWi,j,k are the food losses and waste of food commodity k belonging to food category i 190 

for each stage, j, of the supply chain (j=1, agricultural production, j=2, post-harvest handling 191 

and storage; j=3 processing and packaging; j=4 distribution; and j=5, household consumption). 192 

αi,j,k is the percentage of food losses and waste generated in each j stage; Fi,j,k is the food 193 

commodity k available for human consumption from category i and leaving the supply chain 194 

sector j. 195 
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The FLW weight percentages reported by the FAO for the European region (Gustavsson et al., 196 

2013) were used to quantify FLW volumes, except post-harvest losses for which there is data 197 

available for Spain in the FAOSTAT Balance sheets. These percentages were adapted to the 198 

Spanish region whenever possible (MAPAMA, 2013a, 2013b), and are described in Table S4 199 

of the SM. 200 

For processed products comprising either a single ingredient (such as cheese and sunflower oil), 201 

or more than one ingredient (such as margarine and biscuits), conversion factors were 202 

considered to estimate the corresponding FLW in agricultural and post-harvest stages in terms 203 

of unprocessed products (Table S5 of the SM). Total conversion yields were assumed for food 204 

commodities included in the meat, fish, and seafood categories. More information on the 205 

estimation of food losses and waste is provided in Garcia-Herrero et al., (2018). 206 

2.3. Calculation of nutritional food losses and waste 207 

Estimating nutrient loss from FLW may be helpful for people trying to prevent FLW by 208 

engaging the public and companies and increasing awareness on this subject (Scherhaufer et 209 

al., 2015). Figure 1 shows the conceptual scheme for the steps followed to assess the nutritional 210 

food losses and waste (NFLW). As shown in Fig. 1, once the FLW have been determined, the 211 

nutritional food losses and waste (NFLW) can be estimated. A set of 32 nutrients was selected 212 

for this purpose, including macronutrients, vitamins, and minerals. The macronutrients selected 213 

were energy (kcal), total proteins (g), vegetable proteins (g), animal proteins (g), total fat (g), 214 

saturated fat (g), monounsaturated fat (g), polyunsaturated fat (g), cholesterol (mg), 215 

carbohydrates (g), sugars (g), starch (g) and dietary fibre (g). The minerals included sodium 216 

(mg), potassium (mg), calcium (mg), magnesium (mg), phosphorous (mg), iron (mg), and zinc 217 

(mg). The vitamins included vitamin A (mcg), retinoids (mcg), carotenoids (mcg), vitamin D 218 

(mcg), vitamin E (mcg), thiamin (mg), riboflavin (mg), niacin (mg), vitamin B-6 (mg), vitamin 219 

B-9 (mcg), vitamin B-12 (mcg), and vitamin C (mg). These components were selected based220 
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on the availability of data in the Institute for Education in Nutrition and Dietetics from Spain 221 

(CESNID) database and their significance in the formulation of dietary guidelines (EC, 2011). 222 

Nutritional data was obtained from the CESNID (2003) food composition tables. These tables, 223 

which are registered in the FAO International Network of Food Data Systems 224 

(FAO/INFOODS), were selected owing to the wide range data contained and the Spanish origin 225 

of the food products assessed. Food products or ingredients not appearing in this database 226 

(cacao seeds, palm oil, and linseed oil), were sourced from the National Nutrient Database for 227 

Standard Reference of the United States Department of Agriculture (USDA). Although this 228 

database is not European, it was selected because it provides composition data for more than 229 

8,000 food products, comprising the most elaborate food composition database as indicated by 230 

the European Fusions project (Scherhaufer, 2015). Further discussion on food composition 231 

tables and nutritional data for the food commodities studied can be found in Section S5 of the 232 

the SM. 233 

For each food commodity, a representative item was matched from the described databases. For 234 

example, an average of flank steaks and briskets was assumed to represent fresh beef meat, 235 

while breast and loin were considered for chicken meat and pork meat, respectively. Whenever 236 

feasible, the selections were based on the most representative products according to the Spanish 237 

consumption database (MAPAMA, 2017). 238 

Once the nutritional data had been compiled, the NFLW could then be calculated using Eq. 3: 239 

