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Population size estimation is essential in ecology and conservation studies. Aerial pho-
tography can facilitate this laborious task with high resolution images. However, in 
images with thousands of individuals exhaustive manual counting is tedious, slow 
and difficult to verify. Computer vision software may work under some particular 
conditions but they are generally biased and known to fail in several situations. The 
CountEm software is a simple alternative based on geometric sampling. It provides a 
fast and unbiased size estimation for all sorts of populations. The only requirement 
is that the discrete objects (e.g. animals) in the target population are unambiguously 
distinguishable for counting in a still image. Typical relative standard errors in the 
5–10% range are obtained after counting ~200 properly sampled animals in about 
5 min irrespective of population size. The CountEm ver. 1.4.1 is presented here, which 
includes a guided mode with a simple software interface.

Keywords: CountEm, geometric sampling, population monitoring, population size 
estimation, quadrats, wildlife management

Introduction

Population size estimation is fundamental to wildlife management, ecology or envi-
ronmental science, but it is a challenging task in many cases. Traditional field methods 
can be expensive, biased and labor intensive, particularly in large and hard to access 
areas (Hollings et al. 2018). Alternative methods based on imagery have been gaining 
ground over the last decades (Hodgson et al. 2018, Lyons et al. 2019). Exhaustive man-
ual counting on images (Kadlec and Drury 1968, Leonard and Fish 1974, Löffler and 
Margules 1980, Chabot et al. 2015) is the simplest among these methods. Some soft-
ware packages have been developed to facilitate manual photo counts (Schneider et al. 
2012, Gerum et al. 2017) but they are still time-consuming, observer dependent and 
difficult to verify for populations above a few thousands (Hollings et al. 2018). There 
have been major advances over the past three decades in population size estimation 
with automated computer vision software, such as Descamps et al. (2011) and refer-
ences in Chabot and Francis (2016), Hollings et al. (2018). These methods can work 
in some particular cases with regular, or non-overlapping patterns on homogeneous 
backgrounds. However, they may perform poorly in more complex situations or in 
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multispecies detection, and are generally biased to unknown 
degree (Chabot and Francis 2016, Hollings et al. 2018).

The CountEm ver. 1.4.1 software, which is freely 
available at < http://countem.unican.es > under a free-
ware license, is presented here. The CountEm method 
(Cruz  et  al. 2015, Cruz and González-Villa 2018, 2019) 
offers an unbiased population size estimation based on an 
alternative approach, namely geometric sampling (Howard 
and Reed 2005, Cruz-Orive 2017). Similar software has 
previously been developed for quantitative microscopy, 
see for instance Computer Assisted Stereological Toolbox 
(CAST) Grid stereology software (Olympus) or newCAST 
(Visiopharm), but CountEm is the first software that 
uses geometric sampling for macroscopic images. It can 
be applied to any kind of discrete objects or ‘particles’ of 
interest (e.g. birds, humans, trees, etc.), whereas automated 
computer vision software usually needs specific remodeling 
for different patterns.

The main idea is to estimate the population size, N, by 
properly sampling and counting ~200 particles irrespective 
of population size, yielding relative standard errors in the 
5–10% range in ~5 min. Therefore, it is fast, accurate and 
reliable compared to the mentioned alternatives. The only 
practical requirement for applying CountEm is that all the 
particles in the population should be unambiguously identifi-
able for manual counting in the considered image. Systematic 
sampling is performed with a uniform random grid of quad-
rats and can be applied to populations of any size and spatial 
distribution. Thus, the approach is design based, see Cruz-
Orive (2017), and it warrants unbiasedness (namely absence 
of systematic errors).

CountEm is written in Python 3.6.4. The user interface 
is implemented using the PyQt 4.11.4 bindings of the Qt 
framework (The Qt Company 2016). The Pillow (PIL fork) 
5.1.0 and Numpy 1.11.3 libraries are used to manipulate 
images and matrices respectively.

