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1 Departmento de Matemática Aplicada y Ciencias de la Computación, E.T.S.I.

Industriales y de Telecomunicación, Universidad de Cantabria, 39005 Santander,

Spain

E-mail: eduardo.casas@unican.es
2 Institute for Mathematics and Scientific Computing, University of Graz,

Heinrichstrasse 36, A-8010 Graz, Austria, and Radon Institute, Austrian Academy of

Sciences.

E-mail: karl.kunisch@uni-graz.at

Abstract. Techniques from sparse control theory are proposed to approximate initial

conditions for diffusion-convection equations. Existence and uniqueness of optimal

controls are proven, and necessary and sufficient optimality conditions are derived.

From these conditions the sparsity structure of the solutions is derived, which relates

to identification of the sources to be reconstructed.

Keywords : measure controls, sparsity, parabolic equations, source identification

Submitted to: Inverse Problems



Using Sparse Control Methods to Identify Sources 2

1. Introduction

The goal of this paper is to describe the use of optimal control tools to approximate the

solution to a class of inverse source problems related to diffusion-convection equations.

In particular we study the identification of the initial conditions for the parabolic

equation 
∂y

∂t
+ Ay = f in Q = Ω× (0, T )

y(x, 0) = u in Ω̄

∂ny(x, t) = 0 on Σ = Γ× (0, T ),

(1.1)

where Γ is the boundary of Ω, u is a Borel measure in Ω̄, and A is the elliptic operator

defined by

Ay = −a∆y + b(x, t) · ∇y + c(x, t)y (1.2)

for a constant a > 0 and functions b and c. The goal is to identify u from the observation

yd corresponding to the state at the final time yu(T ). For this purpose we consider the

following optimal control problem

(Pα) min
u∈Uad

J(u) =
1

2
‖yu(T )− yd‖2

L2(Ω),

where

Uad = {u ∈M(Ω̄) : ‖u‖M(Ω̄) ≤ α},

with α > 0, and where yu is the solution to (1.1) corresponding to the control u.

There is a vast amount of mathematical contributions to inverse source problems.

The reader is referred to the monographs [1] and [2] and the references therein. Here

we are inspired by applications whose aim is the identification of pointwise pollution

sources, see e.g. [3], [4]. The total amount or an upper bound of pollution could be

known in some cases, which justifies the consideration of the control constraint. In this

context, the use of sparse control techniques suggests itself as a powerful tool. The

choice of controls as measures whose supports indicate the source locations appears

in a natural way. In some investigations the problem is formulated as searching for

combinations of Dirac measures given by

u =
m∑
k=1

αkδxk ,

where the number m of locations is fixed and αk and xk are the optimization variables.

This leads to a non convex optimization problem with practical difficulties related to

the computation of the derivatives with respect to xk. Our formulation is a convex

optimization problem and in certain situations can be proved that the solutions are of

the above type; see Corollary 2.8 and Remark 2.10. The use of measures as controls has

been exploited in previous papers and its numerical realization has been achieved in an

efficient way; see [5], [6], [7]. [8], [9], [10].
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The plan of this paper is as follows. In the next section, we analyze the control

problem (Pα), which uses deep results from the theory of diffusion-convection equations

such as uniqueness of backward parabolic equations with time dependent coefficients,

analyticity of the solutions, Hölder regularity, and approximate controllability. In some

applications, it is known a priori that the source is non-negative. Section 3 is dedicated

to this issue. Finally, in §4 we consider a related problem where, instead of imposing a

control constraint, we penalize the norm of the control, in a Tikhonov type style. We

subsequently compare both formulations, which provides a direct relation between the

constraint parameter α and the penalty parameter.

2. Analysis of (Pα)

In this section we analyze the problem (Pα). First, we study the state equation. Then,

existence and uniqueness of an optimal solution ū is proved. Finally, we derive the

optimality conditions and deduce structural properties of ū, in particular, sparsity.

The following regularity assumptions will be assumed throughout this section.

• Ω is an open, connected and bounded subset of Rn, 1 ≤ n ≤ 3, with a Lipschitz

boundary Γ.

• f ∈ L1(0, T ;L2(Ω)), a is positive real number, b ∈ L∞(Q)n, c ∈ L∞(Q), and

yd ∈ L2(Ω).

With M(Ω̄) we denote the space of real and regular Borel measures in Ω̄ endowed

with the norm

‖u‖M(Ω̄) = sup
‖φ‖C(Ω̄)≤1

∫
Ω̄

φ(x) du(x) = |u|(Ω̄),

where C(Ω̄) is the space of continuous functions in Ω̄ and |u| represents the total

variation measure of u. C(Ω̄) is a separable Banach space for the supremum norm

and M(Ω̄) is its dual space; see [11, page 130].

2.1. Analysis of the State Equation

Definition 2.1 We say that a function y ∈ L1(Q) is a solution of (1.1) if the following

identity holds ∫
Q

(−∂φ
∂t

+ A∗φ)y dxdt =

∫
Q

fφ dx dt+

∫
Ω̄

φ(0) du ∀φ ∈ Φ, (2.1)

where

Φ = {φ ∈ L2(0, T ;H1(Ω)) : −∂φ
∂t

+ A∗φ ∈ L∞(Q), ∂nφ = 0 on Σ, φ(T ) = 0 in Ω}

and

A∗φ = −a∆φ− div[b(x, t)φ] + cφ.
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Let us observe that the problem
−∂φ
∂t

+ A∗φ = g in Q

φ(x, T ) = 0 in Ω

∂nφ(x, t) = 0 on Σ

(2.2)

has a unique solution φ ∈ L2(0, T ;H1
0 (Ω)) ∩ C([0, T ];L2(Ω)) for every g ∈ L∞(Q).