𝑁𝐹𝐿𝑊$,& =3𝐹𝐿𝑊$,&,' · 𝑁𝐶$,&,'
'

 (3) 

240 

Where NCi,j,k is the nutritional content of FLW for food commodity k within category i and 241 

supply stage j. Since the nutritional data available in food databases is at product level, 242 
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nutritional content cannot be distinguished for unprocessed food along the supply chain. This 243 

may lead to an overestimation of the nutritional content of FLW, especially for fruit and 244 

vegetable commodities, because it does not consider the degradation of nutrients over time. 245 

Moreover, food composition databases contain information about edible food, which may differ 246 

from the nutritional features of FLW. For this reason, this work follows the approach of 247 

Scherhaufer et al. (2015), assuming that data from food composition databases are an estimate 248 

for the nutritional composition of waste and the inedible parts of food commodities. 249 

The assessment of nutrient losses and waste in terms of human nutritional requirements can be 250 

conducted by comparing NFLW values to the dietary reference intakes (RDI) set by the 251 

European Regulation (EU) No 1169/2011 of the European Commission (EC, 2011) and the 252 

European Food Safety Authority (EFSA, 2010). To estimate NFLW at population scale, the 253 

total per capita losses were multiplied by the average Spanish population size for the period 254 

2013-2016 (46.77 million). 255 

256 

2.4 Nutritional and economic impact of nutrient wastage 257 

To assess the overall nutritional quality of a diet, diet quality indices are often used. The 258 

Nutrient Rich Foods (NRF) Index is a formal scoring system that ranks food on the basis of its 259 

nutrient content; it can be applied to individual foods, meals, or a total diet (Drewnowski, 2010). 260 

In this work, we have applied the nutrient profile model developed by Drewnowski et al. (2009) 261 

and Fulgoni et al. (2009) to the FLW related to the diets under study, in order to determine the 262 

nutritional impact of food losses and waste. 263 

The most widely used NRF algorithm is NRF9.3, which is based on 9 nutrients (protein, fibre, 264 

minerals calcium, iron, magnesium and potassium, and vitamins A, C and E) that should be 265 

encouraged, and 3 nutrients (saturated fat, added sugar and sodium) that should be limited, as 266 

described in Eq. 4: 267 
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𝑁𝑅𝐹9.3 =3𝑤$ :3
𝑁𝑅;
𝐷𝑉;

· 100
;?@

− 3
𝐿𝐼𝑀C

𝑀𝑅𝑉C
· 100

C?D

E
$

 (4) 

268 

Where NR is the intake of nutrient l (to encourage), DV is the daily recommended value of 269 

nutrient l, LIM is the intake of nutrient m (to limit), and MRV is the maximum daily 270 

recommended value for the nutrient l. Wi is the weighting factor of food category i and can be 271 

estimated using kcal or weight basis. In this work, the weight basis has been selected to avoid 272 

the overrepresentation of calorie-dense foods. 273 

The daily recommended value of nutrients was sourced from EU Regulation No. 1169/2011 of 274 

the European Commission (EC, 2011) and the EFSA (2010) as proposed by Sluik et al. (2015) 275 

in their assessment of different NRF indices based on European data. The reported values are 276 

similar to those from the US Food and Drug Administration (FDA) used in Drewnowski (2010), 277 

with the exception of potassium and vitamins A and E, for which American values duplicate 278 

