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ABSTRACT

Extracting pathology information embedded within surface optical properties in Spatial Frequency Domain
Imaging (SFDI) datasets is still a rather cumbersome nonlinear translation problem, mainly constrained by
intrasample and interpatient variability, as well as dataset size. The β-variational autoencoder (β-VAE) is a
rather novel dimensionality reduction technique where a tractable set of latent low-dimensional embeddings can
be obtained from a given dataset. These embeddings can then be sampled to synthesize new data, providing
further insight into pathology variability as well as differentiability in terms of optical properties. Its applications
for data classification and breast margin delineation are also discussed.
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1. INTRODUCTION

Modulated imaging, i.e. the estimation of surface absorption and scattering properties of turbid media via
pattern projection, is an already mature imaging technique in the field of Biomedical Optics. Modulation
Transfer Function (MTF) data can be obtained through a series of simple demodulation algorithms and it can
provide information with notable molecular and structural specificity.1 These well-known procedures have been
evaluated on biological tissue samples in the past five years, with significant results.2 Obtaining some relationship
between tissue pathology and surface (and subsurface) optical properties would then be ideal, allowing the use
of standardized numerical margin delineation algorithms. There are, unfortunately, a few caveats to this next
step. First, it is still unclear whether molecular or structural properties provide more information on tissue
pathology. Second, local structure as well as polarization properties seem to be relevant as well. Third, and last,
is the current lack of large SFDI pathology datasets, despite current efforts, that could be sufficient for deep
learning implementations. Solving this problem requires finding a nonlinear dimensionality reduction method
that can find a low-dimensionality embedding or feature space, under the hypothesis that different pathologies
will have different optical properties. The β-variational autoencoder (β-VAE) is a non-linear system based on
the implementation of variational Bayes probability estimation through neural networks.3 This algorithm can be
introduced in any signal processing pipeline and, through random sampling, synthesized data can be obtained
and exploited for further deep learning applications. To the authors’ knowledge, this work describes the first
application of a β-VAE on SFDI data.

2. MATERIALS AND METHODS

Spatial frequency domain imaging dataset The dataset consists of a total of 62 resected breast tissue
samples, imaged at the Thayer School of Engineering at Dartmouth College, with custom-built imaging equip-
ment, following standard protocol.2 Each SFDI image is a 1024 × 1024 × 4 × 4 tensor, namely 1024 × 1024
pixel measurements at four wavelengths (λ = 490.0, 550.0, 600.0, and 700.0 nm) and four spatial frequencies
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Figure 1. Example spatial frequency domain image of Sample 12 (left), as well as some color-reconstructed, randomly
selected patches from the complete dataset (right), corresponding to different tissue categories. RGB patches are extracted
from spectra via CIE 1931 color matching functions (CMFs) from the sample’s multispectral data, i.e. R(fx, λ) with
fx = 0.0 mm−1.

(fx = 0.0, 0.15, 0.61, and 1.37 mm−1). Each sample contains a set of 15 binary masks, corresponding to benign,
malignant, and normal tissue regions of interest (ROIs), histologically cross-referenced, described and labeled by
a pathologist. In order to generate a statistically significant population of patches, random coordinates within
the ROI of each sample were generated. A subset of these points were randomly selected to produce a dataset
with 20 × 103 patches. The dimensions of these patches are 10 × 10 pixels in space, with their corresponding
spatial and spectral properties per pixel.

β-Variational Autoencoder (β-VAE) A variational autoencoder (VAE) can be understood as a nonlinear
dimensionality reduction method, where an input vector x ∈ Rn is forced to be reconstructed through a symmet-
rical neural network with a bottleneck at its middle, namely layer z ∈ Rm, m� n. The result of this operation
is a reconstruction, x̂ ∈ Rn. While a standard autoencoder simply attempts to minimize the reconstruction error
1
2‖x−x̂‖2, a VAE also forces the distribution of latent feature space z to resemble a multivariate Gaussian normal
distribution N (0, I). This is achieved by applying the loss function li(θ, φ) = 1

2‖xi− x̂i‖2 +D [qθ(z|xi)‖N (0, I)],
where θ are the parameters of the encoder qθ(z|xi) : xi → zi, φ represents the parameters of the decoder
pφ(xi|z) : zi → x̂i, and D[q‖N (0, I)] is the Kullback-Leibler distance between the distribution of the latent
space and that of a multivariate normal Gaussian distribution.3 This additional constraint forces the feature
space to be centered around 0 and have unit variance across all its dimensions, while at the same time obtaining
sufficiently good reconstruction. In a β-VAE, hyperparameter β ∈ R+ simply multiplies the Kullback-Leibler
distance in the loss function, therefore establishing a tradeoff between reconstruction quality and latent space
Gaussianity.4 Once the loss function has been minimized up to the capacity of the neural network, synthesis can
take place by providing a point in feature (or pathology) space, namely z0, to the neural network’s bottleneck.
The decoder will generate a representation x̂(z0) from feature (pathology) space and synthesize a patch of tissue
with its corresponding properties.

3. RESULTS

After a total of 106 epochs, the VAE is considered to have converged to its optimum and can be dissected into an
encoder and a decoder (4× 200 tanh units each). The encoder translates any SFDI patch given spectral, spatial
frequency and inherent textural properties into a latent or feature space, where pathology can be differentiated
(Figure 2, left). With the given dataset we can assess differentiability between benign tissue (in shades of green),
malignant tissue (in red and grey), and adipose tissue (in yellow), with 2 latent space dimensions (z1 and z2;
more dimensions will provide better representations). Feature/pathology space, given its Gaussian properties,
will be sufficiently sampled by a uniform grid in the range [−4, 4]× [−4, 4]. The result of synthesizing patches for
a uniform grid of 40×40 points in feature space is displayed in Figure 2 (right). In other words, each of the 1600
squares in the plot is a color reconstruction of the reflectance properties of a patch tissue with pathology-space
coordinates (z1, z2). Synthesis can be performed for all other spatial frequencies as well (Figure 3), showing a
visually significant variation in tissue frequency response as a function of pathology. Applying β-VAE has certain
potential not only on machine translation of optical properties into understandable pathology spaces, but also
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Figure 2. General overview of training results for a 2-dimensional feature latent space. The left scatter plot represents
every labeled patch as a point in feature space. Color indicates the type of pathology specified in its corresponding ROI.
On the right subplot, this feature space is sampled in a uniform 40 × 40 grid, synthesizing all possible DC reflectance
values for breast tissue. Note both plots have the same frame of reference, i.e. feature space. Patch color is obtained via
CIE 1931 CMFs.

in training deep learning algorithms –as well as traditional machine learning methods– for breast margin tumor
delineation, as well as quantification of optical properties. These applications will be discussed as well.
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Figure 3. Left to right, 1600 synthesized patches for three spatial frequencies: fx = 0.15, 0.61, and 1.37 mm−1. As
expected, different pathologies respond differently to modulated light.
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