Moreover, the regularity φ ∈ C(Q̄) holds. This continuity property follows, for instance,

from the results in [12]; see also [13, Chapter III].

Theorem 2.2 There exists a unique solution y of (1.1). Moreover, the regularity y ∈
Lr(0, T ;W 1,p

0 (Ω))∩C((0, T ];L2(Ω)) holds for all p, r ∈ [1, 2) with (2/r) + (n/p) > n+ 1,

and we have the following estimate for some constant Cr,p

‖y‖Lr(0,T ;W 1,p
0 (Ω)) + t‖y(t)‖L2(Ω) ≤ Cr,p(‖u‖M(Ω̄) + ‖f‖L1(0,T ;L2(Ω)) ∀t ∈ [0, T ]. (2.3)

Proof. Let us prove first the uniqueness. If y1, y2 are two solutions associated with

the control u, then from (2.1) we deduce that y = y2 − y1 satisfies∫
Q

(−∂φ
∂t

+ A∗φ)y dxdt = 0 ∀φ ∈ Φ.

Choosing g = sign(y) in (2.2) and inserting the corresponding solution φ in the above

identity we infer that y = 0. To prove the existence and the regularity we choose a

sequence {uk}k ⊂ C(Ω̄) such that uk
∗
⇀ u in M(Ω̄) and ‖uk‖L1(Ω) ≤ ‖u‖M(Ω̄). This

can be achieved by taking the convolution with sequences of mollifiers. Associated with

{uk}k we define the sequence of solutions {yk}k ⊂ L2(0, T ;H1(Ω)) of (1.1). Then, using

the regularity of yk we integrate by parts to obtain for every φ ∈ Φ∫
Q

(−∂φ
∂t

+ A∗φ)yk dxdt =

∫
Q

(
∂yk
∂t

+ Ayk)φ dxdt+

∫
Ω

φ(0)uk dx

=

∫
Q

fφ dx dt+

∫
Ω

φ(0)uk dx. (2.4)

Let us obtain the estimate on the first summand in (2.3) for yk. To this end, we take

{ψj}dj=0 ⊂ D(Q) and φ ∈ Φ satisfying
−∂φ
∂t

+ A∗φ = ψ0 −
∂ψj
∂xj

in Q

φ(x, T ) = 0 in Ω

∂nφ(x, t) = 0 on Σ.

(2.5)

Following [12] and [13, Chapter III], we know that there exists a constant C such that

‖φ‖C(Q̄) ≤ C
d∑
j=0

‖ψj‖Lr′ (0,T ;Lp′ (Ω)). (2.6)

Indeed, let us observe that the condition 2
r

+ n
p
> n + 1 is equivalent to 2

r′
+ n

p′
< 1,

where r′ and p′ denote the conjugates of r and p. The later inequality is sufficient for

the regularity and a priori estimate (2.6).
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Now, using distributional derivatives we obtain from (2.4)-(2.6)

〈yk, ψ0〉+
d∑
j=1

〈∂xjyk, ψj〉 =

∫
Q

yk(ψ0 −
d∑
j=0

∂xjψj) dx dt

=

∫
Q

(−∂φ
∂t

+ A∗φ)yk dxdt =

∫
Q

fφ dx dt+

∫
Ω

φ(0)uk dx

≤ C(‖f‖L1(Q) + ‖uk‖L1(Ω))
d∑
j=0

‖ψj‖Lr′ (0,T ;Lp′ (Ω))

≤ C ′(‖f‖L1(0,T ;L2(Ω)) + ‖u‖M(Ω̄))
d∑
j=0

‖ψj‖Lr′ (0,T ;Lp′ (Ω)).

This proves that {yk}k ⊂ Lr(0, T ;W 1,p(Ω)) and every yk satisfies (2.3). By taking a

subsequence, we deduce the existence of y ∈ Lr(0, T ;W 1,p(Ω)) such that yk ⇀ y in this

space. Then, passing to the limit in (2.4) we infer that y is solution of (1.1) and the

estimate on the first term in (2.3) holds.

To deduce the second estimate we introduce the function z(x, t) = (t − t0)y(x, t)

with 0 < t0 < T . Then, z satisfies the equation
∂z

∂t
+ Az = (t− t0)f + y in Ω× (t0, T )

z(x, t0) = 0 in Ω

∂nz(x, t) = 0 on Γ× (t0, T ).

(2.7)

We have already proved that y ∈ Lr(0, T ;W 1,p(Ω)) for all p, r ∈ [1, 2) with (2/r) +

(n/p) > n + 1. Choosing r = 1 and p < n
n−1

big enough so that W 1,p(Ω) ⊂ L2(Ω) we

deduce that y ∈ L1(0, T ;L2(Ω)) and

‖y‖L1(0,T ;L2(Ω)) ≤ C1(‖u‖M(Ω̄) + ‖f‖L1(0,T ;L2(Ω))) (2.8)

for some constant C1 > 0. It is standard that z ∈ L2(t0, T ;H1(Ω)) ∩ C([t0, T ];L2(Ω))

and

‖z‖C([t0,T ];L2(Ω)) ≤ C2(T‖f‖L1(0,T ;L2(Ω)) + ‖y‖L1(0,T ;L2(Ω)))

for a constant C2 independent of t0. For a method of proof the reader is referred to [14,

pp. 264-265]. Now, inserting (2.8) in the above inequality we obtain

‖z‖C([t0,T ];L2(Ω)) ≤ C3(‖u‖M(Ω̄) + ‖f‖L1(0,T ;L2(Ω))) (2.9)

for a constant C3. Since y(x, t) = 1
t−t0 z(x, t) for t > t0 and t0 > 0 is arbitrary, we infer

that y ∈ C((0, T ], L2(Ω)) and, in particular, we deduce from (2.9)

(t− t0)‖y(t)‖L2(Ω) = ‖z(t)‖L2(Ω) ≤ C3(‖u‖M(Ω̄) + ‖f‖L1(0,T ;L2(Ω))).

