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Abstract: Many well-known algorithms for the color enhancement of hyperspectral measure-
ments in biomedical imaging are based on statistical assumptions that vary greatly with respect
to the proportions of different pixels that appear in a given image, and thus may thwart their
application in a surgical environment. This article attempts to explain why this occurs with
SVD-based enhancement methods, and proposes the separation of spectral enhancement from
analysis. The resulting method, termed affinity-based color enhancement, or ACE for short,
achieves multi- and hyperspectral image coloring and contrast based on current spectral affinity
metrics that can physically relate spectral data to a particular biomarker. This produces tunable,
real-time results which are analogous to the current state-of-the-art algorithms, without suffering
any of their inherent context-dependent limitations. Two applications of this method are shown as
application examples: vein contrast enhancement and high-precision chromophore concentration
estimation.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Color reconstruction of multi- and hyperspectral images (MSI/HSI) is, without a doubt, a mature
field of research. As could be expected, given the vast amount of information contained in HSI
data, translating this inherently physical content into color pictures has always been a fundamental
objective. There are several ways to achieve this, but two are particularly frequent, namely
(1) generating a false-color image from an a priori calculated magnitude and (2) using Color
Matching Functions (CMFs) –as defined by the International Commision on Illumination (CIE)–
on carefully modified spectra so that only some pixels with particular spectral properties turn to a
different color. The origins of both techniques date back to the 1970s [1], and were typically
employed in the analysis of multispectral remote sensing measurements [2–9]. In these methods,
color reconstructions are obtained by integrating spectra with the CMFs, with varying degrees of
success in improving contrast in such representations.
Highlighting abnormal spectral variations within an image has been of particular interest

in the past decade in Biomedical Optics research, and thus much work has been dedicated to
translating these ideas to biomedical images. The main focus of these methods is to make spectral
anomalies significantly more visible in color reconstructions of MSI/HSI images, obtaining an
intuitive, direct visual outlier and anomaly inspection and detection framework. Examples include
changing RGB channels from entropy measures of spectral information to enhance contrast
in gastrointestinal HSI images [10], or extracting sublingual veins from hyperspectral images
[11], as well as vein identification via blending NIR and VisNIR data [12]. However, the most
significant references are the results and findings of M. Mitsui et al. [13] and N. Hashimoto et al.
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[14], in which abnormal variations across different wavelengths can be enhanced or turned into a
different color. This procedure –highlighting or enhancing multispectral image abnormalities
on different wavelengths– provides stunning visual results that implicitly relate to the physical
properties of the biological material being sampled. As a consequence, these methods have
been tested in ex vivo samples of breast tissue tumorectomies [15], palm vein visualization [16],
multispectral images of Hematoxylin-and-Eosin (H&E) stained histological sections [17,18], as
well as in vivo fluorescence-guided surgery in animal models [19]. Other methods, less related to
colorimetry or biomedical optics, use the same methodology as a core component in anomaly
detection for HSI remote sensing images [20], detecting bruises in apples in the Vis-NIR range
[21], or for background segmentation for human detection algorithms using HSI images of the
ocean [22].
In these applications, spectra are arranged in a matrix as column vectors, and Principal

Component Analysis (PCA) is used to find a small set of basis vectors that can explain most
of their variance, under the assumption that high-dimensional spectra actually lay in a low-
dimensional manifold that can be inferred linearly. This effectively serves as a lossy compression
algorithm, in which any spectrum can be specified with a few coordinates. If there are spectral
features that differentiate a particular spectrum from more typical signatures, such features are
exaggerated in the spectrum, producing significant contrast once the image is converted to RGB.
Unfortunately, this procedure is deeply context-dependent, as PCA exploits one well-known

dimensionality reduction method from Linear Algebra, the Singular Value Decomposition (SVD)
of a matrix. The SVD can be understood as an operator with provable uniqueness and, therefore,
in the context of multi- and hyperspectral imaging of malignant tissue in surgical applications,
its exploitation could be problematic. If the SVD provides a different result when provided
different spectra in different amounts, the output singular vectors will not be the same on different
images, and thus the enhancement results cannot be systematically repeatable. Such notions are
mentioned in previous work [9,23], but are not further studied or analyzed. Similar problems
could be faced by other methods that use context information to obtain results, such as ICA [24].
There is, thus, a requirement for a colorimetric enhancement method that only highlights desired
information in a controllable and constrained fashion.
This work attempts to understand the aforementioned issues, and provide an improvement

upon current techniques. First, we must describe the theoretical context and framework for
hyperspectral enhancement as a spectral anomaly enhancement method, and provide proofs and
examples that explain the fundamental issues shown in our experiments. Second, we propose a
solution which uses a much simpler color enhancement framework, supported by a set of affinity
or similarity functions that will provide the same results independently from the context of the
image. We then define tunable contrast, gain and threshold parameters for color enhancement of
any particular affinity function, having in mind its use in a fast-paced, timely surgical environment.
Many state-of-the-art spectral optical quantification and classification algorithms could exploit
the proposed method and enhance images in real time, so two applications (vein visualization
and chromophore quantification) are presented. These novel solutions cannot be approached
by the previously described enhancement methods, ensuring the practical applicability of the
proposed methodology in a clinical setting.

