
ORIGINAL RESEARCH
published: 02 July 2019

doi: 10.3389/fimmu.2019.01459

Frontiers in Immunology | www.frontiersin.org 1 July 2019 | Volume 10 | Article 1459

Edited by:

Laurence Morel,

University of Florida, United States

Reviewed by:

Alessandra Nerviani,

Queen Mary University of London,

United Kingdom

Kerstin Klein,

University Hospital Zurich, Switzerland

*Correspondence:

Antonio Julià

toni.julia@vhir.org

Specialty section:

This article was submitted to

Autoimmune and Autoinflammatory

Disorders,

a section of the journal

Frontiers in Immunology

Received: 31 January 2019

Accepted: 10 June 2019

Published: 02 July 2019

Citation:

Aterido A, Cañete JD, Tornero J,

Blanco F, Fernández-Gutierrez B,

Pérez C, Alperi-López M, Olivè A,

Corominas H, Martínez-Taboada V,

González I, Fernández-Nebro A,

Erra A, López-Lasanta M,

López Corbeto M, Palau N, Marsal S

and Julià A (2019) A Combined

Transcriptomic and Genomic Analysis

Identifies a Gene Signature

Associated With the Response to

Anti-TNF Therapy in Rheumatoid

Arthritis. Front. Immunol. 10:1459.

doi: 10.3389/fimmu.2019.01459

A Combined Transcriptomic and
Genomic Analysis Identifies a Gene
Signature Associated With the
Response to Anti-TNF Therapy in
Rheumatoid Arthritis
Adrià Aterido 1,2, Juan D. Cañete 3, Jesús Tornero 4, Francisco Blanco 5,

Benjamín Fernández-Gutierrez 6, Carolina Pérez 7, Mercedes Alperi-López 8, Alex Olivè 9,

Héctor Corominas 10, Víctor Martínez-Taboada 11, Isidoro González 12,

Antonio Fernández-Nebro 13, Alba Erra 14, María López-Lasanta 1, Mireia López Corbeto 1,

Núria Palau 1, Sara Marsal 1 and Antonio Julià 1*

1 Rheumatology Research Group, Vall d’Hebron Research Institute, Barcelona, Spain, 2Department of Experimental and

Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain, 3 Rheumatology Department, Hospital Clínic de Barcelona

and Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain, 4 Rheumatology Department,

Hospital Universitario De Guadalajara, Guadalajara, Spain, 5 Rheumatology Department, INIBIC-Hospital Universitario a

Coruña, A Coruña, Spain, 6 Rheumatology Department, Hospital Clínico San Carlos, Madrid, Spain, 7 Rheumatology

Department, Parc de Salut Mar, Barcelona, Spain, 8 Rheumatology Department, Hospital Universitario Central de Asturias,

Oviedo, Spain, 9 Rheumatology Department, Hospital Universitari Germans Trias i Pujol, Barcelona, Spain, 10 Rheumatology

Department, Hospital Moisès Broggi, Barcelona, Spain, 11 Rheumatology Department, Hospital Universitario Marqués de

Valdecilla, Santander, Spain, 12 Rheumatology Department, Hospital Universitario La Princesa, IIS La Princesa, Madrid, Spain,
13UGC Reumatología, Instituto Investigación Biomédica Málaga, Hospital Regional Universitario, Universidad de Málaga,

Málaga, Spain, 14 Rheumatology Department, Hospital Sant Rafael, Barcelona, Spain

Background: Rheumatoid arthritis (RA) is the most frequent autoimmune disease

involving the joints. Although anti-TNF therapies have proven effective in themanagement

of RA, approximately one third of patients do not show a significant clinical response. The

objective of this study was to identify new genetic variation associated with the clinical

response to anti-TNF therapy in RA.

Methods: We performed a sequential multi-omic analysis integrating different sources

of molecular information. First, we extracted the RNA from synovial biopsies of

11 RA patients starting anti-TNF therapy to identify gene coexpression modules

(GCMs) in the RA synovium. Second, we analyzed the transcriptomic association

between each GCM and the clinical response to anti-TNF therapy. The clinical

response was determined at week 14 using the EULAR criteria. Third, we analyzed

the association between the GCMs and anti-TNF response at the genetic level.

For this objective, we used genome-wide data from a cohort of 348 anti-TNF

treated patients from Spain. The GCMs that were significantly associated with the

anti-TNF response were then tested for validation in an independent cohort of

2,706 anti-TNF treated patients. Finally, the functional implication of the validated

GCMs was evaluated via pathway and cell type epigenetic enrichment analyses.
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Results: A total of 149 GCMs were identified in the RA synovium. From these, 13

GCMs were found to be significantly associated with anti-TNF response (P < 0.05).

At the genetic level, we detected two of the 13 GCMs to be significantly associated

with the response to adalimumab (P = 0.0015) and infliximab (P = 0.021) in the Spain

cohort. Using the independent cohort of RA patients, we replicated the association of the

GCM associated with the response to adalimumab (P = 0.0019). The validated module

was found to be significantly enriched for genes involved in the nucleotide metabolism

(P = 2.41e-5) and epigenetic marks from immune cells, including CD4+ regulatory

T cells (P = 0.041).

Conclusions: These findings show the existence of a drug-specific genetic basis for

anti-TNF response, thereby supporting treatment stratification in the search for response

biomarkers in RA.

