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Abstract

Hydrofluorocarbons (HFCs) are powerful greenhouse gases whose production and consumption 

must be phased-down in order to reach the reduction goals established by the Kigali 

Amendment to the Montreal Protocol. However, the share of recycled refrigerant gases remains 

very low owing to the extremely inefficient separation of refrigerant mixtures by cryogenic 

distillation. In this sense, the HFCs difluoromethane (R32, GWP = 675) and 1,1,1,2-

tetrafluoroethane (R134a, GWP = 1430), together with the hydrofluoroolefin (HFO) 2,3,3,3-

tetrafluoropropene (R1234yf, GWP = 4), are among the most common constituents of HFC/HFO 

refrigerant mixtures currently employed in the refrigeration and air conditioning sector. 

Therefore, the feasibility of using membrane technology for the selective separation of these 

compounds is assessed in this work for the first time. A comprehensive study of their gas 

permeation through several poly(ether-block-amide) (PEBA) membranes that differ on the 

content and type of backbone segments is performed. Results show that PEBA membranes 

exhibit superior permeability of R32 (up to 305 barrer) and R134a (up to 230 barrer) coupled 

with reasonably high selectivity for the gas pairs R32/R1234yf (up to 10) and R134a/R1234yf (up 

to 8). Moreover, for the blends R32/R1234yf and R32/R134a, the membrane separation 

performance is not significantly affected under the mixed-gas conditions tested. Thus, results 

evidence that consideration should be given to membrane technology for the cost-efficient 

separation of HFCs/HFOs mixtures in order to boost the recycling of these compounds.

Keywords

Global warming potential, hydrofluorocarbon, hydrofluoroolefin, membrane separation, 
refrigerant 
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Introduction

Fluorinated gases have been widely used since the early 1930s in aerosols, foams, refrigerants 

and as solvents due to their outstanding properties, namely, low flammability and toxicity and 

optimal thermodynamic characteristics. In this context, hydrofluorocarbons (HFCs), the third 

generation of refrigerants, started to be massively produced and consumed in the refrigeration 

and air conditioning sector (RAC) as alternative to the ozone depleting substances (ODS), i.e., 

chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs), which were phased-out 

under the Montreal Protocol.1-4 Accordingly, the emissions of HFCs to the atmosphere have 

steadily increased since 1990, 260% in 2017 in Europe,5 mainly due to fugitive emissions and the 

lack of recovery protocols from end-of-life equipment. However, HFCs continue to pose severe 

environmental risks as their global warming potential (GWP) can be up to several orders of 

magnitude higher than that of CO2 (GWP = 1), e.g., the GWP of trifluoromethane (R23) is 14800.6 

Therefore, HFCs are among the target greenhouse gases whose emissions must be drastically 

reduced to mitigate climate change. In this regard, the European Union (EU) promulgated EU 

regulation No. 517/2014 aimed at scheduling in several periods the phase-down of production 

and use of HFCs.7 And more recently, the Kigali Amendment to the Montreal Protocol came into 

effect in January 2019 aiming at reducing the emissions of HFCs of the signatory parties by 80-

85% by 2047.8

Although there are not clear alternatives to HFCs that can meet the requirements of both 

refrigerant and environmental performances for most applications, the commercialization of 

low GWP refrigerant blends combining HFCs and hydrofluoroolefins (HFOs) is experiencing a 

rapid development.9-13 In these mixtures, e.g., R448A, R449A, R450A, R454A, R454C, R455A, 

R513A, HFCs with low and moderate GWP, namely difluoromethane (R32, GWP = 675) and 

1,1,1,2-tetrafluoroethane (R134a, GWP = 1430), are combined with HFOs that exhibit negligible 

ODP and GWP. In particular, the HFO 2,3,3,3-tetrafluoropropene (R1234yf, GWP = 4) has taken 

advantage in the market despite being classified as a lower flammability refrigerant (ASHRAE 
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category A2L).14,15 Moreover, besides the formulation of new blends, the recovery and reuse of 

refrigerants is considered a promising approach to increase the refrigerants lifetime while 

minimizing the amount of new HFCs placed in the market and their release to the atmosphere.

