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CONVOLUTION OPERATORS ON GROUP ALGEBRAS

WHICH ARE TAUBERIAN OR COTAUBERIAN

LILIANA CELY, ELÓI M. GALEGO, AND MANUEL GONZÁLEZ

Abstract. We study the convolution operators Tμ acting on the group
algebras L1(G) and M(G), where G is a locally compact abelian group
and μ is a complex Borel measure on G. We show that a cotauberian
convolution operator Tμ acting on L1(G) is Fredholm of index zero, and
that Tμ is tauberian if and only if so is the corresponding convolution
operator acting on the algebra of measures M(G), and we give some
applications of these results.

1. Introduction

Tauberian and cotauberian operators were introduced in [14] and [19]
respectively, and they have been useful in Banach space theory (see [9]).
Recently, some examples of non-trivial (i.e. with non-closed range) taube-
rian operators T : L1(μ) → L1(μ) have been found in [13], answering a
question in [9]. In [3] we considered the case in which T is a convolution
operator Tμ acting on the group algebra L1(G), where G be a locally com-
pact abelian group. We proved that Tμ tauberian implies Tμ invertible when
G is non-compact, and that Tμ tauberian implies Tμ Fredholm when G is
compact and the singular continuous part μsc of μ with respect to the Haar
measure on G is zero. In particular, tauberian operators Tμ are trivial in
those cases. The case μsc �= 0 remains open.

Our main result in this paper shows that the cotauberian convolution
operators Tμ acting on L1(G) are always Fredholm, hence trivial. This fact
is surprising, because it is not difficult to obtain examples of non-trivial
cotauberian operators T : L1(μ) → L1(μ). And it is useful because it gives
a new characterization of the Fredholm multipliers of L1(G) considered in [1,
Theorem 5.97] as those that satisfy the definition of cotauberian operator.

In [3], our main tool was a result in [8] characterizing the tauberian opera-
tors T : L1(μ) → Y in terms of the action of T over sequences of normalized
disjoint functions in L1(μ). Here we follow a more algebraic approach, based
in the characterization of the convolution operators Tμ as the multipliers of
the group algebra L1(G) [15, Chapter 0]. We show first that Tμ cotauberian
implies Tμ tauberian. In the case G non-compact, Tμ tauberian implies Tμ
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2 LILIANA CELY, ELÓI M. GALEGO, AND MANUEL GONZÁLEZ

invertible by a result in [3]. In the case G compact, L1(G)∗∗ is a Banach
algebra in which L1(G) is a closed ideal, hence L1(G)∗∗/L1(G) is a Ba-
nach algebra, and we prove that Tμ cotauberian implies that the operator
induced by T ∗∗μ on the quotient algebra L1(G)∗∗/L1(G) is bijective. From
the inverse of the induced operator we obtain an inverse of Tμ modulo the
compact operators, hence Tμ is Fredholm.

We also show that Tμ is tauberian if and only if its natural extension
to the algebra of measures M(G) is tauberian, we derive some results for
convolution operators acting on C0(G) and L∞(G), and we answer a question
raised in [7] about the measures μ ∈ M(G) such that ν ∈ M(G) and μ � ν ∈
L1(G) imply ν ∈ L1(G).

Along the paper X and Y are complex Banach spaces and T : X → Y is
a (continuous linear) operator from X to Y . We denote by R(T ) and N(T )
the range and the kernel of T respectively. An operator T : X → Y is called
tauberian if the second conjugate T ∗∗ : X∗∗ → Y ∗∗ satisfies T ∗∗−1(Y ) = X,
and T is called cotauberian if its conjugate T ∗ is tauberian.

We denote by Xco the quotient space X∗∗/X, and T co : Xco → Y co is the
operator induced by T ∗∗ and defined by T co(m+X) := T ∗∗m+Y , m ∈ X∗∗,
which is called the residuum operator of T . Note that T is tauberian if and
only if T co is injective, and T is cotauberian if and only if T co has dense
range [9, Proposition 3.1.8 and Corollary 3.1.12]. The set of operators of
the form T co for some T was studied in [11].