Keywords: rheumatoid arthritis, genomics, transcriptomics, multi-omics association analysis, anti-TNF therapy

INTRODUCTION

Rheumatoid arthritis (RA) is the most common autoimmune-
inflammatory arthritis affecting up to 1% of the worldwide
population (1). RA is characterized by the chronic infiltration of
immune cells in the synovial membrane, leading to progressive
destruction of the joint cartilage and bone (2). The most notable
success in the treatment of RA has been the introduction
of Tumor Necrosis Factor (TNF) inhibitors. Anti-TNF agents
have radically changed the prognosis of many RA patients
(3), providing an important improvement of clinical signs and
symptoms, quality of life and long-term protection of the synovial
joint integrity. Despite this major accomplishment, there is
a large fraction of anti-TNF treated patients (30–40%) that
do not show a significant clinical improvement (4). To date,
little is known on the biological mechanisms that underlie this
differential response to anti-TNF agents. Understanding the basis
of the lack of response could not only help to personalize patient
therapy but also to gain insights into RA heterogeneity at the
molecular level.

The two main classes of anti-TNF agents are monoclonal

antibodies against TNF, like adalimumab and infliximab (5, 6),
and the recombinant fusion protein containing the soluble TNF

receptor p75 etanercept (7). Despite targeting the same molecule,
the different anti-TNF drugs do not show the same level of
efficacy in all patients. At the cellular and molecular level, there
is evidence that the clinical response is partially mediated by
the activation of drug-specific biological mechanisms (8–10).
Supporting this, clinical observations have shown that patients
who fail one anti-TNF treatment may still respond to a different
anti-TNF drug (11). Therefore, there is a need to identify the
genetic variability underlying the response to anti-TNF agents.

To date, a small number of genome-wide transcriptomic

studies have been conducted on the RA synovium to investigate
the biological processes associated with anti-TNF response (12–

17). The gene expression signatures obtained in these studies,
however, have shown a modest association with the treatment
outcome. As a result, the overlap of differentially expressed

genes between these studies is relatively low (18). This evidence
suggests the existence of a high biological variability between RA
patients. Identifying the source of this biological variation would
be a major advance toward personalized medicine in RA (19).

Associating genetic variation to disease risk has provided a
wealth of genes and biological pathways relevant for RA (20). The
use of this approach to characterize the genetic basis of anti-TNF
response in RA has, however, proven less productive. More than
40 candidate-gene association studies have been performed so
far, but there has been very limited or non-existent replicability
(21). Genome-wide association studies (GWAS) have proven to
be a more successful approach for this objective. To date, eight
GWAS on anti-TNF response in RA have been performed (22–
29), identifying several loci associated at a genome-wide scale.
From these, variation atMED15, GFRA1, PDE3A-SLCO1C1, and
CD84 has been replicated in, at least, an independent cohort
of patients (30). However, these few loci are insufficient to
explain the heritability of anti-TNF response and, consequently,
alternative analysis approaches must be devised (31, 32).

The integration of high-throughput transcriptomic and
genomic data offers a new opportunity to characterize the
biological basis underlying complex traits (33–37). In RA,
the integrative analysis of gene expression levels and genetic
variation has proven effective to identify novel causal genes as
well as cell-type specific mechanisms associated with the disease
pathogenesis (38–41). As an example, gene expression data
from peripheral blood mononuclear cells has been successfully
used to guide the selection of candidate genes for genetic
association analysis (42). Accordingly, analyzing the expression
profile associated with anti-TNF response at the target site
of inflammation in RA -the synovial membrane- should be a
powerful means to identify genetic variation associated with the
therapeutic response. To date, this type of integrative analysis has
not been performed in RA.

To gain a better understanding of the biological mechanisms
of anti-TNF response in RA, we have performed a combined
transcriptomic and genomic analysis. Using transcriptomic data
from the RA synovium, we first identified the modules of
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TABLE 1 | Clinical and epidemiological characteristics of the patient cohort used

for the genome-wide expression profiling.

Characteristic RA cohort transcriptomic

analysis

Population Spain

Disease diagnosis 1987 ACR criteria for RA

Molecular data RNA

Sample size (N) 11

Gender (female, %) 73.01

Naïve to anti-TNF therapy (%) 100.00

Previous therapies (MTX, %; LFD, %) 100.00; 81.81

Responders to anti-TNF therapy (N) 5

Moderate responders to anti-TNF therapy (N) 3

Non-responders to anti-TNF therapy (N) 3

ACR, American College of Rheumatology; MTX, methotrexate; LFD, leflunomide; N,

sample size; RA, rheumatoid arthritis; TNF, tumor necrosis factor.

co-expressed genes that are associated with anti-TNF response.
We next tested the association of these modules at the genetic
risk level using two independent GWAS cohorts of RA patients.
Finally, we investigated the functional implication of the genetic
modules associated with anti-TNF response at the two levels of
molecular variation. These findings demonstrate the power of
integrating multi-omic data to characterize the genetic basis of
drug response in a complex disease like RA.

MATERIALS AND METHODS

Study Population
RA Cohort of Patients Used for the Genome-Wide

Expression Profiling
A total of 11 RA patients with clinically active RA from Spain
were recruited by the outpatient’s clinics of the rheumatology
department of the Hospital Clinic de Barcelona. All patients
fulfilled the 1987 American College of Rheumatology (ACR)
classification criteria for RA (43). The main epidemiological and
clinical variables of these patients are summarized in Table 1.