Since t0 > 0 was arbitrary, this inequality implies (2.3).

Though the previous theorem implies the continuity of the relation control-to-state

with respect to the strong topology inM(Ω̄), this is not enough to prove the solvability

of (Pα). For this purpose we establish the following result.
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Theorem 2.3 Let {uk}k ⊂ M(Ω̄) be such that uk
∗
⇀ u in M(Ω̄) and let {yk}k and y

be the associated states. Then, yk ⇀ y in Lr(0, T ;W 1,p(Ω)) and

lim
k→∞
‖yk − y‖C([t0,T ];L2(Ω)) = 0 ∀t0 ∈ (0, T ). (2.10)

In particular, the convergence yk(T )→ y(T ) in L2(Ω) holds.

In the above statement, r and p must satisfy the relations specified in Theorem 2.2.

Proof. From (2.3) we get the boundedness of {yk}k in Lr(0, T ;W 1,p(Ω)). This

implies the existence of subsequences weakly converging in Lr(0, T ;W 1,p(Ω)). For these

subsequences it is immediate to pass to the limit in (2.1) and to deduce that the state y

corresponding to the control u is the unique limit. Hence, the whole sequence converges

weakly to y.

To prove (2.10) we introduce the functions zk = (t − t0)yk and z = (t − t0)y. We

observe that ek = zk − z satisfies the equation
∂ek
∂t

+ Aek = yk − y in Ω× (t0, T )

ek(x, t0) = 0 in Ω

∂nek(x, t) = 0 on Γ× (t0, T ).

Using again (2.3) we know that {yk − y}k is bounded in L∞(t0, T ;L2(Ω)). From [12]

we have that {ek}k is bounded in a space of Hölder functions C0,µ(Ω̄ × [t0, T ]) for

some µ ∈ (0, 1). Since yk − y ⇀ 0 weakly in Lr(0, T ;W 1,p(Ω)) and the embedding

C0,µ(Ω̄ × [t0, T ]) ⊂ C(Ω̄ × [t0, T ]) is compact, we infer that ek → 0 strongly in

C(Ω̄× [t0, T ]), which proves (2.10).

2.2. Analysis of (Pα)

In this section, we are going to prove the existence and uniqueness of a solution of (Pα).

We will also derive the optimality conditions satisfied by this solution and discuss its

sparsity structure.

Theorem 2.4 Problem (Pα) has a unique solution ū.

Proof. For the existence of a solution we observe that Uad is bounded and weakly∗

closed in M(Ω̄). Actually, from Banach-Alaoglu-Bourbaki Theorem we know that it

is weakly∗ compact; see, for instance, [15, Theorem 3.16]. Therefore, any minimizing

sequence is bounded in M(Ω̄) and any weak∗ limit belongs to Uad. Finally, using

Theorem 2.3 we conclude that any of these limits is a solution of (Pα).

Let us prove the uniqueness. Let ū1 and ū2 be two solutions of (Pα) with associated

states ȳ1 and ȳ2. From the convexity of Uad and the strict convexity of the L2(Ω) norm

we deduce that ȳ1(T ) = ȳ2(T ). Let us set ȳ = ȳ2 − ȳ1 and take t0 ∈ (0, T ) arbitrary.

We have that ȳ(x, t) = 1
t−t0 z(x, t) for every t ∈ (t0, T ], where z satisfies

∂z

∂t
+ Az = ȳ in Ω× (t0, T )

z(x, t0) = 0 in Ω

∂nz(x, t) = 0 on Γ× (t0, T ).
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From Theorem 2.2 we know that ȳ ∈ L2(t0, T ;L2(Ω)) holds. Hence, z ∈ L2(t0, T ;H1(Ω))

and 
∂z

∂t
− a∆z = ȳ + g in Ω× (t0, T )

z(x, t0) = 0 in Ω

∂nz(x, t) = 0 on Γ× (t0, T ),

where

g = −b · ∇z − cz ∈ L2(t0, T ;L2(Ω)).

As usual we denote

D(∆) = {φ ∈ H1(Ω) : ∆φ ∈ L2(Ω) and ∂nφ = 0 in Γ}.

Now, from standard results on evolution equations, see, for instance, [16, pp. 113–

114], we infer that z ∈ C([t0, T ];H1(Ω)) ∩ L2(t0, T ;D(∆)). Taking into account that

z(t) = (t − t0)ȳ(t), we deduce that ȳ ∈ C([δ, T ];H1(Ω)) ∩ L2(δ, T ;D(∆)) for all

t0 < δ < T . Since t0 is arbitrary in (0, T ) we conclude that this regularity of ȳ holds for

arbitrary 0 < δ < T . Moreover, from the state equation satisfied by ȳ we get for almost

every t ∈ (δ, T )

‖∂ȳ
∂t

(t)− a∆ȳ(t)‖L2(Ω) = ‖b(t) · ∇ȳ(t) + c(t)ȳ(t)‖L2(Ω) ≤ C‖ȳ(t)‖H1(Ω).

Now, since ȳ(T ) = 0 we deduce from the backward uniqueness of the parabolic equation

[17, Theorem 1.1] that ȳ(t) = 0 for all t ∈ [δ, T ]. Due to the fact that δ > 0

can be taken arbitrarily small, we conclude that ȳ(t) = 0 ∀t ∈ (0, T ]. Finally,

since ȳ ∈ L1(0, T ;W 1,p(Ω)) for p < n
n−1

and ∂ȳ
∂t

= f − Aȳ ∈ L1(0, T ;W 1,p′(Ω)∗),

it follows that ȳ : [0, T ] −→ W 1,p′(Ω)∗ is continuous. Hence, we conclude that

ū2 − ū1 = ȳ(0) = limt→0 ȳ(t) = 0.