European values. The maximum daily recommended values were sourced from EFSA (2009), 279 

and agree with FDA values. 280 

Added sugar is not included in either the CESNID or USDA database. However, as studied in 281 

the work of Fulgoni et al. (2009), since added sugar data is not very readily available, using 282 

total sugars as a nutrient to limit may be a reasonable option (Fulgoni, 2009). Moreover, these 283 

authors demonstrated that total and added sugar are highly correlated. 284 

Economic variables can also be used to determine the impact of food losses and waste. Down 285 

the supply chain, from production to retail, value is generally accumulated, linked to successive 286 

phases of the elaboration of the final product. This occurs not only in processed foods, but also 287 

with shorter food chains, such as those of fresh commodities (Timmermans et al., 2014). To 288 

estimate the NFLWF, it is first necessary to determine the economic food losses and waste 289 

(EFLW), as described in Eq. (5). 290 
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𝐸𝐹𝐿𝑊$ =3𝐸𝐹𝐿𝑊$,&
&

=3𝐹𝐿𝑊$,&𝑉$,&	
&

 (5) 

291 

Where EFLWi,j represents the economic food losses and waste of food category i in supply stage 292 

j, and Vi,j their corresponding economic value. Prices at origin, wholesale and consumer level 293 

were obtained from the Spanish Ministry of Economy and Competitiveness (MINECO, 2015) 294 

and the MAPAMA (2015b) (see Section S6 of the SM). The same costs were assumed for FL 295 

at agricultural production and post-harvest stages. For the processing stage, the economic 296 

production values reported by Eurostat were used when consistent data was available. In other 297 

cases, wholesale prices were used for the processing and distribution stages. 298 

Finally, we propose the Nutritional Cost Footprint (NCF) to assess both the nutritional and 299 

economic impact of FLW. This index can be estimated by weighting the normalised previous 300 

two metrics (Eq. 6): 301 

𝑁𝐶𝐹$ = 𝛼$
𝑁𝑅𝐹9.3$
𝑁𝑅𝐹9.3GGGGGGGGGG + 𝛽$

𝐸𝐹𝐿𝑊$

𝐸𝐹𝐿𝑊GGGGGGGG  (6) 

302 

Where 𝛼$ is the weighting factor for the nutritional impact and 𝛽$	is the weighting factor for the 303 

economic impact of FLW. In this work, equal weighting is assumed and thus, 𝛼$ =𝛽$=0.5. 304 
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3. Results and discussion 305 

3.1 Nutritional food losses and waste in the Spanish supply system 306 

The estimated losses and waste of nutrients embodied in FLW are shown in Table 2. The daily 307 

NFLW calculated for the Spanish agri-food system amount to 1016 kcal, 70.7 g proteins, 22 g 308 

dietary fibre, 975 mcg vitamin A, 117 mg vitamin C, and 332 mg calcium per capita, among 309 

others. Results suggest that most macronutrients and micronutrients are lost in the agricultural 310 

production step, with this stage representing more than 40% of the total NFLW. The 311 

consumption step is the second main source of NFLW, where more than 30% of the nutrients 312 

are wasted. The exceptions are animal proteins, starch, retinoids, and vitamins D and B-12, for 313 

which the nutritional loss embedded in household waste is larger than the estimated nutritional 314 

loss related to agricultural FLW. The remaining supply stages, processing, distribution, and 315 

post-harvest account for 13%, 8% and 7% of the NFLW, respectively. 316 

Fig. 2-5 and Table 3 present the contribution of the food categories under study to the wastage 317 

of nutrients (more detailed information can be found in Section S7 of the SM). For 318 

macronutrients, the cereals category contributes the most to the loss of nutritional energy (36%), 319 

half of which is lost in the consumer step. Somewhat behind this, vegetable fats and fruits 320 

contribute to 16% and 11%, respectively, around 50% of the losses occurring at the agricultural 321 

level. Cereals also account for the majority of NFLW for vegetable proteins (42%), dietary fibre 322 

(23%), and starch (69%), again mainly due to waste at consumer level. The dairy category 323 

represents a third of the protein wastage, almost 80% occurring at the consumption stage. 324 

