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Abstract—This paper considers improper Gaussian signaling
(IGS) in an overlay cognitive radio scenario. We follow a
protocol in which the secondary user (SU) uses part of its
power to relay the message for the primary user (PU) and
consider a simple yet illustrative 2-user scenario. We analyze
two communication schemes depending on whether or not the
PU cooperates with the SU and derive closed-form expressions for
the optimal transmission parameters that maximize the SU rate
while ensuring a specified minimum performance of the PU. Our
numerical results show that IGS may significantly outperform
proper signaling and that, interestingly, the cooperative approach
provides negligible performance gains over its non-cooperative
counterpart.

Index Terms—Improper Gaussian signaling, interference chan-
nel, overlay cognitive radio, spectrum sharing.

I. INTRODUCTION

In multiuser communications, the use of proper Gaussian
signaling (PGS) is typically assumed, as this scheme achieves
capacity in point-to-point communications [1]. Proper signals
have uncorrelated real and imaginary parts with equal variance.
On the contrary, improper Gaussian signals have real and
imaginary parts that are correlated or have unequal variance
[2]. Although improper Gaussian signaling (IGS) is suboptimal
in point-to-point communications, it has been shown to be ad-
vantageous in interference-limited networks when interference
is treated as noise [3]–[10].

One important example of interference-limited communi-
cations is cognitive radio (CR), in both underlay and overlay
versions (UCR and OCR, respectively) [11]. CR is regarded as
one of the key enabling technologies of future broadband com-
munication systems, as it permits a more efficient utilization
of the already scarce radio-frequency spectrum [12]. There
are two sets of users in CR networks: primary users (PU)
and secondary users (SU). The former are the licensed users
of the spectrum and thus have strict quality-of-service (QoS)
constraints. The SUs, which do not have a spectrum license,
may use the PUs’ channel provided that they do not disrupt
their communications.

In UCR, where the SUs limit their transmit power so as to
ensure the PU’s QoS, IGS was shown to outperform PGS in

The work of C. Lameiro and P. J. Schreier was supported by the German
Research Foundation (DFG) under grants SCHR 1384/6-1 and LA 4107/1-1.
The work of I. Santamarı́a was supported by the Ministerio de Economı́a y
Competitividad (MINECO) and AEI/FEDER funds of the UE, Spain, under
project CARMEN (TEC2016-75067-C4-4-R).

[7]. In a simple yet illustrative 2-user scenario, it was shown
that a SU can improve its data rate with IGS if the ratio
between the gains of the interference and direct link was above
a certain threshold. After that, the benefits of IGS for UCR
have been proved for other scenarios [9], [10].

Contrarily to UCR, in OCR the SU has non-causal knowl-
edge of the PU’s message. By using a portion of the transmit
power to relay the PU’s message, the SU can compensate the
additional interference created by the transmission of its own
message. Additionally, dirty paper coding (DPC) can be used
to eliminate the interference at the secondary receiver caused
by the PU’s communication [11]. The secondary transmitter
can acquire the PU’s message in a variety of ways. For
example, the secondary transmitter may be connected to the
primary transmitter through a backhaul link [13]. Alternatively,
the PU’s message can be shared through a wireless link prior
to transmission if the secondary transmitter is close by [14].
Finally, the message can also be acquired on a transmission
that is not correctly decoded at the primary receiver due to bad
channel quality and then exploited during the retransmission
of the packet [15].