2. Materials and methods

2.1. Imaging equipment, preprocessing and reflectance calculations

The imaging system used for hyperspectral image capture is a custom-built hyperspectral scanning
system, with an embedded computer for storage and control [25]. A general description is left
in Table 1. Its fundamental optical components are an ImSpector V10E spectrograph (Specim,
Spectral Imaging Ltd., Finland) paired with a generic C-mount objective lens and CMOS (Mako
G-223B NIR, Allied Vision Technologies GmbH., Germany). Hot pixels due to long exposure
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times were corrected via dark image substraction as well as a spatial median filter of size 2.
In order to obtain reflectance images, each measurement was calibrated with a white reference
image at the same distance and lighting conditions. Reflectance R(λ), therefore, was calculated
with the well-known equation

R(λ) =
Is(λ) − Ibg(λ)
Iw(λ) − Ibg(λ)

, (1)

where Is(λ) is the sample intensity measurement, Iw(λ) is a white reference image under
identical illumination conditions, and Ibg is the background intensity due to hot pixels in
the sensor. Throughout the manuscript, we will only employ reflectance images, where this
calibration operation is performed, compensating for light source variability. Wavelength
calibration was achieved through linear least-squares on a set of 3 known absorption peaks from
a Spectralon Wavelength Calibration Standard (WCS), namely WCS-MC-020 (Labsphere, Inc.
New Hampshire, USA) [26]. Relevant specifications of the imaging system are left in Table 1.

Table 1. Specifications of the custom-built imaging instrument.

Specification Value

Wavelength range 400-1000 nm

Spectral resolution 218 (5 px, 3 nm per channel)

Exposure range 1-1000 ms

Resolution (max.) 1200×1200 (1.44MP)

Steps per mirror revolution 19200

Rotation range π/8 rad (45◦)

Focusing optics 5–50 mm, f/1.3, var. aperture and zoom

Field of View (min) 7 × 7 cm (aprox.)

Depth of Field variable, max. @ 20 cm

Signal to Noise Ratio (SNR) up to 30 dB

Camera Gain variable, 0–25 dB

Intensity distortions due to microstepping <10% per pixel

Efficiency @ 8 bits, 100ms 75%

USAF 1951 best resolved distance 0.5 mm at 35 cm distance

2.2. Color reconstruction

Spectra will be transformed into RGB images by using well-known methods in colorimetry. More
specifically, we will use CIE 1931 Standard Observer Color Matching Functions (CMFs), which
describe retinal perception of color as the sum of three stimuli. Given a sampled spectrum r ∈ Rl,
with l being the number of sampled channels and/or wavelengths, the CIE 1931 tristimulus values
(X,Y ,Z) can be approximated by Riemannian sums as follows [27]:

X ≈ k (r � s) x̄T∆λ, Y ≈ k (r � s) ȳT∆λ, Z ≈ k (r � s) z̄T∆λ, (2)

where r = (r1, . . . , rl)T is the reflectance vector, s = (s1, . . . , sl)T is the power spectral density
of a CIE standard light source, x̄, ȳ, z̄ ∈ Rl are the CMFs for a secondary light source as the
colorimetric stimulus, i.e. the dot product φ = r � s, and finally ∆λ is the spectral resolution.
Finally, k is a normalization constant, which for secondary light sources is defined as

k =
100∑l

i=1 siȳi∆λ
. (3)

Conversion from XYZ to RGB space was achieved with skimage.color, a Python 3 library.
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2.3. Existing enhancement methods

A brief description of the algorithms that exploit PCA/SVD should be included. In particular, we
will address the methods in [13] and [14,28] for multispectral enhancement. Both algorithms
treat spectra in the same fashion. For the following discussion, let us arrange our n spectra as
column vectors in a matrix R ∈ Rl×n, i.e. R = (r1, . . . , rn)T , where ri corresponds to a single
spectrum, with l channels (or sample wavelengths) in total. For a single spectrum ri, its enhanced
spectrum is calculated via

re,i = W(ri − si) + ri, (4)

where W ∈ Rl×l is defined as the enhancement matrix, ri is the original pixel, and si is an m-rank
approximation of spectrum ri, namely

si =
m∑
j=1

αi,juj + r̄, (5)

and here {uj} are the left singular vectors of matrix R, αi,j = 〈ri − r̄, uj〉 is the projection of ri − r̄
onto the j-th left singular vector, and r̄ = 1