Discovery Cohort of RA Patients Treated With

Anti-TNF Therapy
A total of 348 RA patients that had received an anti-TNF
treatment as their first biological treatment (adalimumab,
infliximab, or etanercept) were included in the discovery stage
of the genetic association study. This cohort of RA patients
was collected from the outpatient’s clinics of the rheumatology
departments of 12 Spanish University Hospitals involved in the
Immune-Mediated Inflammatory Disease Consortium (IMIDC)
(44). For this study, all patients fulfilled the 1987 ACR
classification criteria for RA and had more than 2 years of
follow-up since diagnosis (43). All recruited individuals had an
erosive disease defined as erosions in more than one joint group
including hands and/or feet.

All RA patients included in this cohort were Caucasian
European and born in Spain. Only those RA patients with

all grandparents born in Spain were selected for the set-
based genetic association analysis. The main clinical and
epidemiological characteristics of this cohort of RA patients are
summarized in Table S1.

Replication Cohort of RA Patients Treated With

Anti-TNF Therapy
Validation of the associatedmodules was performed using the RA
anti-TNF therapy pharmacogenetic cohort described previously
(22). This cohort consists of 2,706 RA patients of European
ancestry compiled from 13 collections across five countries that
had received an anti-TNF treatment (adalimumab, infliximab,
or etanercept). All patients fulfilled the 1987 ACR criteria for
RA or were diagnosed by a board-certified rheumatologist as
previously described (22). The main clinical and epidemiological
characteristics of this independent cohort are summarized
in Table S1.

Ethics Statement
This study was carried out in accordance with the
recommendations of the guidelines and regulations of the
Hospital Universitari Vall d’Hebron Clinical Research Ethics
Committee and local institutional review boards with written
informed consent from all subjects. All subjects gave written
informed consent in accordance with the Declaration of Helsinki.
The protocol was approved by the Hospital Universitari Vall
d’Hebron Clinical Research Ethics Committee.

Clinical Response Definition
The clinical response to anti-TNF therapy was measured using
the European League Against Rheumatism (EULAR) treatment
response criteria (45). For all patients, the Disease Activity Score
(DAS28) was measured at baseline and after 3–6 months of anti-
TNF therapy (46). According to the DAS28 variation and the
DAS28 at the endpoint, RA patients were categorized into good,
moderate, and non-responders (Table S1).

Synovial Biopsy and RNA Extraction
Synovial biopsies were obtained by guided arthroscopy of
the inflamed knee joint from 11 RA patients using a
2.7mm arthroscope (Storz, Tuttlingen, Germany) under local
anesthesia. In all patients, 6–8 biopsies were extracted from
the suprapatellar pouch and medial and lateral gutters with a
3mm grasping forceps. According to previous pharmacogenetic
studies demonstrating that the clinical response to anti-TNF
therapy in RA is associated with the pre-treatment transcriptomic
profile (12), synovial biopsies were obtained before the treatment
initiation. Each synovial sample was snap-frozen in liquid
nitrogen and stored at −80◦C for later RNA extraction. Total
RNA was extracted from the synovial biopsies using the RNA
Mini Kit (Qiagen, USA) and the integrity was assessed using
BioAnalyzer microfluidic gel analysis (Agilent, USA). All samples
were of high quality (RNA Integrity Number > 8). After RNA
isolation, biotin-labeled cRNA (1.5 µg) was prepared using the
Ambion Illumina RNA amplification kit (Ambion, USA) and
Illumina TotalPrep RNA Amplification Kit (Ambion, US).
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Genome-Wide Gene Expression Profiling
Whole genome transcript abundance from the RA inflamed
synovium of the 11 RA patients was performed using the
Illumina HumanWG-6 expression array system (Illumina, San
Diego, CA, USA). This microarray platform measures the gene
expression levels of more than 47,000 different transcripts. Data
collection was performed using BeadStudio 3.1.1.0 software
(Illumina, San Diego, USA). In order to use the most recent
human genome annotation information, only microarray probes
matching curated gene sequences from NCBI RefSeq database
(release 51) (47) were selected. A final number of 21,189 curated
probes representing the expression of 18,524 different human
genes were finally selected for analysis. The gene expression
intensities were then normalized on the log2-scale using the
quantile normalization method (48). The presence of a potential
bias between batches of microarray was minimized using the
Bayesian ComBat procedure (49). The Raw and normalized
data analyzed in the present study are publicly available in the
NCBI’s Gene Expression Omnibus database (accession number:
GSE47726) (50).

Genome-Wide Coexpression Analysis
There is compelling evidence that the expression of human
genes is highly coordinated to develop biological functions
(51). In order to identify modules of genes that might share
transcriptional regulatory mechanisms in the RA inflamed
synovium, we performed a genome-wide co-expression analysis
using transcriptomic data from the synovial biopsies of 11 RA
patients. For this objective, we used the weighted correlation
network analysis (WGCNA) implemented in R software (52). In
this method, the absolute pairwise gene expression correlation
is raised to a soft thresholding power (β = 14) to compute
a network adjacency matrix that emphasizes high correlations
at the expense of low correlations. This matrix determines
the gene coexpression network that is subsequently used to
identify groups of genes with a high topological overlap (53).
In this step, an unsupervised hierarchical clustering approach
was implemented to detect the most representative modules
of co-expressed genes in the RA inflamed synovium. Those
modules composed by 10–300 genes were selected for follow-up
analyses (54).