IGS for OCR has been considered in [13], where a 2-user
scenario is analyzed under different assumptions about the
availability of the channel state information (CSI). This work
considers that the message transmitted by the PU is different
from the message relayed by the SU and intended for the
PU. This assumption is made for the purpose of mathematical
tractability, but it might be questionable in practice. Here
we consider the more classical OCR scenario, in which the
message intended for the PU is sent from both primary and
secondary transmitters, assuming that the latter has already
acquired this message using some of the aforementioned
techniques. We consider two different schemes depending on
the cooperation level between the two users. In the first, the
SU is allowed to use IGS, but the PU is unaware of the SU
and thus employs PGS. In the second scheme there is some
cooperation between both networks. Specifically, the PU is
aware of the SU and may use IGS as well. In both schemes, the
PU is protected by means of a minimum rate constraint, and
the SU splits its available power between its own message and
the message intended for the primary receiver. We will show
that, while IGS significantly outperforms PGS also for this
scenario, the cooperative approach provides negligible gains
over the non-cooperative approach, and thus the latter is more



interesting from a practical perspective.

II. SYSTEM MODEL

A. Preliminaries about improper random variables
We first provide the necessary background on improper ran-

dom variables. We refer the reader to [2] for a comprehensive
treatment of the topic.

Definition 1 ([2]). The complementary variance of a zero-
mean complex random variable x is defined as σ̃x = E[x2],
where E[·] is the expectation operator. If σ̃x = 0, then x is
called proper, otherwise improper.

Furthermore, σ2
x and σ̃x are a valid pair of variance and

complementary variance if and only if σ2
x ≥ 0 and |σ̃x| ≤ σ2

x.

Definition 2 ([2]). The circularity coefficient of a complex
random variable x, which measures the degree of impropriety,
is defined as κx = |σ̃x|/σ2

x. The circularity coefficient satisfies
0 ≤ κx ≤ 1. If κx = 0, then x is proper, otherwise improper.
If κx = 1 we call x maximally improper (or rectilinear).

B. System description
We consider an OCR scenario comprised of a PU and an

SU, both single-antenna. Following the OCR paradigm, the
secondary transmitter has access to the primary message. We
consider a protocol in which the SU uses part of its power to
transmit the PU’s message and the remaining power to deliver
its own message to a secondary receiver. By doing so, the
impact of the interference at the PU due to the SU’s message
can be canceled. Furthermore, we consider that the PU has
a minimum rate requirement R̄. The signal at the primary
receiver can be expressed as

y′p = hp
√
p′xp + hps(

√
αq′zp +

√
(1− α)q′xs) + n′p , (1)

where xp and xs are the desired messages for the primary and
the secondary receiver, respectively, with unit variance, n′p is
additive proper Gaussian noise with variance σ2

p, hp and hps
are the channel coefficient of the direct and interference link,
respectively, p′ and q′ are the power budgets of the primary
and secondary transmitter, respectively, and α is the power
splitting factor of the SU. The signal intended for the PU that
is transmitted by the SU is denoted as zp.

Since the secondary transmitter knows xp, it can use DPC
to achieve interference-free communication. Therefore, we can
express the received signal at the secondary receiver as

y′s = hs
√

(1− α)q′xs + n′s , (2)

where n′s is the additive proper Gaussian noise with variance
σ2
s , and hs is the channel coefficient. For ease of illustra-

tion, we will use the standard or canonical model for the
communication channel described by (1), (2). Thereby, these
two expressions are rewritten such that the direct links and
noise variance are set to 1. Specifically, (1) and (2) can be
equivalently expressed as

yp =
√
pxp +

√
aps(
√
αqzp +

√
(1− α)qxs) + np , (3)

ys =
√

(1− α)qxs + ns , (4)

where np and ns have now unit variance, √aps =
σs|hps|
σp|hs| ,

√
p =

√
p′|hp|
σp

, and
√
q =

√
q′|hs|
σs

.
Since interference is treated as noise at the primary receiver,

the SU can benefit from transmitting improper Gaussian
signals. That is, if xs is improper, the rate degradation of the
PU is smaller than if it is proper, and the SU can thus use
more power for the transmission of its own message. Hence,
the achievable rate of the SU is [7]