N
∑n

i=1 ri is the average spectrum. It is possible to
rewrite these methods, understanding that we are in fact assuming that every spectrum can be
expressed as the sum of four values, namely

ri = si + di + r̄ + ni =
©«

m∑
j=1

αi,juj
ª®¬ + ©«

rank(R)∑
j=m+1

αi,juj
ª®¬ + r̄ + ni, (6)

being si the m-rank approximation of spectrum ri, di = ri − si is our desired vector of differences
among spectra that we (ideally) wish to highlight, and ni is additive gaussian noise (r̄ is still the
average spectrum).

The methods differ, therefore, by choosingW wisely, resulting in different enhancement images.
Mitsui et al.’s method [13] has the objective of highlighting uncommon variations of spectra
with respect to the average spectrum and to its m-rank approximation, and then exaggerating
those differences selectively, depending on the wavelength we wish to enhance. In particular, W
is a diagonal matrix with all of its entries set to zero except for a single channel: W = diag(w),
{wi} = 0,∀i , q, and wq = k ∈ R+. The term k usually receives the name of enhancement gain.
Hashimoto et al.’s method [14], on the other hand, adds color to the spectrum as a function
of this same residual variation, and therefore chooses to create W as a set of column vectors,
W = (w1, . . . ,wl), where every column is a vector of zeroes {wi} = 0, except for the qth channel,
the channel whose variation we wish to highlight: wq = k · c, and here c ∈ Rl is a particular
desired color, synthesized in the wavelengths described by the l channels. Variable k is still the
enhancement gain, a positive real number.

2.4. Singular value decomposition of a matrix

The Singular Value Decomposition of a matrix A ∈ Rm×n is the factorization

A = UΣVT , (7)

where the orthogonal column vectors in U = (u1, . . . , ur)T are known as the left singular vectors
of A, Σ = diag(σ1, . . . ,σr) is a diagonal matrix whose main diagonal values are called A’s
singular values, and V = (v1, . . . , vr)T are its right singular vectors. Finally, r = rank(A) is the
rank of the matrix. The SVD is used in many classification problems as a means of dimensionality
reduction of large vectors. This is due to the fact that the SVD can be understood as a lossy
compression algorithm, where Ãk = UkΣkVT

k with Uk = (u1, . . . , uk)T , Σk = diag(σ1, . . . ,σk),
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Vk = (v1, . . . , vk)T , and k � r, is known as the k-rank approximation ofmatrixA, an approximation
with a known theoretical error [29], namely

A − Ãk

F = σk+1.

Another way of understanding the SVD of amatrix is by describing it as a quadratic optimization
problem. The following definitions will be helpful in the coming sections:
Definition 1 (First singular value of a matrix as an optimization problem) The first left

singular vector of matrix A ∈ Rm×n, u1, is the solution of the following optimization problem:

maximize
u

uTA
F ,

subjectto uTu = 1,

and its corresponding singular value and right singular vector are defined by

σ1(A) =
uT1A , (8)

v1 =
1

σ1(A)
uT1A. (9)

This first definition simply states that the first left singular vector is the only vector with
unit norm that is most ’similar’ (in terms of dot product magnitude) to all the column vectors
in the matrix. In statistical terms, this is equivalent to finding the first vector that maximizes
the explained variance with respect to all the columns in A (or, alternatively, the vector that
explains most columns of covariance matrix ATA). In other words, u1 is the vector that best
explains the columns in A with the smallest possible error. The error in this approximation isA − Ã1


F =

A − u1σ1vT1

F = σ2, i.e. the next singular value.

Definition 2 (Singular values of a matrix as an optimization problem) The i-th left singular
vector of matrix A ∈ Rm×n, ui, i = 2, . . . , rank(A), can be obtained recursively:

maximize
u

uT (A − Bk)

F ,

subjectto uTu = 1,

where

Bk =

i−1∑
k=1

ukσkvTk ,

and its corresponding singular value and right singular vector are, respectively,

σi(A) =
uTi A ,

vi =
1

σi(A)
uTi (A − Bk).