In order to describe how each GCM fits with genetic
findings from previous studies on anti-TNF response in RA,
we assessed the gene overlap of each GCM in genes that have
been associated with anti-TNF response at the transcriptomic
(N > 500 differentially expressed genes in the RA synovium)
(12, 14–16, 18) and genetic level (N = 78 genes, P < 1e-05 in
GWAS catalog) (55). In addition, we have investigated whether
the GCMs include susceptibility genes for RA (N = 200 genes, P
< 5e-08 in GWAS catalog) (55).

Association Analysis Between Gene
Coexpression Modules and the Clinical
Response to Anti-TNF Therapy at the
Transcriptomic Level
In order to analyze the association between each gene
coexpression module (GCM) and the clinical response to

anti-TNF therapy, we performed a principal component analysis
(PCA). The first principal component, which captures the largest
variability of the GCM (i.e., GCM eigengene), was used to test
for association with anti-TNF response using a logistic regression
model adjusted by gender. Based on the hypothesis that more
extreme response phenotypes provide improved discrimination,
we compared EULAR good responders (N = 5 patients)
and EULAR non-responders (N = 3 patients) as previously
described (22). Individuals showing an EULAR moderate
response were excluded from the analysis (N = 3 patients). The
complete list of association results for each GCM are shown
in Table S2.

The GCMs that showed a significant association with
the clinical response to anti-TNF were further characterized
by computing the module significance and intramodular
connectivity using the WGCNA software. The module
significance is a measure of the biological significance of a
given module for the phenotype tested for association. This
measure is defined as the absolute value of the average biological
significance of each gene and ranges from 0 to 1 (i.e., the higher
the module significance, the more biologically significant is
the module for the phenotype tested for association). The
intramodular connectivity is an average measure of the gene
connectivity within a given module.

Genetic Variation at the Gene
Coexpression Modules Associated With
Anti-TNF Response
GWAS Data From the Discovery Cohort of RA

Patients
The association between GCMs and anti-TNF response was
also studied at the genetic level. For this objective, we used
genotype data from the discovery cohort of RA patients to
investigate the impact of genetic variation at these GCMs
on the clinical response to anti-TNF therapy (25). The
detailed procedure that was followed to perform genome-wide
genotyping with the Illumina Quad610 BeadChip (Illumina, San
Diego, California, USA) and the quality control analysis have
been described previously (25). To evaluate the presence of
population stratification in the anti-TNF treated patients, we
conducted a PCA implemented in EIGENSOFT (v4.2) software
(56). Using the first 10 principal components of variation
over 10 iterations, none of the samples showed an outlier
genetic background (Figure S1). To increase the number of
genetic variants available for association testing, we performed
genome-wide imputation. After pre-phasing the haplotypes
using SHAPEIT V2 (Oxford, UK), imputation was conducted
with IMPUTE V2 (Oxford, UK) (57). As a reference, we
used the Caucasian European cohort (N = 379 samples) data
generated by the 1,000 Genomes Project (phase 1, version 3)
(58). Only those SNPs showing a MAF > 0.05 and having a
high-quality imputation score (i.e., info quality metric > 0.8)
were selected for the set-based genetic association analysis. After
imputation, a total of 1,387,382 genetic variants were finally
available to be tested for association with the clinical response to
anti-TNF therapy.
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GWAS Data From the Replication Cohort of RA

Patients
In order to test for replication of the GCMs that were
found to be associated with anti-TNF response in the
discovery cohort, we used GWAS data from an independent
cohort of 2,706 RA patients that had received anti-TNF
treatment. These GWAS data were obtained from the Synapse
public repository (syn3280809, doi: 10.7303/syn3280809). The
genotyping and imputation procedures have been previously
described (22). A total of 2,539,607 genetic variants were
available for replication testing of the GCMs associated in the
discovery cohort.

Set-Based Genetic Association Analysis
The set-based genetic association analysis is a powerful approach
to test the association between groups of biologically-related
genes and complex traits (59, 60). Using this analytical strategy
we have successfully identified new genetic pathways associated
with psoriasis, psoriatic arthritis, and with clinically relevant
phenotypes of systemic lupus erythematosus (61–63). In the
present study, we have used the set-based test implemented
in PLINK. In order to use this analytical methodology, SNPs
need to be assigned to genes and, subsequently, to GCMs.
For this objective, we conducted the SNP-gene mapping using
proximity-based criteria, which is the pre-dominant approach in
genetic association analyses at the set level (54, 59). According
to the reference studies using this statistical approach (59, 64,
65), we used a SNP-gene distance window of 20Kb and the
NCBI RefSeq database for gene annotation (Release 63, 12th
October 2017) (66). Those SNPs mapping to genes that are
included in GCMs (Table S2) were subsequently assigned to
their corresponding GCMs. A total of 249,220 SNPs mapping
to the transcriptomically-associated GCMs were finally available
for set-based analysis at the genetic level. In the set based-
testing, an average association statistic is computed for eachGCM
and its empirical significance is calculated by a permutation-
based approach. Briefly, SNPs are pruned for LD and then each
one is individually tested for association with the phenotype, in
this case, response to anti-TNF therapy. Association testing was
here performed using a logistic regression model incorporating
the principal components of variation to control for potential
ancestry variation. In the same way of the transcriptomic
analysis, genetic association of each GCM was performed
using only patients with more distinct responses: that is,
EULAR good responders and EULAR non-responders. The P-
values of the associated GCMs in the discovery and validation
cohorts were combined using the logit method implemented
in R (67).