Finally, we can also highlight the losses of dietary fibre due to fruit and vegetable production, 325 

which together account for nearly 40% of fibre NFLW. 326 

Similarly to macronutrients, most of the minerals are also embedded in NFLW of cereals, with 327 

the exception of potassium, where 28% is embedded in NFLW of vegetables. 328 
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The pattern is different when the NFLW of vitamins is assessed. Almost 90% of vitamin A is 329 

lost along the vegetable supply chain, 49% of which is due to agricultural production. 330 

Vegetables are also responsible for the losses of 51% of vitamin C and 36% of folate, half of 331 

which are wasted at consumer level. Fish and seafood products contribute the most to NFLW 332 

of vitamin D (82%) and vitamin B12 (76%). The contribution of fruit to NFLW of vitamins is 333 

less, but also significant, accounting for 16% of folate and 32% of vitamin C. Finally, almost 334 

60% of vitamin E is embedded in FLW of vegetable fats, mainly due to sunflower oil. 335 

Regarding nutrients to limit, the study focuses on saturated fat, sugar and sodium. The NFLW 336 

of saturated fat are mostly shared with cereals, due to the consumption of biscuits and vegetable 337 

fats, accounting for 38% and 21%, respectively. The pattern is slightly different for sugar, for 338 

which fruits (41%), cereals (19%), and sweets (17%) are the main contributors. Finally, 339 

vegetable fats comprise the major NFLW of sodium (54%), entirely due to losses in olive 340 

production for olive oil, and cereals (23%) owing to bread wasted at consumer level. 341 

Some slight differences are seen when seasonal variability is considered. The consumption of 342 

dairy derivatives and fresh vegetables is observed to increase 3% in the spring-summer season, 343 

while the consumption of fresh fruits experiences a 6% rise (Table S3 of the SM). This involves 344 

larger losses of vitamins, particularly vitamins A and C, whose NFLW in the spring-summer 345 

season are 7.1% and 6.6% higher, respectively. Additionally, the NFLW of total proteins, sugar, 346 

and potassium, are each estimated to be 3% higher. In the autumn-winter season, greater losses 347 

of saturated fat (1.2%) and cholesterol (1.6%) are observed. More information can be found in 348 

Section S9 of the SM. 349 

350 

3.2 Nutritional food losses and waste compared with nutritional requirements 351 

Table 3 compares the macronutrient and micronutrient values embedded in FLW to dietary 352 

reference intakes in order to estimate the equivalent number of adults that could be fed from 353 
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NFLW. Since food commodities are not ready for consumption or recoverable at every step of 354 

the supply chain, we have distinguished NFL and NFW; NFL refers to the daily nutritional 355 

losses per capita occurring from agricultural production to processing; while NFW refers to 356 

losses at the distribution and consumption levels. Nutrients to limit have been excluded from 357 

the comparison, due to the purpose of the assessment. Results suggest that, on average, 15.3 358 

million people could meet their recommended daily intake from the nutrients present in food 359 

waste, in other words, a third of the Spanish population. This number triples for total proteins, 360 

for which the estimation of NFW equals the quantity required for 42 million people daily. This 361 

is, in particular, due to dairy products wasted in households. Slightly less, but also above 362 

average data levels, was the waste of vitamins A and C, amounting to 19 million equivalent 363 

people. The minimum NFW are observed for vitamin E, amounting to the equivalent 364 

recommended daily intake of 5.4 million people. 365 

Larger values are estimated for NFL, for which losses at the beginning of the supply chain 366 

account for, on average, the daily requirements of 28 million equivalent adults. The pattern 367 

observed is quite different from that described previously, with the highest estimates for 368 

vitamins C (48 million equiv. people) and A (38.6 million equiv. people), while the lowest are 369 

for calcium (11.5 million equiv. people). 370 

Our results suggest that around 80% of the Spanish population could meet their nutritional 371 

needs from food losses and waste. However, this is a first estimation, assuming a best-372 

performance scenario —an approach that considers all FLW to be avoidable and the embedded 373 

nutrients recoverable, which is often not true. 374 

375 

3.3 Nutritional food losses and waste for average Spanish consumption compared 376 

with those from alternative diets 377 

Table 5 shows the comparative assessment of daily NFLW for an average Spanish citizen, 378 

according to current consumption patterns, and the equivalent NFLW following 4 alternative 379 
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diets based on: the Spanish Dietary Guidelines; the Mediterranean diet; the lacto-ovo-380 

vegetarian diet; and the vegan diet (the full set of NFLW is available in Section S8 of the SM). 381 