Next, we establish the optimality conditions satisfied by the solution ū of (Pα).

First, we introduce the adjoint state associated with ū as the solution to
−∂ϕ̄
∂t

+ A∗ϕ̄ = 0 in Q

ϕ̄(T ) = ȳ(T )− yd in Ω

∂nϕ̄(x, t) = 0 on Σ,

(2.11)

where ȳ is the state corresponding to ū. According to Theorem 2.2, we know that

ȳ(T ) ∈ L2(Ω), hence ϕ̄ ∈ L2(0, T ;H1(Ω)) ∩ C(Ω̄ × [0, T )). The norm of ϕ̄ in these

spaces can be estimated by the norm of ȳ(T )− yd in L2(Ω); see, for instance, [13, §III-7
to §III-10]. In particular, there exists a constant C0 such that

‖ϕ̄(0)‖C(Ω̄) ≤ C0‖ȳ(T )− yd‖L2(Ω). (2.12)

Theorem 2.5 Let ū be the solution of (Pα) with ȳ and ϕ̄ the associated state and adjoint

state. Then, the following properties hold

(i) If ‖ū‖M(Ω̄) < α, then ȳ(T ) = yd and ϕ̄ = 0 in Q.
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(ii) If ‖ū‖M(Ω̄) = α, then

supp(ū+) ⊂ {x ∈ Ω̄ : ϕ̄(x, 0) = −‖ϕ̄(0)‖C(Ω̄)},
supp(ū−) ⊂ {x ∈ Ω̄ : ϕ̄(x, 0) = +‖ϕ̄(0)‖C(Ω̄)},

(2.13)

where ū = ū+ − ū− is the Jordan decomposition of ū.

Conversely, if ū is an element of Uad satisfying (i) or (ii), then ū is the solution to (Pα).

Before proving the above theorem we establish two lemmas.

Lemma 2.6 Given u ∈M(Ω̄), the solution zu ∈ Lr(0, T ;W 1,p(Ω)) to
∂z

∂t
+ Az = 0 in Q

z(0) = u in Ω

∂nz(x, t) = 0 on Σ

(2.14)

satisfies ∫
Ω

(yu(T )− yd)zu(T ) dx =

∫
Ω̄

ϕ̄(0) du. (2.15)

Proof. Let us consider two sequences {gk}k, {uk}k ⊂ C(Ω̄) such that gk → ȳ(T )−yd
strongly in L2(Ω) and uk

∗
⇀ u in M(Ω̄). Now we introduce the solutions {ϕk}k, {zk}k ⊂

L2(0, T ;H1(Ω)) ∩H1(0, T ;H1(Ω)∗)) ∩ C(Q̄) to the equations
−∂ϕk
∂t

+ A∗ϕk = 0 in Q

ϕk(x, T ) = gk(x) in Ω

∂nϕk(x, t) = 0 on Σ


∂zk
∂t

+ Azk = 0 in Q

zk(0) = uk in Ω

∂nzk(x, t) = 0 on Σ

Because of the regularity of ϕk and zk we are justified to integrate by parts getting∫
Ω

gkzk(T ) dx =

∫
Ω

ϕk(0)uk dx.

Finally, using that ‖zk(T ) − z(T )‖L2(Ω) → 0 due to Theorem 2.3, and ‖ϕk(0) −
ϕ̄(0)‖C(Ω̄) → 0 by (2.12), we can pass to the limit in the above identity and deduce

(2.15).

The following lemma establishes the approximate controllability of system (1.1)

by the initial condition. We prove it here because the coefficients b and c are time

dependent.

Lemma 2.7 For every ε > 0 there exists a control u ∈ L2(Ω) such that ‖yu(T ) −
yd‖L2(Ω) < ε.

Proof. We argue by contradiction and assume that the statement of the lemma is

false. Then, in particular, the reachable set

R = {yu(T ) : u ∈ L2(Ω)}
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is not dense in L2(Ω). Therefore, there exists an element g ∈ L2(Ω), g 6= 0, such that∫
Ω

g(x)yu(x, T ) dx = 0 ∀u ∈ L2(Ω). (2.16)

Denote by y0 the solution to (1.1) corresponding to the control 0 and by zu the solution

of (2.14). Then, the identity yu = y0 + zu obviously holds for every u ∈ L2(Ω). If we

take u = 0 in (2.16) we deduce that∫
Ω

g(x)y0(x, T ) dx = 0.

Hence, with (2.16) we get the identity∫
Ω

g(x)zu(x, T ) dx = 0 ∀u ∈ L2(Ω). (2.17)

Let us take ϕ as solution of
−∂ϕ
∂t

+ A∗ϕ = 0 in Q,

ϕ(T ) = g in Ω,

∂nϕ = 0 on Σ.

From (2.17) and Lemma 2.6 with ȳ(T )− yd replaced by g, we infer

0 =

∫
Ω

ϕ(x, T )zu(x, T ) dx =

∫
Ω

ϕ(x, 0)u(x) dx ∀u ∈ L2(Ω).

Consequently, ϕ(0) = 0 is satisfied. Arguing as in the proof of Theorem 2.11 we can

apply the backward uniqueness to ϕ to deduce that ϕ(t) = 0 ∀t ∈ [0, T ]. Hence g = 0

and we obtain a contradiction.