To shift the RAC sector towards a circular economy model, gas separation technologies become 

a crucial player. Most refrigerants are near-azeotropic blends or exhibit azeotropic behavior, 

which makes conventional gas separation technologies extremely inefficient for the recovery of 

the mixture constituents. In this sense, polymer-based membrane separations are growing in 

importance as a cost-efficient alternative to heat-driven separation processes.16-19 Indeed, 

membrane technology has reached a state of maturity for the separation of certain gases of 

strategic interest such as H2 separation from ammonia purge gas, syngas ratio adjustment and 

O2 enrichment, and can be conceived as a promising candidate for other emerging 

applications.20

However, the available literature is scarce regarding fluorinated gases and only few works report 

on their gas permeation properties through polymer membranes. In addition, most 

contributions have focused on the separation of phased-out CFCs and HCFCs from air and the 

recovery of PFCs, which are valuable gases in the semiconductor industry, using both glassy and 

rubbery polymers. However, the use of glassy membranes to separate hydrofluorocarbons is 

not appropriate and results evidence very low permeabilities,21 except through the exceptionally 

high free volume PTMSP, which provide very high permeation rates of CFCs and HCFCs at the 

expense of very low selectivity.22,23 On the other hand, a predominant solubility controlling 

behavior is sought using rubbery polymers in which fluorinated gases exhibit enhanced 

permeability with respect to permanent gases due to their markedly higher condensability. In 

this sense, Hirayama et al.24 used crosslinked-membranes of polymetacrylates with 

poly(ethylene oxide) (PEO) and perfluorononyl moieties to assess the permeation properties of 

several perfluorinated gases (SF6, CF4, C2F6, C3F8, C4F8) and CFCs (R11, R12 and R113). The authors 

highlighted the ability of rubbery PEO segments to provide high permeability towards CFCs (𝑃𝑅11
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 and  barrer) and improved gas pair selectivity for the separation of the = 660 𝑃𝑅113 = 200

fluorinated gases from nitrogen (  and ). Furthermore, Stern et 𝛼𝑅11/𝑁2 = 194.1 𝛼𝑅113/𝑁2 = 58.8

al.25 studied the effect of pressure on the single gas permeation properties of trifluoromethane 

(R23) and 1,1-difluoroethylene (R1132a) through rubbery polyethylene membranes and showed 

that R23 permeability increased remarkably with pressure due its great solubility. Ruan et al.26 

explored the combination of membrane separation using rubbery polydimethylsiloxane (PDMS) 

with cryogenic distillation for the separation of HFC R23 and HCFC R22. 

As evidenced above, there is a research gap of information regarding the gas permeation 

properties through polymer membranes of the most extensively used commercial refrigerants 

nowadays (both HFCs and HFOs) and the potential ability of membrane technology to separate 

them. Thus, this work aims at providing for the first time novel experimental data of the gas 

permeation properties of three fluorinated gases that are present in most of the HFO/HFC 

commercial blends that will be employed over the next decades in refrigeration and air 

conditioning systems: difluoromethane (R32), 1,1,1,2-tetrafluoroethane (R134a) and 2,3,3,3-

tetrafluoropropene (R1234yf). Moreover, the permeability of methane (CH4), ethane (C2H6) and 

propene (C3H6), which are the non-fluorinated counterparts of R32, R134a and R1234yf, 

respectively, are also determined in order to assess the influence of hydrocarbon fluorination 

on the gas transport properties. In this study, three different commercial grades of poly(ether-

block-amide), PEBA, were selected as membrane materials. PEBA is a family of copolymers made 

of rigid polyamide (PA) segments that provide the mechanical strength to the polymeric film and 

flexible polyether (PE) blocks, which are the main contributors to the rubbery nature of the 

polymer and the principal gas transport-controlling phase.27 The outstanding properties of pure 

PEBA copolymers and PEBA-based membranes towards the selective separation of condensable 

gases such as CO2 and light hydrocarbons from industrial gaseous mixtures have been 

extensively reported in the literature.28-36 Moreover, the low-pressure gas solubility and 

diffusivity are determined for the most selective membrane in order to gain deeper 
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understanding on the transport behavior of these refrigerant gases. Finally, mixed-gas 

permeation experiments were performed to assess the membrane separation performance 

under real conditions.

Experimental

Materials

Butan-1-ol (99.9%) from VWR, isopropanol (99.6%) and ethanol (99.9%) from Oppac Química 

S.A., and ultra-pure grade water (18.2 MΩ cm, Millipore) were used as solvents for PEBA 

membrane preparation by solvent casting method. Pebax® grades 1074, 1657 and 2533 in 

pellets were kindly provided by Arkema. R134a (99.8%) and R1234yf (99.9%) were supplied by 

Carburos Metálicos (Air Products group) and R32 (99.9%) was supplied by Coproven 

Climatización (Gas Servei licensed supplier). The physical properties of these fluorinated gases 

along with those of the analogous hydrocarbons are shown in Table 1. All physical properties, 

except the dipole moments, were obtained from CoolProp database.

Table 1. Physical properties of the gases studied in this work.