An operator T : X → Y is Fredholm if it has closed finite codimensional
range and finite dimensional kernel. In this case the index of T is defined by
ind(T ) = dimN(T ) − dimX/R(T ). Fredholm operators are tauberian and
cotauberian [9, Thm. 2.1.5 and Prop. 3.1.5].

2. Preliminaries

We denote by G a locally compact abelian group (a LCA group, for short),
and by m the Haar measure on G. Moreover L1(G) is the space of m-
integrable complex functions on G endowed with the L1-norm ‖ · ‖1, and
M(G) denotes the space of complex Borel measures on G endowed with the
variation norm. Also C0(G) and L∞(G) denote the space of complex contin-
uous functions on G which vanish at infinity and the space of m-essentially
bounded measurable complex valued functions on G, both endowed with the
supremum norm. Note that M(G) and L∞(G) can be identified with the
dual spaces of C0(G) and L1(G) respectively, and L1(G) can be identified
with the subspace of those μ ∈ M(G) that are absolutely continuous with
respect to m.

The space L1(G) with the convolution (f � g)(x) =
∫
G f(x− y)g(y)dm(y)

is a commutative Banach algebra. Moreover, if G is a compact group
L∞(G) ⊆ L1(G), thus by Young’s inequality, C(G) and L∞(G) are commu-
tative Banach algebras with the convolution product. Given μ ∈ M(G) and
f ∈ L1(G), the expression (μ�f)(x) =

∫
G f(x−y)dμ(y) defines μ�f ∈ L1(G)
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satisfying ‖μ � f‖1 ≤ ‖μ‖ · ‖f‖1. Thus we obtain a convolution operator Tμ

on L1(G) defined by Tμf = μ � f , and satisfying ‖Tμ‖ = ‖μ‖. Moreover,
given μ, ν ∈ M(G), the convolution of measures μ � ν ∈ M(G) is com-
mutative [18]. Therefore Tμ�ν = TμTν = TνTμ, and we have an operator
Mμ : M(G) −→ M(G) defined by Mμλ = λ � μ which is an extension of Tμ.
We can also define the convolution operator Sμ : C0(G) → C0(G) and its
extension Lμ : L∞(G) → L∞(G) by Lμg = μ � g.

For μ ∈ M(G), we denote by μ̃ the measure in M(G) such that μ̃(E) =
μ(−E) for each Borel set E. Given μ, η ∈ M(G) and f ∈ C0(G), it is not
difficult to show that 〈

η, μ � f
〉
=

〈
μ̃ � η, f

〉
.

Thus S∗μ = Mμ̃, and similarly we get T ∗μ = Lμ̃.
Following [15], we say that a Banach algebra A is without order if for all

x ∈ A, xA = {0} implies x = 0, or, for all x ∈ A, Ax = {0} implies x = 0.
A map T : A → A is a multiplier of A if x(Ty) = (Tx)y for all x, y ∈ A. If
G is a LCA group, then L1(G) is without order and the multipliers of L1(G)
are precisely the convolution operators Tμ, μ ∈ M(G) [15, Chapter 0].

A net (eα)α∈I in a commutative Banach algebra A is an approximate
identity if, for each a ∈ A, limα ‖aeα − a‖ = 0. If G is a LCA group, then
L1(G) admits a bounded approximate identity [15, Appendix F].

Given a Banach algebra A, the second dual space A∗∗ of A is also a
Banach algebra endowed with the (first) Arens product [2]. Specifically,
given M,N ∈ A∗∗, f ∈ A∗ and a, b ∈ A, we define the product M · N in
three steps as follows:

f · a ∈ A∗ :
〈
f · a, b〉 :=

〈
f, ab

〉

N · f ∈ A∗ :
〈
N · f, a〉 :=

〈
N, f · a〉

M ·N ∈ A∗∗ :
〈
M ·N, f

〉
:=

〈
M,N · f〉.