Proof of Theorem 2.5. Let u be an arbitrary element of Uad. Denote by zu−ū the

solution to (2.14) with u replaced by u− ū. From Lemma 2.6 we get

lim
ρ↘0

J(ū+ ρ(u− ū))− J(ū)

ρ
=

∫
Ω

(ȳ(T )− yd)zu−ū(T )dx =

∫
Ω̄

ϕ̄(0) d(u− ū).

Since (Pα) is a convex problem, the next condition is necessary and sufficient for

optimality of an element ū ∈ Uad

J ′(ū)(u− ū) =

∫
Ω̄

ϕ̄(0) d(u− ū) ≥ 0 ∀u ∈ Uad,

or equivalently

−
∫

Ω̄

ϕ̄(0) du ≤ −
∫

Ω̄

ϕ̄(0) dū ∀u ∈ Uad.

Taking the supremum in u ∈ Uad we infer the equivalent expression.

α‖ϕ̄(0)‖C(Ω̄) = −
∫

Ω̄

ϕ̄(0) dū.

In the case ‖ū‖M(Ω̄) = α this identity is the same as

‖ū‖M(Ω̄)‖ϕ̄(0)‖C(Ω̄) = −
∫

Ω̄

ϕ̄(0) dū. (2.18)



Using Sparse Control Methods to Identify Sources 10

Therefore, (2.18) is a necessary and sufficient condition for optimality if ‖ū‖M(Ω̄) = α.

Now, from [6, Lemma 3.4] we infer (2.13). Conversely, if ū ∈ M(Ω̄) satisfies (ii), then

it is immediate to check that (2.18) holds as well and, hence, ū is the solution of (Pα).

Let us study the case ‖ū‖M(Ω̄) < α. Obviously if ȳ(T ) = yd, then ū is the solution

of (Pα). Conversely, assume now that ū is the solution and ȳ(T ) 6= yd. From Lemma

2.7 we deduce the existence of an element u ∈M(Ω̄) such that J(u) < J(ū). Since ū is

a solution of (Pα), then u 6∈ Uad. Let us take a number λ satisfying

0 < λ < min

{
α− ‖ū‖M(Ω̄)

‖u− ū‖M(Ω̄)

, 1

}
.

Then, v = ū+ λ(u− ū) ∈ Uad holds and

J(v) = J(λu+ (1− λ)ū) ≤ λJ(u) + (1− λ)J(ū) < J(ū),

which contradicts the optimality of ū. Hence ȳ(T ) = yd, and using (2.11) we conclude

that ϕ̄ = 0.

The relationships (2.13) suggest the idea that the optimal control is supported in

a small region. Actually, this can be proved under certain assumptions.

Corollary 2.8 Let us assume that c ≡ 0 and b is a function only depending on time

and analytic in (−ε, T + ε) for some ε > 0. If ū is the solution of (Pα) with associated

state ȳ and ȳ(T )− yd is not constant, then the following properties hold:

(i) The support of ū has zero Lebesgue measure.

(ii) If n = 1, then there exists a countable set of points {xi}i∈I ⊂ Ω̄ and real numbers

{λ̄i}i∈I such that

ū =
∑
i∈I

λ̄iδxi with λ̄i =

{
> 0 if ϕ̄(xi, 0) = −‖ϕ̄(0)‖C(Ω̄)

< 0 if ϕ̄(xi, 0) = +‖ϕ̄(0)‖C(Ω̄)

(2.19)

If the cardinality of I is not finite, then the accumulation points of {xi}i∈I are points

of Γ.

Proof. (i) Since b is analytic, the solution ϕ̄ to (2.11) is analytic with respect to

the variable x in Ω for every t ∈ [0, T ). In particular, ϕ̄(0) is analytic in Ω; see, for

instance, [18, page 324] or [19] and the references therein. As a consequence, either ϕ̄(0)

is a constant function in Ω̄ or the set of points S = {x ∈ Ω̄ : |ϕ̄(x, 0)| = ‖ϕ̄(0)‖C(Ω̄)}
has zero Lebesgue measure. Let us prove that the first case is not possible. Indeed, if

ϕ̄(x, 0) = κ for some κ ∈ R and for every x ∈ Ω̄, then ψ = ϕ̄− κ satisfies
−∂ψ
∂t

+ A∗ψ = 0 in Q

ψ(0) = 0 in Ω

∂nψ = 0 on Σ,

due to the assumptions on b and c. Then, arguing as in the proof of Theorem 2.11,

we deduce the backward uniqueness of the equation and, hence, that ψ(x, t) = 0 in Q.
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Therefore, the identity ϕ̄(x, t) = κ holds in Q. This implies that ȳ(T )− yd = ϕ̄(T ) = κ,

which contradicts our assumption.

(ii) In the case n = 1, the analyticity of ϕ̄ implies that the set S defined above is

countable and the possible accumulation points must be on the boundary Γ. Moreover,

(2.19) is an immediate consequence of (2.13).

Remark 2.9 The assumption that ȳ(T ) − yd is not identically equal to a constant is

obviously satisfied provided that yd 6∈ H1(Ω). In the case of a regular function yd, if its

normal derivative on Γ is not identically equal to zero, then for a regular boundary Γ

and a function f ∈ Lp(Q) with p > 4, the equality ȳ(T )−yd = κ with κ ∈ R is again not

possible. Indeed, it is enough to observe that in this case ∂nȳ(t) = 0 is satisfied for every

t ∈ (0, T ]. Finally, the identity ȳ(T )−yd = κ is not possible either if yd is not attainable

by any control u ∈ M(Ω̄). Indeed, if ȳ(T ) − yd = κ, then yu(T ) = ȳ(T ) + κ = yd for

u = ū+ κ, which contradicts the assumption.