Property R32 R134a R1234yf Methane Ethane Propene
Molecular 
formula CH2F2 C2H2F4 C3H2F4 CH4 C2H6 C3H6

MW (g mol-1) 52.02 102.03 114.04 16.04 30.07 42.08
Vc (cm3 mol-1) 122.4 200.2 238.6 98.96 146.87 182.93
Normal boiling 
point (K) 221.5 247.1 243.6 111.65 184.53 225.59

Tc (K) 351.3 374.2 367.9 190.56 305.41 364.96
Pc (bar) 57.8 40.6 33.8 46.07 48.80 45.92
Acentric factor 0.277 0.327 0.275 0.011 0.099 0.143
Dipole moment 
(D)37 1.978 2.058 2.240 0 0 0.363

Chung 
diameter (Å)38 4.02 4.73 5.02 3.74 4.27 4.59

GWP 100 years 675 1430 4 25 6 2

Table 2 shows the general chemical structure of Pebax® films and the corresponding properties 

of each grade used in this work. One of the most significant properties that has a direct 
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connection with the permeability coefficients of gases through polymers is the so-called 

fractional free volume (FFV) of the polymer. The FFV can be defined, according to Eq. (1), as the 

ratio of the free volume to the observed specific volume:

 (1)𝐹𝐹𝑉 =  
𝑉𝑚 ― 𝑉0

𝑉

where  is the specific volume of the polymer and  is the specific volume of the polymer at 𝑉𝑚 𝑉0

0 K. An estimate of  was proposed by Bondi et al.39, who suggested calculation of the van der 𝑉0

Waals volume ( ) occupied by the repeat units of polymers and postulated that:𝑉𝑊

(2)𝑉0 = 1.3·𝑉𝑊

In this work, the  of Pebax® polymers were calculated using a group contribution 𝑉𝑊

approach,36,40,41 based on the methodology described by Van Krevelen.42 The results are shown 

in Table 2 and compared with available FFV data determined from Positron Annihilation Lifetime 

Spectroscopy (PALS) experiments,43 a powerful tool which provides relevant information of the 

distribution of micro vacancies inside the polymer microstructure.44,45 

Table 2. Physical properties of the Pebax® copolymers used in this work.

Property Pebax® 1074 SP01 Pebax® 1657 MH Pebax® 2533 SA01

Chemical structure

Tg (ºC) -55
(PEO = -67, PA12 = 40)a

-53
(PEO = -67, PA6 = 47)a

-77
(PTMO = -86, PA12 = 40)a

Block ratio:
wt% 55% PEO – 45% PA12 60% PEO – 40% PA6 80% PTMO – 20% PA12

mol% 85% PEO – 15% PA12 79% PEO – 21% PA6 92% PEO – 8% PA12
Density (g cm-3)b 1.07 1.14 1.00

Melting point (ºC)b 158
(PEO = 65; PA12 = 180)a

204
(PEO = 65, PA6 = 215)a

134
(PTMO = 23-28, PA12 = 180)a

Fractional free volume:
Experimental - 0.12543 -

Estimated 0.153 0.143 0.170 (0.172)41

a Data of polymer segments.
b Technical data provided by the supplier.

Membrane preparation 
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The experimental conditions applied to prepare the polymeric films are summarized in Table S1 

as Supporting Information. Around 5 wt% polymer solutions were prepared under magnetic 

stirring and heating. Afterwards, the polymer solution was poured in a glass Petri dish and 

solvent evaporation was performed in a vacuum oven under controlled pressure and 

temperature conditions. The thickness of each membrane was measured with a Mitutoyo digital 

micrometer MDC-25PX (accuracy ± 1 μm), being the average thickness of all prepared 

membranes 80 ± 5 μm. The thermal properties of the films were determined by Differential 

Scanning Calorimetry (DSC Q100, TA Instruments). Samples of 10-15 mg were encapsulated in 

hermetic aluminum pans and subjected to a heating/cooling/heating cycle in the range from -

80 to 220 ºC at a rate of 15 ºC min-1. The thermograms, shown in Figure S1 of the Supporting 

Information, show that the experimental glass transition temperature and melting temperature 

are in very good agreement with available data (see Table 2). In addition, the surface 

morphology and cross-section of the PEBA membranes were observed by scanning electron 

microscopy (SEM, Carl Zeiss EVO MA 15). The samples were prepared by immersing and 

fracturing the membranes in liquid nitrogen, followed by gold thin film deposition using a 

sputter coater (Balzers Union SCD040). The SEM images, provided in Figure S2 as Supporting 

Information, reveal that all membranes were dense homogenous polymeric films without 

evidence of porosity or formation of differentiated layers.