Thus, for G a LCA group, L1(G)∗∗ is a Banach algebra. Given f ∈ L∞(G)
and φ ∈ L1(G), it is not difficult to show that

(1) f · φ = f � φ̃,

where φ̃(x) = φ(−x). Moreover, since G is commutative, the centre of
L1(G)∗∗ is L1(G) [16, Corollary 3] i.e.,

L1(G) = {m ∈ L1(G)∗∗ : m · n = n ·m for each n ∈ L1(G)∗∗} .
When G is compact, L1(G) is a (closed) ideal of L1(G)∗∗ [20, Proposition

4.2]. Thus L1(G)co is a Banach algebra.
We will need later the following result proved in [3].

Theorem 2.1. [3, Theorem 3.2] Let G be a non-compact LCA group. Then
every tauberian convolution operator Tμ : L1(G) → L1(G) is invertible.

For basic results on Fredholm theory, tauberian operators and multipliers
of Banach algebras without order we refer to [1], [9] and [15].
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3. Main results

First we show that the Banach algebras involved in our arguments are
without order.

Proposition 3.1. Let G be a LCA group. Then the algebra L1(G)∗∗ ad-
mits a norm-one right identity; hence it is a Banach algebra without order.
Moreover, when G is compact, the quotient algebra L1(G)co also admits a
norm-one right identity and it is a Banach algebra without order.

Proof. The first part of our first result was proved in [6, Proposition 2.1].
For the second part, note that if E is a norm-one right identity of L1(G)∗∗
and G is compact, then L1(G)co is a Banach algebra and E + L1(G) is
a norm-one right identity in L1(G)co, hence L1(G)co is a Banach algebra
without order. �

Let us see that the multipliers of algebras without order have a good
behavior under duality.

Proposition 3.2. Let T be a multiplier of a Banach algebra without order
A. Then the second conjugate T ∗∗ : A∗∗ → A∗∗ is a multiplier of A∗∗.

Proof. The proof has three steps. Let M,N ∈ A∗∗, f ∈ A∗ and a, b ∈ A.
Then T (ab) = (Ta)b = a(Tb), because A is without order, and from this
equality we derive T ∗(f · a) = f · Ta as follows:

〈T ∗(f · a), b〉 = 〈f · a, T b〉
= 〈f, a(Tb)〉
= 〈f, (Ta)b〉
= 〈f · Ta, b〉 .

In a similar way, from T ∗(f ·a) = f ·Ta we derive T ∗∗N ·f = T ∗(N ·f), and
from the latter equality we get that M · T ∗∗N = T ∗∗M · N , showing that
T ∗∗ is a multiplier. �

Corollary 3.3. Let G be a compact LCA group. Then the residuum operator
T co
μ is a multiplier of L1(G)co.

Proof. Let n+ L1(G) and m+ L1(G) in L1(G)co. Since T ∗∗μ is a multiplier
of L1(G)∗∗,

(n+ L1(G)) · T co
μ (m+ L1(G)) = (n+ L1(G)) · (T ∗∗μ m+ L1(G))

= n · T ∗∗μ m+ L1(G)

= T ∗∗μ n ·m+ L1(G)

= (T ∗∗μ n+ L1(G)) · (m+ L1(G))

= T co
μ (n+ L1(G)) · (m+ L1(G)).

Hence T co
μ is a multiplier of L1(G)co. �
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Now we are ready to show that cotauberian convolution operators on
L1(G) are tauberian. This result contrasts with the fact that it is easy to
find non-trivial cotauberian operators T : L1(0, 1) → L1(0, 1): just consider
a surjective operator S with infinite dimensional kernel from L1(0, 1) onto
a closed infinite dimensional subspace M of L1(0, 1) such that the quotient
L1(0, 1)/M is reflexive, and add a compact operator K so that T = S +K
has non-closed range. However it is difficult to obtain a non-trivial tauberian
operator T : L1(0, 1) → L1(0, 1) (see [13]).