Rs =
1

2
log2

[
1 + (1− α)q

(
(1− α)q(1− κ2) + 2

)]
, (5)

where κ is the circularity coefficient of xs. We will consider
two approaches for the PU. In the first, the primary transmitter
is unaware of the SU and thus transmits proper Gaussian
signals, i.e., xp is proper and Gaussian. In this case, the SU
signal is zp = xp. In the second approach, we permit a higher
level of cooperation. Specifically, the primary receiver feeds
back the interference parameters to the primary transmitter,
so that it can adapt its strategy. Therefore, the PU uses its
optimal improper signaling strategy. In this case, xp and zp are
both improper Gaussian, each one obtained through a different
widely-linear transformation (WLT) of the PU’s message. In
both cases, the optimization problem that we address is

maximize
0≤{α,κ}≤1

Rs , (6a)

subject to Rp ≥ R̄ , (6b)

where R̄ is the (feasible) PU rate constraint and Rp is the rate
achieved by the PU, which will follow a different expression
depending on the adopted approach.

III. UNAWARE PRIMARY TRANSMITTER

Let us first consider the non-cooperative approach, in which
the primary transmitter, unaware of the SU, transmits a proper
signal. Thus, we take also zp = xp, and the PU rate is given
by [5]

Rp(α, κ) =
1

2
log2

[ (
p+ qaps + 1 + 2

√
αpqaps

)2
((1− α)qaps + 1)

2 − ((1− α)qapsκ)
2

− ((1− α)qapsκ)
2

((1− α)qaps + 1)
2 − ((1− α)qapsκ)

2

]
.

(7)

The optimal solution of (6) for this case is presented in the
next theorem.

Theorem 1. The optimal solution to (6), when the PU rate
follows (7), is

κ? =
√

max(κ′, 0) ,

κ′ =
22R̄[(1− α?)qaps + 1]2 − (p+ qaps + 1 + 2

√
α?qapsp)

2

(22R̄ − 1)(1− α?)2q2a2
ps

,

(8)
where α? = max(α0,min(α1, αc)), with

α0 = inf{α ∈ [0, 1] | Rp(α, 0) ≥ R̄} , (9)
α1 = inf{α ∈ [0, 1] | Rp(α, 1) ≥ R̄} , (10)



and
√
αc is the unique positive root of

f1(x) = −q2a2
psx

3 + qaps[2p+ 22R̄ − aps(22R̄ − 1− q)]x
+
√
qapsp(p+ qaps + 1) = 0 . (11)

Proof: Please refer to Appendix A.

IV. AWARE PRIMARY TRANSMITTER

We now consider the cooperative approach, where the
primary transmitter is aware of the SU and thus transmits
improper Gaussian signals with the optimal IGS scheme. As
the PU signal xp is now improper, the PU signal transmitted
by the SU, zp, is also improper. The improper signals xp and
zp are generated at the PU and SU transmitters, respectively,
by means of two different WLT of a common proper, unit
power, signal sp that conveys the message intended for the
PU. Therefore, they can be expressed as

xp = g1e
jφ1sp + g2e

jφ2s∗p , (12)

zp = g3e
jφ3sp + g4e

jφ4s∗p , (13)

where sp is proper Gaussian with unit variance and gi ≥ 0,
i = 1, . . . , 4, with g2

1 + g2
2 = g2

3 + g2
4 = 1. The optimal WLTs

are stated in the next lemma.

Lemma 1. The optimal WLTs (12), (13), which maximize the
rate of the PU, are

φi =
1

2
(φ+ π) , i = 1, . . . , 4 , (14)

g2
1 = g2

3 =
1 +

√
1− κ2

p

2
, (15)

g2
2 = g2

4 = 1− g2
1 , (16)

where φ is the phase of the complementary variance of xs and

κp = min

(
(1− α)qapsκ

(
√
p+
√
αqaps)2

, 1

)
(17)

is the circularity coefficient of the aggregate PU signal
√
pxp+√

apsαqzp, with κ being the circularity coefficient of xs.