The proof of these two statements are left in [30]. Once described in this manner, the SVD of
A can be calculated. The solution, A = UΣVT , has a set of properties that are certainly appealing,
due to the fact that the most frequent and relevant features can be seen in the first singular vectors.
Unfortunately, these definitions are rather obscure which, combined with the visible features in
the output of the numerical methods, may suggest assuming that a specific singular vector is
associated with a specific feature, or that for every A the number of singular vectors needed to
explain all the variance is always the same. Both of these assumptions are easily refuted by the
following theorem:
Theorem 1 (Uniqueness of the SVD of a matrix) Every matrix A ∈ Cm×n has a singular

value decomposition. Its singular values {σj} are uniquely determined and, if A is square and
the σj are distinct, the left and right singular vectors {uj} and {vj} are uniquely determined up to
complex signs.
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The proof of this theorem is left in the Refs. [29–31], is sufficient to reject methods that use
the SVD in a case-by-case basis, and is well beyond the scope of this article. Despite this fact, it
can be insightful to find some example problems and study their properties, in order to improve
our understanding of the effects that the magnitude and frequency of appearance of measured
spectra produce on the output of the SVD.

2.5. Understanding why the SVD is context-dependent

The following exercise shows how PCA/SVD provides different results depending on how
well-balanced the input dataset is. We will work with a matrix A with specific properties in their
columns, and will show what is returned by the SVD by obtaining its singular vectors and values
by hand. Measured spectra will be represented by column vectors in a matrix. This example will
consist of a matrix with three different types of spectra repeated over the columns.
Proposition 1 Let α, β, γ ∈ N − {0}, and let a1, a2, a3 ∈ Rn be three column vectors such thatai × aj , 0, 〈ai, aj〉>0 ,∀i , j. Let matrix A ∈ Rm×n be a matrix with the following structure:

A = (a1, . . . , a1︸      ︷︷      ︸
α

| a2, . . . , a2︸      ︷︷      ︸
β

| a3, . . . , a3︸      ︷︷      ︸
γ

). (10)

The left singular vectors u1, u2, u3 ∈ Rn of matrix A are:

u1 =
αa1 + βa2 + γa3
‖αa1 + βa2 + γa3‖

, u2 =
αb1 + βb2 + γb3
‖αb1 + βb2 + γb3‖

, u3 =
αc1 + βc2 + γc3
‖αc1 + βc2 + γc3‖

,

with
bj = aj − u1uT1aj, j = 1, 2, 3.
cj = aj − u1uT1aj − u1u

T
2aj, j = 1, 2, 3.

Proof. We only need to rewrite the optimization problem from Definition 1 by introducing our
new description for A. By using Lagrange multipliers, the optimization problem becomes

maximize
u

L(u, λ) = α(uTa1)2 + β(uTa2)2 + γ(uTa3)2 − λuTu, (11)

and its solution can be found by means of the gradient

∇uL(u, λ) = 2α(uTa1)a1 + 2β(uTa2)a2 + 2γ(uTa3) − 2λu = 0 (12)

or, equivalently, solving the eigenvalue problem(
α

(
a1aT1

)
+ β

(
a2aT2

)
+ γ

(
a3aT3

))
u = Q1u = λu (13)

which, given that rank(Q1) = 1 and that Q1 = (αa1 + βa2 + γa3)(αa1 + βa2 + γa3)T , implies
that the only possible solution is (αa1 + βa2 + γa3) with multiplicity 1:

u1 =
αa1 + βa2 + γa3
‖αa1 + βa2 + γa3‖

. (14)

The subsequent singular vectors can be obtained by applying Definition 2 directly. For the second
singular vector, the problem can be rewritten, noting that u1σ1vT1 = u1uT1A by virtue of Eq. (9), as

maximize
u

uT (I − u1uT1 )A2
F ,

subject to uTu = 1,
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which, given the properties of A, allows us to write

maximize
u

L(u, λ) = α(uTb1)2 + β(uTb2)2 + γ(uTb3)2 − λuTu, (15)

via the following change of variable:

b1 = a1 − u1uT1a1, b2 = a2 − u1uT1a2, b3 = a3 − u1uT1a3.

The solution is, again, solving the eigenvalue problem(
α

(
b1bT1

)
+ β

(
b2bT2

)
+ γ

(
b3bT3

))
u = Q2u = λu. (16)

Therefore, the solution for the second left singular vector u2 is analogous to the second one,
namely

u2 =
αb1 + βb2 + γb3
‖αb1 + βb2 + γb3‖

. (17)

The rest of the singular vectors up to ur with r = rank(A) can be obtained by induction and using
the same change of variable. �

In summary, when applying the SVD to a set of spectra belonging to three similar (yet different)
categories, the first singular vector (the vector that explains most spectra) will be near identical
to the most frequent spectrum. The second singular vector will be similar to the most typical
column in A, after subtracting what was explained by the first singular vector. This goes on
recursively until there is no information to explain. Additionally, if vectors are proportional to
one another, we will find similar undesired relationships.
A practical example of Proposition 1 is shown in Fig. 1. Each row represents a different

selection of column vectors for A. The leftmost subfigure in each row shows the column vectors
that compose a given matrix. The amount of column vectors of each type in the matrix are
described in the legend. The other three plots show the first, second, and third left singular vectors,
respectively, of a matrix with such composition. The blue and green plots in each subfigure
represent the results obtained numerically via numpy.linalg.svd(), i.e. ±ui, due to the
fact that the numerical method outputs each basis vector with sign indeterminacy. The black,
dotted plot that is plotted over either +ui or −ui is the theoretical solution given by Proposition
1. For this example, we have used a = 0.5(1 + cos(2π(0.1)x)), b = 0.5 cos(2π(0.35)x), and
c = 1

σ
√
2π
e−

1
2 (

x−µ
σ )

2
with µ = −4 and σ = 4 as a small Gaussian peak anomaly in the ’spectra’.

For the first hypothesis (first row of the figure), α = β = γ = 50 will be used, with a1 = a,
a2 = a + b, and a3 = a + b + c. Since all three vectors cannot be expressed as a sum of the
other two, rank(A) = 3. As expected, u1 is more similar to a, then u2 is more similar to b, and
finally u3 is more similar to c. The second row shows a different hypothesis, where a1 = a2 = a
and a3 = a + c. Here, rank(A) = 2, and u1 is mostly similar (dot product-wise) to a, while u2
tends to look like c. The third left singular vector, both in the theoretical and numerical case,
just represents quantization noise due to using double floating point precision, not representing
anything significant (as expected).

In the context of image enhancement, we must assume some value of m in Eq. (6). Information
given by the first m singular values will be discarded, and the variations among spectra beyond
those vectors will be amplified. The values showcased by the first m singular values will be
representative of the most frequent, most common spectra, and this result will certainly vary
across hyperspectral images. The differences we will enhance, therefore, may be obscured
partially or completely, depending on the image we are working with:

• Ifm is exactly right, then si ≈ ri−(di+ni), and we will be amplifying exactly the differences
we wish to observe: re,i = W(ri − si) + ri ≈ W(di + ni) + ri ≈ Wdi + ri.
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Fig. 1. Testing the proposition empirically with some sample spectra. Top row: case with
α = β = γ = 50, a1 = a, a2 = a + b and a3 = a + b + c; from left to right: example ’spectra’
used to generate the matrix and number of column vectors per class, and first, second and
third singular vectors, respectively, obtained numerically (in color) and theoretically (in
black dotted line). Bottom row: case with α = β = γ = 50, a1 = a2 = a, a3 = a + c. Curves
a, b, and c are defined in Section 2.5.

• If m is lower than necessary, then limm→1(si) = ri − (r′i + di + ni), where r
′
i is information

that is common to a large number of spectra, thus obtaining a suboptimal enhancement,
that is re,i = W(ri− si)+ ri ≈ W(r′i +di+ni)+ ri ≈ W(r′i +di)+ ri, where r

′
i will be common

amongst large amounts of spectra, and thus contrast will be lost.

• Finally, if m is too large, then limm→n− (si) = ri − ni and, then, we will only be amplifying
noise: re,i = W(ri − si) + ri → W(ri − ri + ni) + ri = Wni + ri.

2.6. Affinity-based color enhancement (ACE)

If we rearrange a hyperspectral image as amatrixAwith its columns corresponding to hyperspectral
pixels, the result obtained through the SVD is certainly dependent of the types of spectra that
are present in the image. When working in a surgical environment, with constant artifacts and
objects appearing and disappearing from the field of view, any enhancement method that exploits
the SVD of data has the risk of either compromising image contrast, or producing unwanted
enhancement results, depending on the types of spectra present in the image.
To overcome this problem, we must modify the response of the CIE CMF functions in a

consistent and systematic way. The following method can produce the same results shown
in state-of-the-art work, by separating diagnosis-related calculations from color enhancement.
The only restriction is that the analytical calculation must highlight the same type of spectral
responses, regardless of what is present in the image.
The proposed novel framework is summarized in Fig. 2. From now on, we will refer to

references as vectors that resemble a specific spectral signature of interest, w ∈ Rl. From a
practical standpoint, for example, we could study oxy- and deoxyhaemoglobin, fat, or water
extinction coefficients, sampled at l different wavelengths. Secondly, we will use the name
spectral affinity or spectral similarity for any mapping that compares two vectors of the same
type (a : Rl × Rl → R), or any mapping that provides some type of measure as a function of
the type of spectrum and some internal parameters (a : (Rl, θ) → R). When an affinity function
outputs high values when comparing two spectra, we will consider those spectra as similar.
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Fig. 2. Proposal for the separation of affinity from color enhancement.