Proposition 3.4. Let T be a multiplier of a Banach algebra without order
A. Suppose that A coincides with the centre of A∗∗ and T is cotauberian.
Then T is tauberian.

Proof. Let M ∈ A∗∗ such that T ∗∗M ∈ A. Then for each K ∈ A∗∗,

M · T ∗∗K = T ∗∗M ·K = K · T ∗∗M = T ∗∗K ·M
because T ∗∗ is a multiplier of A∗∗. In particular M · T ∗∗K = T ∗∗K · M .
Since T is cotauberian, R(T ∗∗) + A is dense in A∗∗ [9, Corollary 3.1.12].
Consequently, given S ∈ A∗∗, we can find sequences (Wn) ⊂ A∗∗ and (fn) ⊂
A with (T ∗∗Wn + fn) norm-convergent to S. Therefore

M · S = lim
n
(M · (T ∗∗Wn + fn))

= lim
n
(M · T ∗∗Wn +M · fn)

= lim
n
(T ∗∗Wn ·M + fn ·M)

= lim
n
((T ∗∗Wn + fn) ·M)

= S ·M.

Then M ∈ A, the centre of A∗∗. Hence T is tauberian. �
Corollary 3.5. Let G be a LCA group.

(1) Every cotauberian convolution operator Tμ is tauberian.
(2) Suppose that G is non-compact. Then Tμ is cotauberian if and only

if it is invertible.

Proof. (1) It follows from the facts that L1(G) is a Banach algebra without
order and L1(G) is the centre of L1(G)∗∗.

(2) It is enough to observe that, since G is non-compact, every tauberian
convolution operator on L1(G) is invertible (Theorem 2.1). �

Let E be a right identity in the algebra L1(G)∗∗ provided by Proposition
3.1. We consider the map ΓE : M(G) → L1(G)∗∗ defined by

ΓE(μ) := T ∗∗μ (E), μ ∈ M(G).

The map ΓE is an isometric algebra homomorphism of M(G) into L1(G)∗∗
extending the natural embedding of L1(G) into L1(G)∗∗ [6, Proposition 2.3].

Since T ∗∗μ is a multiplier of L1(G)∗∗, for each m ∈ L1(G)∗∗ we have

(2) T ∗∗μ m = (T ∗∗μ m) · E = m · T ∗∗μ E = m · ΓE(μ).
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Thus T ∗∗μ is a right multiplication operator (by ΓE(μ)). Moreover

(3) E · ΓE(μ) = T ∗∗μ (E) = ΓE(μ).

Next we give our main result.

Theorem 3.6. Let G be a LCA group and let Tμ : L1(G) → L1(G) be a
convolution operator. Then Tμ is cotauberian if and only if it is Fredholm
of index zero.

Proof. For G non-compact, it is a consequence of Corollary 3.5.
Suppose that G is compact and Tμ cotauberian. Then Tμ is also tauberian

by Proposition 3.4, hence T co
μ is injective with dense range by [9, Prop. 3.1.8

and Cor. 3.1.12], and has closed range by [9, Theorem 4.4.2]. Thus T co
μ is

invertible.
Since T co

μ is a multiplier of the Banach algebra without order L1(G)co

(Proposition 3.1), its inverse S := (T co
μ )−1 is a multiplier of L1(G)co [15,

Theorem 1.1.3].
Let E be a right identity in L1(G)∗∗. Then

T co
μ (E + L1(G)) = T ∗∗μ E + L1(G) = ΓE(μ) + L1(G).

Set β + L1(G) := S(E + L1(G)). Then

(β + L1(G)) · (ΓE(μ) + L1(G)) = S(E + L1(G)) · T co
μ (E + L1(G))

= T co
μ (S(E + L1(G))) · (E + L1(G))

= E + L1(G).