Gas permeability measurements

In this work, the permeability of each gas was determined using an experimental setup designed 

for continuous operation in which the membrane, in flat form, was placed inside a custom-made 

stainless steel permeation cell. During each permeation experiment, the steady state gas 

concentration in the permeate side (swept by an Ar stream at 4 cm3
STP min-1 and 1 bar) was 

measured by gas chromatography (Agilent 490 micro GC). A channel equipped with a Pora Plot 

U column and a thermal conductivity detector permitted detection and quantification of all the 
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fluorinated and hydrocarbon gases studied in this work. Further details regarding the 

experimental setup and measuring procedure can be found in references.46-48 In this work, all 

experiments were performed at 30 ºC with pure gases at several feed pressures in the range 

1.3–5 bar and mixed gases at 1.3 bar. In addition, mixed gas experiments were performed with 

R32/R1234yf and R32/R134a mixtures by ranging inlet concentration of each gas between 25 - 

75% using individual mass flow controllers (Brooks 5850S, 0-100 cm3
STP min-1).

Permeability through the membranes was calculated according to Eq. (3):

(3)𝑃𝑖 =
𝑄𝑖· 𝛿

𝐴· (𝑓𝑅,𝑖 ― 𝑓𝑃,𝑖)

where  is the permeability of gas  through the membrane,  the transmembrane flux of 𝑃𝑖 𝑖 𝑄𝑖

component , calculated as the experimental concentration of each gas in the permeate 𝑖

multiplied by the sweep gas flowrate,  is the membrane thickness,  the membrane area,  𝛿 𝐴 𝑓𝑅,𝑖

and  the fugacity of gas  in the retentate and permeate, respectively. 𝑓𝑃,𝑖 𝑖

The fugacity was calculated using Eq. (4):

(4)𝑓𝑖 = ∅𝑖·𝑝𝑖

where  and  represent the fugacity coefficient and the partial pressure of component , ∅𝑖 𝑝𝑖 𝑖

respectively. The Peng-Robinson equation of state (PR-EoS)49 was used to determine the fugacity 

coefficients as it has demonstrated to estimate accurately the fugacity of fluorinated gases in 

the vapor phase.50 

Low-pressure gas sorption measurements

According to the solution-diffusion model represented by Eq. (5), the permeability of a gas ( ) 𝑃

can be described by the product of a diffusion coefficient ( ) and a solubility coefficient ( ). 𝐷 𝑆

(5)𝑃 = 𝑆·𝐷

In this work, the gas solubility coefficients of the fluorinated gases in Pebax® 1657 polymeric 

films were measured by the pressure decay method51 with a dual volume sorption cell (gas 
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reservoir and sorption chamber). Gas sorption measurements were performed at constant 

temperature and pressure decay was monitored with Gometrics (0-35 bar) and Ruska 7230 (0-

35 bar) pressure sensors. A thorough description of the experimental protocol is reported by 

Tlenkopatchev et al.52 and Garrido et al.53

Gas concentration within the polymer matrix, , was calculated according to Eq. (6) as the 𝐶

difference between the gas molecules initially introduced in the sorption chamber and the gas 

molecules which were not adsorbed after reaching equilibrium conditions:

(6)𝐶 =
22414·𝜌·𝑉

𝑅·𝑇·𝑚 ·(𝑝𝑖

𝑧𝑖
―

𝑝𝑒

𝑧𝑒)
Accordingly, m and ρ are the mass and density of the polymer introduced into the sorption 

chamber, respectively, V is the unoccupied volume of the sorption chamber, R and T are the gas 

constant and absolute temperature, p and z are pressure and compressibility factor of the gas 

and i and e subscripts account for initial and equilibrium conditions, respectively.

At sufficiently low pressures, the Henry’s law accurately describes gas solubility in rubbery 

polymers:

(7)𝐶𝑖 = 𝑘𝐷𝑖·𝑓𝑖

where  is the Henry’s law solubility coefficient. Eventually, considering that  in the low-𝑘𝐷 𝑆 = 𝑘𝐷

pressure range assessed, gas diffusivity can be calculated from the experimental permeability 

and solubility data from Eq. (5).

Results and discussion

Pure gas permeation properties in Pebax®

The permeability coefficients of R32, R134a and R1234yf were obtained for the first time 

through Pebax® membranes (grades 1074, 1657 and 2533). The results are shown in Figure 1 as 

a function of the partial pressure gradient applied across the membrane. Besides, these results 

are summarized in Table S2 of the Supporting Information. In addition, the permeability of 
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11

nitrogen and hydrofluorocarbon selectivity towards nitrogen are also reported in Table S3 as 

Supporting Information.