The results suggest that the daily nutritional loss of beneficial nutrients (i.e., protein, fibre, 382 

minerals calcium, iron, magnesium and potassium, and vitamins A, C, and E) is, on average, 383 

higher for the alternative diets than for the average Spanish diet (Table 5). This is mainly due 384 

to the fact that average patterns in Spain include cereal, fruit, and vegetable intakes that are 1.5-385 

1.2 times below the recommended values (based on kcal). Moreover, these are the main 386 

categories contributing to FLW, because of their perishable character (fruits and vegetables) 387 

and their high waste at consumer level (cereals). The main exception is total proteins with 388 

regard to Mediterranean and vegan diets, owing to the overconsumption (2.3 times) of dairy 389 

products and, in particular, animal proteins because of red meat consumption. Other exceptions 390 

include: vitamins D, B-12, and niacin, because of a higher intake of fish; vitamin E, due to 391 

vegetable fats; and retinoids, once again because of dairy product consumption. 392 

When comparing the alternative diets with each other, it can be seen that the majority of 393 

nutrients to encourage have a greater presence in FLW of vegan diets than the others, with the 394 

exception of protein (due to the absence of dairy and meat products in the diet), and vitamins 395 

A and C (Castañé et al., 2017). The reduced NFLW of vitamins A and C in the vegan diet are 396 

due to the lower consumption of vegetables with regard to the other diets, in contrast to a higher 397 

intake of fruits and legumes. 398 

399 

For nutrients to limit (saturated fat, sugars, and sodium), there is no clear pattern. The NFLW 400 

of saturated fat in the average Spanish diet were twice that estimated for the alternative diets. 401 

Conversely, the sugar and sodium content was greater for the Mediterranean diet, owing to the 402 

higher consumption of cereals, fruits, and vegetable fats. The lowest amount of sodium was 403 

observed in the lacto-ovo-vegetarian diet, owing to the decreased intake of vegetable fats, which 404 

generates the largest NFLW of sodium due to olive production, as described above. 405 
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Although the values shown in Table 5 serve to compare the nutrients embedded in food wastage 406 

for the different diets, this assessment fails to determine which diet generates the highest 407 

nutritional quality losses. For this, the nutrient-rich food index NRF9.3 was estimated according 408 

to Drewnowski (2009). Fig. 6 shows the NRF9.3 scores for the diets studied, distinguishing 409 

between NFL and NFW. The highest value was obtained for the Mediterranean diet, estimated 410 

to be 2.6 times greater than that of the average Spanish diet. This is explained by a generally 411 

higher consumption of nutrients to encourage, essentially contained in fruits and vegetables, 412 

and lower disqualifying nutrients, mostly embedded in cereal products, such as biscuits. This is 413 

closely followed by the Spanish guidelines, which recommend a lower intake of fruits but more 414 

dairy and legume products. The nutritional quality waste at retail and consumer level accounts 415 

for all the diets was between 34 and 41% for the entire supply chain (NRF9.3-NFW), which 416 

should create awareness among consumers. The vegetables category is responsible for the 417 

largest overall impact in both NFL and NFW, followed by fruits. Consequently, these are the 418 

categories for which greater effort should be invested in reducing nutritional wastage in the 419 

Spanish agri-food system, from the nutritional point of view. The results in Fig. 6 also 420 

demonstrate that the more nutrient-rich a diet is, the greater the quantity of nutrients lost and 421 

wasted. Obviously, the conclusion of these results is not to maintain current patterns of 422 

consumption, but raise awareness of which food categories are most vulnerable to NFLW. 423 