Functional Characterization of the
Adalimumab-Associated Gene
Coexpression Module
Enrichment Analysis in Common Biological Pathways
In order to investigate the biological relevance of the GCM
associated with the clinical response to adalimumab, we
conducted a functional enrichment analysis on common

biological processes. For this objective, we used the reference
databases for biological pathway annotation: (i) BioCarta
(www.biocarta.com), (ii) Kyoto Encyclopedia of Genes and
Genomes (KEGG) (68), and Reactome (69). To ensure that the
enrichment results are representative of the biology underlying
the adalimumab response, we used exclusively those genes that
were associated with treatment response in both the discovery
and replication cohorts (P < 0.05). The enrichment analysis was
performed using the hypergeometric statistical test (70) and the
False Discovery Rate (FDR) method was used to account for
multiple testing (71).

Cell Type Epigenetic Enrichment Analysis
Many of the pathological cell types responsible of the clinical
heterogeneity of autoimmune diseases are still unknown (72).
In the present study, we hypothesized that genetic variation
from the associated modules is a valuable source of biological
information to identify cell types influencing the anti-TNF
response. Accordingly, we analyzed the enrichment of the
module-associated variation on the cell-type-specific H3K4me3
chromatin mark using the EPIGWAS software (73). For this
analysis we used the module-associated variation (P < 0.05 in
either the discovery or replication cohorts), epigenetic data from
H3K4me3 peaks of 34 cell types generated by the Roadmap
project (74), and reference genotyping data from the Caucasian
European population included in the 1,000 Genomes Project
(58). The EPIGWAS software estimates the regulatory score
of each variant (i.e., normalized ratio between the nearest
H3K4me3 peak and distance to the summit of the peak). For
each cell type, the loci scores are summed to assess the cell
type regulatory score. Using a sampling-based approach (N =

10,000 matched sets of SNPs from the HapMap Project), the
statistical significance of the enrichment analysis is defined as
the proportion of matched sets exceeding the observed cell type
specific regulatory score. In addition to this cell type epigenetic
enrichment analysis, we have also conducted an epigenetic fine-
mapping of the module-associated variation in enhancer histone
marks previously described as cell-type specific (i.e., H3K27ac
and H3K4me1) (75). This analysis has been performed using
HaploR software (76, 77).

RESULTS

RA Synovium Gene Coexpression Modules
Associated With Anti-TNF Response
To determine the expression patterns that characterize the
inflamed synovium in RA, we performed a genome-wide
weighted coexpression analysis on transcriptomic data generated
from synovial biopsies from patients starting anti-TNF therapy.
Using this approach, we identified a total of 149 GCMs
(Figure 1). The module content ranged from 14 to 251
genes (Table S2). From the total of 149 GCMs identified in
the genome-wide coexpression analysis, we found that 74
GCMs (49.66%) include genes that are differentially expressed
between responders and non-responders to anti-TNF therapy,
9 GCMs (6.05%) include genetic variation underlying anti-TNF
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FIGURE 1 | Gene coexpression modules identified in the RA inflamed

synovium. Dendrogram showing the 149 gene coexpression modules

identified with the unsupervised hierarchical clustering approach in the

genome-wide coexpression analysis. Each dendrogram branch corresponds

to a gene coexpression module, as shown in the color bar below. The height

of the dendrogram represents the co-expression distance among genes. The

heatmap represents the adjacency matrix that was built using the pairwise

gene expression correlation raised to a soft thresholding power of β = 14. The

heatmap is colored according to the absolute value of the pairwise gene

expression correlation, ranging from yellow (i.e., weak correlation) to red (i.e.,

strong correlation). The x and y axis represent the total of 18,524 genes that

were included in the genome-wide coexpression analysis.

response, and 37 GCMs (24.83%) include susceptibility genes for
RA (Table S3).

We then analyzed the association between the 149 GCMs
and the response to anti-TNF therapy at week 14. We found
that 13 GCMs were significantly associated to anti-TNF response
(P < 0.05, Table 2).

Association of RA Gene Coexpression
Modules and Anti-TNF Response at the
Genetic Level
After identifying the genetic modules associated with anti-
TNF response at the transcript level, we sought to test their
association at the genetic level. Using a set-based analysis
approach on GWAS data from 348 anti-TNF treated RA
patients from Spain, we tested the association of the 13 GCMs
with the response to anti-TNF therapy (Table S4). GCM-
7 and GCM-10 were found to be significantly associated
with the response to adalimumab and infliximab treatments,
respectively (P < 0.05, Table 3). Using GWAS data from a
large international cohort of 2,706 RA patients, we validated the
association between GCM-7 and the response to adalimumab
(P = 0.0019, Table 3).