Proof: Please refer to Appendix B.
Using the optimal WLTs, the rate achieved by the PU is [8]

Rp(α, κ) =

{
Rp,1(α, κ) , if κp < 1 ,
Rp,2(α, κ) , if κp = 1 ,

(18)

where

Rp,1(α, κ) =
1

2
log2

{ [
(1− α)qaps + (

√
p+
√
αqaps)

2 + 1
]2

1 + (1− α)qaps [(1− α)qaps(1− κ2) + 2]

}
,

Rp,2(α, κ) =
1

2
log2

{
1 +

2(
√
p+
√
αqaps)

2 [(1− α)qaps(1 + κ) + 1]

1 + (1− α)qaps [(1− α)qaps(1− κ2) + 2]

}
.

(19)

Theorem 2. The optimal solution to (6), when the PU rate is
(18), can be characterized as follows.
• PGS is optimal, i.e., κ? = 0, if and only if

– aps ≤ 2p2−2R̄ + 1, or
– aps > 2p2−2R̄ + 1 and αc ≥ α0,

where

α0 = inf{α ∈ [0, 1] | Rp(α, 0) ≥ R̄} , (20)

αc =
p(p+ qaps + 1)2

24R̄qaps(aps − 1− 2p2−2R̄)2
, (21)

in which case α? = α0.
• Otherwise, IGS is optimal with following parameters.

– If max(αc, α1) ≥ αt then

α? = max(αc, α1) , (22)

κ?2 =
[(1− α)qaps + 1]

2

(1− α)2(qaps)2

−
2−2R̄

[
(1− α)qaps + (

√
p+
√
αqaps)

2 + 1
]2

(1− α)2(qaps)2
,

(23)

where

α1 = inf{α ∈ [0, 1] | Rp,1(α, 1) ≥ R̄} , (24)

√
αt =

(22R̄ − 1)1/2
[
22R̄2(qaps + 1)− p(22R̄ + 1)

]1/2
22R̄2

√
qaps

−
√
p(22R̄ + 1)

22R̄2
√
qaps

. (25)

– Otherwise,

α? = max(α′c, α
′
1) , (26)

κ? = 1−
2(
√
p+
√
αqaps)

2 − (22R̄ − 1)

(22R̄ − 1)(1− α)qaps
, (27)

where

α′1 = inf{α ∈ [0, 1] | Rp,2(α, 1) ≥ R̄} , (28)

and
√
α′c is the unique positive root of

f2(x) = −x322R̄4q2a2
ps − x26(22R̄ + 1)qaps

√
pqaps

+ x
{

(22R̄ − 1)qaps [2(qaps + 1− p)

−(22R̄ − 1)(aps − 1)
]
− 12pqaps

}
+ 2(22R̄ − 1)

√
pqaps(qaps + 1)− 4p

√
pqaps = 0 .

(29)

Proof: Please refer to Appendix C.
From Theorem 2, we observe that a necessary condition

for the optimality of IGS is that the gain of the interference
channel is above 2p2−2R̄+1, which is equal to or greater than
1. Notice as well that this is also a necessary condition for the
case of unaware primary transmitter. A similar condition was
obtained for underlay CR in [7] and for the Z-IC in [8], which
is also sufficient for those scenarios. However, the threshold
in aps for those scenarios is equal to or smaller than 1. This
means that the IGS optimality conditions for OCR are stricter,
and hence less benefits are to be expected. The IGS optimality
condition for underlay CR obtained in [7] is

aps > 1− p

22R̄ − 1
. (30)
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Fig. 1. Rate achieved by the SU for the different signaling schemes. The
cross-channel gain is aps = 5.
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Fig. 2. Rate achieved by the SU for the different signaling schemes. The
loading factor is τ = 0.5.

As can be observed, the right-hand side of (30) decreases when
R̄ decreases and when p increases. However, the threshold on
aps presented in Theorem 2 behaves in the opposite way. Thus,
while in underlay CR (and also in the Z-IC) the payoffs of
IGS are more noticeable for lower values of R̄, the benefits of
IGS in OCR are more prominent for higher values of R̄, as we
will show in the next section with some numerical examples.