Thus (β · ΓE(μ)− E) ∈ L1(G). On the other hand, we have

(E + L1(G)) · (β + L1(G)) = (E + L1(G)) · S(E + L1(G))

= S(E + L1(G)) · (E + L1(G)) = β + L1(G),

hence (E · β − β) ∈ L1(G). Since L1(G) is the centre of L1(G)∗∗, for each
n ∈ L1(G)∗∗ we have

(E · β − β) · n = n · (E · β − β) = n · β − n · β = 0.

Then E · β − β = 0, because L1(G)∗∗ is a Banach algebra without order,
thus E · β = β.

Let ν ∈ M(G) denote the restriction of β ∈ L∞(G)∗ to C(G). By [6,
Proposition 2.5] we have that β − ΓE(ν) is zero on C(G). Moreover, by
formula (3), we have

E · (β − ΓE(ν)) = β − ΓE(ν).

The right identity E ∈ L1(G)∗∗ is the w∗-limit of (i(eγ)) for some bounded
approximate identity (eγ) ⊂ L1(G), where i : L1(G) → L1(G)∗∗ is the
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canonical inclusion. Therefore, for f ∈ L∞(G) we have

〈β − ΓE(ν), f〉 = 〈E · (β − ΓE(ν)), f〉
= 〈E, (β − ΓE(ν)) · f〉
= lim

γ
〈i(eγ), (β − ΓE(ν)) · f〉

= lim
γ

〈(β − ΓE(ν)) · f, eγ〉
= lim

γ
〈(β − ΓE(ν)), f · eγ〉 = 0

because, by (1) and [18, Theorem 1.1.6], f · eγ ∈ C(G), thus β = ΓE(ν).
Note that I = Tδ0 , where I is the identity operator on L1(G) and δ0 is

the unit measure concentrated at {0}. Then T ∗∗δ0 is the identity operator on
L1(G)∗∗, and thus E = ΓE(δ0). Hence, since ΓE : M(G) → L1(G)∗∗ is an
algebra homomorphism,

ΓE(ν � μ− δ0) = ΓE(ν) · ΓE(μ)− ΓE(δ0) = β · ΓE(μ)− E ∈ L1(G).(4)

By formula (4) and [6, proposition 2.3], μ � ν − δ0 ∈ L1(G), and thus

Tμ�ν−δ0 = TμTν − I

is a compact operator [4, Lemma 2.1.4]. Thus TμTν = TνTμ is a Fredholm
operator, hence Tμ is Fredholm, and it has index zero by [1, Theorem 5.97].

For the converse implication, note that Fredholm operators are trivially
cotauberian. �

Next we study the convolution operator Mμ : M(G) → M(G) and its
relation with Tμ : L1(G) → L1(G).

Theorem 3.7. Let G be a LCA group and let μ ∈ M(G). Then

(1) Mμ cotauberian implies Mμ tauberian.
(2) Tμ is tauberian if and only if Mμ is tauberian.

Proof. (1) It was shown in [17, Main theorem] that, as in the case of L1(G),
the measure algebra M(G) is the centre of M(G)∗∗. Since M(G) has an
identity, it is without order. Thus the result follows from Proposition 3.4.

(2) Suppose that Tμ is tauberian, and let E be a right identity in L1(G)∗∗.
Then the following diagram is commutative:

L1(G)∗∗
T ∗∗
μ �� L1(G)∗∗

M(G)
Mμ ��

Γ
E

��

M(G)

ΓE

��
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Indeed, given ν ∈ M(G) and h ∈ L∞(G), we have

〈ΓEMμ(ν), h〉 = 〈ΓE(μ � ν), h〉
= 〈T ∗∗μ�νE, h〉
= 〈E, T ∗μ�νh〉
= 〈E, T ∗ν (T

∗
μh)〉

= 〈T ∗∗ν E, T ∗μh〉
= 〈ΓE(ν), T

∗
μh〉

= 〈T ∗∗μ ΓE(ν), h〉.
Thus

(5) ΓEMμ = T ∗∗μ ΓE .