Methods

The main idea of the CountEm method (Cruz et al. 2015) is 
to estimate population size, N, by performing geometric sam-
pling on the population, Y, with a systematic sampling grid 
of quadrats of side length t, and separation between quadrat 
centers T (Fig. 1a). To ensure unbiasedness, the grid has to 
be superimposed uniformly at random on the target image. 
In this context a population is defined as a set of discrete 
objects which are visible on an image. The discrete objects 
(e.g. animals) are generally called particles. The grid is an infi-
nite union of congruent quadrats. The number of particles 
captured by the grid, namely the sample size Q, is counted 
manually. The population size is estimated with the following 
unbiased estimator:

N
T
t

Q^ = ×
2

2

The grid parameters {t, T }  have to be selected in order to 
obtain a sample size, Q ~ 200 and a number of non-empty 
quadrats n > 30, which usually yields relative standard errors 
in the 5–10% range (Cruz and González-Villa 2018). An 
alternative, more intuitive grid parametrization was proposed 
in Cruz and González-Villa (2018). The parameters consid-
ered are the sampling fraction f = t 2/T 2  and the initial number 
of quadrats n0 = BxBy/T 2 where Bx, By represent image width 
and height, respectively. Selecting a suitable grid should be 
easier using the parameters {f, n0}, because a low sample size 
(or a low number of non-empty quadrats) can be corrected 
by increasing f (or n0).

A guided mode has been implemented in CountEm ver. 
1.4.1. This mode guides the users through concrete, itera-
tive steps starting from a rough visual estimation of popula-
tion size N^ . The software returns N^  and sdCav( )N^ , namely 
the predicted standard error of N^ , calculated using the new 
modification of the Cavalieri estimator, as explained in 
Gomez  et  al. (2019). The predicted coefficient of error  
of N^ , ce sdCav Cav( ) ( ) /N N N^ ^ ^= , is also given.

The precision of the method was tested with Monte Carlo 
replications on 51 human crowd images (Cruz and González-
Villa 2018). The relative standard errors were typically in the 
5–10% range.

Software interface

The first step in CountEm ver. 1.4.1 is mode selection. The 
standard mode allows the experienced user to choose the grid 
parameters at will, whereas in the guided mode the recom-
mended buttons in each step are marked in yellow, while 
some of the options of the standard mode are hidden in order 
to visually simplify the window.

The ‘inputs’ window (Fig. 2a) allows to load the image 
and choose the sampling parameters defining the grid. In 
the guided mode, the software will automatically choose a 
suitably sized sampling grid, based on a visual estimation of 
the total number of visible particles in the image, N . The 
visual estimation does not need to be accurate since the 
guided protocol allows to adjust the parameters on several 
iterations if necessary. A rough estimate obtained in a few 
seconds is sufficient. The software sets the sampling frac-
tion to f N= 200 /  , and the number of initial quadrats to 
n0 = 100. Manual choice of grid parameters is available in the  
standard mode.

The ‘select area’ button allows the user to create a polygo-
nal region of interest (RoI) by interactively clicking on the 
screen display. Multiple RoI’s can be defined iteratively. The 
‘process’ button, generates a uniform random superimposi-
tion of the grid of quadrats on the image. The quadrats lying 
outside the selected RoI’s are not shown, reducing the count-
ing time. The actual area of the selected region is not used in 
the calculations, however. Hence the borders of the RoI do 
not need to be drawn accurately.

There are two alternative modes in the ‘Counting’ window 
of the Software interface, namely ‘Overview’ and ‘Image view’ 
(Fig. 2b). The ‘Overview’ shows the full image with the grid 
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as in Fig. 1c and can be used to assess whether the grid is con-
venient. If sample size Q or number of non-empty quadrats, 
n are low (or high), the grid parameters should be changed. 
This adjustment can be done manually after clicking the 
‘Back’ button, or using the ‘Estimated number of non-empty 
quadrats’ and ‘Estimated sample size’ fields, and the ‘Check 
parameters’ button. The latter, is the only available option in 
the guided mode. The ‘Check parameters’ button evaluates if 
the grid parameters are suitable. If necessary, new parameter 
values, f′, n′ are determined to generate a new grid and repeat 
counting. A magnified quadrat is shown in the ‘Image view’. 
Users have to manually count the number of particles in the 
zoomed quadrat applying the forbidden line rule (Gundersen 
1977) to cope with edge effects: a particle is counted in a 
quadrat only if it touches the quadrat but does not hit the 
extended, forbidden line of the quadrat (in red in Fig. 1b). 
The result should be written in the ‘Count’ cell. Sizes of dif-
ferent types of populations (e.g. different bird species) can be 

estimated simultaneously by adding the desired number of 
fields. The ‘Next’ and ‘Previous’ buttons can be used to switch 
to the preceding and the following quadrat respectively. After 
counting the particles in the last quadrat, the progress bar 
(top left) turns green and ‘Continue’ can be clicked.