Remark 2.10 In the state equation (1.1) we have considered a Neumann boundary

condition. All the results proved in this paper remain valid if we replace this condition by

an homogeneous Dirichlet or Robin condition. Concerning Corollary 2.8, the statement

holds under the weaker assumption ȳ(T ) 6= yd. In particular, the condition c = 0 is not

necessary. Indeed, following the above proof, if ϕ̄(0) = κ in Ω, then κ must be zero due

to the homogeneous boundary condition. Once again, the backward uniqueness property

of the adjoint state equation implies that ϕ̄ = 0 in Q, therefore ȳ(T ) − yd = ϕ̄(T ) = 0,

contradicting the assumption.

Moreover, in the case n = 1, for a Dirichlet boundary condition, the set of points

{xi}i∈I is finite because if there is an accumulation point in Γ, then ϕ̄ vanishes there.

This means that ϕ̄(0) = 0, which is not possible under our assumptions as we have

proved in the previous paragraph.

Remark 2.11 Let us briefly discuss the case, when the terminal tracking function which

was used in (Pα) is replaces by the temporally distributed cost 1
2

∫ T
t1
‖yu(t)− yd‖2

L2(Ω) dt,

where t1 ∈ [0, T ) and yd ∈ Ω× (t1, T ). Again the associated optimal control problem has

a unique solution ū, i.e. the analogue of Theorem holds. The adjoint equation for this

case is given by
−∂ϕ̄
∂t

+ A∗ϕ̄ = (ȳ − yd)χQ1 in Q

ϕ̄(T ) = 0 in Ω

∂nϕ̄(x, t) = 0 on Σ,

(2.20)

where χQ1 is the characteristic function of the set Q1 = Ω× (t1, T ).

To obtain the analogue of Theorem 2.5 we assume that
∫
Q
c dx dt = 0, b ∈ C(Q)n,

and additionally that
∫

Σ
b·n dx dt = 0, and

∫
Q1

(ȳ−yd) dxdt 6= 0. Under these conditions,

integrating the adjoint equation given in (2.20) over Q and using the boundary conditions

for ϕ̄ and b, and the fact that c = 0, we obtain that∫
Ω

ϕ̄(0) dx =

∫
Q1

(ȳ − yd) dxdt 6= 0.
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Hence ϕ̄(0) 6= 0 holds. Supposing that ‖ū‖M(Ω̄) < α, one can choose uρ = ū+ρ ϕ̄(0) with

ρ < 0 and |ρ| sufficiently small such that uρ ∈ Uad, and then J ′(ū)(uρ−ū) = ρ‖ϕ̄‖2
L2(Ω) <

0, hence the necessary and sufficient optimality condition is violated. Therefore, the

case ‖ū‖M(Ω̄) < α cannot occur and the constraint is necessarily active. The case

‖ū‖M(Ω̄) = α can be treated exactly as in the proof of Theorem 2.5.

3. Identification of positive sources

In this section, we concentrate on the situation where a priori knowledge on the

system suggests to consider non-negative measures. Then, the identification problem is

formulated as follows

(P+
α ) min

u∈U+
ad

J(u) =
1

2
‖yu(T )− yd‖2

L2(Ω),

where

U+
ad = {u ∈M+(Ω̄) : u(Ω̄) ≤ α}

withM+(Ω̄) the subspace ofM(Ω̄) formed by all non-negative measures. Observe that

for non-negative measures the equality ‖u‖M(Ω̄) = u(Ω̄) holds. For problem (P+
α ) we

have the following result.

Theorem 3.1 (P+
α ) has a unique solution. Moreover, ū ∈ U+

ad is a solution of (P+
α ) if

and only if ∫
Ω̄

ϕ̄(x, 0) dū ≤
∫

Ω̄

ϕ̄(x, 0) du ∀u ∈ U+
ad. (3.1)

If ū(Ω̄) = α, then the following properties are fulfilled:

(i) Inequality (3.1) is equivalent to the identity∫
Ω̄

ϕ̄(x, 0) dū = αµ̄ := αmin
ω∈Ω̄

ϕ̄(ω, 0), (3.2)

where µ̄ ≤ 0.

(ii) ū is the solution of (P+
α ) if and only if

supp(ū) ⊂ {x ∈ Ω̄ : ϕ̄(x, 0) = µ̄}. (3.3)

Proof. Existence and uniqueness for problem (P+
α ) is proved as in Theorem 2.11.

As in the proof of Theorem 2.5, we get that an element ū of U+
ad is the solution of (P+

α )

if and only if

J ′(ū)(u− ū) =

∫
Ω̄

ϕ̄(0) d(u− ū) ≥ 0 ∀u ∈ U+
ad,

which is equivalent to (3.1). Let us consider the case of ū(Ω̄) = α and prove (i). First,

if µ̄ > 0, then taking u = 0 in (3.1) we deduce that ū = 0. Thus, µ̄ ≤ 0 holds.

Now, observe that (3.1) is equivalent to∫
Ω̄

ϕ̄(x, 0) dū = min
u∈U+

ad

∫
Ω̄

ϕ̄(x, 0) du.
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Let ω0 ∈ Ω̄ be a point where ϕ̄(ω0, 0) = µ̄. Then, the above minimum is achieved for

u = αδω0 , which directly leads to (3.2).The converse implication is immediate.

To prove (ii) we distinguish two cases. First we assume that µ̄ = 0. In this case,

ϕ̄(x, 0) ≥ 0 ∀x ∈ Ω̄ and hence (3.2) obviously implies (3.3). In the case of µ̄ < 0, we set

ψ(x) = −min{ϕ̄(x, 0), 0}. It is easy to check that 0 ≤ ψ(x) ≤ −µ̄ and ‖ψ‖C(Ω̄) = −µ̄.