V. NUMERICAL EXAMPLES

We now provide some numerical examples to illustrate our
results. The PU rate constraint is expressed as R̄ = τRmax,
where τ ∈ [0, 1] is the loading factor and Rmax = Rp(1, 0)
is the maximum PU rate (achieved when the SU uses all
of its power to deliver the PU’s message). Figures 1 and 2
show the achievable rate of the SU as a function of τ and
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Fig. 3. Optimal power splitting factor and circularity coefficient for p =
q = 10 and aps = 5.

aps, respectively, for the different schemes. IGS-A and IGS-
U denote the aware and unaware schemes, respectively. In
both figures we observe that IGS provides a significant gain
in achievable rate with respect to PGS. In Fig. 1, in which
aps = 5, this is observed for intermediate and high values of
τ . In Fig. 2, where τ = 0.5, the benefits of IGS are observed
for approximately aps > 2. Indeed, the rate achieved by IGS
is almost flat with respect to aps in the considered example,
whereas that of PGS decreases much faster.

In Fig. 3 we depict the optimal power splitting factor and
the optimal circularity coefficient for the scenario p = q =
10 and aps = 5. For the sake of illustration, we only plot
the values for PGS and IGS-U. The shaded area on the left-
hand side indicates the interval where PGS is optimal, while
the shaded area on the right-hand side indicates the interval
where maximally IGS is optimal. We observe that there is an
interval where the power splitting factor of IGS-U decreases.
That is, even though the PU rate increases, more power is
allocated to the message intended for the SU. Obviously, this is
only possible if the circularity coefficient increases as well, as
observed in the figure. Indeed, when the circularity coefficient
equals 1, α? increases again with τ .

Comparing IGS-A and IGS-U we observe that the improve-
ment of IGS-A with respect to IGS-U is negligible, while
the latter entails higher cooperation between the primary and
secondary systems. This is a surprising result and indicates that
a non-cooperative IGS approach exhibits little performance
degradation compared to the fully-cooperative approach. In
light of these results, we conclude that IGS is a promising
approach for OCR scenarios, where a one-sided approach,
in which only the SU uses IGS and thus no cooperation is
required, permits obtaining most of the performance gains that
are possible with IGS.



VI. CONCLUSION

We have analyzed two IGS schemes for an OCR scenario
comprised of a single-antenna SU and a single-antenna PU,
namely, a cooperative and a non-cooperative scheme. Con-
sidering that the SU splits its transmit power between the
primary and secondary messages, and that the PU is protected
by a minimum rate constraint, we have derived closed-form
expressions for the transmission parameters that maximize the
SU rate. Our results have shown that, while IGS significantly
outperforms PGS, the non-cooperative approach provides sim-
ilar performance gains than the cooperative approach but with
less signaling overhead.

APPENDIX A
PROOF OF THEOREM 1

After some manipulations, the rate constraint (6b) can
equivalently be written as κ2 ≥ κ′, with κ′ as in (8). Since Rs
is increasing in κ (see (5)), Rs is maximized when κ2 = κ′

as long as 0 ≤ κ′ ≤ 1. The values of α for which κ′ > 1
are then not feasible, as the PU rate constraint is violated
in this case. Since κ′ is decreasing in α (smaller α implies
higher interference power, so the circularity coefficient of this
interference has to be also higher to ensure the PU rate), κ′ ≤ 1
holds as long as α ≥ α1, where α1 is given by (10) and is the
required value of α (to ensure (6b)) when κ = 1. Similarly,
the required value of α for κ = 0 is given by (9). Hence,
the optimal value of α lies in the interval [α1, α0]. To find
this value, we first assume that κ′ ≥ 0 holds for the optimal
α. We then take κ2 = κ′ and plug it into (5), which yields
an expression for Rs that depends only on α. Let us denote
this expression as Rs(α). Since the rate constraint has already
been accounted for with κ′, we can analyze the derivative of
Rs(α) with respect to α to obtain its optimal value. By doing
so, we obtain that Rs(α) is increasing in α when f1(x) > 0,
with x =