A method that exploits this separation between affinity functions and spectral enhancement
will be in effect a type of affinity-based color enhancement algorithm (ACE). An ACE method
combines a case-specific affinity metric, with a fully-customizable color enhancement method.
This adds flexibility as well as reliability to the procedure, since there may be a multitude of
affinity metrics that are not context dependent, which can now be used. For the following
examples, we will consider that there exists an affinity function that generates an affinity value
ai = a(ri) for every spectrum, thus providing an affinity map {ai}. For this manuscript, we
propose the following spectral enhancement function:

re,i = ri (1 + K · ce · tanh (k (âi + b))) , (18)

where re,i is the enhanced output, ri is the original spectrum, K will be is the enhancement gain
of the method, ce is the desired output color of the enhancement, tanh(.) is the hyperbolic tangent
function, k is a contrast gain, b is a threshold value, and âi is the affinity measure value of the
spectrum when all the spectra are normalized in the range [0, 1], namely âi = ai−amin

amax−amin
. The

values amin and amax should be known beforehand, by selecting an appropriate affinity metric.

2.7. Affinity metrics

The final enhancement operation should be performed with an appropriate affinity map containing
the diagnostic and/or quantification information we wish to highlight. The following methods
provide a bounded scalar result obtained from different types of input vector data. These methods
are well known and already used in various specific classification tasks, and could be used to
provide a useful affinity map for the ACE method.
Spectral Angle Mapper (SAM) Given a reference spectrum w ∈ Rn, the affinity of any

spectrum ri with w can be calculated by the dot product ai = wrTi . Since wr
T
i is the cosine of the

angle between these two vectors, this function is bounded (ai ∈ [0, 1]) [32].
Nonparametric kernel density estimation (KDE). Kernel density estimation attempts to

infer the probability density function (PDF) of an arbitrary multivariate distribution from a series
of sample vectors w1, . . . ,wN ∈ R

n, which act as a Ref. [33].
Neural networks This will be our preferred method, since it is rather flexible when compared

to other procedures. A typical neural network with a sigmoid output layer is typically the best for
extracting a smooth probability map. Instead of working with binary classification, the response
of each output neuron can be used to encode color at various wavelengths and intensities.

• For the vein enhancement example, a 6 × 100 ELU feedforward network is prepared, with
a 281 × 1 input layer and a sigmoidal 3 × 1 output layer. The three classes to classify
are Background, Skin and Veins. A total of 600 spectra were manually picked, using an
850-nm reflectance image as reference, and the network is tested for the rest of the data
and other images.
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• In the case of chromophore concentration estimations, another 6 × 100 ELU feedforward
network is trained. This network has also a 281 × 1 input layer, but a 8 × 1 sigmoid output
layer. The concentration ci for a given spectrum is easily interpolated from the output layer
of the network via a simple expression, namely

ci =
7∑
i=0

ŷi ∗
(
i
10

)
, (19)

with ŷ0, . . . , ŷ7 being each of the output neurons, which will be trained to fire to detect
red ink concentrations of 0%, . . . , 70%, respectively. If we seek a specific objective
concentration cobj, then an affinity metric for a concentration estimate can be

ai,concentration = σ
(
− log10

(
h2

(
ci − cobj

)2)) , (20)

where σ(.) is the sigmoid function σ(x) = 1/(1 + e−x), and h ∈ R+ serves as an affinity
bandwidth, narrowing the allowed distances that can be considered proximal to the
objective concentration cobj (the higher h is, the closer the concentration must be to cobj to
be considered similar). This function is bounded (ai ∈ [0, 1]) and thus will be useful for
concentration detection.

3. Results and discussion

The following experiments have been carried out to show the sensitivity of the SVD to changes
in the input image, and its effect on typical color enhancement, as well as to showcase the
enhancement capabilities of the ACE method. Once we show the context-dependent variability of
using PCA/SVD for analysis, we provide some example uses of ACE that, unfortunately, cannot
be implemented with merely enhancing the differences that remain past the first singular vectors.

3.1. Susceptibility of current methods to changes in the environment

To compare the performance of current methodology against ACE, we have chosen to replicate
the results in vein enhancement that exploited PCA [14,16,28], and then force the method to
fail by changing the background. Given the considerations in Section 2.5, we can hypothesize
that, by changing the background color of an HSI image of a hand, spectral enhancement will
be worsened when the background is most similar to the diffuse spectral response of veins, and
amplified when it is as different to vein diffuse spectra as possible.