Now Tμ tauberian implies T ∗∗μ tauberian [9, Theorem 4.4.2]. Therefore
T ∗∗μ ΓE = ΓEMμ is tauberian, and hence Mμ is tauberian, in both cases by
[9, Proposition 2.1.3].

Similarly, denoting by J : L1(G) → M(G) the natural isomorphic em-
bedding, we have JTμ = MμJ . Hence, by [9, Proposition 2.1.3], if Mμ is
tauberian, so is Tμ. �
Corollary 3.8. Let G be a LCA group. If the convolution operators Tμ is
cotauberian, then Mμ is Fredholm.

Proof. Let Tμ be cotauberian, then Tμ is Fredholm (Theorem 3.6). Therefore
T ∗∗μ is Fredholm and T ∗∗μ ΓE is upper semi-Fredholm. Then, by formula (5),
Mμ is upper semi-Fredholm. Since μ = λ ∗ ν where λ ∗ λ = λ and ν is
invertible [12, Theorem 1], we have that M(G) = R(Mμ) ⊕N(Mμ). Hence
Mμ is Fredholm. �

Recall that an operator T : L1(G) → L1(G) is tauberian if and only if
m ∈ L1(G)∗∗ and T ∗∗m ∈ L1(G) imply m ∈ L1(G).

Observation 3.9. It was asked in [7] whether a convolution operator Tμ

acting on L1(G) is tauberian when the measure μ satisfies the following
condition:

(6) ν ∈ M(G), μ � ν ∈ L1(G) ⇒ ν ∈ L1(G).

Next we will show that the answer to this question is negative.

Indeed, it was proved in [3] that there exists an atomic measure μ0 ∈ M(T)
such that Tμ0 is an injective non-tauberian operator, where T denotes the
unit circle. It is enough to choose μ0 such that its Fourier-Stieltjes transform
μ̂0 satisfies 0 ∈ μ̂0(Z)\μ̂0(Z). The following argument, due to Doss [5], shows
that μ0 satisfies condition (6):

Every ν ∈ M(T) can be written as ν = ν1 + ν2 with ν1 � m and ν2 ⊥ m,
where m is the Haar measure on T. Since μ0 � ν1 ∈ L1(T) and μ0 � ν2 is
supported in a m-null set, Tμ0ν ∈ L1(T) if and only if ν2 = 0. Thus μ0

satisfies (6).
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It is not difficult to show that μ� f̃ = μ̃ � f for μ ∈ M(G) and f ∈ L1(G).
Also, for every normalized disjoint sequence (fn) ⊂ L1(G), the sequence

(f̃n) is also normalized and disjoint. Therefore, it follows from [9, Theorem
4.1.3] that Tμ is tauberian if and only if so is Tμ̃. Hence, by Theorem 3.7,
the same happens for Mμ and Mμ̃, and we get the following result:

Proposition 3.10. Let G be a non-compact LCA group. Then
(i) Lμ : L∞(G) → L∞(G) is tauberian if and only if it is cotauberian, and

this is equivalent to Lμ invertible;
(ii) Mμ : M(G) → M(G) is tauberian if and only if it is invertible;
(iii) Sμ : C0(G) → C0(G) is cotauberian if and only if it is invertible.

Proof. (i) Note that Lμ = T ∗μ̃ and Tμ̃ is tauberian if and only if so is its second

conjugate T ∗∗μ̃ [9, Theorem 4.4.2]. So the result follows from Theorem 2.1

and Corollary 3.5.
(ii) It is a consequence of Theorems 3.7 and 2.1, and Theorem 1.1.3 in

[15].
(iii) Since S∗μ = Mμ̃, the result follows from (ii). �
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10 LILIANA CELY, ELÓI M. GALEGO, AND MANUEL GONZÁLEZ
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