Now, using (3.1) and the fact that ψ(x) ≥ −ϕ̄(x, 0) we get∫
Ω̄

ψ dū ≥ −
∫

Ω̄

ϕ̄(x, 0) dū ≥ −
∫

Ω̄

ϕ̄(x, 0) du ∀u ∈ U+
ad.

Taking u = αδω0 we infer∫
Ω̄

ψ dū ≥ −µ̄α = ‖ψ‖C(Ω̄)‖ū‖M(Ω̄).

The converse inequality is obvious and therefore, we have that∫
Ω̄

ψ dū = ‖ū‖M(Ω̄)‖ψ‖C(Ω̄).

Now, from [6, Lemma 3.4] we get (3.3).

Finally, the converse implication is a consequence of the fact that (3.3) implies (3.1)

whenever ū is a non-negative measure with ū(Ω̄) = α.

Remark 3.2 Denote again by y0 the solution of (1.1) corresponding to the control 0.

If yd ≤ y0(T ), then the unique solution to (P+
α ) is given by ū = 0. Indeed, observe that

yu = zu + y0, where zu the solution of (2.14). By the weak maximum principle we know

that zu ≥ 0 in Q. Consequently, for every u 6= 0

J(0) =
1

2
‖y0(T )− yd‖2

L2(Ω) <
1

2
‖zu(T )− (yd − y0(T ))‖2

L2(Ω) = J(u).

Remark 3.3 Contrarily to Theorem 2.5, the case of an optimal control with ‖ū‖M(Ω̄) <

α has not been addressed in Theorem 3.1. In Theorem 2.5 we established that ȳ(T ) = yd
whenever ‖ū‖M(Ω̄) < α. This property fails if we restrict the controls to be non-negative.

Indeed, we have established in the above remark that ū = 0 if yd ≤ y0(T ).

4. A related penalty formulation

An alternative formulation to identify the initial condition u is the following

(Pβ) min
u∈M(Ω̄)

J(u) =
1

2
‖yu(T )− yd‖2

L2(Ω) + β‖u‖M(Ω̄),

where β > 0 is fixed. In this section, we analyze problem (Pβ) and we compare it

with (Pα). The reader is referred to [20] for a related problem. Let us introduce some

notation. We set J(u) = F (u) + βj(u), where

F (u) =
1

2
‖yu(T )− yd‖2

L2(Ω) and j(u) = ‖u‖M(Ω̄).

First, we state the well posedness of the problem and the optimality conditions.
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Theorem 4.1 Problem (Pβ) has a unique solution. Moreover, an element ū ∈ M(Ω̄)

is the solution of (Pβ) if and only if
∫

Ω̄

ϕ̄(0) dū+ β‖ū‖M(Ω̄) = 0,

‖ϕ̄(0)‖C(Ω̄)

{
= β if ū 6= 0,

≤ β if ū = 0.

(4.1)

Proof. The two addends of the cost functional J define convex functions, j is lower

semicontinuous with respect to the weak∗ topology inM(Ω̄), and J is coercive inM(Ω̄).

Hence, we can argue similarly to the proof of Theorem 2.11 to deduce the existence and

uniqueness of a solution of (Pβ). Moreover, given ū ∈ M(Ω̄), using the convexity of F

and j, we get with Lemma 2.6 that ū is a solution of (Pβ) if and only if for all u ∈M(Ω̄)

0 ≤ lim
ρ↘0

J(u+ ρ(u− ū))− J(ū)

ρ
≤
∫

Ω̄

ϕ̄(0) d(u− ū) + β‖u‖M(Ω̄) − β‖ū‖M(Ω̄).

This is obviously equivalent to − 1
β
ϕ̄ ∈ ∂j(ū), where ∂j(ū) denotes the subdifferential

of j at ū in the sense of the convex analysis. Finally, it is straightforward to check that

∂j(ū) is equivalent to (4.1).

Corollary 4.2 Let ū ∈ M(Ω̄) be a nonzero measure. Then ū is a solution of (Pβ) if

and only if the following property holds{
Supp(ū+) ⊂ {x ∈ Ω̄ : ϕ̄(x, 0) = −β},
Supp(ū−) ⊂ {x ∈ Ω̄ : ϕ̄(x, 0) = +β},

(4.2)

where ū = ū+ − ū−is the Jordan decomposition of ū.

This is an immediate consequence of (4.1) and [6, Lemma 3.4].

Corollary 4.3 Let ϕ0 be the adjoint state corresponding to the zero control, and set

β0 = ‖ϕ0(0)‖C(Ω̄). Then, ū 6= 0 for all β ∈ (0, β0) and ū = 0 for every β ≥ β0.

Proof. Using (4.1), we get that ū 6= 0 for all β < ‖ϕ0(0)‖C(Ω̄). On the other hand,

the control zero satisfies the optimality conditions (4.1) for every β ≥ β0.

Now, we can compare the control problems (Pα) and (Pβ).

Theorem 4.4 Let ū ∈M(Ω̄) be different from 0. Then, we have

(i) If ū is a solution to (Pβ), then it is also a solution to (Pα) for α = ‖ū‖M(Ω̄).

(ii) If ū is a solution to (Pα), then it is also a solution to (Pβ) for β = ‖ϕ̄(0)‖C(Ω̄).

Proof. It suffices to compare the necessary and sufficient optimality conditions

(2.13) and (4.1) with α and β selected as indicated in the theorem to conclude the

statement.
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Remark 4.5 Though the problems (Pα) and (Pβ) are equivalent in the above sense,

the choice of α and β is a delicate issue. In some applications, there is an a priori

knowledge of the total input ‖ū‖M(Ω̄), which can be used for the choice of α in the

formulation of (Pα). However, the a priori knowledge of the data does not provide a

comparable information for the choice of β.