Such susceptibility is exactly what was found in the experiments. Figure 3 shows the behavior
of current enhancement methods for vein visualization and enhancement as a function of m, i.e.
the number of left singular vectors that are ignored in the enhancement. This result was obtained
with K = 30 and enhancing in the 600 − 620 nanometer wavelength range. As expected, the
value of m that enhances the veins varies depending on the background color. Given a black
background (first row), the first enhanced features are the shadows within the fingers; then, veins
are enhanced as blue. Deep veins will appear blue due to the strong scattering properties of skin,
and thus this feature is enhanced, as it is the least frequent of the four present (skin, background,
shadows, and veins). With a blue background, blue spectra is not considered as rare, and is
explained by the first left singular vectors, hindering vein contrast as m increases. Furthermore,
areas that typically present more oxygenated hemoglobin content, such as the fingertips, are
enhanced instead. Finally, given a red background, bluish spectra is the least frequent type of
signature, and thus anything with properties akin to blue spectra will be enhanced, also losing
contrast.
While this sort of behavior is not necessarily fundamentally flawed (this is the expected

behavior of the algorithm), for in vivo imaging this implies that contrast will fluctuate as different
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Fig. 3. Hyperspectral enhancement methods that use PCA/SVD can be affected by changes
in background spectra. Each row represents an increase in m, the amount of left singular
vectors ignored for enhancement, for a hyperspectral image of a hand with three different
colored backgrounds. In the case of a blue background, deep veins (which have a blue
scattering signature) cannot be enhanced adequately.

sorts of spectra are presented to the camera in various proportions. For example, in the case of
margin delineation, tumors may be accentuated if surrounded by adipose tissue, or darkened if
surrounded by normal or connective tissue (adipose and normal tissue can present lower and
higher scattering coefficients and average reflectance than malignant tissue, respectively) [15,34].
These inconsistencies may be problematic in a clinical setting, explaining the motivation behind
this desired improvement, and providing an insight on how these techniques cannot be exploited
for specific applications unless the dependency with the SVD is avoided.

3.2. Vein visualization and enhancement

Once we have observed how traditional methods are susceptible to changes unrelated to the
task at hand, we must repeat the experiment with the proposed methodology. Figure 4 shows
how ACE can be applied to vein visualization, showing its resilience against changes in context,
background, and illumination. Note that this example is only shown for illustrative purposes
but, to avoid overfitting, dropout with p = 0.1 probability was also introduced. In Fig. 4.(a), the
points from the first image used to train the model are shown. The affinity function that produces
each of the presented maps is ŷ2 − ŷ1, that is, subtracting the output unit value for skin from the
output unit for vein spectra, for each of the spectra presented to the network. This forces the
affinity map range to take values within [−1, 1], which is then normalized to [0, 1].
The network never sees the other two images (blue and red background) during training, yet

is able to highlight the same veins that could be seen at 850 nm in the image with a black
background. Although the background is slightly modified due to the enhancement process, the
technique does not show variability on skin and/or vein regions. For the cases shown in Fig. 4(e)
through (g), the parameter values were K = −5.0, k = 0.75, b = −0.75. Setting K = −5 implies
reducing brightness to the veins, k = 0.75 was chosen to avoid a very abrupt change in color, and
b = −0.75 signifies that approximately the upper quartile of the affinity map will be enhanced.
These parameters were manually tuned to get the desired result. The selected enhancement
color is a positive constant for the first 100 wavelengths (equal to one), thus producing a general
darkening of the vein regions, replicating the images in the near infrared while still including
color information.
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Fig. 4. An example of context-resilient vein enhancement using ACE. Using the 850 nm
response (a) of the hand as reference, a series of background, skin, and vein spectra are
collected (b). A network trained with these samples provides an affinity map (c) that can be
used to enhance the original RGB reconstruction (d) and provide a vein map via ACE (e–g).

In order to test the flexibility of the presented method, various values of K, k, and b are also
shown (Fig. 5), as well as the enhancement wavelength. Being able to change not only gain K,
but also contrast gain k and thresholding value b, as well as the output enhancement wavelength,
provides a rather simple 4-parameter method that can be modified in real time during surgery.
Compared to other similar methods [11,12,16], our technique allows for vein visualization
regardless of the background data, and with no motion artifacts due to capturing Vis and NIR
images separately. The method can be deployed to any HSI system, no matter the configuration.
Furthermore, the neural network that performs the vein detection method could be better trained
to be resilient to noise, absorption and scattering-based artifacts, or skin pigmentation, without
requiring any further changes in the algorithm or the imaging system.