The effect of pressure on the gas permeability behavior through rubbery polymers may comprise 

different phenomena. Although low-sorbing gases usually exhibit little or no change in 

permeability, highly soluble penetrants plasticize the polymer with increasing pressure, causing 

an increase in the chain spacing and mobility, and therefore, enhancing gas diffusivity and 

permeability. In addition, if solubility increases at high penetrant activity, permeability can 

markedly increase with increasing pressure. On the other hand, an increase in the upstream 

pressure may lead to a more compact membrane with reduced fractional free volume and gas 

diffusivity.54,55 According to the trends observed in Figure 1, the permeability of each penetrant 

tested (R32, R134a and R1234yf) is enhanced with increasing feed pressure as a result of an 

increase in the gas concentration within the polymer chains of the rubbery Pebax® membranes. 

This pressure effect is particularly significant in the case of R134a, which can be related to its 

higher solubility as discussed in the following sections. In this sense, the observed permeability 

behavior is analogue to that of CO2 and light hydrocarbons such as propane, propene and butane 

in Pebax® membranes. For instance, Stern et al.25 observed a mild exponential trend in the 

permeability of vinyl fluoride through polyethylene membranes and Chen et al.56 reported a 

similar effect in the permeation of propene through Pebax® 2533 membranes. Therefore, the 

observed influence of pressure on the permeability of the fluorinated hydrocarbons suggests 

strong polymer-penetrant interactions. In fact, the high dipole moment and condensability of 

the fluorinated gases are two important characteristics that can explain their behavior as strong 

plasticizers of the PEBA copolymers, which contain polar ether linkages (C-O-C) in the polyether 

backbone.30, 34,57

The fluorinated gases exhibit moderate to high permeability coefficients through the Pebax® 

membranes. Particularly, R32 is the most permeable fluorinated gas, whose permeability is 

comparable to that reported by Bernardo et al.29 for CO2, also a condensable gas that exhibits 
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quadrupolar moment. Moreover, the permeability of the fluorinated hydrocarbons follows the 

same order in all Pebax® grades tested, R32 > R134a > R1234yf, which follows the penetrant 

activity trend as discussed in detail in the following sections. Regarding the performance of each 

Pebax® grade, the order of permeability is Pebax® 2533 > Pebax® 1074 > Pebax® 1657, which in 

turn is consistent with the FFV of the polymers, i.e., FFVPebax®2533 (0.169) > FFVPebax®1074 (0.154) > 

FFVPebax®1657 (0.143), and the content of polyether soft segment (see Table 2). Another feature 

related to Pebax® copolymers is that not only the amount of polyether and polyamide blocks 

plays an important role in gas permeation, but also the nature of these blocks has an impact on 

gas permeability. Pebax® 1074 and Pebax® 1657 have similar composition of rigid polyamide 

and soft polyether blocks, but they have different types of polyamide segments: PA6 in Pebax® 

1657 is more polar than PA12 in Pebax® 1074, which results in higher cohesive energy density, 

and hence lower gas diffusion and permeability coefficients through Pebax 1657.30 
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Figure 1.  Permeability of common fluorinated refrigerants R32 (), R134a () and R1234yf 
() through (a) Pebax® 1074, (b) Pebax® 1657 and (c) Pebax® 2533 at several feed pressures 

and 30 ºC. 

Regarding the membrane separation performance, the ideal gas pair selectivity of fluorinated 

gases in each Pebax® grade is plotted in Figure 2 and collected in Table S4 as Supporting 

Information. In all cases, selectivity follows the order R32/R1234yf > R134a/R1234yf > 

R32/R134a. Besides, for every gas pair assessed, the different polymer grades present the 

following selectivity order: Pebax® 1657 > Pebax® 1074 > Pebax® 2533, which is the opposite 

trend followed by the FFV of these copolymers. These results are consistent with the literature 

and demonstrate that the polymer composition has a critical influence on the separation 

performance of Pebax® membranes. In this sense, Pebax® 1657 polymer, which has the highest 
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molar ratio of rigid backbone elements (21 mol% PA6) and the lowest FFV (0.143), exhibits the 

lowest permeability but the highest gas pair selectivity. These results suggest that, in contrast 

to cryogenic distillation, membrane technology can be efficiently employed to separate 

azeotropic refrigerant mixtures into their main constituents. This is especially remarkable for 

HFC/HFO blends such as R32/R1234yf and R134a/R1234yf.