√
α and f1(x) given by (11), i.e.,

f1(x) = −q2a2
psx

3 + qaps[2p+ 22R̄ − aps(22R̄ − 1− q)]x
+
√
qapsp(p+ qaps + 1) . (31)

Now we will use the Descartes’ rule of signs to show that
f1(x) crosses zero at most at one valid point,

√
αc. This

rule states that the number of positive roots of a polynomial
is at most equal to the change of signs between consec-
utive coefficients of the polynomial. Following these lines,
we observe that f1(x) has only one sign change between
consecutive terms, which implies that the number of positive
roots is not greater than one. Furthermore, f1(x) is positive
at x = 0. Therefore, Rs(α) is increasing in the interval
[0, αc] and decreasing elsewhere. Since α ∈ [α1, α0], we then
obtain α? = max(α0,min(α1, αc)). Since this value may
yield κ′ < 0, we finally obtain κ? =

√
max(κ′, 0).

APPENDIX B
PROOF OF LEMMA 1

The received signal at the PU can be expressed as

yp =
(√
pg1e

jφ1 +
√
αqapsg3e

jφ3
)
xp

+
(√
pg2e

jφ2 +
√
αqapsg4e

jφ4
)
x∗p +

√
(1− α)qapsxs

+ np = x′p +
√

(1− α)qapsxs + np . (32)

Signal x′p contains the PU’s message and is improper Gaussian
with variance and complementary variance given as

σ2
p =

∣∣√pg1e
jφ1 +

√
αqapsg3e

jφ3
∣∣2

+
∣∣√pg2e

jφ2 +
√
αqapsg4e

jφ4
∣∣2 , (33)

σ̃p = 2
(√
pg1e

jφ1 +
√
αqapsg3e

jφ3
)

×
(√
pg2e

jφ2 +
√
αqapsg4e

jφ4
)
. (34)

The received signals (4) and (32) follow the expressions of the
Z-interference channel (Z-IC). Thus, using the results from [8],
the optimal complementary variance is

σ̃?p = σ2
p min

(
(1− α)qapsκ

σ2
p

, 1

)
ej(φ+π) . (35)

At the same time, the received signal power, σ2
p, has to be

maximized in order to maximize as well the PU achievable
rate. We now show in the following that this is possible with
the WLT described by (14)–(17). To this end, let us first
analyze the received signal power, which yields

σ2
p = p

(
g2

1 + g2
2

)
+ αqaps

(
g2

3 + g2
4

)
+ 2
√
αpqaps

(
<
{
g1g3e

j(φ1−φ3)
}

+ <
{
g2g4e

j(φ2−φ4)
})

≤ p+ αqaps + 2
√
αpqaps

(
g1

√
1− g2

4 + g4

√
1− g2

1

)
,

(36)

where <{·} returns the real part, and we have used g2
1 + g2

2 =
g2

3 + g2
4 = 1. The above expression is achieved with equality

for φ1 = φ3 and φ2 = φ4. Taking these values, it is easy to see
through the derivative of σ2

p that the maximum is achieved for
g1 = g3 and g2 = g4. Using these values, the complementary
variance of the received signal is

σ̃p = σ2
p2g1

√
1− g2

1e
j(φ1+φ2) . (37)

Finally, equating (37) to (35) yields (14)–(17).

APPENDIX C
PROOF OF THEOREM 2

Let us first assume that κp < 1 holds for the optimal
solution. The rate constraint (6b) holds with equality for κ2

equal to (23). Since (23) is decreasing in α (the circular-
ity coefficient has to be higher to maintain the PU rate if
more power is allocated to the SU’s message), there exist
α1 and α0, respectively given by (24) and (20), such that
α1 ≤ α ≤ α0 ⇔ 0 ≤ κ ≤ 1, with κ = 0 for α = α0

and κ = 1 for α = α1. To find the value of α ∈ [α1, α0]



that maximizes Rs, assuming κp < 1, we plug (23) into (5),
which yields an expression for Rs that only depends on α.
After some manipulations, the derivative of this expression
with respect to α can be shown to be non-negative if
√
p(p+ qaps + 1) +

√
α22R̄√qaps(2p2−2R̄ + 1− aps) ≥ 0 .