TABLE 2 | Gene coexpression modules from the RA inflamed synovium that are

associated with anti-TNF response at the transcriptomic level.

Gene

coexpression

modulea

Gene Module

significance

Intramodular

connectivity

(m ± sd)

P-value

GCM-1 21 0.91 4.03 ± 1.27 0.00021

GCM-2 61 0.81 8.73 ± 2.84 0.0048

GCM-3 52 0.87 7.45 ± 3.05 0.0076

GCM-4 22 0.86 4.6 ± 1.39 0.0077

GCM-5 143 0.86 10.99 ± 4.68 0.014

GCM-6 27 0.66 3.79 ± 1.66 0.019

GCM-7 18 0.68 3.17 ± 0.91 0.028

GCM-8 119 0.77 10.11 ± 4.16 0.033

GCM-9 18 0.79 3.55 ± 0.95 0.033

GCM-10 87 0.78 9.43 ± 3.97 0.036

GCM-11 32 0.78 3.76 ± 1.4 0.037

GCM-12 70 0.74 7.22 ± 2.63 0.038

GCM-13 24 0.69 3.24 ± 1.01 0.046

GCM, gene coexpression module; IMC, intramodular connectivity; M, mean; MS, module

significance; SD, standard deviation.
aGene coexpression modules showing a significant association (P < 0.05) with the anti-

TNF response when comparing EULAR good responders (N = 5 biopsies from the RNA

inflamed tissues) and EULAR non-responders (N = 3 biopsies from the RNA inflamed

tissues) at the transcriptomic level.

Adalimumab-Associated Module
Highlights the Implication of the
Nucleotide Metabolism and Immune Cells
on Anti-TNF Response
To characterize the functional role of the module associated
to adalimumab response, we performed two complementary
enrichment analyses. Using reference data from common
biological pathways, we found that GCM-7 is significantly
enriched in genes that participate in the nucleotidemetabolism (P
= 2.41e-05,Table 4;Table S5; Figure S2). Using cell-type specific
H3K4me3 epigenetic data, we found that genetic variation at
GCM-7 is significantly enriched in epigenetic marks from six
different cell types (Figure 2), including CD4+ regulatory T cells
(Tregs, P = 0.041) and CD34+ myeloid lineage precursors (P =

0.021). No significant differences between the number ofmodule-
associated variants mapping to the enhancer marks H3K27ac and
H3K4me1 were detected in any cell type (P > 0.05). Enhancer
histonemarks from fibroblast primary cells were found to include
the largest number of module-associated variants (Figure S3).

DISCUSSION

One of the major challenges in the treatment of RA is to
understand the biological mechanisms influencing the clinical
response to anti-TNF therapy. Genetic and transcriptomic
analyses have been used separately to characterize the molecular
basis of treatment efficacy, but with limited success. To
investigate the genetic basis of anti-TNF response in RA,
we have performed a combined transcriptomic and genomic
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TABLE 3 | Gene coexpression modules showing treatment specific associations

at the genetic level.

GCM characteristicsa GCM-7* GCM-10

Module genes 18 87

Anti-TNF agent Adalimumab Infliximab

RespondersDisc (N) 41 30

Non-RespondersDisc (N) 20 41

RespondersRepl (N) 438 289

Non-RespondersRepl (N) 171 244

PDisc 0.015 0.021

SNPsDisc (N) 5,321 1,473

SNPsDiscSig (N) 346 209

SNPsDiscSigLD (N) 18 18

SNPsDisc rs72681642, rs3104464,

rs12135530, rs10782647,

rs4562674, rs11165922,

chr5:67561207,

chr8:12854804, rs2454329,

rs62187579, rs140900228,

rs11165917, rs1519149,

rs10061960, rs1550805,

rs9677007, rs4949803,

rs74105112

rs934450, rs515247,

rs1553544, rs2038442,

rs11709521, rs7735205,

rs55747890, rs4693803,

rs6885000, rs632639,

rs62234580, rs2341467,

rs8074195, rs11097130,

rs6777047, rs1148944,

rs11117909, rs3803328,

chr7:12288371,

chr13:96078081

PRepl 0.0019 0.567

SNPsRepl (N) 15,270 3,760

SNPsReplSig (N) 573 135

SNPsReplSigLD (N) 20 20

SNPsRepl rs2297595, rs6593637,

rs12047928, rs1709409,

rs17100570, rs6685859,

rs10747488, rs7414210,

rs12037848, rs2466270,

rs11102704, rs7169644,

rs11165830, rs17379082,

rs17784113, rs6863799,

rs12567557, rs1992771

rs16924328, rs6473297,

rs4880181, rs7630022,

rs3795039, rs1114518,

rs2075814, rs2065394,

rs259256, rs888246,

rs10918341, rs867616,

rs10407836,

rs17024986, rs6766989,

rs2380208, rs13159715,

rs2072512, rs7853333,

rs11977828

PComb 3.02e-4 –

Anti-TNF, anti-tumor necrosis factor treatment associated with the indicated gene

coexpression module; Comb, combined p-value (i.e., p-value was only combined for

the replicated associations); Disc, discovery cohort; GCM, gene coexpression module;

P, empirical P-value obtained in the set-based genetic association analysis; N, sample

size; Repl, replication cohort; Sig, nominally associated SNPs; LD, SNPs that are not in

linkage disequilibrium (r2 < 0.02); SNP, single nucleotide polymorphism.
aCharacteristics of the gene coexpression modules that were found to be associated with

the indicated treatment in the discovery cohort.