With regards to the influence of pressure on the selectivity, two different trends have been 

noticed. For the gas pairs R32/R1234yf and R32/R134a, selectivity slightly decreases with 

pressure. This effect, linked to plasticization effects that occur when highly soluble gases 

permeate through a rubbery polymer, has already been reported in the literature for gases such 

as CO2, propane and propene, among others. In other words, the diffusion coefficients increase 

and the diffusivity selectivity decreases as the upstream pressure, and therefore, the 

concentration of gas inside the polymeric matrix, increases.58 Conversely, for the gas pair 

R134a/R1234yf, the separation slightly improves as pressure increases. Interestingly, this effect 

is analogue to that previously observed in the separation of highly soluble gases, like 

quadrupolar CO2, from nonpolar gases (N2 and H2) through Pebax® membranes.30,56 Therefore, 

these results suggest that for the gas pair R134a/R1234yf the solubility selectivity offsets the 

decrease in diffusivity selectivity on increasing the upstream pressure. 

Finally, regarding the long term membrane stability under the operating conditions, it is worth 

mentioning that the membranes were tested over several weeks with various gases and 

pressures up to 5 bar without any noticeable loss of performance. This was also confirmed by 

periodically measuring N2 permeability (see Table S3), which was used as reference gas.
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Figure 2. Selectivity of the gas pairs R32/R1234yf (), R134a/R1234yf () and R32/R134a () 
in (a) Pebax® 1074, (b) Pebax® 1657 and (c) Pebax® 2533 at several feed pressures and 30 ºC.

Effect of fluorine substitution 

To gain a deeper understanding of the transport behavior of the fluorinated refrigerant gases 

through the Pebax® polymers, a comparison is performed in Figure 3 between the permeability 

of the fluorinated gases (R32, R134a and R1234yf) and their non-fluorinated hydrocarbon 

analogues (methane, ethane and propene, respectively) in all Pebax® grades (1074, 1657 and 

2533). In this regard, the results reveal that, regardless of the Pebax® grade, the permeability 

coefficients of R32 and R134a are higher than that of methane and ethane, respectively, 
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whereas the permeability of R1234yf is lower than that of propene. These trends can be ascribed 

to the differences between fluorinated hydrocarbons and their non-fluorinated analogues. On 

one hand, the fluorinated gases exhibit much higher electric dipolar moment than the 

hydrocarbons what leads to higher polymer-penetrant interactions (see Table 1). In addition, 

the condensability of the fluorinated gases, frequently expressed in terms of the critical 

temperature or normal boiling point,34,59 is also greater than that of their non-fluorinated 

hydrocarbon analogues, except for propene and R1234yf. Therefore, for the case of propene 

and R1234yf, which exhibit similar critical temperature (see Table 1), the higher permeability of 

propene can be ascribed to its smaller molecular size, as evidenced by the calculated Chung 

diameters.38

In addition, Figure 4 presents the effect of penetrant size in the permeability of fluorinated 

hydrocarbons and their non-fluorinated counterparts. Usually, there is a strong relationship 

between transport properties in both glassy and rubbery polymers and penetrant size or critical 

volume.59 Very interestingly, while the permeability of hydrocarbons increases with the number 

of carbon atoms (  >  > ), the opposite trend is found for the fluorinated 𝑃𝐶3𝐻6 𝑃𝐶2𝐻6 𝑃𝐶𝐻4

hydrocarbons (  >  > ). However, this is not surprising as analogous 𝑃𝑅32 𝑃𝑅134𝑎 𝑃𝑅1234𝑦𝑓

permeability trends have been reported for perfluorocarbons (CF4, C2F6 and C3F8) and their 

hydrocarbon counterparts (CH4, C2H6 and C3H8) in high free volume glassy PTMSP.22,60 This 

behavior can be ascribed to both solubility and mobility effects in the polymer matrix as 

discussed in the next section.
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Figure 3. Permeability of hydrofluorocarbons and analogous hydrocarbons in (a) Pebax® 
1074, (b) Pebax® 1657 and (c) Pebax® 2533 at 30 ºC and 1.3 bar as a function of the number 

of carbon atoms.
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Figure 4. Permeability coefficients in Pebax® 1657 of R32 (□), R134a (○) and R1234yf (∆) and 
their non-fluorinated hydrocarbon analogues methane (), ethane () and propene () as a 
function of critical volume (penetrant size) at 30 ºC and 1.3 bar. Dashed lines are a guide to 

the eye.

Solubility and diffusivity in Pebax® 1657

To deepen the study of fluorinated gas transport in Pebax® films, the solubility and diffusivity 

coefficients of the refrigerants were determined in the polymer grade Pebax® 1657, which 

exhibited the best results in terms of ideal selectivity for all gas pairs. Low-pressure sorption 

measurements were performed and the equilibrium concentration of each gas within the 

polymer matrix is presented in Figure 5 as a function of the penetrant fugacity according to Eq. 