(38)
Since the above function is linear, it crosses zero at most at one
point. Furthermore, it has a positive slope for aps ≤ 2p2−2R̄+
1. In such a case, the rate of the SU increases monotonically
with α. Since the maximum value of α is α0, we then have
that the maximum is achieved for α = α0 and κ = 0. In
this case κp = 0 (see (17)), so that the assumption κp < 1
is satisfied and this is therefore the optimal solution for this
case. If this condition does not hold, we observe that (38) is
non-negative for α ≤ αc, where αc is the root of (38) and
is given by (21). Since α ∈ [α1, α0], the optimal value of α
equals α0 if αc ≥ α0, which yields κ = 0. This characterizes
the optimality of PGS.

IGS is then optimal if and only if the slope of (38) is
negative and αc < α0. In this case, the optimal value of
α ∈ [α1, α0] is then max(αc, α1) if the resulting value of
κp is smaller than 1 (as (38) is obtained assuming this). Let
us therefore obtain the range of α for which κp < 1. Plugging
(23) into (17) we obtain

κp < 1 ⇔ − α22R̄2qaps −
√
α2(22R̄ + 1)

√
pqaps

+
(

22R̄ − 1
)

(qaps + 1)−
(

22R̄ + 1
)
p < 0 .

(39)

The above function is concave and decreasing in
√
α. Hence

we obtain that κp < 1 if and only if α > αt, where αt is the
root of the right-hand side of (39) and is given by (25). This
yields (22)–(25). If this condition does not hold, we have that
κp = 1 is satisfied for the optimal solution and the analysis
has to be repeated using Rp,2(α, κ).

When κp = 1, the rate constraint (6b) holds with equality
for κ equal to (27). Again, (27) is decreasing in α, and thus
there exists α′1, given by (28), such that α ≥ α′1 ⇔ κ ≤ 1,
with κ = 1 for α = α′1. Plugging (27) into (5), we obtain
again an expression for Rs that depends only on α. After some
manipulations, the derivative of this function with respect to
α can be shown to be non-negative if f2(x), with x =

√
α

and

f2(x) = −x322R̄4q2a2
ps − x26(22R̄ + 1)qaps

√
pqaps

+ x
{

(22R̄ − 1)qaps [2(qaps + 1− p)

−(22R̄ − 1)(aps − 1)
]
− 12pqaps

}
+ 2(22R̄ − 1)

√
pqaps(qaps + 1)− 4p

√
pqaps , (40)

is equal to or greater than zero. Now we will use the Descartes’
rule of signs to show that (40) crosses zero at most at one valid
point. We first observe that the coefficients corresponding to
the third- and second-order terms are negative. However, the
sign of the remaining terms is not clear. Let us consider the

zero-order term. This term is non-positive if

p ≥ 1

2
(22R̄ − 1)(qaps + 1) . (41)

The number of positive roots could be greater than one if the
first-order term is positive while the above condition holds,
since in this case the number of sign changes would be two.
Since the first-order term decreases with p, its maximum under
condition (41) is achieved when (41) holds with equality. In
this case the first-order term is given by

−4(22R̄ − 2)(qaps + 1)qaps − (22R̄ − 1)2qa2
ps(q + 1) , (42)

which is always negative. This means that the number of sign
changes in the polynomial is not greater than one, and thus
the number of positive roots is at most one. Therefore, the
optimal solution for κp = 1 is max(α′c, α

′
1), with

√
α′c being

the root of (40), which yields (26)–(29).
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