*Replicated associations (P < 0.05 in both the discovery and replication cohorts).

analysis. Analyzing gene expression data from the RA inflamed
synovium, we have first identified the GCMs that are associated
with anti-TNF response. We have then tested the association
of these GCMs at the genetic level using two independent
patient cohorts. This combined genomic approach has enabled
to identify a genetic module that is associated with the
response to adalimumab. Functional analysis of this module
suggests that nucleotide metabolism and Tregs could mediate
this response.

In this study, we have found a genetic basis for the clinical
response to adalimumab that is not shared with other anti-
TNF drugs. These results are in line with previous genetic
findings derived from both GWAS and candidate-gene analyses.
Genome-wide significant loci MED15 and CD84 were found to
be associated with the clinical response to etanercept, but not
to adalimumab or infliximab (22, 25). At the candidate-gene
level, we have previously found that variation at FCGR2A gene,
which here mapped to a GCM composed by >300 genes that
was excluded from the analysis, is associated with the clinical
response to adalimumab but not to etanercept (78). There is also
evidence of treatment-specific variation at the transcriptomic
level. Treatment with adalimumab has been associated with a
gene signature in the synovial membrane that is involved in
cellular proliferation (16). This gene signature, however, has not
been observed after infliximab treatment, thereby suggesting a
different mode of action in apparently similar drugs (12). Taken
together, our results provide additional support to the existence
of specific biological mechanisms that mediate the response
to adalimumab.

The genetic module associated with adalimumab response was
found to be enriched in genes that participate in the nucleotide
metabolism. In addition to the essential role that this biological
process plays in DNA replication, nucleotide metabolism is
responsible for the synthesis of adenosine, a purine nucleoside
that exhibits a potent anti-inflammatory activity when bound to
its cognate adenosine receptors (79). Binding of adenosine to
the A2A receptor in M1 macrophages, the principal producers of
TNF in the synovial joint in RA, induces the switch to the anti-
inflammatory M2 phenotype and subsequent reduction of pro-
inflammatory mediators (80–82). In turn, adenosine receptors
are upregulated by cytokines that activate NFκB, like TNF, and
their expression has been found to be high in RA patients (83).
Despite this overexpression, adenosine receptors display a weaker
affinity for adenosine in RA patients compared to controls,
thereby dampening their anti-inflammatory effect. There is
evidence that treatment with adalimumab and not methotrexate
restores the binding parameters of adenosine receptors of RA
patients to those of healthy individuals (84, 85). Our results are
in line with this evidence and provide a functional link between
the effectivity of an anti-TNF therapy and the local production of
adenosine in the synovial joint.

The integration of cell type epigenetic data with our genetic
association results suggested an important role of immune cells
for mediating the response to adalimumab in RA. In this analysis,
both Tregs and CD34+ cells are associated with anti-TNF
response. Tregs are central anti-inflammatory and self-tolerance
mediators, producing high levels of anti-inflammatory cytokines
TGF-β and IL-10 to inhibit the overactivation of effector T
cells (86–88). In RA, Tregs have been found to be functionally
defective, and treatment with anti-TNF agents has shown to
restore their T cell suppressor capacity (89, 90). There is evidence,
however, that this beneficial effect on Tregs is reached via
treatment-specific mechanisms (91). In particular, adalimumab,
but not etanercept, has been shown to induce a particular
Treg phenotype that restrains IL-17-mediated inflammation by
downregulating the production of IL-6 by monocytes (92). In
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TABLE 4 | Common biological processes enriched in genes from the

adalimumab-associated module.

Biological pathwaya Genesb P-value FDR

Nucleotide metabolism* 70 2.41e-05 0.026

GP1b-IX-V activation signaling 10 0.0061 0.068

Interleukin-7 signaling 11 0.0071 0.068

Pyrimidine catabolism 12 0.0071 0.068

Regulation of signaling by CBL 18 0.011 0.068

Synthesis and interconversion of

nucleotide di- and triphosphates

18 0.011 0.068

Tie2 signaling 18 0.011 0.068

Signaling by constitutively active EGFR 19 0.011 0.068

CD28 dependent PI3K/Akt signaling 21 0.013 0.068

Nephrin interactions 22 0.013 0.068

Pyrimidine metabolism 24 0.014 0.068

Interleukin receptor SHC signaling 28 0.017 0.072

CD28 co-stimulation 31 0.019 0.072

GPVI-mediated activation cascade 33 0.021 0.072

PI3K/AKT activation 37 0.022 0.072

PI3K events in ERBB4 signaling 38 0.023 0.072

GAB1 signalosome 39 0.023 0.072

Interleukin-2 signaling 42 0.025 0.072

PI3K events in ERBB2 signaling 44 0.026 0.072

Interleukin-3, 5 and GM-CSF signaling 46 0.028 0.072

Downstream TCR signaling 50 0.031 0.072

Mitochondrial protein import 52 0.031 0.072

Antigen activates BCR leading to second

messengers’ generation

53 0.032 0.072

PI-3K cascade 57 0.034 0.074

TCR signaling 67 0.041 0.081

PI3K cascade 70 0.042 0.081

Costimulation by the CD28 family 76 0.045 0.081

G alpha (12/13) signaling events 77 0.046 0.081

Signaling by SCF-KIT 79 0.047 0.081

IRS-mediated signaling 81 0.048 0.081

IRS-related events 81 0.048 0.081

FDR, false discovery rate.
aBiological processes significantly enriched in the adalimumab-associated module (P

< 0.05). bNumber of genes included in the indicated biological process. The complete

list of genes can be found in Table S5.