Now, we are going to study the dependence of the solution to (Pβ) with respect to

β. To this end, we denote by uβ the solution of (Pβ) for β > 0, and by yβ and ϕβ the

associated state and adjoint state. In the remaining of the section we also make the

following non-attainability assumption

yu(T ) 6= yd ∀u ∈M(Ω̄). (4.3)

Lemma 4.6 Let {βk}k ⊂ (0,∞) be a sequence converging to β > 0. Then, the following

properties hold

uβk
∗
⇀ uβ in M(Ω̄) and ‖uβk‖M(Ω̄) → ‖uβ‖M(Ω̄), (4.4)

lim
k→∞

(
‖yβk(T )− yβ(T )‖L2(Ω) + ‖ϕβk(0)− ϕβ(0)‖C(Ω̄)

)
= 0. (4.5)

Proof. From the inequalities Jβk(uβk) ≤ Jβk(0) = 1
2
‖y0(T ) − yd‖2

L2(Ω) we infer the

boundedness of {uβk}k in M(Ω̄). Hence, we can take a subsequence, denoted in the

same way, and an element u ∈ M(Ω̄) such that uβk
∗
⇀ u in M(Ω̄). From Theorem 2.3

and inequality (2.12) we deduce that yβk(T ) → yu(T ) in L2(Ω) and ϕβk(0) → ϕu(0) in

C(Ω̄) when k →∞.

Using the characterization of a solution given by (4.1) we have for every k
∫

Ω̄

ϕβk(0) duβk + βk‖uβk‖M(Ω̄) = 0,

‖ϕβk(0)‖C(Ω̄) = βk.

Using the established convergence properties, we can pass to the limit above and deduce
∫

Ω̄

ϕu(0) du+ β‖u‖M(Ω̄) ≤ 0,

‖ϕu(0)‖C(Ω̄) = β.
(4.6)

From the last identity we also get

−
∫

Ω̄

ϕu(0) du ≤ ‖ϕu(0)‖C(Ω̄)‖u‖M(Ω̄) = β‖u‖M(Ω̄).

Combining this with the first inequality of (4.6) we obtain∫
Ω̄

ϕu(0) du+ β‖u‖M(Ω̄) = 0.

This identity and the second one of (4.6) implies with Theorem 4.1 that u = uβ is the

solution of (Pβ). Since every converging subsequence converges to this solution, we have

that the whole sequence converges as well. Finally, we also have

lim
k→∞
‖uβk‖M(Ω̄) = − lim

k→∞

1

βk

∫
Ω̄

ϕβk(0) duβk = − 1

β

∫
Ω̄

ϕβ(0) duβ = ‖uβ‖M(Ω̄),
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which completes the proof.

Let us introduce the functions h : (0, β0] −→ [0,∞) and g : (0, β0] −→ (0,∞)

given by h(β) = ‖uβ‖M(Ω̄) and g(β) = F (uβ), where F is the first summand of the cost

functional J . We have the following properties for h and g.

Theorem 4.7 The function h is continuous, strictly monotone decreasing and bijective.

Moreover, the function g is continuous and strictly monotone increasing.

Proof. The continuity of h and g follows from Lemma 4.6. Let us prove that h is

strictly monotone decreasing. Let us take 0 < β1 < β2 ≤ β0. First, we observe that

uβ1 6= uβ2 . Indeed, it follows from (4.1) that

‖ϕβ1(0)‖C(Ω̄) = β1 < β2 = ‖ϕβ2(0)‖C(Ω̄).

Hence, the adjoint states are different and therefore the controls as well. Let us set

Jβ(u) =
1

2
‖yu(T )− yd‖2

L2(Ω) + β‖u‖M(Ω̄).

Then, from the optimality and the uniqueness of uβ1 and uβ2 we obtain

Jβ1(uβ1) < Jβ1(uβ2) and Jβ2(uβ2) < Jβ2(uβ1).

Adding both inequalities and canceling the tracking terms we get

(β2 − β1)‖uβ2‖M(Ω̄) < (β2 − β1)‖uβ1‖M(Ω̄),

which says that h(β2) < h(β1).

Let us prove that g is strictly increasing. For this purpose we use the optimality of

uβ1 and the strict monotone decreasing property of h

g(β1) + β1h(β1) = Jβ1(uβ1) < Jβ1(uβ2) = g(β2) + β1h(β2) < g(β2) + β1h(β1),

which proves that g(β1) < g(β2).

Finally, let us prove that h is bijective. Since h(β0) = 0 as proved in Corollary

4.3, due to the strict monotonicity and the continuity of h it is enough to check that

h(β) → ∞ as β ↘ 0. Here, we argue by contradiction and assume that there exists a

sequence {βk}k ⊂ (0, β0] with βk ↘ 0 and h(βk) ≤ κ for constant κ < ∞. Then, by

taking a subsequence, that we denote in the same way, we can assume that uβk
∗
⇀ u in

M(Ω̄). Then, using again Lemma 4.6 and (4.1) we have

‖ϕu(0)‖C(Ω̄) = lim
k→∞
‖ϕβk(0)‖C(Ω̄) = lim

k→∞
βk = 0.

Hence, using the backward uniqueness property of the adjoint state equation we conclude

that ϕu = 0 in Q and then yu(T )− yd = ϕu(T ) = 0, which contradicts our assumption

(4.3).

Remark 4.8 Combining Theorems 4.4 and 4.7 we get that the inverse of h is given by

h−1(α) = ‖ϕuα‖C(Ω̄), where uα is the solution of problem (Pα) and ϕuα is the associated

adjoint state. As a consequence of this, we also have that uα depends continuously with

respect to α in the sense of (4.4) and (4.5).
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