(7). These results are also recorded in Table S5 as Supporting Information. As can be seen, the 

gas concentrations of the three fluorinated hydrocarbons exhibit a linear trend over the low 

pressure range examined, thus the Henry’s law coefficients, , were calculated from the slope 𝑘𝐷

of the corresponding linear least-squares regressions. Accordingly, the Henry’s law constants 

decrease in the order R134a (5.51 cm3
STP cm-3 bar-1) > R32 (4.13 cm3

STP cm-3 bar-1) > R1234yf (1.57 

cm3
STP cm-3 bar-1). These results confirm the trends observed in Figure 1 regarding the influence 
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of pressure on the permeability coefficients, i.e., the most soluble gas, R134a, underwent the 

most marked increase in permeability with increasing pressure, followed by R32 and R1234yf. 

Figure 5. Concentration of R32 (), R134a () and R1234yf () in Pebax® 1657 as a function 
of penetrant fugacity at 30 ºC. Solid lines are the linear least-squares regressions.

Remarkably, it is observed that although R134a is the most condensable and soluble gas, the 

refrigerant R1234yf, which has similar critical temperature and normal boiling point to R134a, 

exhibits the lowest Henry’s law coefficient. In the absence of refrigerant solubility data in other 

polymers, it is interesting to compare the solubility behavior of these refrigerants in solvents 

such as ionic liquids, which have also been explored as entrainers for extractive distillation 

processes of refrigerant blends.61 Noteworthy, an analogous sorption behavior has been 

observed, i.e., the solubility of R32 and R134a in ionic liquids are systematically reported to be 

2-4 times greater than that of R1234y.62-65 Therefore, to further explore the rationale behind 

these results, the condensability differences among penetrants were normalized by calculating 

the activity-basis Henry’s law solubility in terms of the product .22 The results, plotted in 𝑘𝐷𝑝𝑠𝑎𝑡

Figure S3 of the Supporting Information as a function of gas critical volume, show that the 

activity-basis Henry’s law coefficient decreases with increasing critical volume (a variable related 

Page 19 of 36

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



20

to penetrant size), which is consistent with the fact that more energy of mixing is required to 

open larger gaps in the polymer matrix to allocate larger penetrants. These results are analogues 

to those found for perfluorocarbons by Merkel et al.22

Once determined the solubility coefficients, the diffusivity of R32, R134a and R1234yf in Pebax® 

1657 was calculated at 30 ºC and 1.3 bar using Eq. (5). In this case, the results show that 

diffusivity decreases, as expected, with the penetrant size as follows R32 (20.0 x 10-8 cm2 s-1) > 

R134a (6.6 x 10-8 cm2 s-1) > R1234yf (5.2 x 10-8 cm2 s-1). In addition, these results are plotted in 

Figure S4 together with the diffusion coefficients of several permanent gases reported by 

Bernardo et al.29 As expected, a strong correlation between diffusivity and penetrant size is 

observed. In addition, the comparison reveals that the mobility of R32 is lower than that of its 

analogue non-fluorinated hydrocarbon CH4. Consequently, the much higher permeability of R32 

over that of CH4 (see Figure 3) is mainly ascribed to the superior solubility of R32 in Pebax®, 

which is two orders of magnitude higher than that of CH4.29 

Finally, Table 3 shows the solubility and diffusivity selectivity contributions to the 

permselectivity of Pebax® 1657 membranes. Results reveal that for the separation of the gas 

pairs involving R32 the contribution of the diffusivity selectivity to the overall selectivity is higher 

than that of the solubility selectivity, nevertheless, solubility selectivity is also significant for the 

separation R32/R1234yf. This phenomena are in agreement with previous discussion and 

explains why R32/R1234yf and R32/R134a selectivity decreases with increasing pressure due to 

plasticization effects. On the other hand, for the gas pair R134a/R2134yf, the solubility 

selectivity outweighs diffusivity selectivity, thus the decrease in diffusivity selectivity due to 

plasticization effects is much less pronounced and consequently, the permselectivity increases 

with pressure.
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Table 3. Permselectivity, solubility selectivity and diffusivity selectivity of the gas pairs 
R32/R1234yf, R32/R134a and R134a/R1234yf in Pebax® 1657 at 30 ºC and 1.3 bar.