*Biological processes showing a significant enrichment after multiple testing

correction (FDR < 0.05).

line with the specific effects that anti-TNF agents can have on
different T cell subsets (93), our findings indicate that genetic
variation could influence the activity of Tregs of RA patients
treated with adalimumab.

In this study, we have identified a GCM that is enriched
in epigenetic marks of CD34+ myeloid precursor cells and
associated to adalimumab response. There is evidence that
circulating bone marrow-derived stem cells like CD34+ cells
migrate to the inflamed RA synovium (94), where they
form de novo blood vessels during the acute phase of the
disease (95, 96). Neoangiogenesis is an essential mechanism
for the recruitment of immune cells into the RA synovium

and perpetuation of the synovial inflammation (97). After
recruitment, the high immune cell proliferation generates and
hypoxic environment that stimulates the production of more
neoangiogenic mediators (79), which have been found highly
expressed in the RA inflamed synovium (98–100). From a
pharmacological perspective, anti-TNF agents have been shown
to ameliorate inflammation by effectively reducing RA synovium
vascularity (101, 102). As expected, this reduction has been
found to be stronger in responder patients (103). Based on
this evidence, the modulation of the neoangiogenic activity
of CD34+ cells could be one of the possible mechanisms by
which anti-TNF agents could ameliorate synovial inflammation
in RA. Supporting this hypothesis, recent studies have identified
myeloid signatures and phenotypes in RA synovium that are
associated to treatment response (17, 104). Consequently, genetic
variation regulating the neoangiogenic function of the CD34+
cells infiltrating the RA synovium could also influence the clinical
response to adalimumab.

The present study has limitations. The number of RA patients
included in the transcriptomic analysis was relatively low. For
this reason, patients could not be stratified by neither anti-TNF
agent nor synovial phenotype. It is likely that, by analyzing
a larger number of synovial biopsies, additional GCMs and
biological mechanisms underlying anti-TNF response in the
RA synovium could be identified. Although extracting synovial
biopsies from larger cohorts of patients is clinically challenging,
this will help to expand the present genetic association results.
Another limitation is that the clinical response for the two
GWAS cohorts was not identical. While both patient cohorts
used the same clinical score (i.e., EULAR response criteria), the
Spain sample recorded the response at 3 months of treatment,
and the replication sample included clinical responses in a
3–6 months window. The clinical efficacy at these two time
points tends to be correlated, however, this difference could
have led to a loss of statistical power to validate the genetic
module associated with the response to infliximab (GCM-10).
Finally, one caveat of the set-based method used here is that the
genetic association between GCMs and anti-TNF response was
tested using SNPs within or proximal to the GCMs’ genes. It
is well-known that many regulatory SNPs lie in the non-coding
genome and modulate gene expression through 3D interactions
and eQTL mechanisms. Our strategy did not account for this.
To our knowledge, there is yet no set-based method that has
successfully integrated this regulatory information. One of the
major problems for this approach is the context-dependent
nature of many 3D interactions and eQTLs. In particular, there
is evidence that both spatial DNA organization and eQTLs are
cell-type and cell-state dependent (105–111). The integration
of this regulatory information is therefore still a challenge for
the set-based genetic analysis. With the increasing regulatory
information that is currently being derived from eQTL analysis
and Hi-C experiments on separate cell types, a more profound
ascertainment of the impact of SNPs on gene expression will
be obtained and, eventually, more comprehensive set-based
methods will be developed. These new findings, however, will
exponentiate the number of possible regulatory sites, and careful
selection of disease-relevant cell types should be performed. To
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FIGURE 2 | Enrichment of genetic variation from the adalimumab-associated module in H3K4me3 histone marks in specific cell types. Bar plot showing the statistical

significance of the adalimumab-associated genetic module and H3K4me3 histone marks from the 34 cell types analyzed. Cell types with H3K4me3 histone marks

significantly enriched in adalimumab-associated variants are represented with an asterisk (P < 0.05).

this regard, our study suggests that regulatory T cells and CD34+
progenitors are relevant cell types for the mediation of the
response to anti-TNF agents. It is nonetheless important to note
that the lack of publicly available epigenetic data from synovial
fibroblasts has precluded to assess how genetic variation from the
adalimumab-associated GCM impact on this relevant cell type
and, consequently, on the adalimumab efficacy in RA. Moreover,
recent studies using the single-cell RNA-seq technology have
identified new cell types in the RA synovium (112). Future studies
incorporating this technology are therefore warranted not only
to corroborate our findings, but also to identify new and cell type
specific GCMs influencing anti-TNF response in RA.

In conclusion, integrating transcriptomic and genetic data,
we have identified a genetic module that is associated
with the clinical response to adalimumab. These results
provide new insights into the biological basis underlying the
differential response to anti-TNF agents and suggest that drug
diversity should be considered in the search for treatment
response biomarkers.
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