424 

3.4 Nutritional cost footprint 425 

Figures 7-8 compare the nutritional quality of FLW of the different food categories with their 426 

economic cost. FL and FW are disaggregated to distinguish between producer and consumer 427 

decision-making. Performance terciles have been defined to sort the different food categories 428 

according to the intensity of the nutritional-economic wastage. The rating letter “A” is applied 429 

to food categories that exhibit the lowest nutritional and economic losses and waste, while “C” 430 
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is the opposite. For example, the dairy category presents the worst rating in terms of waste at 431 

retail and consumer level (Fig. 8), but its rating improves to “B” for the producer level. 432 

According to this analysis, the food categories that show the worst nutritional-economic 433 

efficiency from agricultural production to processing are vegetables, fruits, vegetable fats, 434 

potatoes, legumes, red meat, cereals, and nuts and seeds. From distribution to consumption, 435 

white meat is added to the list, while legumes improve their score to “B” and vegetable fats and 436 

nuts and seeds to “A”. 437 

Although this rating method can illustrate which food commodities require greater effort with 438 

regard to preventing losses, it fails to rank items further within the same tercile and it provides 439 

no quantitative measure of FLW quality. In this sense, the scores in Fig. 7-8 have been 440 

normalised and weighted to calculate the Nutritional Cost Footprint (NCF), as shown in Fig. 9. 441 

The proposed index identifies vegetables as the food category with the largest nutritional-442 

economic losses at every stage of the supply chain, being 16% greater at the agricultural and 443 

processing stages. This category is closely followed by fruits, where similar scores are obtained 444 

for both losses and waste. In terms of FL, vegetable fats also exhibit low efficiency, although a 445 

higher efficiency is observed at the consumption stage. Finally, dairy and red meat may result 446 

in significant NCF scores, being 53% and 41% more efficient than vegetables. 447 

448 

3.4.1.1 Limitations for nutrient recovery 449 

Antinutritional factors (ANFs) are biological compounds available in foods that reduce nutrient 450 

utilisation or food intake, thereby contributing to impaired gastrointestinal and metabolic 451 

performance (Arendt and Zannini, 2013). ANFs present in FLW may prevent the recovery and 452 

reuse of nutrients along the supply chain. Metal ion scavengers and antivitamins are the main 453 

groups of factors affecting protein utilisation and depressing digestion (Scherhaufer et al., 454 
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2015). Examples include mycotoxins, glycoalkaloids, flavonoids, oxalates, phytates, saponins, 455 

pesticide residues, and protease inhibitors. However, some ANFs, such as tannins, have anti-456 

carcinogenic properties and their intake can be advisable, despite their anti-nutrient character 457 

(Smeriglio et al. 2017). 458 

Phytic acid, or phytate, could be the main limitation for the reuse of the nutrients present in the 459 

categories of cereals, legumes, and nuts, due to their ability to form insoluble complexes with 460 

minerals such as Ca, Mg, Zn, and Fe, which are not absorbed by humans. Although monogastric 461 

animals, such as humans, poultry, fish, and pigs, have a very limited capacity for the 462 

degradation of phytic acid in the stomach, polygastric animals do possess the phytase enzymatic 463 

complex. This complex is able to degrade phytate, even releasing the phosphorus from which 464 

it is composed so this can be absorbed by the digestive tract (Vashishth et al., 2017; Reddy et 465 

al., 2017). 466 

Proteinase inhibitors typically present in legumes can also behave as ANFs because they inhibit 467 

pancreatic serine proteases, limiting the use of certain proteins. As an example, fishmeals based 468 

on vegetable proteins are being studied to valorise agricultural by-products or losses, the main 469 

proteinase inhibitors in these being ANFs (Perez et al., 2006). On the other hand, anti-470 

carcinogenic properties have also been attributed to proteinase inhibitor (Clemente et al., 2004, 471 

Duranti, 2006). 472 

Other significant ANFs are flavonoids, mainly present in fruits and vegetables, the categories 473 

for which there are the largest NFLW of vitamins. Despite presenting antioxidant properties, 474 

flavonoids can also impair the absorption of minerals such as iron and zinc through chelation 475 