Gas pair Permeability 
selectivity

Solubility
 selectivity

Diffusivity 
selectivity

R32/R1234yf 10.2 2.7 3.9
R32/R134a 2.3 0.8 3.1
R134a/R1234yf 4.5 3.5 1.3

Mixed-gas separation of fluorinated refrigerants

To conclude, we report the mixed-gas permeation data for the gas pairs R32/R1234yf and 

R32/R134a through the highly selective Pebax®1657 films. Unfortunately, the retention times of 

R134a and R1234yf in the GC are coincident and therefore, we cannot assess the mixed-gas 

separation of R134a/R1234yf mixtures. The results are shown in Figure 6 as normalized 

permeability with respect to pure gas data for several mixture compositions. As can be seen, the 

permeability of these gases is not significantly affected under mixed-gas conditions, and 

therefore, both the permeation rate and selectivity remain almost constant in the whole 

composition range. 

These results are very promising and highlight the potential of membrane technology for the 

selective separation and recovery of hydrofluorocarbon gases from the HFC/HFO refrigerant 

blends that are penetrating into the refrigeration market nowadays. The industrial application 

of the membrane separation process requires that the hydrofluorocarbons recovered from end-

of-life equipment be stored into large pressurized tanks, which is a usual operation performed 

in the hydrofluorocarbons waste treatment facilities. These tanks would serve as continuous 

feedstock for the membrane process that would perform the separation in steady-state 

conditions.
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Figure 6. Mixed-gas permeability through Pebax® 1657 at 30 ºC and 1.3 bar: a) R32/R1234yf 

and b) R32/R134a mixtures.

Conclusions

In this work, we evaluate for the first time the feasibility of using membrane technology for the 

selective recovery of fluorinated hydrofluorocarbons that are of highest strategic interest for 

the refrigeration and air conditioning sector. To that end, a comprehensive assessment of the 
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gas permeation properties of the refrigerants R32 (difluoromethane), R134a (1,1,1,2-

tetrafluoroethane) and R1234yf (2,3,3,3-tetrafluoropropene) through several poly(ether-block-

amide) membranes is performed. The highest gas permeability and lowest gas pair selectivity 

were observed in Pebax® grade 2533, which has the highest content in polyether soft segments 

and highest fractional free volume. In contrast, the lowest permeability and highest gas pair 

selectivity correspond to Pebax® 1657, which exhibits the lowest fractional free volume of the 

three grades tested. In any case, pure gas permeabilities are relatively high through these 

rubbery polymers and followed the order R32 > R134a > R1234yf. Moreover, this work 

demonstrates that, in contrast to cryogenic distillation, membrane technology can efficiently 

separate common HFC/HFO azeotropic blends (e.g., R32/R1234yf and R134a/R1234yf) that are 

being incorporated into the refrigeration market to comply with the most recent legislation and 

binding agreements such as the Kigali Amendment. In addition, this work shows that the 

separation performance remained almost constant under mixed-gas conditions. Accordingly, we 

believe that membrane technology is worthy of consideration for the separation of HFC/HFO 

refrigerant blends, thus enabling the recovery of the mixture constituents and minimizing both 

the release to the environment and the production of high global warming potential HFCs.
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Supporting Information

The Supporting Information is available free of charge at:

Experimental details, DSC thermograms, SEM images, gas permeability, selectivity and solubility 

data, and solubility and diffusivity trends with penetrant size.

Nomenclature

 membrane area [cm2]𝐴

 concentration [cm3
STP cm-3]𝐶

 diffusion coefficient [cm2 s-1]𝐷

 fugacity [bar]𝑓

 fractional free volume [-]𝐹𝐹𝑉

 Henry’s law solubility coefficient [cm3
STP cm-3 bar-1]𝑘𝐷

 mass [g]𝑚

 pressure [bar]𝑝

 vapor pressure [bar]𝑝𝑠𝑎𝑡

 permeability [barrer = 7.5 x 10-9 cm3
STP cm cm-2 s-1 bar-1]𝑃

 flow rate [cm3 s-1]𝑄

 gas constant [bar cm3 K-1 mol -1]𝑅

 solubility coefficient [cm3
STP cm-3 bar-1]𝑆

 temperature [K]𝑇

Page 24 of 36

ACS Paragon Plus Environment

ACS Sustainable Chemistry & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



25

 volume [cm3]𝑉

 specific volume [cm3 mol -1]𝑉𝑚

 specific volume at 0 K [cm3 mol -1]𝑉0

 van der Waals volume [cm3 mol -1]𝑉𝑊

 compressibility factor [-]𝑧

Greek letter

 thickness [cm]𝛿

 fugacity coefficient [-]∅

 density [g cm-3]𝜌
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Synopsis

Compact and energy efficient membrane separation processes can be applied to selectively 
recover value added refrigerants from azeotropic HFC/HFO mixtures used nowadays in the 
refrigeration sector, thus enabling refrigerant recycling and minimising powerful greenhouse gas 
emissions.
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