3.3. Chromophore concentration estimation

Now that we have a method that is resilient to changes in the background, we can test out other
applications that cannot be solved with unsupervised color enhancement. This example shows an
application of ACE in the area of optical property and chromophore concentration estimation.
The experiment shown in Figs. 6 and 7 consists of a series of liquid phantoms prepared with
mixtures of 10% Intralipid and red ink. More specifically, 0%, 10%, 20%, 30%, 40%, 50%, 60%,
and 70% ink-to-Intralipid concentration ratios were obtained. Two phantoms per concentration
ratio were prepared for training the network (lowest two rows of phantoms), and a validation set
of 8 phantoms was obtained as well (top row, one phantom per concentration).
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Fig. 5. Testing the four ACE parameters: enhancement gain K (first row), enhancement
contrast k (second row), enhancement threshold b (third row) and enhancement wavelength
color ce (bottom row). Affinity-based enhancement provides a framework that can replicate
the results of state-of-the-art methods, but without depending on the SVD.

Fig. 6. Generating an affinity metric for precise chromophore quantification. A series of
liquid phantoms with known concentrations are prepared (a); the dataset is divided into
training (marked with a T) and validation (marked with a V) sets (b). The network outputs a
complete concentration estimation map (c) which can be quantitatively evaluated (d). Once
the concentration estimates are deemed accurate enough, the metrics devised in Section
2. allow for full control of the distance to a specific concentration (in this case, 40%) by
varying the affinity bandwidth (e). This metric can now be used for ACE for any specific
chromophore concentration.
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Fig. 7. Hyperspectral enhancement for materials presenting a 40% red ink concentration.
Affinity bandwidth is set to h = 30. Left and center columns show the result of varying
enhancement gain and enhancement contrast, respectively. The right column provides a
selection of enhancement colors. For the two left columns, the baseline was K = 5.0, k = 0.2,
b = −0.4, and ce = 1 for the first 50 of the 218 channels (380 to 450 nm), and zero for all the
other channels. For the right column, K = 20.0, and 30 channels (90 nm) are set to 1 in ce;
the center enhancement wavelength is specified in each image.

Subplots in Fig. 6(a) and (b) show a color reconstruction of the phantoms, and the manually
selected circular regions of interest (ROIs), respectively. In Fig. 6(c), the concentration estimates
given by the trained neural network are presented. Validation of the estimator is shown in 6(d).
Finally, (e) shows how affinity contrast can be controlled via Eq. (20). In this example, the
tolerance of what can be considered a reflectance similar to 40% concentration is tuned, by
varying h (the affinity bandwidth). The higher h is, the more stringent the affinity function
becomes.
Once a functional affinity function is found, then hyperspectral enhancement can take place.

Figure 7 shows the result of enhancing the 40% concentration estimates given by the affinity
function. The first column shows a variation in enhancement gain K, and the second presents
the response of the CMFs to enhancement contrast k. The third column shows how the output
enhancement color can be selected at every specific value of the visible electromagnetic spectrum.
If more than one fluorophore is utilized in guided surgery, for example, this tool may allow for
the selection of the desired enhancement wavelengths and output colors, perhaps improving the
existing contrast already provided by the fluorescent substances.
Diagnostic-based contrast control shows potential applicability with other optical methods,

such as fluorescence-guided surgery, SFDI/SSOP or qF-SSOP, as long as the methods can
provide an affinity metric that is specific to the problem at hand (e.g., tissue oxygenation, burn
severity, vasculature functionality, optical properties, fluorophore concentration, and fluorophore
bleaching, among others) [35,36]. This type of control can be adjusted as shown, depending
on the type of surgery being performed. Ideally, with an adequate optical property estimation
system, the color reconstruction could be enhanced in real time by ACE, depending on the exact
information that we wished to observe.
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4. Conclusion

In this work, the main concerns regarding the sensitivity to changes of current hyperspectral
enhancement methods have been addressed, and a solution inspired in their original formulation
is proposed. With a series of adequate affinity functions, the current state-of-the-art methods can
be improved in terms of consistency and repeatability.

The method, herein termed affinity-based color enhancement, or ACE for short, separates the
similarity metric from the enhancement process. Results shown in this manuscript only apply
the method two particular examples, namely chromophore quantification or detection and vein
enhancement, but the possible uses of ACE are only bounded by the affinity metrics that can be
found for a specific problem, and by whether or not a color reconstruction is desired.
Separating analysis from representation achieves three different objectives. First, the affinity

function can be chosen from a series of possible candidates, and the most optimal for the specific
task can be used with no loss of applicability. Second, it enables the usage of hardware-accelerated
software, providing a promising potential for real-time applications of hyperspectral enhancement
techniques. Third, and final, it provides a framework that may allow clinicians and/or surgeons to
control how visualization is carried out, and maybe help them improve their performance in the
operating room.
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