(Russo et al., 2000). 476 

Notwithstanding these facts, different methods such as fermentation, germination, and thermal 477 

(only for heat-sensitive ANFs, such as proteinase inhibitors) or enzymatic treatments, can 478 

considerably reduce the ANF content (Gupta et al., 2015). 479 
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This study identifies a data gap with regard to the amounts of FLW unsuitable for human 480 

consumption or animal feed, as most of the literature focuses on qualitative aspects. 481 

Nonetheless, the presence of ANFs in FLW should not be considered a limitation for nutrient 482 

recovery or reuse, provided that careful monitoring and reduction of their content by the 483 

technologies described is applied. 484 

485 
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3.5 Study limitations 486 

This work assumes that nutritional data from food composition databases is an estimation for 487 

the nutrient and micronutrient content of both edible and inedible parts of food products. This 488 

overestimates the nutritional content of FLW because it does not consider the degradation of 489 

nutrients over time, nor the inedible fraction that is often present and of lower nutritional content 490 

than the edible part (Scherhaufer et al., 2015). For example, the nutrient density of fresh foods 491 

decreases after harvest and during storage, especially under inadequate handling conditions. 492 

This is more drastic for fruits and vegetables, where vitamin C degrades immediately after 493 

harvest, with losses of up to 100% after 4 days in fresh spinach (Timmermans et al., 2014). 494 

The nutritional data found in food databases is at product level. To quantify the nutritional 495 

content of FLW at food category level, the most representative products from each category 496 

were selected. For this reason, there may be further products that are not represented in this 497 

study. 498 

Additionally, total sugar instead of added sugar has been considered as a nutrient to limit the 499 

estimation of NRF9.3. This may lead to higher penalties for foods rich in total sugar, such as 500 

fruit, despite their lack of added sugar. Despite this, nutrient-rich foods obtained higher scores 501 

than foods rich in nutrients to limit. 502 

Finally, the most significant source of uncertainty in this work derives from the loss and waste 503 

percentages used for the calculations. The data used from Gustavsson et al. (2013) is for the 504 

European region as a whole, and differences between countries are not considered. These 505 

percentages have been updated using Spanish studies whenever possible, although the majority 506 

have been considered of insufficient quality given the differences in method and definitions of 507 

FLW. Nevertheless, the data from Gustavsson et al. (2013) is the best currently available, and 508 

considered a good reference for this work. 509 

510 
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4. Conclusions 511 

This work assesses nutritional food losses and waste (NFLW) along the supply chain in the 512 

Spanish food system, in terms of energy, macronutrients, fibre, vitamins, and minerals. The 513 

study distinguishes between nutritional food losses (NFL), occurring prior to the distribution 514 

level, and nutritional food waste (NFW), occurring at the retail and consumption stages. 48 515 

representative food commodities and 32 nutrients have been characterised. 516 

A Nutritional Cost Footprint (NCF) index combining the nutritional and economic impact of 517 

FLW has been proposed. This index identifies vegetables as the food category with the largest 518 

nutritional-economic losses at every stage of the supply chain, closely followed by fruits. 519 

Considering that only part of the food losses and waste (FLW) can realistically be recovered, 520 

our results suggest that NFW is the equivalent of the recommended daily intake of a third of 521 

the Spanish population, increasing to 80% when NFL are also included. 522 

Current food wastage policies do not differentiate between supply stages, setting reduction 523 

targets only at consumer level. This work highlights the necessity of establishing specific 524 

strategies according to critical food categories and supply stages. Moreover, we have revealed 525 

the need to expand the scope of FLW beyond mass, to include the nutritional (and economic) 526 

variable as a measure of food quality lost and wasted. 527 

Finally, this study demonstrates how food data composition and analysis provide an invaluable 528 

tool for the decision-making process, in this case supporting FLW management policies. 529 

530 
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