The resulting values of N Q n N N^ ^ ^, , , ,( ) ( )sd ceCav Cav  for 
each object are displayed in the ‘Results’ window (Fig. 2c). 
The numerical input and output values, and the overview 
and/or individual quadrat images can be exported to csv and 
tiff files respectively.

Example

The greater snow goose (GSGO) image shown in Fig. 1c is 
analyzed here. It was taken in eastern Canada using fixed-
wing aircraft, for the GSGO Spring Survey, to monitor 
the greater snow goose population in southern Québec  
and Ontario.

Figure 1. (a) A portion of the grid of quadrats used for systematic sampling. The sampling fraction is t2/T 2. (b) Magnified version of the 
quadrat marked in (c). Only the three marked birds should be counted, applying the forbidden line counting rule. (c) Image of the GSGO 
survey (Francis St-Pierre, Canadian Wildlife Service) with N = 13 744 manually counted snow geese. A grid of quadrats of the type shown 
in (a), with T = 440 and t = 44 pixels (n0 = 100, f = 0.01), has been superimposed with a tilt of 60°.
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Figure 2. Screenshots of the software interface windows. (a) ‘Inputs’ window. (b) ‘Counting’ window. (c) ‘Results’ window.
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The guided mode was chosen. After loading the image, the 
visual estimation of population size N = 20 000  was intro-
duced. Then we selected the RoI which is the big main flock 
of snow geese. The few birds outside the flock are gulls and 
can be ignored since we only aim at estimating the total num-
ber of geese. The ‘Process’ button led us to the next window. 
A uniform random superimposition of the grid of quadrats is 
generated and shown in the ‘Overview’ window as in Fig. 1c. 
The visual estimations for ‘Estimated number of non-empty 
quadrats’ and ‘Estimated sample size’ and were given, namely 
n = 35  and Q = 105  respectively. n  can be guessed quickly 

in the ‘Overview’ image and Q  can be obtained multiplying 
by the visual estimation of the average number of birds per 
quadrat (three in our example). Since n > 30  and Q > 100
, the grid was considered to be convenient after clicking the 
‘Check parameters’ button. The ‘Image view’ Fig. 2b is used 
to manually count the number of birds in each quadrat. The 
forbidden line rule was used as shown in Fig. 1b. Only snow 
geese were counted in our example. However, several species 
could be counted simultaneously, adding new counting cells 
with the ‘Add obj’ button. The ‘Continue’ button was clicked 
after filling out all the quadrat counting cells. The results are 
shown in the final window (Fig. 2c).

The estimated number of snow geese was N^ »12 900  
with predicted relative standard error of ceCav( ) %N^ ≈ 5 . The 
sample size was Q = 129 and number of nonzero quadrats 
n = 50 which were within the recommended range. A relative 
deviation 100 6 1× − = −( ) / . %N N N^  is obtained with a sin-
gle estimation N^ =12 900  and number of manual annota-
tions N = 13 744. The CountEm counting time was ~5 min.

In Table 1 we show the results of 9 further estimations to 
give a concrete impression of the method’s variability. The 
mean values are given in the last row. Since the method is 
unbiased, the mean of the 10 estimations, 13 700, is already 
close to the true value N = 13 744. The mean counting time 
was ≈5.3 min and the normalized root mean squared error 
was 8.1%. This example strengthens the idea that CountEm 
offers a fast, user-friendly and unbiased population size  
estimation tool.
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Table 1. Results from 10 different flock size estimations on the image 
shown in Fig. 1c.

Run no. N^ Q
Counting 
time (s) Deviation (%)

1 12 900 129 320 −844 (6.1)
2 11 700 117 276 −2044 (14.9)
3 13 800 138 329 56 (0.4)
4 14 100 141 324 356 (2.6)
5 12 400 124 294 −1344 (9.8)
6 14 800 148 277 1056 (7.7)
7 14 500 145 297 756 (5.5)
8 14 000 140 289 256 (1.9)
9 15 600 156 262 1856 (13.5)
10 13 200 132 329 −544 (4.0)
Mean 13 700 137 321 −44 (0.3)


